1.9: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/1.9.E1 1.9.E1] || [[Item:Q271|<math>z = x+iy</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>z = x+iy</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(x + y*I) = x + I*y</syntaxhighlight> || <syntaxhighlight lang=mathematica>(x + y*I) == x + I*y</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
| [https://dlmf.nist.gov/1.9.E1 1.9.E1] || <math qid="Q271">z = x+iy</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>z = x+iy</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(x + y*I) = x + I*y</syntaxhighlight> || <syntaxhighlight lang=mathematica>(x + y*I) == x + I*y</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-  
|-  
| [https://dlmf.nist.gov/1.9#Ex1 1.9#Ex1] || [[Item:Q272|<math>\realpart@@{z} = x</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\realpart@@{z} = x</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Re(x + y*I) = x</syntaxhighlight> || <syntaxhighlight lang=mathematica>Re[x + y*I] == x</syntaxhighlight> || Failure || Failure || Successful [Tested: 18] || Successful [Tested: 18]
| [https://dlmf.nist.gov/1.9#Ex1 1.9#Ex1] || <math qid="Q272">\realpart@@{z} = x</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\realpart@@{z} = x</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Re(x + y*I) = x</syntaxhighlight> || <syntaxhighlight lang=mathematica>Re[x + y*I] == x</syntaxhighlight> || Failure || Failure || Successful [Tested: 18] || Successful [Tested: 18]
|-  
|-  
| [https://dlmf.nist.gov/1.9#Ex2 1.9#Ex2] || [[Item:Q273|<math>\imagpart@@{z} = y</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\imagpart@@{z} = y</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Im(x + y*I) = y</syntaxhighlight> || <syntaxhighlight lang=mathematica>Im[x + y*I] == y</syntaxhighlight> || Failure || Failure || Successful [Tested: 18] || Successful [Tested: 18]
| [https://dlmf.nist.gov/1.9#Ex2 1.9#Ex2] || <math qid="Q273">\imagpart@@{z} = y</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\imagpart@@{z} = y</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Im(x + y*I) = y</syntaxhighlight> || <syntaxhighlight lang=mathematica>Im[x + y*I] == y</syntaxhighlight> || Failure || Failure || Successful [Tested: 18] || Successful [Tested: 18]
|-  
|-  
| [https://dlmf.nist.gov/1.9#Ex3 1.9#Ex3] || [[Item:Q274|<math>x = r\cos@@{\theta}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>x = r\cos@@{\theta}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>x = r*cos(theta)</syntaxhighlight> || <syntaxhighlight lang=mathematica>x == r*Cos[\[Theta]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [180 / 180]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 2.595814528-.5954243254*I
| [https://dlmf.nist.gov/1.9#Ex3 1.9#Ex3] || <math qid="Q274">x = r\cos@@{\theta}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>x = r\cos@@{\theta}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>x = r*cos(theta)</syntaxhighlight> || <syntaxhighlight lang=mathematica>x == r*Cos[\[Theta]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [180 / 180]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 2.595814528-.5954243254*I
Test Values: {r = -1.5, theta = 1/2*3^(1/2)+1/2*I, x = 1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.595814528-.5954243254*I
Test Values: {r = -1.5, theta = 1/2*3^(1/2)+1/2*I, x = 1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.595814528-.5954243254*I
Test Values: {r = -1.5, theta = 1/2*3^(1/2)+1/2*I, x = .5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 3.095814528-.5954243254*I
Test Values: {r = -1.5, theta = 1/2*3^(1/2)+1/2*I, x = .5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 3.095814528-.5954243254*I
Line 28: Line 28:
Test Values: {Rule[r, -1.5], Rule[x, 1.5], Rule[θ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[r, -1.5], Rule[x, 1.5], Rule[θ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/1.9#Ex4 1.9#Ex4] || [[Item:Q275|<math>y = r\sin@@{\theta}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>y = r\sin@@{\theta}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>y = r*sin(theta)</syntaxhighlight> || <syntaxhighlight lang=mathematica>y == r*Sin[\[Theta]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.211529498+.5063946946*I
| [https://dlmf.nist.gov/1.9#Ex4 1.9#Ex4] || <math qid="Q275">y = r\sin@@{\theta}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>y = r\sin@@{\theta}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>y = r*sin(theta)</syntaxhighlight> || <syntaxhighlight lang=mathematica>y == r*Sin[\[Theta]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.211529498+.5063946946*I
Test Values: {r = -1.5, theta = 1/2*3^(1/2)+1/2*I, y = -1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.788470502+.5063946946*I
Test Values: {r = -1.5, theta = 1/2*3^(1/2)+1/2*I, y = -1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.788470502+.5063946946*I
Test Values: {r = -1.5, theta = 1/2*3^(1/2)+1/2*I, y = 1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .788470502+.5063946946*I
Test Values: {r = -1.5, theta = 1/2*3^(1/2)+1/2*I, y = 1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .788470502+.5063946946*I
Line 36: Line 36:
Test Values: {Rule[r, -1.5], Rule[y, -1.5], Rule[θ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[r, -1.5], Rule[y, -1.5], Rule[θ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/1.9.E4 1.9.E4] || [[Item:Q276|<math>r = (x^{2}+y^{2})^{1/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>r = (x^{2}+y^{2})^{1/2}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">r = ((x)^(2)+ (y)^(2))^(1/2)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">r == ((x)^(2)+ (y)^(2))^(1/2)</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/1.9.E4 1.9.E4] || <math qid="Q276">r = (x^{2}+y^{2})^{1/2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>r = (x^{2}+y^{2})^{1/2}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">r = ((x)^(2)+ (y)^(2))^(1/2)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">r == ((x)^(2)+ (y)^(2))^(1/2)</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-  
|-  
| [https://dlmf.nist.gov/1.9.E6 1.9.E6] || [[Item:Q278|<math>\omega = \atan@{|y/x|}\in\left[0,\tfrac{1}{2}\pi\right]</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\omega = \atan@{|y/x|}\in\left[0,\tfrac{1}{2}\pi\right]</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>omega 0 <= arctan(abs(y/x)) <= (1)/(2)*Pi</syntaxhighlight> || <syntaxhighlight lang=mathematica>\[Omega] 0 <= ArcTan[Abs[y/x]] <= Divide[1,2]*Pi</syntaxhighlight> || Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [180 / 180]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.8660254037844387, 0.49999999999999994], Times[-1.0, True]]
| [https://dlmf.nist.gov/1.9.E6 1.9.E6] || <math qid="Q278">\omega = \atan@{|y/x|}\in\left[0,\tfrac{1}{2}\pi\right]</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\omega = \atan@{|y/x|}\in\left[0,\tfrac{1}{2}\pi\right]</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>omega 0 <= arctan(abs(y/x)) <= (1)/(2)*Pi</syntaxhighlight> || <syntaxhighlight lang=mathematica>\[Omega] 0 <= ArcTan[Abs[y/x]] <= Divide[1,2]*Pi</syntaxhighlight> || Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [180 / 180]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.8660254037844387, 0.49999999999999994], Times[-1.0, True]]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[ω, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.4999999999999998, 0.8660254037844387], Times[-1.0, True]]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[ω, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.4999999999999998, 0.8660254037844387], Times[-1.0, True]]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[ω, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[ω, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/1.9#Ex5 1.9#Ex5] || [[Item:Q279|<math>|z| = r</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|z| = r</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs(z) = r</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[z] == r</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [39 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 2.5
| [https://dlmf.nist.gov/1.9#Ex5 1.9#Ex5] || <math qid="Q279">|z| = r</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|z| = r</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs(z) = r</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[z] == r</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [39 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 2.5
Test Values: {r = -1.5, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.5
Test Values: {r = -1.5, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.5
Test Values: {r = -1.5, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.5
Test Values: {r = -1.5, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.5
Line 50: Line 50:
Test Values: {Rule[r, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[r, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/1.9#Ex6 1.9#Ex6] || [[Item:Q280|<math>\phase@@{z} = \theta+2n\pi</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\phase@@{z} = \theta+2n\pi</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>argument(z) = theta + 2*n*Pi</syntaxhighlight> || <syntaxhighlight lang=mathematica>Arg[z] == \[Theta]+ 2*n*Pi</syntaxhighlight> || Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [70 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-19.191982549724898, -0.49999999999999994]
| [https://dlmf.nist.gov/1.9#Ex6 1.9#Ex6] || <math qid="Q280">\phase@@{z} = \theta+2n\pi</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\phase@@{z} = \theta+2n\pi</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>argument(z) = theta + 2*n*Pi</syntaxhighlight> || <syntaxhighlight lang=mathematica>Arg[z] == \[Theta]+ 2*n*Pi</syntaxhighlight> || Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [70 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-19.191982549724898, -0.49999999999999994]
Test Values: {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[θ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-17.82595714594046, -0.8660254037844387]
Test Values: {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[θ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-17.82595714594046, -0.8660254037844387]
Test Values: {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[θ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[θ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/1.9#Ex7 1.9#Ex7] || [[Item:Q281|<math>|\realpart@@{z}| \leq |z|</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\realpart@@{z}| \leq |z|</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs(Re(z)) <= abs(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Re[z]] <= Abs[z]</syntaxhighlight> || Failure || Failure || Successful [Tested: 7] || Successful [Tested: 7]
| [https://dlmf.nist.gov/1.9#Ex7 1.9#Ex7] || <math qid="Q281">|\realpart@@{z}| \leq |z|</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\realpart@@{z}| \leq |z|</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs(Re(z)) <= abs(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Re[z]] <= Abs[z]</syntaxhighlight> || Failure || Failure || Successful [Tested: 7] || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/1.9#Ex8 1.9#Ex8] || [[Item:Q282|<math>|\imagpart@@{z}| \leq |z|</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\imagpart@@{z}| \leq |z|</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs(Im(z)) <= abs(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Im[z]] <= Abs[z]</syntaxhighlight> || Failure || Failure || Successful [Tested: 7] || Successful [Tested: 7]
| [https://dlmf.nist.gov/1.9#Ex8 1.9#Ex8] || <math qid="Q282">|\imagpart@@{z}| \leq |z|</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\imagpart@@{z}| \leq |z|</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs(Im(z)) <= abs(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Im[z]] <= Abs[z]</syntaxhighlight> || Failure || Failure || Successful [Tested: 7] || Successful [Tested: 7]
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/1.9.E9 1.9.E9] || [[Item:Q283|<math>z = re^{i\theta}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>z = re^{i\theta}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">z = r*exp(I*theta)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">z == r*Exp[I*\[Theta]]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/1.9.E9 1.9.E9] || <math qid="Q283">z = re^{i\theta}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>z = re^{i\theta}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">z = r*exp(I*theta)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">z == r*Exp[I*\[Theta]]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-  
|-  
| [https://dlmf.nist.gov/1.9.E10 1.9.E10] || [[Item:Q284|<math>e^{i\theta} = \cos@@{\theta}+i\sin@@{\theta}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{i\theta} = \cos@@{\theta}+i\sin@@{\theta}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(I*theta) = cos(theta)+ I*sin(theta)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[I*\[Theta]] == Cos[\[Theta]]+ I*Sin[\[Theta]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 10]
| [https://dlmf.nist.gov/1.9.E10 1.9.E10] || <math qid="Q284">e^{i\theta} = \cos@@{\theta}+i\sin@@{\theta}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{i\theta} = \cos@@{\theta}+i\sin@@{\theta}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(I*theta) = cos(theta)+ I*sin(theta)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[I*\[Theta]] == Cos[\[Theta]]+ I*Sin[\[Theta]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 10]
|-  
|-  
| [https://dlmf.nist.gov/1.9.E11 1.9.E11] || [[Item:Q285|<math>\conj{z} = x-iy</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\conj{z} = x-iy</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>conjugate(x + y*I) = x - I*y</syntaxhighlight> || <syntaxhighlight lang=mathematica>Conjugate[x + y*I] == x - I*y</syntaxhighlight> || Failure || Failure || Successful [Tested: 18] || Successful [Tested: 18]
| [https://dlmf.nist.gov/1.9.E11 1.9.E11] || <math qid="Q285">\conj{z} = x-iy</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\conj{z} = x-iy</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>conjugate(x + y*I) = x - I*y</syntaxhighlight> || <syntaxhighlight lang=mathematica>Conjugate[x + y*I] == x - I*y</syntaxhighlight> || Failure || Failure || Successful [Tested: 18] || Successful [Tested: 18]
|-  
|-  
| [https://dlmf.nist.gov/1.9.E12 1.9.E12] || [[Item:Q286|<math>|\conj{z}| = |z|</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\conj{z}| = |z|</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs(conjugate(z)) = abs(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Conjugate[z]] == Abs[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
| [https://dlmf.nist.gov/1.9.E12 1.9.E12] || <math qid="Q286">|\conj{z}| = |z|</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\conj{z}| = |z|</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs(conjugate(z)) = abs(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Conjugate[z]] == Abs[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/1.9.E13 1.9.E13] || [[Item:Q287|<math>\phase@@{\conj{z}} = -\phase@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\phase@@{\conj{z}} = -\phase@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>argument(conjugate(z)) = - argument(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Arg[Conjugate[z]] == - Arg[z]</syntaxhighlight> || Failure || Failure || Successful [Tested: 7] || Successful [Tested: 7]
| [https://dlmf.nist.gov/1.9.E13 1.9.E13] || <math qid="Q287">\phase@@{\conj{z}} = -\phase@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\phase@@{\conj{z}} = -\phase@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>argument(conjugate(z)) = - argument(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Arg[Conjugate[z]] == - Arg[z]</syntaxhighlight> || Failure || Failure || Successful [Tested: 7] || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/1.9.E14 1.9.E14] || [[Item:Q288|<math>z_{1}+ z_{2} = x_{1}+ x_{2}+\iunit(y_{1}+ y_{2})</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>z_{1}+ z_{2} = x_{1}+ x_{2}+\iunit(y_{1}+ y_{2})</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>x + y*I[1]+x + y*I[2] = x[1]+ x[2]+ I*(y[1]+ y[2])</syntaxhighlight> || <syntaxhighlight lang=mathematica>Subscript[x + y*I, 1]+Subscript[x + y*I, 2] == Subscript[x, 1]+ Subscript[x, 2]+ I*(Subscript[y, 1]+ Subscript[y, 2])</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.7320508075688775, -2.732050807568877], Subscript[Complex[1.5, -1.5], 1], Subscript[Complex[1.5, -1.5], 2]]
