DLMF:2.10.E22 (Q1009): Difference between revisions

From testwiki
Jump to navigation Jump to search
imported>Admin
 
imported>Admin
Property / Symbols used
 
Property / Symbols used: gamma function / rank
 
Normal rank
Property / Symbols used: gamma function / qualifier
 
test:

Γ ( z ) Euler-Gamma 𝑧 {\displaystyle{\displaystyle\Gamma\left(\NVar{z}\right)}}

\EulerGamma@{\NVar{z}}
Property / Symbols used: gamma function / qualifier
 
xml-id: C5.S2.E1.m2aadec

Revision as of 16:35, 1 January 2020

No description defined
Language Label Description Also known as
English
DLMF:2.10.E22
No description defined

    Statements

    j = 0 n - 1 x j ( j ! ) 3 = - 1 / 2 n - ( 1 / 2 ) x t ( Γ ( t + 1 ) ) 3 d t - 𝒞 1 x t ( Γ ( t + 1 ) ) 3 d t e - 2 π i t - 1 + 𝒞 2 x t ( Γ ( t + 1 ) ) 3 d t e 2 π i t - 1 , superscript subscript 𝑗 0 𝑛 1 superscript 𝑥 𝑗 superscript 𝑗 3 superscript subscript 1 2 𝑛 1 2 superscript 𝑥 𝑡 superscript Euler-Gamma 𝑡 1 3 𝑡 subscript subscript 𝒞 1 superscript 𝑥 𝑡 superscript Euler-Gamma 𝑡 1 3 𝑡 superscript 𝑒 2 𝜋 𝑖 𝑡 1 subscript subscript 𝒞 2 superscript 𝑥 𝑡 superscript Euler-Gamma 𝑡 1 3 𝑡 superscript 𝑒 2 𝜋 𝑖 𝑡 1 {\displaystyle{\displaystyle\sum_{j=0}^{n-1}\frac{x^{j}}{(j!)^{3}}=\int_{-1/2}% ^{n-(1/2)}\frac{x^{t}}{(\Gamma\left(t+1\right))^{3}}\mathrm{d}t-\int_{\mathscr% {C}_{1}}\frac{x^{t}}{(\Gamma\left(t+1\right))^{3}}\frac{\mathrm{d}t}{e^{-2\pi it% }-1}+\int_{\mathscr{C}_{2}}\frac{x^{t}}{(\Gamma\left(t+1\right))^{3}}\frac{% \mathrm{d}t}{e^{2\pi it}-1},}}
    0 references
    0 references
    Γ ( z ) Euler-Gamma 𝑧 {\displaystyle{\displaystyle\Gamma\left(\NVar{z}\right)}}
    C5.S2.E1.m2aadec
    0 references