Results of Legendre and Related Functions I: Difference between revisions
Jump to navigation
Jump to search
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
||
Line 130: | Line 130: | ||
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, x = 1/2}</syntaxhighlight><br>... skip entries to safe data</div></div> || - | Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, x = 1/2}</syntaxhighlight><br>... skip entries to safe data</div></div> || - | ||
|- | |- | ||
| [https://dlmf.nist.gov/14.5.E1 14.5.E1] || [[Item:Q4713|<math>\FerrersP[\mu]{\nu}@{0} = \frac{2^{\mu}\pi^{1/2}}{\EulerGamma@{\frac{1}{2}\nu-\frac{1}{2}\mu+1}\EulerGamma@{\frac{1}{2}-\frac{1}{2}\nu-\frac{1}{2}\mu}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\FerrersP[\mu]{\nu}@{0} = \frac{2^{\mu}\pi^{1/2}}{\EulerGamma@{\frac{1}{2}\nu-\frac{1}{2}\mu+1}\EulerGamma@{\frac{1}{2}-\frac{1}{2}\nu-\frac{1}{2}\mu}}</syntaxhighlight> || <math>\realpart@@{(\frac{1}{2}\nu-\frac{1}{2}\mu+1)} > 0, \realpart@@{(\frac{1}{2}-\frac{1}{2}\nu-\frac{1}{2}\mu)} > 0 | | [https://dlmf.nist.gov/14.5.E1 14.5.E1] || [[Item:Q4713|<math>\FerrersP[\mu]{\nu}@{0} = \frac{2^{\mu}\pi^{1/2}}{\EulerGamma@{\frac{1}{2}\nu-\frac{1}{2}\mu+1}\EulerGamma@{\frac{1}{2}-\frac{1}{2}\nu-\frac{1}{2}\mu}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\FerrersP[\mu]{\nu}@{0} = \frac{2^{\mu}\pi^{1/2}}{\EulerGamma@{\frac{1}{2}\nu-\frac{1}{2}\mu+1}\EulerGamma@{\frac{1}{2}-\frac{1}{2}\nu-\frac{1}{2}\mu}}</syntaxhighlight> || <math>\realpart@@{(\frac{1}{2}\nu-\frac{1}{2}\mu+1)} > 0, \realpart@@{(\frac{1}{2}-\frac{1}{2}\nu-\frac{1}{2}\mu)} > 0</math> || <syntaxhighlight lang=mathematica>LegendreP(nu, mu, 0) = ((2)^(mu)* (Pi)^(1/2))/(GAMMA((1)/(2)*nu -(1)/(2)*mu + 1)*GAMMA((1)/(2)-(1)/(2)*nu -(1)/(2)*mu))</syntaxhighlight> || <syntaxhighlight lang=mathematica>LegendreP[\[Nu], \[Mu], 0] == Divide[(2)^\[Mu]* (Pi)^(1/2),Gamma[Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]+ 1]*Gamma[Divide[1,2]-Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]]]</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 54] | ||
|- | |- | ||
| [https://dlmf.nist.gov/14.5.E3 14.5.E3] || [[Item:Q4715|<math>\FerrersQ[\mu]{\nu}@{0} = -\frac{2^{\mu-1}\pi^{1/2}\sin@{\frac{1}{2}(\nu+\mu)\pi}\EulerGamma@{\frac{1}{2}\nu+\frac{1}{2}\mu+\frac{1}{2}}}{\EulerGamma@{\frac{1}{2}\nu-\frac{1}{2}\mu+1}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\FerrersQ[\mu]{\nu}@{0} = -\frac{2^{\mu-1}\pi^{1/2}\sin@{\frac{1}{2}(\nu+\mu)\pi}\EulerGamma@{\frac{1}{2}\nu+\frac{1}{2}\mu+\frac{1}{2}}}{\EulerGamma@{\frac{1}{2}\nu-\frac{1}{2}\mu+1}}</syntaxhighlight> || <math>\realpart@@{(\frac{1}{2}\nu+\frac{1}{2}\mu+\frac{1}{2})} > 0, \realpart@@{(\frac{1}{2}\nu-\frac{1}{2}\mu+1)} > 0, \realpart@@{(\nu+\mu+1)} > 0, \realpart@@{(\nu-\mu+1)} > 0 | | [https://dlmf.nist.gov/14.5.E3 14.5.E3] || [[Item:Q4715|<math>\FerrersQ[\mu]{\nu}@{0} = -\frac{2^{\mu-1}\pi^{1/2}\sin@{\frac{1}{2}(\nu+\mu)\pi}\EulerGamma@{\frac{1}{2}\nu+\frac{1}{2}\mu+\frac{1}{2}}}{\EulerGamma@{\frac{1}{2}\nu-\frac{1}{2}\mu+1}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\FerrersQ[\mu]{\nu}@{0} = -\frac{2^{\mu-1}\pi^{1/2}\sin@{\frac{1}{2}(\nu+\mu)\pi}\EulerGamma@{\frac{1}{2}\nu+\frac{1}{2}\mu+\frac{1}{2}}}{\EulerGamma@{\frac{1}{2}\nu-\frac{1}{2}\mu+1}}</syntaxhighlight> || <math>\realpart@@{(\frac{1}{2}\nu+\frac{1}{2}\mu+\frac{1}{2})} > 