| [https://dlmf.nist.gov/1.9.E14 1.9.E14] || <math qid="Q288">z_{1}+ z_{2} = x_{1}+ x_{2}+\iunit(y_{1}+ y_{2})</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>z_{1}+ z_{2} = x_{1}+ x_{2}+\iunit(y_{1}+ y_{2})</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>x + y*I[1]+x + y*I[2] = x[1]+ x[2]+ I*(y[1]+ y[2])</syntaxhighlight> || <syntaxhighlight lang=mathematica>Subscript[x + y*I, 1]+Subscript[x + y*I, 2] == Subscript[x, 1]+ Subscript[x, 2]+ I*(Subscript[y, 1]+ Subscript[y, 2])</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.7320508075688775, -2.732050807568877], Subscript[Complex[1.5, -1.5], 1], Subscript[Complex[1.5, -1.5], 2]]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[Subscript[x, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[y, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[y, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.3660254037844388, -1.3660254037844388], Subscript[Complex[1.5, -1.5], 1], Subscript[Complex[1.5, -1.5], 2]]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[Subscript[x, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[y, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[y, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.3660254037844388, -1.3660254037844388], Subscript[Complex[1.5, -1.5], 1], Subscript[Complex[1.5, -1.5], 2]]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[Subscript[x, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[y, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[y, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[Subscript[x, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[y, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[y, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/1.9.E14 1.9.E14] || [[Item:Q288|<math>z_{1}- z_{2} = x_{1}- x_{2}+\iunit(y_{1}- y_{2})</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>z_{1}- z_{2} = x_{1}- x_{2}+\iunit(y_{1}- y_{2})</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>x + y*I[1]-x + y*I[2] = x[1]- x[2]+ I*(y[1]- y[2])</syntaxhighlight> || <syntaxhighlight lang=mathematica>Subscript[x + y*I, 1]-Subscript[x + y*I, 2] == Subscript[x, 1]- Subscript[x, 2]+ I*(Subscript[y, 1]- Subscript[y, 2])</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Subscript[Complex[1.5, -1.5], 1], Times[-1.0, Subscript[Complex[1.5, -1.5], 2]]]
| [https://dlmf.nist.gov/1.9.E14 1.9.E14] || <math qid="Q288">z_{1}- z_{2} = x_{1}- x_{2}+\iunit(y_{1}- y_{2})</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>z_{1}- z_{2} = x_{1}- x_{2}+\iunit(y_{1}- y_{2})</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>x + y*I[1]-x + y*I[2] = x[1]- x[2]+ I*(y[1]- y[2])</syntaxhighlight> || <syntaxhighlight lang=mathematica>Subscript[x + y*I, 1]-Subscript[x + y*I, 2] == Subscript[x, 1]- Subscript[x, 2]+ I*(Subscript[y, 1]- Subscript[y, 2])</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Subscript[Complex[1.5, -1.5], 1], Times[-1.0, Subscript[Complex[1.5, -1.5], 2]]]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[Subscript[x, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[y, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[y, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.36602540378443876, -1.3660254037844384], Subscript[Complex[1.5, -1.5], 1], Times[-1.0, Subscript[Complex[1.5, -1.5], 2]]]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[Subscript[x, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[y, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[y, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.36602540378443876, -1.3660254037844384], Subscript[Complex[1.5, -1.5], 1], Times[-1.0, Subscript[Complex[1.5, -1.5], 2]]]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[Subscript[x, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[y, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[y, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[Subscript[x, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[y, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[y, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/1.9.E15 1.9.E15] || [[Item:Q289|<math>z_{1}z_{2} = x_{1}x_{2}-y_{1}y_{2}+i(x_{1}y_{2}+x_{2}y_{1})</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>z_{1}z_{2} = x_{1}x_{2}-y_{1}y_{2}+i(x_{1}y_{2}+x_{2}y_{1})</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">x + y*I[1]*x + y*I[2] = x[1]*x[2]- y[1]*y[2]+ I*(x[1]*y[2]+ x[2]*y[1])</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[x + y*I, 1]*Subscript[x + y*I, 2] == Subscript[x, 1]*Subscript[x, 2]- Subscript[y, 1]*Subscript[y, 2]+ I*(Subscript[x, 1]*Subscript[y, 2]+ Subscript[x, 2]*Subscript[y, 1])</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/1.9.E15 1.9.E15] || <math qid="Q289">z_{1}z_{2} = x_{1}x_{2}-y_{1}y_{2}+i(x_{1}y_{2}+x_{2}y_{1})</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>z_{1}z_{2} = x_{1}x_{2}-y_{1}y_{2}+i(x_{1}y_{2}+x_{2}y_{1})</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">x + y*I[1]*x + y*I[2] = x[1]*x[2]- y[1]*y[2]+ I*(x[1]*y[2]+ x[2]*y[1])</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[x + y*I, 1]*Subscript[x + y*I, 2] == Subscript[x, 1]*Subscript[x, 2]- Subscript[y, 1]*Subscript[y, 2]+ I*(Subscript[x, 1]*Subscript[y, 2]+ Subscript[x, 2]*Subscript[y, 1])</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-  
|-  
| [https://dlmf.nist.gov/1.9.E16 1.9.E16] || [[Item:Q290|<math>\frac{z_{1}}{z_{2}} = \frac{z_{1}\conj{z}_{2}}{|z_{2}|^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{z_{1}}{z_{2}} = \frac{z_{1}\conj{z}_{2}}{|z_{2}|^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(z[1])/(z[2]) = (z[1]*conjugate(z)[2])/((abs(z[2]))^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[Subscript[z, 1],Subscript[z, 2]] == Divide[Subscript[z, 1]*Subscript[Conjugate[z], 2],(Abs[Subscript[z, 2]])^(2)]</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[1.0, Times[Complex[-0.8660254037844387, -0.49999999999999994], Subscript[Complex[0.8660254037844387, -0.49999999999999994], 2]]]
| [https://dlmf.nist.gov/1.9.E16 1.9.E16] || <math qid="Q290">\frac{z_{1}}{z_{2}} = \frac{z_{1}\conj{z}_{2}}{|z_{2}|^{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{z_{1}}{z_{2}} = \frac{z_{1}\conj{z}_{2}}{|z_{2}|^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(z[1])/(z[2]) = (z[1]*conjugate(z)[2])/((abs(z[2]))^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[Subscript[z, 1],Subscript[z, 2]] == Divide[Subscript[z, 1]*Subscript[Conjugate[z], 2],(Abs[Subscript[z, 2]])^(2)]</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[1.0, Times[Complex[-0.8660254037844387, -0.49999999999999994], Subscript[Complex[0.8660254037844387, -0.49999999999999994], 2]]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[z, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.0, -1.0], Times[Complex[-0.8660254037844387, -0.49999999999999994], Subscript[Complex[0.8660254037844387, -0.49999999999999994], 2]]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[z, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.0, -1.0], Times[Complex[-0.8660254037844387, -0.49999999999999994], Subscript[Complex[0.8660254037844387, -0.49999999999999994], 2]]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[z, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[z, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/1.9.E16 1.9.E16] || [[Item:Q290|<math>\frac{z_{1}\conj{z}_{2}}{|z_{2}|^{2}} = \frac{x_{1}x_{2}+y_{1}y_{2}+i(x_{2}y_{1}-x_{1}y_{2})}{x_{2}^{2}+y_{2}^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{z_{1}\conj{z}_{2}}{|z_{2}|^{2}} = \frac{x_{1}x_{2}+y_{1}y_{2}+i(x_{2}y_{1}-x_{1}y_{2})}{x_{2}^{2}+y_{2}^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(x + y*I[1]*conjugate(x + y*I)[2])/((abs(x + y*I[2]))^(2)) = (x[1]*x[2]+ y[1]*y[2]+ I*(x[2]*y[1]- x[1]*y[2]))/((x[2])^(2)+ (y[2])^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[Subscript[x + y*I, 1]*Subscript[Conjugate[x + y*I], 2],(Abs[Subscript[x + y*I, 2]])^(2)] == Divide[Subscript[x, 1]*Subscript[x, 2]+ Subscript[y, 1]*Subscript[y, 2]+ I*(Subscript[x, 2]*Subscript[y, 1]- Subscript[x, 1]*Subscript[y, 2]),(Subscript[x, 2])^(2)+ (Subscript[y, 2])^(2)]</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: DirectedInfinity[]
| [https://dlmf.nist.gov/1.9.E16 1.9.E16] || <math qid="Q290">\frac{z_{1}\conj{z}_{2}}{|z_{2}|^{2}} = \frac{x_{1}x_{2}+y_{1}y_{2}+i(x_{2}y_{1}-x_{1}y_{2})}{x_{2}^{2}+y_{2}^{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{z_{1}\conj{z}_{2}}{|z_{2}|^{2}} = \frac{x_{1}x_{2}+y_{1}y_{2}+i(x_{2}y_{1}-x_{1}y_{2})}{x_{2}^{2}+y_{2}^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(x + y*I[1]*conjugate(x + y*I)[2])/((abs(x + y*I[2]))^(2)) = (x[1]*x[2]+ y[1]*y[2]+ I*(x[2]*y[1]- x[1]*y[2]))/((x[2])^(2)+ (y[2])^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[Subscript[x + y*I, 1]*Subscript[Conjugate[x + y*I], 2],(Abs[Subscript[x + y*I, 2]])^(2)] == Divide[Subscript[x, 1]*Subscript[x, 2]+ Subscript[y, 1]*Subscript[y, 2]+ I*(Subscript[x, 2]*Subscript[y, 1]- Subscript[x, 1]*Subscript[y, 2]),(Subscript[x, 2])^(2)+ (Subscript[y, 2])^(2)]</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: DirectedInfinity[]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[Subscript[x, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[y, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[y, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.6666666666666669, -0.6666666666666667], Times[Power[Abs[Subscript[Complex[1.5, -1.5], 2]], -2], Subscript[Complex[1.5, -1.5], 1], Subscript[Complex[1.5, 1.5], 2]]]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[Subscript[x, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[y, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[y, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.6666666666666669, -0.6666666666666667], Times[Power[Abs[Subscript[Complex[1.5, -1.5], 2]], -2], Subscript[Complex[1.5, -1.5], 1], Subscript[Complex[1.5, 1.5], 2]]]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[Subscript[x, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[y, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[y, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[Subscript[x, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[y, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[y, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/1.9.E17 1.9.E17] || [[Item:Q291|<math>|z_{1}z_{2}| = |z_{1}|\;|z_{2}|</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>|z_{1}z_{2}| = |z_{1}|\;|z_{2}|</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">abs(z[1]*z[2]) = abs(z[1])*abs(z[2])</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Abs[Subscript[z, 1]*Subscript[z, 2]] == Abs[Subscript[z, 1]]*Abs[Subscript[z, 2]]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/1.9.E17 1.9.E17] || <math qid="Q291">|z_{1}z_{2}| = |z_{1}|\;|z_{2}|</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>|z_{1}z_{2}| = |z_{1}|\;|z_{2}|</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">abs(z[1]*z[2]) = abs(z[1])*abs(z[2])</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Abs[Subscript[z, 1]*Subscript[z, 2]] == Abs[Subscript[z, 1]]*Abs[Subscript[z, 2]]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-  
|-  
| [https://dlmf.nist.gov/1.9.E18 1.9.E18] || [[Item:Q292|<math>\phase@{z_{1}z_{2}} = \phase@@{z_{1}}+\phase@@{z_{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\phase@{z_{1}z_{2}} = \phase@@{z_{1}}+\phase@@{z_{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>argument(z[1]*z[2]) = argument(z[1])+ argument(z[2])</syntaxhighlight> || <syntaxhighlight lang=mathematica>Arg[Subscript[z, 1]*Subscript[z, 2]] == Arg[Subscript[z, 1]]+ Arg[Subscript[z, 2]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [25 / 100]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -6.283185308
| [https://dlmf.nist.gov/1.9.E18 1.9.E18] || <math qid="Q292">\phase@{z_{1}z_{2}} = \phase@@{z_{1}}+\phase@@{z_{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\phase@{z_{1}z_{2}} = \phase@@{z_{1}}+\phase@@{z_{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>argument(z[1]*z[2]) = argument(z[1])+ argument(z[2])</syntaxhighlight> || <syntaxhighlight lang=mathematica>Arg[Subscript[z, 1]*Subscript[z, 2]] == Arg[Subscript[z, 1]]+ Arg[Subscript[z, 2]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [25 / 100]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -6.283185308
Test Values: {z[1] = 1/2*3^(1/2)+1/2*I, z[2] = -1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -6.283185308
Test Values: {z[1] = 1/2*3^(1/2)+1/2*I, z[2] = -1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -6.283185308
Test Values: {z[1] = 1/2*3^(1/2)+1/2*I, z[2] = -.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -6.283185308
Test Values: {z[1] = 1/2*3^(1/2)+1/2*I, z[2] = -.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -6.283185308
Line 96: Line 96:
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[z, 2], -0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[z, 2], -0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/1.9.E19 1.9.E19] || [[Item:Q293|<math>\abs{\frac{z_{1}}{z_{2}}} = \frac{|z_{1}|}{|z_{2}|}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\abs{\frac{z_{1}}{z_{2}}} = \frac{|z_{1}|}{|z_{2}|}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs((z[1])/(z[2])) = (abs(z[1]))/(abs(z[2]))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Divide[Subscript[z, 1],Subscript[z, 2]]] == Divide[Abs[Subscript[z, 1]],Abs[Subscript[z, 2]]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
| [https://dlmf.nist.gov/1.9.E19 1.9.E19] || <math qid="Q293">\abs{\frac{z_{1}}{z_{2}}} = \frac{|z_{1}|}{|z_{2}|}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\abs{\frac{z_{1}}{z_{2}}} = \frac{|z_{1}|}{|z_{2}|}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs((z[1])/(z[2])) = (abs(z[1]))/(abs(z[2]))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Divide[Subscript[z, 1],Subscript[z, 2]]] == Divide[Abs[Subscript[z, 1]],Abs[Subscript[z, 2]]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
|-  
|-  
| [https://dlmf.nist.gov/1.9.E20 1.9.E20] || [[Item:Q294|<math>\phase@@{\frac{z_{1}}{z_{2}}} = \phase@@{z_{1}}-\phase@@{z_{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\phase@@{\frac{z_{1}}{z_{2}}} = \phase@@{z_{1}}-\phase@@{z_{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>argument((z[1])/(z[2])) = argument(z[1])- argument(z[2])</syntaxhighlight> || <syntaxhighlight lang=mathematica>Arg[Divide[Subscript[z, 1],Subscript[z, 2]]] == Arg[Subscript[z, 1]]- Arg[Subscript[z, 2]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [25 / 100]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -6.283185308
| [https://dlmf.nist.gov/1.9.E20 1.9.E20] || <math qid="Q294">\phase@@{\frac{z_{1}}{z_{2}}} = \phase@@{z_{1}}-\phase@@{z_{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\phase@@{\frac{z_{1}}{z_{2}}} = \phase@@{z_{1}}-\phase@@{z_{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>argument((z[1])/(z[2])) = argument(z[1])- argument(z[2])</syntaxhighlight> || <syntaxhighlight lang=mathematica>Arg[Divide[Subscript[z, 1],Subscript[z, 2]]] == Arg[Subscript[z, 1]]- Arg[Subscript[z, 2]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [25 / 100]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -6.283185308
Test Values: {z[1] = -1/2+1/2*I*3^(1/2), z[2] = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 6.283185308
Test Values: {z[1] = -1/2+1/2*I*3^(1/2), z[2] = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 6.283185308
Test Values: {z[1] = 1/2-1/2*I*3^(1/2), z[2] = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 6.283185307
Test Values: {z[1] = 1/2-1/2*I*3^(1/2), z[2] = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 6.283185307
Line 106: Line 106:
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]], Rule[Subscript[z, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]], Rule[Subscript[z, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/1.9.E22 1.9.E22] || [[Item:Q296|<math>\cos@@{n\theta}+i\sin@@{n\theta} = (\cos@@{\theta}+i\sin@@{\theta})^{n}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@@{n\theta}+i\sin@@{n\theta} = (\cos@@{\theta}+i\sin@@{\theta})^{n}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(n*theta)+ I*sin(n*theta) = (cos(theta)+ I*sin(theta))^(n)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[n*\[Theta]]+ I*Sin[n*\[Theta]] == (Cos[\[Theta]]+ I*Sin[\[Theta]])^(n)</syntaxhighlight> || Error || Successful || - || Successful [Tested: 10]
