3.12: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/3.12.E1 3.12.E1] || [[Item:Q1493|<math>\cpi = 3.14159\;26535\;89793\;23846\;\ldots</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cpi = 3.14159\;26535\;89793\;23846\;\ldots</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Pi = 3.14159265358979323846</syntaxhighlight> || <syntaxhighlight lang=mathematica>Pi == 3.14159265358979323846</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
| [https://dlmf.nist.gov/3.12.E1 3.12.E1] || <math qid="Q1493">\cpi = 3.14159\;26535\;89793\;23846\;\ldots</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cpi = 3.14159\;26535\;89793\;23846\;\ldots</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Pi = 3.14159265358979323846</syntaxhighlight> || <syntaxhighlight lang=mathematica>Pi == 3.14159265358979323846</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-  
|-  
| [https://dlmf.nist.gov/3.12.E2 3.12.E2] || [[Item:Q1494|<math>\cpi = 4\int_{0}^{1}\frac{\diff{t}}{1+t^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cpi = 4\int_{0}^{1}\frac{\diff{t}}{1+t^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Pi = 4*int((1)/(1 + (t)^(2)), t = 0..1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Pi == 4*Integrate[Divide[1,1 + (t)^(2)], {t, 0, 1}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
| [https://dlmf.nist.gov/3.12.E2 3.12.E2] || <math qid="Q1494">\cpi = 4\int_{0}^{1}\frac{\diff{t}}{1+t^{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cpi = 4\int_{0}^{1}\frac{\diff{t}}{1+t^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Pi = 4*int((1)/(1 + (t)^(2)), t = 0..1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Pi == 4*Integrate[Divide[1,1 + (t)^(2)], {t, 0, 1}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/3.12.E3 3.12.E3] || [[Item:Q1495|<math>e = 2.71828\;18284\;59045\;23536\;\ldots</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>e = 2.71828\;18284\;59045\;23536\;\ldots</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">exp(1) = 2.71828182845904523536</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">E == 2.71828182845904523536</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/3.12.E3 3.12.E3] || <math qid="Q1495">e = 2.71828\;18284\;59045\;23536\;\ldots</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>e = 2.71828\;18284\;59045\;23536\;\ldots</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">exp(1) = 2.71828182845904523536</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">E == 2.71828182845904523536</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-  
|-  
| [https://dlmf.nist.gov/3.12.E4 3.12.E4] || [[Item:Q1496|<math>\EulerConstant = 0.57721\;56649\;01532\;86060\;\ldots</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\EulerConstant = 0.57721\;56649\;01532\;86060\;\ldots</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>gamma = 0.57721566490153286060</syntaxhighlight> || <syntaxhighlight lang=mathematica>EulerGamma == 0.57721566490153286060</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
| [https://dlmf.nist.gov/3.12.E4 3.12.E4] || <math qid="Q1496">\EulerConstant = 0.57721\;56649\;01532\;86060\;\ldots</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\EulerConstant = 0.57721\;56649\;01532\;86060\;\ldots</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>gamma = 0.57721566490153286060</syntaxhighlight> || <syntaxhighlight lang=mathematica>EulerGamma == 0.57721566490153286060</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|}
|}
</div>
</div>

Latest revision as of 11:04, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
3.12.E1 π = 3.14159 26535 89793 23846 3.14159 26535 89793 23846 {\displaystyle{\displaystyle\pi=3.14159\;26535\;89793\;23846\;\ldots}}
\cpi = 3.14159\;26535\;89793\;23846\;\ldots

Pi = 3.14159265358979323846
Pi == 3.14159265358979323846
Successful Successful - Successful [Tested: 1]
3.12.E2 π = 4 0 1 d t 1 + t 2 4 superscript subscript 0 1 𝑡 1 superscript 𝑡 2 {\displaystyle{\displaystyle\pi=4\int_{0}^{1}\frac{\mathrm{d}t}{1+t^{2}}}}
\cpi = 4\int_{0}^{1}\frac{\diff{t}}{1+t^{2}}

Pi = 4*int((1)/(1 + (t)^(2)), t = 0..1)
Pi == 4*Integrate[Divide[1,1 + (t)^(2)], {t, 0, 1}, GenerateConditions->None]
Successful Successful - Successful [Tested: 1]
3.12.E3 e = 2.71828 18284 59045 23536 𝑒 2.71828 18284 59045 23536 {\displaystyle{\displaystyle e=2.71828\;18284\;59045\;23536\;\ldots}}
e = 2.71828\;18284\;59045\;23536\;\ldots

exp(1) = 2.71828182845904523536
E == 2.71828182845904523536
Skipped - no semantic math Skipped - no semantic math - -
3.12.E4 γ = 0.57721 56649 01532 86060 0.57721 56649 01532 86060 {\displaystyle{\displaystyle\gamma=0.57721\;56649\;01532\;86060\;\ldots}}
\EulerConstant = 0.57721\;56649\;01532\;86060\;\ldots

gamma = 0.57721566490153286060
EulerGamma == 0.57721566490153286060
Successful Successful - Successful [Tested: 1]