0, \realpart@@{(\frac{1}{2}\nu-\frac{1}{2}\mu+1)} > 0, \realpart@@{(\nu+\mu+1)} > 0, \realpart@@{(\nu-\mu+1)} > 0</math> || <syntaxhighlight lang=mathematica>LegendreQ(nu, mu, 0) = -((2)^(mu - 1)* (Pi)^(1/2)* sin((1)/(2)*(nu + mu)*Pi)*GAMMA((1)/(2)*nu +(1)/(2)*mu +(1)/(2)))/(GAMMA((1)/(2)*nu -(1)/(2)*mu + 1))</syntaxhighlight> || <syntaxhighlight lang=mathematica>LegendreQ[\[Nu], \[Mu], 0] == -Divide[(2)^(\[Mu]- 1)* (Pi)^(1/2)* Sin[Divide[1,2]*(\[Nu]+ \[Mu])*Pi]*Gamma[Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]+Divide[1,2]],Gamma[Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]+ 1]]</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 45] | ||
|- | |- | ||
| [https://dlmf.nist.gov/14.5.E5 14.5.E5] || [[Item:Q4717|<math>\FerrersP[]{0}@{x} = \assLegendreP[]{0}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\FerrersP[]{0}@{x} = \assLegendreP[]{0}@{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>LegendreP(0, x) = LegendreP(0, x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>LegendreP[0, x] == LegendreP[0, 0, 3, x]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 3] | | [https://dlmf.nist.gov/14.5.E5 14.5.E5] || [[Item:Q4717|<math>\FerrersP[]{0}@{x} = \assLegendreP[]{0}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\FerrersP[]{0}@{x} = \assLegendreP[]{0}@{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>LegendreP(0, x) = LegendreP(0, x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>LegendreP[0, x] == LegendreP[0, 0, 3, x]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 3] |
Latest revision as of 07:06, 25 May 2021
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
14.2.E1 | \left(1-x^{2}\right)\deriv[2]{w}{x}-2x\deriv{w}{x}+\nu(\nu+1)w = 0 |
|
(1 - (x)^(2))*diff(w, [x$(2)])- 2*x*diff(w, x)+ nu*(nu + 1)*w = 0
|
(1 - (x)^(2))*D[w, {x, 2}]- 2*x*D[w, x]+ \[Nu]*(\[Nu]+ 1)*w == 0
|
Failure | Failure | Failed [300 / 300] Result: .5000000007+1.866025405*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, x = 3/2}
Result: .5000000007+1.866025405*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, x = 1/2}
... skip entries to safe data |
Failed [300 / 300]
Result: Complex[0.5000000000000004, 1.8660254037844386]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-0.8660254037844388, -0.5]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
14.2.E2 | \left(1-x^{2}\right)\deriv[2]{w}{x}-2x\deriv{w}{x}+\left(\nu(\nu+1)-\frac{\mu^{2}}{1-x^{2}}\right)w = 0 |
|
(1 - (x)^(2))*diff(w, [x$(2)])- 2*x*diff(w, x)+(nu*(nu + 1)-((mu)^(2))/(1 - (x)^(2)))*w = 0
|
(1 - (x)^(2))*D[w, {x, 2}]- 2*x*D[w, x]+(\[Nu]*(\[Nu]+ 1)-Divide[\[Mu]^(2),1 - (x)^(2)])*w == 0
|
Failure | Failure | Failed [300 / 300] Result: .5000000005+2.666025404*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, x = 3/2}
Result: .4999999998+.5326920710*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, x = 1/2}
... skip entries to safe data |
Failed [300 / 300]