| [https://dlmf.nist.gov/1.9.E22 1.9.E22] || <math qid="Q296">\cos@@{n\theta}+i\sin@@{n\theta} = (\cos@@{\theta}+i\sin@@{\theta})^{n}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@@{n\theta}+i\sin@@{n\theta} = (\cos@@{\theta}+i\sin@@{\theta})^{n}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(n*theta)+ I*sin(n*theta) = (cos(theta)+ I*sin(theta))^(n)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[n*\[Theta]]+ I*Sin[n*\[Theta]] == (Cos[\[Theta]]+ I*Sin[\[Theta]])^(n)</syntaxhighlight> || Error || Successful || - || Successful [Tested: 10]
|-  
|-  
| [https://dlmf.nist.gov/1.9.E23 1.9.E23] || [[Item:Q297|<math>\abs{\abs{z_{1}}-\abs{z_{2}}} \leq \abs{z_{1}+z_{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\abs{\abs{z_{1}}-\abs{z_{2}}} \leq \abs{z_{1}+z_{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs(abs(z[1])- abs(z[2])) <= abs(z[1]+ z[2])</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Abs[Subscript[z, 1]]- Abs[Subscript[z, 2]]] <= Abs[Subscript[z, 1]+ Subscript[z, 2]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 100] || Successful [Tested: 100]
| [https://dlmf.nist.gov/1.9.E23 1.9.E23] || <math qid="Q297">\abs{\abs{z_{1}}-\abs{z_{2}}} \leq \abs{z_{1}+z_{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\abs{\abs{z_{1}}-\abs{z_{2}}} \leq \abs{z_{1}+z_{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs(abs(z[1])- abs(z[2])) <= abs(z[1]+ z[2])</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Abs[Subscript[z, 1]]- Abs[Subscript[z, 2]]] <= Abs[Subscript[z, 1]+ Subscript[z, 2]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 100] || Successful [Tested: 100]
|-  
|-  
| [https://dlmf.nist.gov/1.9.E23 1.9.E23] || [[Item:Q297|<math>\abs{z_{1}+z_{2}} \leq \abs{z_{1}}+\abs{z_{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\abs{z_{1}+z_{2}} \leq \abs{z_{1}}+\abs{z_{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs(z[1]+ z[2]) <= abs(z[1])+ abs(z[2])</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Subscript[z, 1]+ Subscript[z, 2]] <= Abs[Subscript[z, 1]]+ Abs[Subscript[z, 2]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 100] || Successful [Tested: 100]
| [https://dlmf.nist.gov/1.9.E23 1.9.E23] || <math qid="Q297">\abs{z_{1}+z_{2}} \leq \abs{z_{1}}+\abs{z_{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\abs{z_{1}+z_{2}} \leq \abs{z_{1}}+\abs{z_{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs(z[1]+ z[2]) <= abs(z[1])+ abs(z[2])</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Subscript[z, 1]+ Subscript[z, 2]] <= Abs[Subscript[z, 1]]+ Abs[Subscript[z, 2]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 100] || Successful [Tested: 100]
|-  
|-  
| [https://dlmf.nist.gov/1.9#Ex9 1.9#Ex9] || [[Item:Q299|<math>\pderiv{u}{x} = \pderiv{v}{y}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\pderiv{u}{x} = \pderiv{v}{y}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(u, x) = diff(v, y)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[u, x] == D[v, y]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 300]
| [https://dlmf.nist.gov/1.9#Ex9 1.9#Ex9] || <math qid="Q299">\pderiv{u}{x} = \pderiv{v}{y}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\pderiv{u}{x} = \pderiv{v}{y}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(u, x) = diff(v, y)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[u, x] == D[v, y]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 300]
|-  
|-  
| [https://dlmf.nist.gov/1.9#Ex10 1.9#Ex10] || [[Item:Q300|<math>\pderiv{u}{y} = -\pderiv{v}{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\pderiv{u}{y} = -\pderiv{v}{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(u, y) = - diff(v, x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[u, y] == - D[v, x]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 300]
| [https://dlmf.nist.gov/1.9#Ex10 1.9#Ex10] || <math qid="Q300">\pderiv{u}{y} = -\pderiv{v}{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\pderiv{u}{y} = -\pderiv{v}{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(u, y) = - diff(v, x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[u, y] == - D[v, x]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 300]
|-  
|-  
| [https://dlmf.nist.gov/1.9.E26 1.9.E26] || [[Item:Q301|<math>\pderiv[2]{u}{x}+\pderiv[2]{u}{y} = \pderiv[2]{v}{x}+\pderiv[2]{v}{y}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\pderiv[2]{u}{x}+\pderiv[2]{u}{y} = \pderiv[2]{v}{x}+\pderiv[2]{v}{y}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(u, [x$(2)])+ diff(u, [y$(2)]) = diff(v, [x$(2)])+ diff(v, [y$(2)])</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[u, {x, 2}]+ D[u, {y, 2}] == D[v, {x, 2}]+ D[v, {y, 2}]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 300]
| [https://dlmf.nist.gov/1.9.E26 1.9.E26] || <math qid="Q301">\pderiv[2]{u}{x}+\pderiv[2]{u}{y} = \pderiv[2]{v}{x}+\pderiv[2]{v}{y}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\pderiv[2]{u}{x}+\pderiv[2]{u}{y} = \pderiv[2]{v}{x}+\pderiv[2]{v}{y}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(u, [x$(2)])+ diff(u, [y$(2)]) = diff(v, [x$(2)])+ diff(v, [y$(2)])</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[u, {x, 2}]+ D[u, {y, 2}] == D[v, {x, 2}]+ D[v, {y, 2}]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 300]
|-  
|-  
| [https://dlmf.nist.gov/1.9.E26 1.9.E26] || [[Item:Q301|<math>\pderiv[2]{v}{x}+\pderiv[2]{v}{y} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\pderiv[2]{v}{x}+\pderiv[2]{v}{y} = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(v, [x$(2)])+ diff(v, [y$(2)]) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[v, {x, 2}]+ D[v, {y, 2}] == 0</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 180]
| [https://dlmf.nist.gov/1.9.E26 1.9.E26] || <math qid="Q301">\pderiv[2]{v}{x}+\pderiv[2]{v}{y} = 0</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\pderiv[2]{v}{x}+\pderiv[2]{v}{y} = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(v, [x$(2)])+ diff(v, [y$(2)]) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[v, {x, 2}]+ D[v, {y, 2}] == 0</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 180]
|-  
|-  
| [https://dlmf.nist.gov/1.9.E27 1.9.E27] || [[Item:Q302|<math>\pderiv[2]{u}{r}+\frac{1}{r}\pderiv{u}{r}+\frac{1}{r^{2}}\pderiv[2]{u}{\theta} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\pderiv[2]{u}{r}+\frac{1}{r}\pderiv{u}{r}+\frac{1}{r^{2}}\pderiv[2]{u}{\theta} = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(u, [r$(2)])+(1)/(r)*diff(u, r)+(1)/((r)^(2))*diff(u, [theta$(2)]) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[u, {r, 2}]+Divide[1,r]*D[u, r]+Divide[1,(r)^(2)]*D[u, {\[Theta], 2}] == 0</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 300]
| [https://dlmf.nist.gov/1.9.E27 1.9.E27] || <math qid="Q302">\pderiv[2]{u}{r}+\frac{1}{r}\pderiv{u}{r}+\frac{1}{r^{2}}\pderiv[2]{u}{\theta} = 0</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\pderiv[2]{u}{r}+\frac{1}{r}\pderiv{u}{r}+\frac{1}{r^{2}}\pderiv[2]{u}{\theta} = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(u, [r$(2)])+(1)/(r)*diff(u, r)+(1)/((r)^(2))*diff(u, [theta$(2)]) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[u, {r, 2}]+Divide[1,r]*D[u, r]+Divide[1,(r)^(2)]*D[u, {\[Theta], 2}] == 0</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 300]
|-  
|-  
| [https://dlmf.nist.gov/1.9.E33 1.9.E33] || [[Item:Q308|<math>u(z) = \frac{1}{2\pi}\int^{2\pi}_{0}u(z+re^{i\phi})\diff{\phi}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>u(z) = \frac{1}{2\pi}\int^{2\pi}_{0}u(z+re^{i\phi})\diff{\phi}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>u(z) = (1)/(2*Pi)*int(u(z + r*exp(I*phi)), phi = 0..2*Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>u[z] == Divide[1,2*Pi]*Integrate[u[z + r*Exp[I*\[Phi]]], {\[Phi], 0, 2*Pi}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 300]
| [https://dlmf.nist.gov/1.9.E33 1.9.E33] || <math qid="Q308">u(z) = \frac{1}{2\pi}\int^{2\pi}_{0}u(z+re^{i\phi})\diff{\phi}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>u(z) = \frac{1}{2\pi}\int^{2\pi}_{0}u(z+re^{i\phi})\diff{\phi}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>u(z) = (1)/(2*Pi)*int(u(z + r*exp(I*phi)), phi = 0..2*Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>u[z] == Divide[1,2*Pi]*Integrate[u[z + r*Exp[I*\[Phi]]], {\[Phi], 0, 2*Pi}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 300]
|-  
|-  
| [https://dlmf.nist.gov/1.9.E34 1.9.E34] || [[Item:Q309|<math>u(re^{i\theta}) = \frac{1}{2\pi}\int^{2\pi}_{0}\frac{(R^{2}-r^{2})h(Re^{i\phi})\diff{\phi}}{R^{2}-2Rr\cos@{\phi-\theta}+r^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>u(re^{i\theta}) = \frac{1}{2\pi}\int^{2\pi}_{0}\frac{(R^{2}-r^{2})h(Re^{i\phi})\diff{\phi}}{R^{2}-2Rr\cos@{\phi-\theta}+r^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>u(r*exp(I*theta)) = (1)/(2*Pi)*int((((R)^(2)- (r)^(2))*h(R*exp(I*phi)))/((R)^(2)- 2*R*r*cos(phi - theta)+ (r)^(2)), phi = 0..2*Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>u[r*Exp[I*\[Theta]]] == Divide[1,2*Pi]*Integrate[Divide[((R)^(2)- (r)^(2))*h[R*Exp[I*\[Phi]]],(R)^(2)- 2*R*r*Cos[\[Phi]- \[Theta]]+ (r)^(2)], {\[Phi], 0, 2*Pi}, GenerateConditions->None]</syntaxhighlight> || Aborted || Failure || Skipped - Because timed out || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.1639294614698989, -0.894905511379796]
| [https://dlmf.nist.gov/1.9.E34 1.9.E34] || <math qid="Q309">u(re^{i\theta}) = \frac{1}{2\pi}\int^{2\pi}_{0}\frac{(R^{2}-r^{2})h(Re^{i\phi})\diff{\phi}}{R^{2}-2Rr\cos@{\phi-\theta}+r^{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>u(re^{i\theta}) = \frac{1}{2\pi}\int^{2\pi}_{0}\frac{(R^{2}-r^{2})h(Re^{i\phi})\diff{\phi}}{R^{2}-2Rr\cos@{\phi-\theta}+r^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>u(r*exp(I*theta)) = (1)/(2*Pi)*int((((R)^(2)- (r)^(2))*h(R*exp(I*phi)))/((R)^(2)- 2*R*r*cos(phi - theta)+ (r)^(2)), phi = 0..2*Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>u[r*Exp[I*\[Theta]]] == Divide[1,2*Pi]*Integrate[Divide[((R)^(2)- (r)^(2))*h[R*Exp[I*\[Phi]]],(R)^(2)- 2*R*r*Cos[\[Phi]- \[Theta]]+ (r)^(2)], {\[Phi], 0, 2*Pi}, GenerateConditions->None]</syntaxhighlight> || Aborted || Failure || Skipped - Because timed out || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.1639294614698989, -0.894905511379796]
Test Values: {Rule[h, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[r, -1.5], Rule[R, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[θ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.6307543640677387, -0.014887794479775784]
Test Values: {Rule[h, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[r, -1.5], Rule[R, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[θ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.6307543640677387, -0.014887794479775784]
Test Values: {Rule[h, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[r, -1.5], Rule[R, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[θ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[h, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[r, -1.5], Rule[R, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[θ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/1.9.E36 1.9.E36] || [[Item:Q311|<math>\infty+ z = z+\infty</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\infty+ z = z+\infty</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">infinity + z = z + infinity</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Infinity + z == z + Infinity</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/1.9.E36 1.9.E36] || <math qid="Q311">\infty+ z = z+\infty</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\infty+ z = z+\infty</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">infinity + z = z + infinity</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Infinity + z == z + Infinity</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/1.9.E37 1.9.E37] || [[Item:Q312|<math>\infty\cdot z = z\cdot\infty</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\infty\cdot z = z\cdot\infty</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">infinity * z = z * infinity</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Infinity * z == z * Infinity</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/1.9.E37 1.9.E37] || <math qid="Q312">\infty\cdot z = z\cdot\infty</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\infty\cdot z = z\cdot\infty</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">infinity * z = z * infinity</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Infinity * z == z * Infinity</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/1.9.E38 1.9.E38] || [[Item:Q313|<math>z/\infty = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>z/\infty = 0</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">z/infinity = 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">z/Infinity == 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/1.9.E38 1.9.E38] || <math qid="Q313">z/\infty = 0</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>z/\infty = 0</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">z/infinity = 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">z/Infinity == 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/1.9.E39 1.9.E39] || [[Item:Q314|<math>z/0 = \infty</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>z/0 = \infty</syntaxhighlight> || <math>z \neq 0</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">z/0 = infinity</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">z/0 == Infinity</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/1.9.E39 1.9.E39] || <math qid="Q314">z/0 = \infty</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>z/0 = \infty</syntaxhighlight> || <math>z \neq 0</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">z/0 = infinity</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">z/0 == Infinity</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/1.9.E44 1.9.E44] || [[Item:Q320|<math>z = \frac{dw-b}{-cw+a}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>z = \frac{dw-b}{-cw+a}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">z = (d*w - b)/(- c*w + a)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">z == Divide[d*w - b,- c*w + a]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/1.9.E44 1.9.E44] || <math qid="Q320">z = \frac{dw-b}{-cw+a}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>z = \frac{dw-b}{-cw+a}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">z = (d*w - b)/(- c*w + a)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">z == Divide[d*w - b,- c*w + a]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/1.9.E48 1.9.E48] || [[Item:Q324|<math>a_{n} = \frac{f^{(n)}(z_{0})}{n!}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>a_{n} = \frac{f^{(n)}(z_{0})}{n!}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">a[n] = ((f(z[0]))^(n))/(factorial(n))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[a, n] == Divide[(f[Subscript[z, 0]])^(n),(n)!]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/1.9.E48 1.9.E48] || <math qid="Q324">a_{n} = \frac{f^{(n)}(z_{0})}{n!}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>a_{n} = \frac{f^{(n)}(z_{0})}{n!}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">a[n] = ((f(z[0]))^(n))/(factorial(n))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[a, n] == Divide[(f[Subscript[z, 0]])^(n),(n)!]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/1.9.E50 1.9.E50] || [[Item:Q326|<math>\sum^{\infty}_{n=0}(a_{n}+ b_{n})z^{n} = \sum^{\infty}_{n=0}a_{n}z^{n}+\sum^{\infty}_{n=0}b_{n}z^{n}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\sum^{\infty}_{n=0}(a_{n}+ b_{n})z^{n} = \sum^{\infty}_{n=0}a_{n}z^{n}+\sum^{\infty}_{n=0}b_{n}z^{n}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">sum((a[n]+ b[n])*(z)^(n), n = 0..infinity) = sum(a[n]*(z)^(n), n = 0..infinity)+ sum(b[n]*(z)^(n), n = 0..infinity)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Sum[(Subscript[a, n]+ Subscript[b, n])*(z)^(n), {n, 0, Infinity}, GenerateConditions->None] == Sum[Subscript[a, n]*(z)^(n), {n, 0, Infinity}, GenerateConditions->None]+ Sum[Subscript[b, n]*(z)^(n), {n, 0, Infinity}, GenerateConditions->None]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/1.9.E50 1.9.E50] || <math qid="Q326">\sum^{\infty}_{n=0}(a_{n}+ b_{n})z^{n} = \sum^{\infty}_{n=0}a_{n}z^{n}+\sum^{\infty}_{n=0}b_{n}z^{n}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\sum^{\infty}_{n=0}(a_{n}+ b_{n})z^{n} = \sum^{\infty}_{n=0}a_{n}z^{n}+\sum^{\infty}_{n=0}b_{n}z^{n}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">sum((a[n]+ b[n])*(z)^(n), n = 0..infinity) = sum(a[n]*(z)^(n), n = 0..infinity)+ sum(b[n]*(z)^(n), n = 0..infinity)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Sum[(Subscript[a, n]+ Subscript[b, n])*(z)^(n), {n, 0, Infinity}, GenerateConditions->None] == Sum[Subscript[a, n]*(z)^(n), {n, 0, Infinity}, GenerateConditions->None]+ Sum[Subscript[b, n]*(z)^(n), {n, 0, Infinity}, GenerateConditions->None]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/1.9.E51 1.9.E51] || [[Item:Q327|<math>\left(\sum^{\infty}_{n=0}a_{n}z^{n}\right)\left(\sum^{\infty}_{n=0}b_{n}z^{n}\right) = \sum^{\infty}_{n=0}c_{n}z^{n}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\left(\sum^{\infty}_{n=0}a_{n}z^{n}\right)\left(\sum^{\infty}_{n=0}b_{n}z^{n}\right) = \sum^{\infty}_{n=0}c_{n}z^{n}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(sum(a[n]*(z)^(n), n = 0..infinity))*(sum(b[n]*(z)^(n), n = 0..infinity)) = sum(c[n]*(z)^(n), n = 0..infinity)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(Sum[Subscript[a, n]*(z)^(n), {n, 0, Infinity}, GenerateConditions->None])*(Sum[Subscript[b, n]*(z)^(n), {n, 0, Infinity}, GenerateConditions->None]) == Sum[Subscript[c, n]*(z)^(n), {n, 0, Infinity}, GenerateConditions->None]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/1.9.E51 1.9.E51] || <math qid="Q327">\left(\sum^{\infty}_{n=0}a_{n}z^{n}\right)\left(\sum^{\infty}_{n=0}b_{n}z^{n}\right) = \sum^{\infty}_{n=0}c_{n}z^{n}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\left(\sum^{\infty}_{n=0}a_{n}z^{n}\right)\left(\sum^{\infty}_{n=0}b_{n}z^{n}\right) = \sum^{\infty}_{n=0}c_{n}z^{n}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(sum(a[n]*(z)^(n), n = 0..infinity))*(sum(b[n]*(z)^(n), n = 0..infinity)) = sum(c[n]*(z)^(n), n = 0..infinity)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(Sum[Subscript[a, n]*(z)^(n), {n, 0, Infinity}, GenerateConditions->None])*(Sum[Subscript[b, n]*(z)^(n), {n, 0, Infinity}, GenerateConditions->None]) == Sum[Subscript[c, n]*(z)^(n), {n, 0, Infinity}, GenerateConditions->None]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/1.9.E52 1.9.E52] || [[Item:Q328|<math>c_{n} = \sum^{n}_{k=0}a_{k}b_{n-k}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>c_{n} = \sum^{n}_{k=0}a_{k}b_{n-k}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">c[n] = sum(a[k]*b[n - k], k = 0..n)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[c, n] == Sum[Subscript[a, k]*Subscript[b, n - k], {k, 0, n}, GenerateConditions->None]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/1.9.E52 1.9.E52] || <math qid="Q328">c_{n} = \sum^{n}_{k=0}a_{k}b_{n-k}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>c_{n} = \sum^{n}_{k=0}a_{k}b_{n-k}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">c[n] = sum(a[k]*b[n - k], k = 0..n)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[c, n] == Sum[Subscript[a, k]*Subscript[b, n - k], {k, 0, n}, GenerateConditions->None]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/1.9#Ex13 1.9#Ex13] || [[Item:Q331|<math>b_{0} = 1/a_{0}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>b_{0} = 1/a_{0}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">b[0] = 1/a[0]</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[b, 0] == 1/Subscript[a, 0]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/1.9#Ex13 1.9#Ex13] || <math qid="Q331">b_{0} = 1/a_{0}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>b_{0} = 1/a_{0}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">b[0] = 1/a[0]</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[b, 0] == 1/Subscript[a, 0]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/1.9#Ex14 1.9#Ex14] || [[Item:Q332|<math>b_{1} = -a_{1}/a_{0}^{2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>b_{1} = -a_{1}/a_{0}^{2}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">b[1] = - a[1]/(a[0])^(2)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[b, 1] == - Subscript[a, 1]/(Subscript[a, 0])^(2)</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/1.9#Ex14 1.9#Ex14] || <math qid="Q332">b_{1} = -a_{1}/a_{0}^{2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>b_{1} = -a_{1}/a_{0}^{2}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">b[1] = - a[1]/(a[0])^(2)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[b, 1] == - Subscript[a, 1]/(Subscript[a, 0])^(2)</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/1.9#Ex15 1.9#Ex15] || [[Item:Q333|<math>b_{2} = (a_{1}^{2}-a_{0}a_{2})/a_{0}^{3}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>b_{2} = (a_{1}^{2}-a_{0}a_{2})/a_{0}^{3}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">b[2] = ((a[1])^(2)- a[0]*a[2])/(a[0])^(3)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[b, 2] == ((Subscript[a, 1])^(2)- Subscript[a, 0]*Subscript[a, 2])/(Subscript[a, 0])^(3)</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/1.9#Ex15 1.9#Ex15] || <math qid="Q333">b_{2} = (a_{1}^{2}-a_{0}a_{2})/a_{0}^{3}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>b_{2} = (a_{1}^{2}-a_{0}a_{2})/a_{0}^{3}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">b[2] = ((a[1])^(2)- a[0]*a[2])/(a[0])^(3)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[b, 2] == ((Subscript[a, 1])^(2)- Subscript[a, 0]*Subscript[a, 2])/(Subscript[a, 0])^(3)</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/1.9#Ex16 1.9#Ex16] || [[Item:Q336|<math>q_{1} = a_{1}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>q_{1} = a_{1}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">q[1] = a[1]</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[q, 1] == Subscript[a, 1]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/1.9#Ex16 1.9#Ex16] || <math qid="Q336">q_{1} = a_{1}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>q_{1} = a_{1}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">q[1] = a[1]</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[q, 1] == Subscript[a, 1]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/1.9#Ex17 1.9#Ex17] || [[Item:Q337|<math>q_{2} = (2a_{2}-a_{1}^{2})/2</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>q_{2} = (2a_{2}-a_{1}^{2})/2</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">q[2] = (2*a[2]- (a[1])^(2))/2</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[q, 2] == (2*Subscript[a, 2]- (Subscript[a, 1])^(2))/2</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/1.9#Ex17 1.9#Ex17] || <math qid="Q337">q_{2} = (2a_{2}-a_{1}^{2})/2</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>q_{2} = (2a_{2}-a_{1}^{2})/2</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">q[2] = (2*a[2]- (a[1])^(2))/2</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[q, 2] == (2*Subscript[a, 2]- (Subscript[a, 1])^(2))/2</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/1.9#Ex18 1.9#Ex18] || [[Item:Q338|<math>q_{3} = (3a_{3}-3a_{1}a_{2}+a_{1}^{3})/3</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>q_{3} = (3a_{3}-3a_{1}a_{2}+a_{1}^{3})/3</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">q[3] = (3*a[3]- 3*a[1]*a[2]+ (a[1])^(3))/3</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[q, 3] == (3*Subscript[a, 3]- 3*Subscript[a, 1]*Subscript[a, 2]+ (Subscript[a, 1])^(3))/3</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/1.9#Ex18 1.9#Ex18] || <math qid="Q338">q_{3} = (3a_{3}-3a_{1}a_{2}+a_{1}^{3})/3</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>q_{3} = (3a_{3}-3a_{1}a_{2}+a_{1}^{3})/3</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">q[3] = (3*a[3]- 3*a[1]*a[2]+ (a[1])^(3))/3</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[q, 3] == (3*Subscript[a, 3]- 3*Subscript[a, 1]*Subscript[a, 2]+ (Subscript[a, 1])^(3))/3</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/1.9#Ex19 1.9#Ex19] || [[Item:Q341|<math>p_{0} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>p_{0} = 1</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">p[0] = 1</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[p, 0] == 1</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/1.9#Ex19 1.9#Ex19] || <math qid="Q341">p_{0} = 1</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>p_{0} = 1</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">p[0] = 1</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[p, 0] == 1</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/1.9#Ex20 1.9#Ex20] || [[Item:Q342|<math>p_{1} = \nu a_{1}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>p_{1} = \nu a_{1}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">p[1] = nu*a[1]</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[p, 1] == \[Nu]*Subscript[a, 1]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/1.9#Ex20 1.9#Ex20] || <math qid="Q342">p_{1} = \nu a_{1}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>p_{1} = \nu a_{1}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">p[1] = nu*a[1]</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[p, 1] == \[Nu]*Subscript[a, 1]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/1.9#Ex21 1.9#Ex21] || [[Item:Q343|<math>p_{2} = \nu((\nu-1)a_{1}^{2}+2a_{2})/2</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>p_{2} = \nu((\nu-1)a_{1}^{2}+2a_{2})/2</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">p[2] = nu*((nu - 1)*(a[1])^(2)+ 2*a[2])/2</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[p, 2] == \[Nu]*((\[Nu]- 1)*(Subscript[a, 1])^(2)+ 2*Subscript[a, 2])/2</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/1.9#Ex21 1.9#Ex21] || <math qid="Q343">p_{2} = \nu((\nu-1)a_{1}^{2}+2a_{2})/2</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>p_{2} = \nu((\nu-1)a_{1}^{2}+2a_{2})/2</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">p[2] = nu*((nu - 1)*(a[1])^(2)+ 2*a[2])/2</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[p, 2] == \[Nu]*((\[Nu]- 1)*(Subscript[a, 1])^(2)+ 2*Subscript[a, 2])/2</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-  
|-  
| [https://dlmf.nist.gov/1.9.E63 1.9.E63] || [[Item:Q345|<math>f^{(m)}(z) = \sum_{n=0}^{\infty}\Pochhammersym{n+1}{m}a_{n+m}(z-z_{0})^{n}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>f^{(m)}(z) = \sum_{n=0}^{\infty}\Pochhammersym{n+1}{m}a_{n+m}(z-z_{0})^{n}</syntaxhighlight> || <math>\abs{z-z_{0}} < R</math> || <syntaxhighlight lang=mathematica>(f(z))^(m) = sum(pochhammer(n + 1, m)*a[n + m]*(z - z[0])^(n), n = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(f[z])^(m) == Sum[Pochhammer[n + 1, m]*Subscript[a, n + m]*(z - Subscript[z, 0])^(n), {n, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Skipped - Because timed out || Skipped - Because timed out
| [https://dlmf.nist.gov/1.9.E63 1.9.E63] || <math qid="Q345">f^{(m)}(z) = \sum_{n=0}^{\infty}\Pochhammersym{n+1}{m}a_{n+m}(z-z_{0})^{n}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>f^{(m)}(z) = \sum_{n=0}^{\infty}\Pochhammersym{n+1}{m}a_{n+m}(z-z_{0})^{n}</syntaxhighlight> || <math>\abs{z-z_{0}} < R</math> || <syntaxhighlight lang=mathematica>(f(z))^(m) = sum(pochhammer(n + 1, m)*a[n + m]*(z - z[0])^(n), n = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(f[z])^(m) == Sum[Pochhammer[n + 1, m]*Subscript[a, n + m]*(z - Subscript[z, 0])^(n), {n, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Skipped - Because timed out || Skipped - Because timed out
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/1.9.E64 1.9.E64] || [[Item:Q346|<math>|z_{m,n}-z| < \epsilon</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>|z_{m,n}-z| < \epsilon</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">abs(z[m , n]- z) < epsilon</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Abs[Subscript[z, m , n]- z] < \[Epsilon]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/1.9.E64 1.9.E64] || <math qid="Q346">|z_{m,n}-z| < \epsilon</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>|z_{m,n}-z| < \epsilon</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">abs(z[m , n]- z) < epsilon</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Abs[Subscript[z, m , n]- z] < \[Epsilon]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/1.9.E66 1.9.E66] || [[Item:Q349|<math>z_{p,q} = \sum^{p}_{m=0}\sum^{q}_{n=0}\zeta_{m,n}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>z_{p,q} = \sum^{p}_{m=0}\sum^{q}_{n=0}\zeta_{m,n}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">z[p , q] = sum(sum(zeta[m , n], n = 0..q), m = 0..p)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[z, p , q] == Sum[Sum[Subscript[\[Zeta], m , n], {n, 0, q}, GenerateConditions->None], {m, 0, p}, GenerateConditions->None]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/1.9.E66 1.9.E66] || <math qid="Q349">z_{p,q} = \sum^{p}_{m=0}\sum^{q}_{n=0}\zeta_{m,n}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>z_{p,q} = \sum^{p}_{m=0}\sum^{q}_{n=0}\zeta_{m,n}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">z[p , q] = sum(sum(zeta[m , n], n = 0..q), m = 0..p)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[z, p , q] == Sum[Sum[Subscript[\[Zeta], m , n], {n, 0, q}, GenerateConditions->None], {m, 0, p}, GenerateConditions->None]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-  
|-  
| [https://dlmf.nist.gov/1.9.E69 1.9.E69] || [[Item:Q353|<math>\int^{b}_{a}\sum^{\infty}_{n=0}|f_{n}(t)|\diff{t} < \infty</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int^{b}_{a}\sum^{\infty}_{n=0}|f_{n}(t)|\diff{t} < \infty</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(sum(abs(f[n](t)), n = 0..infinity), t = a..b) < infinity</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Sum[Abs[Subscript[f, n][t]], {n, 0, Infinity}, GenerateConditions->None], {t, a, b}, GenerateConditions->None] < Infinity</syntaxhighlight> || Missing Macro Error || Missing Macro Error || - || -
| [https://dlmf.nist.gov/1.9.E69 1.9.E69] || <math qid="Q353">\int^{b}_{a}\sum^{\infty}_{n=0}|f_{n}(t)|\diff{t} < \infty</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int^{b}_{a}\sum^{\infty}_{n=0}|f_{n}(t)|\diff{t} < \infty</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(sum(abs(f[n](t)), n = 0..infinity), t = a..b) < infinity</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Sum[Abs[Subscript[f, n][t]], {n, 0, Infinity}, GenerateConditions->None], {t, a, b}, GenerateConditions->None] < Infinity</syntaxhighlight> || Missing Macro Error || Missing Macro Error || - || -
|-  
|-  
| [https://dlmf.nist.gov/1.9.E70 1.9.E70] || [[Item:Q354|<math>\sum^{\infty}_{n=0}\int^{b}_{a}|f_{n}(t)|\diff{t} < \infty</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum^{\infty}_{n=0}\int^{b}_{a}|f_{n}(t)|\diff{t} < \infty</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sum(int(abs(f[n](t)), t = a..b) , n = 0..infinity)< infinity</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[Integrate[Abs[Subscript[f, n][t]], {t, a, b}, GenerateConditions->None] , {n, 0, Infinity}, GenerateConditions->None]< Infinity</syntaxhighlight> || Missing Macro Error || Missing Macro Error || - || -
| [https://dlmf.nist.gov/1.9.E70 1.9.E70] || <math qid="Q354">\sum^{\infty}_{n=0}\int^{b}_{a}|f_{n}(t)|\diff{t} < \infty</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum^{\infty}_{n=0}\int^{b}_{a}|f_{n}(t)|\diff{t} < \infty</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sum(int(abs(f[n](t)), t = a..b) , n = 0..infinity)< infinity</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[Integrate[Abs[Subscript[f, n][t]], {t, a, b}, GenerateConditions->None] , {n, 0, Infinity}, GenerateConditions->None]< Infinity</syntaxhighlight> || Missing Macro Error || Missing Macro Error || - || -
|-  
|-  
| [https://dlmf.nist.gov/1.9.E71 1.9.E71] || [[Item:Q355|<math>\int^{b}_{a}\sum^{\infty}_{n=0}f_{n}(t)\diff{t} = \sum^{\infty}_{n=0}\int^{b}_{a}f_{n}(t)\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int^{b}_{a}\sum^{\infty}_{n=0}f_{n}(t)\diff{t} = \sum^{\infty}_{n=0}\int^{b}_{a}f_{n}(t)\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(sum(f[n](t), n = 0..infinity), t = a..b) = sum(int(f[n](t), t = a..b), n = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Sum[Subscript[f, n][t], {n, 0, Infinity}, GenerateConditions->None], {t, a, b}, GenerateConditions->None] == Sum[Integrate[Subscript[f, n][t], {t, a, b}, GenerateConditions->None], {n, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Aborted || - || Skipped - Because timed out
| [https://dlmf.nist.gov/1.9.E71 1.9.E71] || <math qid="Q355">\int^{b}_{a}\sum^{\infty}_{n=0}f_{n}(t)\diff{t} = \sum^{\infty}_{n=0}\int^{b}_{a}f_{n}(t)\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int^{b}_{a}\sum^{\infty}_{n=0}f_{n}(t)\diff{t} = \sum^{\infty}_{n=0}\int^{b}_{a}f_{n}(t)\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(sum(f[n](t), n = 0..infinity), t = a..b) = sum(int(f[n](t), t = a..b), n = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Sum[Subscript[f, n][t], {n, 0, Infinity}, GenerateConditions->None], {t, a, b}, GenerateConditions->None] == Sum[Integrate[Subscript[f, n][t], {t, a, b}, GenerateConditions->None], {n, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Aborted || - || Skipped - Because timed out
|}
|}
</div>
</div>

Latest revision as of 10:59, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
1.9.E1 z = x + i y 𝑧 𝑥 𝑖 𝑦 {\displaystyle{\displaystyle z=x+iy}}
z = x+iy

(x + y*I) = x + I*y
(x + y*I) == x + I*y
Successful Successful - Successful [Tested: 1]
1.9#Ex1 z = x 𝑧 𝑥 {\displaystyle{\displaystyle\Re z=x}}
\realpart@@{z} = x

Re(x + y*I) = x
Re[x + y*I] == x
Failure Failure Successful [Tested: 18] Successful [Tested: 18]
1.9#Ex2 z = y 𝑧 𝑦 {\displaystyle{\displaystyle\Im z=y}}
\imagpart@@{z} = y

Im(x + y*I) = y
Im[x + y*I] == y
Failure Failure Successful [Tested: 18] Successful [Tested: 18]
1.9#Ex3 x = r cos θ 𝑥 𝑟 𝜃 {\displaystyle{\displaystyle x=r\cos\theta}}
x = r\cos@@{\theta}

x = r*cos(theta)
x == r*Cos[\[Theta]]
Failure Failure
Failed [180 / 180]
Result: 2.595814528-.5954243254*I
Test Values: {r = -1.5, theta = 1/2*3^(1/2)+1/2*I, x = 1.5}

Result: 1.595814528-.5954243254*I
Test Values: {r = -1.5, theta = 1/2*3^(1/2)+1/2*I, x = .5}

Result: 3.095814528-.5954243254*I
Test Values: {r = -1.5, theta = 1/2*3^(1/2)+1/2*I, x = 2}

Result: 3.341648276+.7036130646*I
Test Values: {r = -1.5, theta = -1/2+1/2*I*3^(1/2), x = 1.5}

... skip entries to safe data
Failed [180 / 180]
Result: Complex[2.595814528585838, -0.5954243253435487]
Test Values: {Rule[r, -1.5], Rule[x, 1.5], Rule[θ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[3.3416482752961656, 0.7036130644027555]
Test Values: {Rule[r, -1.5], Rule[x, 1.5], Rule[θ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
1.9#Ex4 y = r sin θ 𝑦 𝑟 𝜃 {\displaystyle{\displaystyle y=r\sin\theta}}
y = r\sin@@{\theta}

y = r*sin(theta)
y == r*Sin[\[Theta]]
Failure Failure
Failed [300 / 300]
Result: -.211529498+.5063946946*I
Test Values: {r = -1.5, theta = 1/2*3^(1/2)+1/2*I, y = -1.5}

Result: 2.788470502+.5063946946*I
Test Values: {r = -1.5, theta = 1/2*3^(1/2)+1/2*I, y = 1.5}

Result: .788470502+.5063946946*I
Test Values: {r = -1.5, theta = 1/2*3^(1/2)+1/2*I, y = -.5}

Result: 1.788470502+.5063946946*I
Test Values: {r = -1.5, theta = 1/2*3^(1/2)+1/2*I, y = .5}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[-0.21152949854979308, 0.506394694834305]
Test Values: {Rule[r, -1.5], Rule[y, -1.5], Rule[θ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-2.506097038210817, 1.2879550752257174]
Test Values: {Rule[r, -1.5], Rule[y, -1.5], Rule[θ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
1.9.E4 r = ( x 2 + y 2 ) 1 / 2 𝑟 superscript superscript 𝑥 2 superscript 𝑦 2 1 2 {\displaystyle{\displaystyle r=(x^{2}+y^{2})^{1/2}}}
r = (x^{2}+y^{2})^{1/2}

r = ((x)^(2)+ (y)^(2))^(1/2)
r == ((x)^(2)+ (y)^(2))^(1/2)
Skipped - no semantic math Skipped - no semantic math - -
1.9.E6 ω = arctan ( | y / x | ) [ 0 , 1 2 π ] 𝜔 𝑦 𝑥 0 1 2 𝜋 {\displaystyle{\displaystyle\omega=\operatorname{arctan}\left(|y/x|\right)\in% \left[0,\tfrac{1}{2}\pi\right]}}
\omega = \atan@{|y/x|}\in\left[0,\tfrac{1}{2}\pi\right]

omega 0 <= arctan(abs(y/x)) <= (1)/(2)*Pi
\[Omega] 0 <= ArcTan[Abs[y/x]] <= Divide[1,2]*Pi
Error Failure -
Failed [180 / 180]
Result: Plus[Complex[0.8660254037844387, 0.49999999999999994], Times[-1.0, True]]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[ω, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[-0.4999999999999998, 0.8660254037844387], Times[-1.0, True]]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[ω, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
1.9#Ex5 | z | = r 𝑧 𝑟 {\displaystyle{\displaystyle|z|=r}}
|z| = r

abs(z) = r
Abs[z] == r
Failure Failure
Failed [39 / 42]
Result: 2.5
Test Values: {r = -1.5, z = 1/2*3^(1/2)+1/2*I}

Result: 2.5
Test Values: {r = -1.5, z = -1/2+1/2*I*3^(1/2)}

Result: 2.5
Test Values: {r = -1.5, z = 1/2-1/2*I*3^(1/2)}

Result: 2.5
Test Values: {r = -1.5, z = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [39 / 42]
Result: 2.5
Test Values: {Rule[r, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: 2.5
Test Values: {Rule[r, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
1.9#Ex6 ph z = θ + 2 n π phase 𝑧 𝜃 2 𝑛 𝜋 {\displaystyle{\displaystyle\operatorname{ph}z=\theta+2n\pi}}
\phase@@{z} = \theta+2n\pi

argument(z) = theta + 2*n*Pi
Arg[z] == \[Theta]+ 2*n*Pi
Error Failure -
Failed [70 / 70]
Result: Complex[-19.191982549724898, -0.49999999999999994]
Test Values: {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[θ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-17.82595714594046, -0.8660254037844387]
Test Values: {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[θ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
1.9#Ex7 | z | | z | 𝑧 𝑧 {\displaystyle{\displaystyle|\Re z|\leq|z|}}
|\realpart@@{z}| \leq |z|

abs(Re(z)) <= abs(z)
Abs[Re[z]] <= Abs[z]
Failure Failure Successful [Tested: 7] Successful [Tested: 7]
1.9#Ex8 | z | | z | 𝑧 𝑧 {\displaystyle{\displaystyle|\Im z|\leq|z|}}
|\imagpart@@{z}| \leq |z|

abs(Im(z)) <= abs(z)
Abs[Im[z]] <= Abs[z]
Failure Failure Successful [Tested: 7] Successful [Tested: 7]
1.9.E9 z = r e i θ 𝑧 𝑟 superscript 𝑒 𝑖 𝜃 {\displaystyle{\displaystyle z=re^{i\theta}}}
z = re^{i\theta}

z = r*exp(I*theta)
z == r*Exp[I*\[Theta]]
Skipped - no semantic math Skipped - no semantic math - -
1.9.E10 e i θ = cos θ + i sin θ superscript 𝑒 𝑖 𝜃 𝜃 𝑖 𝜃 {\displaystyle{\displaystyle e^{i\theta}=\cos\theta+i\sin\theta}}
e^{i\theta} = \cos@@{\theta}+i\sin@@{\theta}

exp(I*theta) = cos(theta)+ I*sin(theta)
Exp[I*\[Theta]] == Cos[\[Theta]]+ I*Sin[\[Theta]]
Successful Successful - Successful [Tested: 10]
1.9.E11 z ¯ = x - i y 𝑧 𝑥 𝑖 𝑦 {\displaystyle{\displaystyle\overline{z}=x-iy}}
\conj{z} = x-iy

conjugate(x + y*I) = x - I*y
Conjugate[x + y*I] == x - I*y
Failure Failure Successful [Tested: 18] Successful [Tested: 18]
1.9.E12 | z ¯ | = | z | 𝑧 𝑧 {\displaystyle{\displaystyle|\overline{z}|=|z|}}
|\conj{z}| = |z|

abs(conjugate(z)) = abs(z)
Abs[Conjugate[z]] == Abs[z]
Successful Successful - Successful [Tested: 7]
1.9.E13 ph z ¯ = - ph z phase 𝑧 phase 𝑧 {\displaystyle{\displaystyle\operatorname{ph}\overline{z}=-\operatorname{ph}z}}
\phase@@{\conj{z}} = -\phase@@{z}

argument(conjugate(z)) = - argument(z)
Arg[Conjugate[z]] == - Arg[z]
Failure Failure Successful [Tested: 7] Successful [Tested: 7]
1.9.E14 z 1 + z 2 = x 1 + x 2 + i ( y 1 + y 2 ) subscript 𝑧 1 subscript 𝑧 2 subscript 𝑥 1 subscript 𝑥 2 imaginary-unit subscript 𝑦 1 subscript 𝑦 2 {\displaystyle{\displaystyle z_{1}+z_{2}=x_{1}+x_{2}+\mathrm{i}(y_{1}+y_{2})}}
z_{1}+ z_{2} = x_{1}+ x_{2}+\iunit(y_{1}+ y_{2})

x + y*I[1]+x + y*I[2] = x[1]+ x[2]+ I*(y[1]+ y[2])
Subscript[x + y*I, 1]+Subscript[x + y*I, 2] == Subscript[x, 1]+ Subscript[x, 2]+ I*(Subscript[y, 1]+ Subscript[y, 2])
Failure Failure Error
Failed [300 / 300]
Result: Plus[Complex[-0.7320508075688775, -2.732050807568877], Subscript[Complex[1.5, -1.5], 1], Subscript[Complex[1.5, -1.5], 2]]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[Subscript[x, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[y, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[y, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[-0.3660254037844388, -1.3660254037844388], Subscript[Complex[1.5, -1.5], 1], Subscript[Complex[1.5, -1.5], 2]]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[Subscript[x, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[y, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[y, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
1.9.E14 z 1 - z 2 = x 1 - x 2 + i ( y 1 - y 2 ) subscript 𝑧 1 subscript 𝑧 2 subscript 𝑥 1 subscript 𝑥 2 imaginary-unit subscript 𝑦 1 subscript 𝑦 2 {\displaystyle{\displaystyle z_{1}-z_{2}=x_{1}-x_{2}+\mathrm{i}(y_{1}-y_{2})}}
z_{1}- z_{2} = x_{1}- x_{2}+\iunit(y_{1}- y_{2})

x + y*I[1]-x + y*I[2] = x[1]- x[2]+ I*(y[1]- y[2])
Subscript[x + y*I, 1]-Subscript[x + y*I, 2] == Subscript[x, 1]- Subscript[x, 2]+ I*(Subscript[y, 1]- Subscript[y, 2])
Failure Failure Error
Failed [300 / 300]
Result: Plus[Subscript[Complex[1.5, -1.5], 1], Times[-1.0, Subscript[Complex[1.5, -1.5], 2]]]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[Subscript[x, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[y, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[y, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[-0.36602540378443876, -1.3660254037844384], Subscript[Complex[1.5, -1.5], 1], Times[-1.0, Subscript[Complex[1.5, -1.5], 2]]]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[Subscript[x, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[y, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[y, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
1.9.E15 z 1 z 2 = x 1 x 2 - y 1 y 2 + i ( x 1 y 2 + x 2 y 1 ) subscript 𝑧 1 subscript 𝑧 2 subscript 𝑥 1 subscript 𝑥 2 subscript 𝑦 1 subscript 𝑦 2 𝑖 subscript 𝑥 1 subscript 𝑦 2 subscript 𝑥 2 subscript 𝑦 1 {\displaystyle{\displaystyle z_{1}z_{2}=x_{1}x_{2}-y_{1}y_{2}+i(x_{1}y_{2}+x_{% 2}y_{1})}}
z_{1}z_{2} = x_{1}x_{2}-y_{1}y_{2}+i(x_{1}y_{2}+x_{2}y_{1})

x + y*I[1]*x + y*I[2] = x[1]*x[2]- y[1]*y[2]+ I*(x[1]*y[2]+ x[2]*y[1])
Subscript[x + y*I, 1]*Subscript[x + y*I, 2] == Subscript[x, 1]*Subscript[x, 2]- Subscript[y, 1]*Subscript[y, 2]+ I*(Subscript[x, 1]*Subscript[y, 2]+ Subscript[x, 2]*Subscript[y, 1])
Skipped - no semantic math Skipped - no semantic math - -
1.9.E16 z 1 z 2 = z 1 z ¯ 2 | z 2 | 2 subscript 𝑧 1 subscript 𝑧 2 subscript 𝑧 1 subscript 𝑧 2 superscript subscript 𝑧 2 2 {\displaystyle{\displaystyle\frac{z_{1}}{z_{2}}=\frac{z_{1}\overline{z}_{2}}{|% z_{2}|^{2}}}}
\frac{z_{1}}{z_{2}} = \frac{z_{1}\conj{z}_{2}}{|z_{2}|^{2}}

(z[1])/(z[2]) = (z[1]*conjugate(z)[2])/((abs(z[2]))^(2))
Divide[Subscript[z, 1],Subscript[z, 2]] == Divide[Subscript[z, 1]*Subscript[Conjugate[z], 2],(Abs[Subscript[z, 2]])^(2)]
Failure Failure Error
Failed [300 / 300]
Result: Plus[1.0, Times[Complex[-0.8660254037844387, -0.49999999999999994], Subscript[Complex[0.8660254037844387, -0.49999999999999994], 2]]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[z, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[0.0, -1.0], Times[Complex[-0.8660254037844387, -0.49999999999999994], Subscript[Complex[0.8660254037844387, -0.49999999999999994], 2]]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[z, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
1.9.E16 z 1 z ¯ 2 | z 2 | 2 = x 1 x 2 + y 1 y 2 + i ( x 2 y 1 - x 1 y 2 ) x 2 2 + y 2 2 subscript 𝑧 1 subscript 𝑧 2 superscript subscript 𝑧 2 2 subscript 𝑥 1 subscript 𝑥 2 subscript 𝑦 1 subscript 𝑦 2 𝑖 subscript 𝑥 2 subscript 𝑦 1 subscript 𝑥 1 subscript 𝑦 2 superscript subscript 𝑥 2 2 superscript subscript 𝑦 2 2 {\displaystyle{\displaystyle\frac{z_{1}\overline{z}_{2}}{|z_{2}|^{2}}=\frac{x_% {1}x_{2}+y_{1}y_{2}+i(x_{2}y_{1}-x_{1}y_{2})}{x_{2}^{2}+y_{2}^{2}}}}
\frac{z_{1}\conj{z}_{2}}{|z_{2}|^{2}} = \frac{x_{1}x_{2}+y_{1}y_{2}+i(x_{2}y_{1}-x_{1}y_{2})}{x_{2}^{2}+y_{2}^{2}}

(x + y*I[1]*conjugate(x + y*I)[2])/((abs(x + y*I[2]))^(2)) = (x[1]*x[2]+ y[1]*y[2]+ I*(x[2]*y[1]- x[1]*y[2]))/((x[2])^(2)+ (y[2])^(2))
Divide[Subscript[x + y*I, 1]*Subscript[Conjugate[x + y*I], 2],(Abs[Subscript[x + y*I, 2]])^(2)] == Divide[Subscript[x, 1]*Subscript[x, 2]+ Subscript[y, 1]*Subscript[y, 2]+ I*(Subscript[x, 2]*Subscript[y, 1]- Subscript[x, 1]*Subscript[y, 2]),(Subscript[x, 2])^(2)+ (Subscript[y, 2])^(2)]
Failure Failure Error
Failed [300 / 300]
Result: DirectedInfinity[]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[Subscript[x, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[y, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[y, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[-0.6666666666666669, -0.6666666666666667], Times[Power[Abs[Subscript[Complex[1.5, -1.5], 2]], -2], Subscript[Complex[1.5, -1.5], 1], Subscript[Complex[1.5, 1.5], 2]]]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[Subscript[x, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[y, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[y, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
1.9.E17 | z 1 z 2 | = | z 1 | | z 2 | subscript 𝑧 1 subscript 𝑧 2 subscript 𝑧 1 subscript 𝑧 2 {\displaystyle{\displaystyle|z_{1}z_{2}|=|z_{1}|\;|z_{2}|}}
|z_{1}z_{2}| = |z_{1}|\;|z_{2}|

abs(z[1]*z[2]) = abs(z[1])*abs(z[2])
Abs[Subscript[z, 1]*Subscript[z, 2]] == Abs[Subscript[z, 1]]*Abs[Subscript[z, 2]]
Skipped - no semantic math Skipped - no semantic math - -
1.9.E18 ph ( z 1 z 2 ) = ph z 1 + ph z 2 phase subscript 𝑧 1 subscript 𝑧 2 phase subscript 𝑧 1 phase subscript 𝑧 2 {\displaystyle{\displaystyle\operatorname{ph}\left(z_{1}z_{2}\right)=% \operatorname{ph}z_{1}+\operatorname{ph}z_{2}}}
\phase@{z_{1}z_{2}} = \phase@@{z_{1}}+\phase@@{z_{2}}

argument(z[1]*z[2]) = argument(z[1])+ argument(z[2])
Arg[Subscript[z, 1]*Subscript[z, 2]] == Arg[Subscript[z, 1]]+ Arg[Subscript[z, 2]]
Failure Failure
Failed [25 / 100]
Result: -6.283185308
Test Values: {z[1] = 1/2*3^(1/2)+1/2*I, z[2] = -1.5}

Result: -6.283185308
Test Values: {z[1] = 1/2*3^(1/2)+1/2*I, z[2] = -.5}

Result: -6.283185308
Test Values: {z[1] = 1/2*3^(1/2)+1/2*I, z[2] = -2}

Result: -6.283185309
Test Values: {z[1] = -1/2+1/2*I*3^(1/2), z[2] = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [25 / 100]
Result: -6.283185307179587
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[z, 2], -1.5]}

Result: -6.283185307179587
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[z, 2], -0.5]}

... skip entries to safe data
1.9.E19 | z 1 z 2 | = | z 1 | | z 2 | subscript 𝑧 1 subscript 𝑧 2 subscript 𝑧 1 subscript 𝑧 2 {\displaystyle{\displaystyle\left|\frac{z_{1}}{z_{2}}\right|=\frac{|z_{1}|}{|z% _{2}|}}}
\abs{\frac{z_{1}}{z_{2}}} = \frac{|z_{1}|}{|z_{2}|}

abs((z[1])/(z[2])) = (abs(z[1]))/(abs(z[2]))
Abs[Divide[Subscript[z, 1],Subscript[z, 2]]] == Divide[Abs[Subscript[z, 1]],Abs[Subscript[z, 2]]]
Successful Successful - Successful [Tested: 100]
1.9.E20 ph z 1 z 2 = ph z 1 - ph z 2 phase subscript 𝑧 1 subscript 𝑧 2 phase subscript 𝑧 1 phase subscript 𝑧 2 {\displaystyle{\displaystyle\operatorname{ph}\frac{z_{1}}{z_{2}}=\operatorname% {ph}z_{1}-\operatorname{ph}z_{2}}}
\phase@@{\frac{z_{1}}{z_{2}}} = \phase@@{z_{1}}-\phase@@{z_{2}}

argument((z[1])/(z[2])) = argument(z[1])- argument(z[2])
Arg[Divide[Subscript[z, 1],Subscript[z, 2]]] == Arg[Subscript[z, 1]]- Arg[Subscript[z, 2]]
Failure Failure
Failed [25 / 100]
Result: -6.283185308
Test Values: {z[1] = -1/2+1/2*I*3^(1/2), z[2] = -1/2*3^(1/2)-1/2*I}

Result: 6.283185308
Test Values: {z[1] = 1/2-1/2*I*3^(1/2), z[2] = -1/2+1/2*I*3^(1/2)}

Result: 6.283185307
Test Values: {z[1] = 1/2-1/2*I*3^(1/2), z[2] = -1.5}

Result: 6.283185307
Test Values: {z[1] = 1/2-1/2*I*3^(1/2), z[2] = -.5}

... skip entries to safe data
Failed [25 / 100]
Result: -6.283185307179586
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[Subscript[z, 2], Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

Result: 6.283185307179586
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]], Rule[Subscript[z, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
1.9.E22 cos n θ + i sin n θ = ( cos θ + i sin θ ) n 𝑛 𝜃 𝑖 𝑛 𝜃 superscript 𝜃 𝑖 𝜃 𝑛 {\displaystyle{\displaystyle\cos n\theta+i\sin n\theta=(\cos\theta+i\sin\theta% )^{n}}}
\cos@@{n\theta}+i\sin@@{n\theta} = (\cos@@{\theta}+i\sin@@{\theta})^{n}

cos(n*theta)+ I*sin(n*theta) = (cos(theta)+ I*sin(theta))^(n)
Cos[n*\[Theta]]+ I*Sin[n*\[Theta]] == (Cos[\[Theta]]+ I*Sin[\[Theta]])^(n)
Error Successful - Successful [Tested: 10]
1.9.E23 | | z 1 | - | z 2 | | | z 1 + z 2 | subscript 𝑧 1 subscript 𝑧 2 subscript 𝑧 1 subscript 𝑧 2 {\displaystyle{\displaystyle\left|\left|z_{1}\right|-\left|z_{2}\right|\right|% \leq\left|z_{1}+z_{2}\right|}}
\abs{\abs{z_{1}}-\abs{z_{2}}} \leq \abs{z_{1}+z_{2}}

abs(abs(z[1])- abs(z[2])) <= abs(z[1]+ z[2])
Abs[Abs[Subscript[z, 1]]- Abs[Subscript[z, 2]]] <= Abs[Subscript[z, 1]+ Subscript[z, 2]]
Failure Failure Successful [Tested: 100] Successful [Tested: 100]
1.9.E23 | z 1 + z 2 | | z 1 | + | z 2 | subscript 𝑧 1 subscript 𝑧 2 subscript 𝑧 1 subscript 𝑧 2 {\displaystyle{\displaystyle\left|z_{1}+z_{2}\right|\leq\left|z_{1}\right|+% \left|z_{2}\right|}}
\abs{z_{1}+z_{2}} \leq \abs{z_{1}}+\abs{z_{2}}

abs(z[1]+ z[2]) <= abs(z[1])+ abs(z[2])
Abs[Subscript[z, 1]+ Subscript[z, 2]] <= Abs[Subscript[z, 1]]+ Abs[Subscript[z, 2]]
Failure Failure Successful [Tested: 100] Successful [Tested: 100]
1.9#Ex9 u x = v y partial-derivative 𝑢 𝑥 partial-derivative 𝑣 𝑦 {\displaystyle{\displaystyle\frac{\partial u}{\partial x}=\frac{\partial v}{% \partial y}}}
\pderiv{u}{x} = \pderiv{v}{y}

diff(u, x) = diff(v, y)
D[u, x] == D[v, y]
Successful Successful - Successful [Tested: 300]
1.9#Ex10 u y = - v x partial-derivative 𝑢 𝑦 partial-derivative 𝑣 𝑥 {\displaystyle{\displaystyle\frac{\partial u}{\partial y}=-\frac{\partial v}{% \partial x}}}
\pderiv{u}{y} = -\pderiv{v}{x}

diff(u, y) = - diff(v, x)
D[u, y] == - D[v, x]
Successful Successful - Successful [Tested: 300]
1.9.E26 2 u x 2 + 2 u y 2 = 2 v x 2 + 2 v y 2 partial-derivative 𝑢 𝑥 2 partial-derivative 𝑢 𝑦 2 partial-derivative 𝑣 𝑥 2 partial-derivative 𝑣 𝑦 2 {\displaystyle{\displaystyle\frac{{\partial}^{2}u}{{\partial x}^{2}}+\frac{{% \partial}^{2}u}{{\partial y}^{2}}=\frac{{\partial}^{2}v}{{\partial x}^{2}}+% \frac{{\partial}^{2}v}{{\partial y}^{2}}}}
\pderiv[2]{u}{x}+\pderiv[2]{u}{y} = \pderiv[2]{v}{x}+\pderiv[2]{v}{y}

diff(u, [x$(2)])+ diff(u, [y$(2)]) = diff(v, [x$(2)])+ diff(v, [y$(2)])
D[u, {x, 2}]+ D[u, {y, 2}] == D[v, {x, 2}]+ D[v, {y, 2}]
Successful Successful - Successful [Tested: 300]
1.9.E26 2 v x 2 + 2 v y 2 = 0 partial-derivative 𝑣 𝑥 2 partial-derivative 𝑣 𝑦 2 0 {\displaystyle{\displaystyle\frac{{\partial}^{2}v}{{\partial x}^{2}}+\frac{{% \partial}^{2}v}{{\partial y}^{2}}=0}}
\pderiv[2]{v}{x}+\pderiv[2]{v}{y} = 0

diff(v, [x$(2)])+ diff(v, [y$(2)]) = 0
D[v, {x, 2}]+ D[v, {y, 2}] == 0
Successful Successful - Successful [Tested: 180]
1.9.E27 2 u r 2 + 1 r u r + 1 r 2 2 u θ 2 = 0 partial-derivative 𝑢 𝑟 2 1 𝑟 partial-derivative 𝑢 𝑟 1 superscript 𝑟 2 partial-derivative 𝑢 𝜃 2 0 {\displaystyle{\displaystyle\frac{{\partial}^{2}u}{{\partial r}^{2}}+\frac{1}{% r}\frac{\partial u}{\partial r}+\frac{1}{r^{2}}\frac{{\partial}^{2}u}{{% \partial\theta}^{2}}=0}}
\pderiv[2]{u}{r}+\frac{1}{r}\pderiv{u}{r}+\frac{1}{r^{2}}\pderiv[2]{u}{\theta} = 0

diff(u, [r$(2)])+(1)/(r)*diff(u, r)+(1)/((r)^(2))*diff(u, [theta$(2)]) = 0
D[u, {r, 2}]+Divide[1,r]*D[u, r]+Divide[1,(r)^(2)]*D[u, {\[Theta], 2}] == 0
Successful Successful - Successful [Tested: 300]
1.9.E33 u ( z ) = 1 2 π 0 2 π u ( z + r e i ϕ ) d ϕ 𝑢 𝑧 1 2 𝜋 subscript superscript 2 𝜋 0 𝑢 𝑧 𝑟 superscript 𝑒 𝑖 italic-ϕ italic-ϕ {\displaystyle{\displaystyle u(z)=\frac{1}{2\pi}\int^{2\pi}_{0}u(z+re^{i\phi})% \mathrm{d}\phi}}
u(z) = \frac{1}{2\pi}\int^{2\pi}_{0}u(z+re^{i\phi})\diff{\phi}

u(z) = (1)/(2*Pi)*int(u(z + r*exp(I*phi)), phi = 0..2*Pi)
u[z] == Divide[1,2*Pi]*Integrate[u[z + r*Exp[I*\[Phi]]], {\[Phi], 0, 2*Pi}, GenerateConditions->None]
Successful Successful - Successful [Tested: 300]
1.9.E34 u ( r e i θ ) = 1 2 π 0 2 π ( R 2 - r 2 ) h ( R e i ϕ ) d ϕ R 2 - 2 R r cos ( ϕ - θ ) + r 2 𝑢 𝑟 superscript 𝑒 𝑖 𝜃 1 2 𝜋 subscript superscript 2 𝜋 0 superscript 𝑅 2 superscript 𝑟 2 𝑅 superscript 𝑒 𝑖 italic-ϕ italic-ϕ superscript 𝑅 2 2 𝑅 𝑟 italic-ϕ 𝜃 superscript 𝑟 2 {\displaystyle{\displaystyle u(re^{i\theta})=\frac{1}{2\pi}\int^{2\pi}_{0}% \frac{(R^{2}-r^{2})h(Re^{i\phi})\mathrm{d}\phi}{R^{2}-2Rr\cos\left(\phi-\theta% \right)+r^{2}}}}
u(re^{i\theta}) = \frac{1}{2\pi}\int^{2\pi}_{0}\frac{(R^{2}-r^{2})h(Re^{i\phi})\diff{\phi}}{R^{2}-2Rr\cos@{\phi-\theta}+r^{2}}

u(r*exp(I*theta)) = (1)/(2*Pi)*int((((R)^(2)- (r)^(2))*h(R*exp(I*phi)))/((R)^(2)- 2*R*r*cos(phi - theta)+ (r)^(2)), phi = 0..2*Pi)
u[r*Exp[I*\[Theta]]] == Divide[1,2*Pi]*Integrate[Divide[((R)^(2)- (r)^(2))*h[R*Exp[I*\[Phi]]],(R)^(2)- 2*R*r*Cos[\[Phi]- \[Theta]]+ (r)^(2)], {\[Phi], 0, 2*Pi}, GenerateConditions->None]
Aborted Failure Skipped - Because timed out
Failed [300 / 300]
Result: Complex[-0.1639294614698989, -0.894905511379796]
Test Values: {Rule[h, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[r, -1.5], Rule[R, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[θ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-0.6307543640677387, -0.014887794479775784]
Test Values: {Rule[h, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[r, -1.5], Rule[R, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[θ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
1.9.E36 + z = z + 𝑧 𝑧 {\displaystyle{\displaystyle\infty+z=z+\infty}}
\infty+ z = z+\infty

infinity + z = z + infinity
Infinity + z == z + Infinity
Skipped - no semantic math Skipped - no semantic math - -
1.9.E37 z = z 𝑧 𝑧 {\displaystyle{\displaystyle\infty\cdot z=z\cdot\infty}}
\infty\cdot z = z\cdot\infty

infinity * z = z * infinity
Infinity * z == z * Infinity
Skipped - no semantic math Skipped - no semantic math - -
1.9.E38 z / = 0 𝑧 0 {\displaystyle{\displaystyle z/\infty=0}}
z/\infty = 0

z/infinity = 0
z/Infinity == 0
Skipped - no semantic math Skipped - no semantic math - -
1.9.E39 z / 0 = 𝑧 0 {\displaystyle{\displaystyle z/0=\infty}}
z/0 = \infty
z 0 𝑧 0 {\displaystyle{\displaystyle z\neq 0}}
z/0 = infinity
z/0 == Infinity
Skipped - no semantic math Skipped - no semantic math - -
1.9.E44 z = d w - b - c w + a 𝑧 𝑑 𝑤 𝑏 𝑐 𝑤 𝑎 {\displaystyle{\displaystyle z=\frac{dw-b}{-cw+a}}}
z = \frac{dw-b}{-cw+a}

z = (d*w - b)/(- c*w + a)
z == Divide[d*w - b,- c*w + a]
Skipped - no semantic math Skipped - no semantic math - -
1.9.E48 a n = f ( n ) ( z 0 ) n ! subscript 𝑎 𝑛 superscript 𝑓 𝑛 subscript 𝑧 0 𝑛 {\displaystyle{\displaystyle a_{n}=\frac{f^{(n)}(z_{0})}{n!}}}
a_{n} = \frac{f^{(n)}(z_{0})}{n!}

a[n] = ((f(z[0]))^(n))/(factorial(n))
Subscript[a, n] == Divide[(f[Subscript[z, 0]])^(n),(n)!]
Skipped - no semantic math Skipped - no semantic math - -
1.9.E50 n = 0 ( a n + b n ) z n = n = 0 a n z n + n = 0 b n z n subscript superscript 𝑛 0 subscript 𝑎 𝑛 subscript 𝑏 𝑛 superscript 𝑧 𝑛 subscript superscript 𝑛 0 subscript 𝑎 𝑛 superscript 𝑧 𝑛 subscript superscript 𝑛 0 subscript 𝑏 𝑛 superscript 𝑧 𝑛 {\displaystyle{\displaystyle\sum^{\infty}_{n=0}(a_{n}+b_{n})z^{n}=\sum^{\infty% }_{n=0}a_{n}z^{n}+\sum^{\infty}_{n=0}b_{n}z^{n}}}
\sum^{\infty}_{n=0}(a_{n}+ b_{n})z^{n} = \sum^{\infty}_{n=0}a_{n}z^{n}+\sum^{\infty}_{n=0}b_{n}z^{n}

sum((a[n]+ b[n])*(z)^(n), n = 0..infinity) = sum(a[n]*(z)^(n), n = 0..infinity)+ sum(b[n]*(z)^(n), n = 0..infinity)
Sum[(Subscript[a, n]+ Subscript[b, n])*(z)^(n), {n, 0, Infinity}, GenerateConditions->None] == Sum[Subscript[a, n]*(z)^(n), {n, 0, Infinity}, GenerateConditions->None]+ Sum[Subscript[b, n]*(z)^(n), {n, 0, Infinity}, GenerateConditions->None]
Skipped - no semantic math Skipped - no semantic math - -
1.9.E51 ( n = 0 a n z n ) ( n = 0 b n z n ) = n = 0 c n z n subscript superscript 𝑛 0 subscript 𝑎 𝑛 superscript 𝑧 𝑛 subscript superscript 𝑛 0 subscript 𝑏 𝑛 superscript 𝑧 𝑛 subscript superscript 𝑛 0 subscript 𝑐 𝑛 superscript 𝑧 𝑛 {\displaystyle{\displaystyle\left(\sum^{\infty}_{n=0}a_{n}z^{n}\right)\left(% \sum^{\infty}_{n=0}b_{n}z^{n}\right)=\sum^{\infty}_{n=0}c_{n}z^{n}}}
\left(\sum^{\infty}_{n=0}a_{n}z^{n}\right)\left(\sum^{\infty}_{n=0}b_{n}z^{n}\right) = \sum^{\infty}_{n=0}c_{n}z^{n}

(sum(a[n]*(z)^(n), n = 0..infinity))*(sum(b[n]*(z)^(n), n = 0..infinity)) = sum(c[n]*(z)^(n), n = 0..infinity)
(Sum[Subscript[a, n]*(z)^(n), {n, 0, Infinity}, GenerateConditions->None])*(Sum[Subscript[b, n]*(z)^(n), {n, 0, Infinity}, GenerateConditions->None]) == Sum[Subscript[c, n]*(z)^(n), {n, 0, Infinity}, GenerateConditions->None]
Skipped - no semantic math Skipped - no semantic math - -
1.9.E52 c n = k = 0 n a k b n - k subscript 𝑐 𝑛 subscript superscript 𝑛 𝑘 0 subscript 𝑎 𝑘 subscript 𝑏 𝑛 𝑘 {\displaystyle{\displaystyle c_{n}=\sum^{n}_{k=0}a_{k}b_{n-k}}}
c_{n} = \sum^{n}_{k=0}a_{k}b_{n-k}

c[n] = sum(a[k]*b[n - k], k = 0..n)
Subscript[c, n] == Sum[Subscript[a, k]*Subscript[b, n - k], {k, 0, n}, GenerateConditions->None]
Skipped - no semantic math Skipped - no semantic math - -
1.9#Ex13 b 0 = 1 / a 0 subscript 𝑏 0 1 subscript 𝑎 0 {\displaystyle{\displaystyle b_{0}=1/a_{0}}}
b_{0} = 1/a_{0}

b[0] = 1/a[0]
Subscript[b, 0] == 1/Subscript[a, 0]
Skipped - no semantic math Skipped - no semantic math - -
1.9#Ex14 b 1 = - a 1 / a 0 2 subscript 𝑏 1 subscript 𝑎 1 superscript subscript 𝑎 0 2 {\displaystyle{\displaystyle b_{1}=-a_{1}/a_{0}^{2}}}
b_{1} = -a_{1}/a_{0}^{2}

b[1] = - a[1]/(a[0])^(2)
Subscript[b, 1] == - Subscript[a, 1]/(Subscript[a, 0])^(2)
Skipped - no semantic math Skipped - no semantic math - -
1.9#Ex15 b 2 = ( a 1 2 - a 0 a 2 ) / a 0 3 subscript 𝑏 2 superscript subscript 𝑎 1 2 subscript 𝑎 0 subscript 𝑎 2 superscript subscript 𝑎 0 3 {\displaystyle{\displaystyle b_{2}=(a_{1}^{2}-a_{0}a_{2})/a_{0}^{3}}}
b_{2} = (a_{1}^{2}-a_{0}a_{2})/a_{0}^{3}

b[2] = ((a[1])^(2)- a[0]*a[2])/(a[0])^(3)
Subscript[b, 2] == ((Subscript[a, 1])^(2)- Subscript[a, 0]*Subscript[a, 2])/(Subscript[a, 0])^(3)
Skipped - no semantic math Skipped - no semantic math - -
1.9#Ex16 q 1 = a 1 subscript 𝑞 1 subscript 𝑎 1 {\displaystyle{\displaystyle q_{1}=a_{1}}}
q_{1} = a_{1}

q[1] = a[1]
Subscript[q, 1] == Subscript[a, 1]
Skipped - no semantic math Skipped - no semantic math - -
1.9#Ex17 q 2 = ( 2 a 2 - a 1 2 ) / 2 subscript 𝑞 2 2 subscript 𝑎 2 superscript subscript 𝑎 1 2 2 {\displaystyle{\displaystyle q_{2}=(2a_{2}-a_{1}^{2})/2}}
q_{2} = (2a_{2}-a_{1}^{2})/2

q[2] = (2*a[2]- (a[1])^(2))/2
Subscript[q, 2] == (2*Subscript[a, 2]- (Subscript[a, 1])^(2))/2
Skipped - no semantic math Skipped - no semantic math - -
1.9#Ex18 q 3 = ( 3 a 3 - 3 a 1 a 2 + a 1 3 ) / 3 subscript 𝑞 3 3 subscript 𝑎 3 3 subscript 𝑎 1 subscript 𝑎 2 superscript subscript 𝑎 1 3 3 {\displaystyle{\displaystyle q_{3}=(3a_{3}-3a_{1}a_{2}+a_{1}^{3})/3}}
q_{3} = (3a_{3}-3a_{1}a_{2}+a_{1}^{3})/3

q[3] = (3*a[3]- 3*a[1]*a[2]+ (a[1])^(3))/3
Subscript[q, 3] == (3*Subscript[a, 3]- 3*Subscript[a, 1]*Subscript[a, 2]+ (Subscript[a, 1])^(3))/3
Skipped - no semantic math Skipped - no semantic math - -
1.9#Ex19 p 0 = 1 subscript 𝑝 0 1 {\displaystyle{\displaystyle p_{0}=1}}
p_{0} = 1

p[0] = 1
Subscript[p, 0] == 1
Skipped - no semantic math Skipped - no semantic math - -
1.9#Ex20 p 1 = ν a 1 subscript 𝑝 1 𝜈 subscript 𝑎 1 {\displaystyle{\displaystyle p_{1}=\nu a_{1}}}
p_{1} = \nu a_{1}

p[1] = nu*a[1]
Subscript[p, 1] == \[Nu]*Subscript[a, 1]
Skipped - no semantic math Skipped - no semantic math - -
1.9#Ex21 p 2 = ν ( ( ν - 1 ) a 1 2 + 2 a 2 ) / 2 subscript 𝑝 2 𝜈 𝜈 1 superscript subscript 𝑎 1 2 2 subscript 𝑎 2 2 {\displaystyle{\displaystyle p_{2}=\nu((\nu-1)a_{1}^{2}+2a_{2})/2}}
p_{2} = \nu((\nu-1)a_{1}^{2}+2a_{2})/2

p[2] = nu*((nu - 1)*(a[1])^(2)+ 2*a[2])/2
Subscript[p, 2] == \[Nu]*((\[Nu]- 1)*(Subscript[a, 1])^(2)+ 2*Subscript[a, 2])/2
Skipped - no semantic math Skipped - no semantic math - -
1.9.E63 f ( m ) ( z ) = n = 0 ( n + 1 ) m a n + m ( z - z 0 ) n superscript 𝑓 𝑚 𝑧 superscript subscript 𝑛 0 Pochhammer 𝑛 1 𝑚 subscript 𝑎 𝑛 𝑚 superscript 𝑧 subscript 𝑧 0 𝑛 {\displaystyle{\displaystyle f^{(m)}(z)=\sum_{n=0}^{\infty}{\left(n+1\right)_{% m}}a_{n+m}(z-z_{0})^{n}}}
f^{(m)}(z) = \sum_{n=0}^{\infty}\Pochhammersym{n+1}{m}a_{n+m}(z-z_{0})^{n}
| z - z 0 | < R 𝑧 subscript 𝑧 0 𝑅 {\displaystyle{\displaystyle\left|z-z_{0}\right|<R}}
(f(z))^(m) = sum(pochhammer(n + 1, m)*a[n + m]*(z - z[0])^(n), n = 0..infinity)
(f[z])^(m) == Sum[Pochhammer[n + 1, m]*Subscript[a, n + m]*(z - Subscript[z, 0])^(n), {n, 0, Infinity}, GenerateConditions->None]
Failure Failure Skipped - Because timed out Skipped - Because timed out
1.9.E64 | z m , n - z | < ϵ subscript 𝑧 𝑚 𝑛 𝑧 italic-ϵ {\displaystyle{\displaystyle|z_{m,n}-z|<\epsilon}}
|z_{m,n}-z| < \epsilon

abs(z[m , n]- z) < epsilon
Abs[Subscript[z, m , n]- z] < \[Epsilon]
Skipped - no semantic math Skipped - no semantic math - -
1.9.E66 z p , q = m = 0 p n = 0 q ζ m , n subscript 𝑧 𝑝 𝑞 subscript superscript 𝑝 𝑚 0 subscript superscript 𝑞 𝑛 0 subscript 𝜁 𝑚 𝑛 {\displaystyle{\displaystyle z_{p,q}=\sum^{p}_{m=0}\sum^{q}_{n=0}\zeta_{m,n}}}
z_{p,q} = \sum^{p}_{m=0}\sum^{q}_{n=0}\zeta_{m,n}

z[p , q] = sum(sum(zeta[m , n], n = 0..q), m = 0..p)
Subscript[z, p , q] == Sum[Sum[Subscript[\[Zeta], m , n], {n, 0, q}, GenerateConditions->None], {m, 0, p}, GenerateConditions->None]
Skipped - no semantic math Skipped - no semantic math - -
1.9.E69 a b n = 0 | f n ( t ) | d t < subscript superscript 𝑏 𝑎 subscript superscript 𝑛 0 subscript 𝑓 𝑛 𝑡 𝑡 {\displaystyle{\displaystyle\int^{b}_{a}\sum^{\infty}_{n=0}|f_{n}(t)|\mathrm{d% }t<\infty}}
\int^{b}_{a}\sum^{\infty}_{n=0}|f_{n}(t)|\diff{t} < \infty

int(sum(abs(f[n](t)), n = 0..infinity), t = a..b) < infinity
Integrate[Sum[Abs[Subscript[f, n][t]], {n, 0, Infinity}, GenerateConditions->None], {t, a, b}, GenerateConditions->None] < Infinity
Missing Macro Error Missing Macro Error - -
1.9.E70 n = 0 a b | f n ( t ) | d t < subscript superscript 𝑛 0 subscript superscript 𝑏 𝑎 subscript 𝑓 𝑛 𝑡 𝑡 {\displaystyle{\displaystyle\sum^{\infty}_{n=0}\int^{b}_{a}|f_{n}(t)|\mathrm{d% }t<\infty}}
\sum^{\infty}_{n=0}\int^{b}_{a}|f_{n}(t)|\diff{t} < \infty

sum(int(abs(f[n](t)), t = a..b) , n = 0..infinity)< infinity
Sum[Integrate[Abs[Subscript[f, n][t]], {t, a, b}, GenerateConditions->None] , {n, 0, Infinity}, GenerateConditions->None]< Infinity
Missing Macro Error Missing Macro Error - -
1.9.E71 a b n = 0 f n ( t ) d t = n = 0 a b f n ( t ) d t subscript superscript 𝑏 𝑎 subscript superscript 𝑛 0 subscript 𝑓 𝑛 𝑡 𝑡 subscript superscript 𝑛 0 subscript superscript 𝑏 𝑎 subscript 𝑓 𝑛 𝑡 𝑡 {\displaystyle{\displaystyle\int^{b}_{a}\sum^{\infty}_{n=0}f_{n}(t)\mathrm{d}t% =\sum^{\infty}_{n=0}\int^{b}_{a}f_{n}(t)\mathrm{d}t}}
\int^{b}_{a}\sum^{\infty}_{n=0}f_{n}(t)\diff{t} = \sum^{\infty}_{n=0}\int^{b}_{a}f_{n}(t)\diff{t}

int(sum(f[n](t), n = 0..infinity), t = a..b) = sum(int(f[n](t), t = a..b), n = 0..infinity)
Integrate[Sum[Subscript[f, n][t], {n, 0, Infinity}, GenerateConditions->None], {t, a, b}, GenerateConditions->None] == Sum[Integrate[Subscript[f, n][t], {t, a, b}, GenerateConditions->None], {n, 0, Infinity}, GenerateConditions->None]
Successful Aborted - Skipped - Because timed out