Result: Complex[0.5000000000000007, 2.666025403784439]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-0.8660254037844387, 0.30000000000000043]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
14.2.E3 | \Wronskian@{\FerrersP[-\mu]{\nu}@{x},\FerrersP[-\mu]{\nu}@{-x}} = \frac{2}{\EulerGamma@{\mu-\nu}\EulerGamma@{\nu+\mu+1}\left(1-x^{2}\right)} |
(LegendreP(nu, - mu, x))*diff(LegendreP(nu, - mu, - x), x)-diff(LegendreP(nu, - mu, x), x)*(LegendreP(nu, - mu, - x)) = (2)/(GAMMA(mu - nu)*GAMMA(nu + mu + 1)*(1 - (x)^(2)))
|
Wronskian[{LegendreP[\[Nu], - \[Mu], x], LegendreP[\[Nu], - \[Mu], - x]}, x] == Divide[2,Gamma[\[Mu]- \[Nu]]*Gamma[\[Nu]+ \[Mu]+ 1]*(1 - (x)^(2))]
|
Failure | Failure | Successful [Tested: 87] | Successful [Tested: 96] | |
14.2.E4 | \Wronskian@{\FerrersP[\mu]{\nu}@{x},\FerrersQ[\mu]{\nu}@{x}} = \frac{\EulerGamma@{\nu+\mu+1}}{\EulerGamma@{\nu-\mu+1}\left(1-x^{2}\right)} |
(LegendreP(nu, mu, x))*diff(LegendreQ(nu, mu, x), x)-diff(LegendreP(nu, mu, x), x)*(LegendreQ(nu, mu, x)) = (GAMMA(nu + mu + 1))/(GAMMA(nu - mu + 1)*(1 - (x)^(2)))
|
Wronskian[{LegendreP[\[Nu], \[Mu], x], LegendreQ[\[Nu], \[Mu], x]}, x] == Divide[Gamma[\[Nu]+ \[Mu]+ 1],Gamma[\[Nu]- \[Mu]+ 1]*(1 - (x)^(2))]
|
Failure | Failure | Successful [Tested: 120] | Successful [Tested: 135] | |
14.2.E5 | \FerrersP[\mu]{\nu+1}@{x}\FerrersQ[\mu]{\nu}@{x}-\FerrersP[\mu]{\nu}@{x}\FerrersQ[\mu]{\nu+1}@{x} = \frac{\EulerGamma@{\nu+\mu+1}}{\EulerGamma@{\nu-\mu+2}} |
LegendreP(nu + 1, mu, x)*LegendreQ(nu, mu, x)- LegendreP(nu, mu, x)*LegendreQ(nu + 1, mu, x) = (GAMMA(nu + mu + 1))/(GAMMA(nu - mu + 2))
|
LegendreP[\[Nu]+ 1, \[Mu], x]*LegendreQ[\[Nu], \[Mu], x]- LegendreP[\[Nu], \[Mu], x]*LegendreQ[\[Nu]+ 1, \[Mu], x] == Divide[Gamma[\[Nu]+ \[Mu]+ 1],Gamma[\[Nu]- \[Mu]+ 2]]
|
Failure | Failure | Successful [Tested: 162] | Successful [Tested: 174] | |
14.2.E6 | \Wronskian@{\FerrersP[-\mu]{\nu}@{x},\FerrersQ[\mu]{\nu}@{x}} = \frac{\cos@{\mu\pi}}{1-x^{2}} |
|
(LegendreP(nu, - mu, x))*diff(LegendreQ(nu, mu, x), x)-diff(LegendreP(nu, - mu, x), x)*(LegendreQ(nu, mu, x)) = (cos(mu*Pi))/(1 - (x)^(2))
|
Wronskian[{LegendreP[\[Nu], - \[Mu], x], LegendreQ[\[Nu], \[Mu], x]}, x] == Divide[Cos[\[Mu]*Pi],1 - (x)^(2)]
|
Failure | Failure | Error | Failed [21 / 300]
Result: Indeterminate
Test Values: {Rule[x, 1.5], Rule[μ, -1.5], Rule[ν, -1.5]}
Result: Indeterminate
Test Values: {Rule[x, 1.5], Rule[μ, -1.5], Rule[ν, -0.5]}
... skip entries to safe data |
14.2.E7 | \Wronskian@{\assLegendreP[-\mu]{\nu}@{x},\assLegendreP[\mu]{\nu}@{x}} = \Wronskian@{\FerrersP[-\mu]{\nu}@{x},\FerrersP[\mu]{\nu}@{x}} |
|
(LegendreP(nu, - mu, x))*diff(LegendreP(nu, mu, x), x)-diff(LegendreP(nu, - mu, x), x)*(LegendreP(nu, mu, x)) = (LegendreP(nu, - mu, x))*diff(LegendreP(nu, mu, x), x)-diff(LegendreP(nu, - mu, x), x)*(LegendreP(nu, mu, x))
|
Wronskian[{LegendreP[\[Nu], - \[Mu], 3, x], LegendreP[\[Nu], \[Mu], 3, x]}, x] == Wronskian[{LegendreP[\[Nu], - \[Mu], x], LegendreP[\[Nu], \[Mu], x]}, x]
|
Successful | Failure | Skip - symbolical successful subtest | Successful [Tested: 300] |
14.2.E7 | \Wronskian@{\FerrersP[-\mu]{\nu}@{x},\FerrersP[\mu]{\nu}@{x}} = \frac{2\sin@{\mu\pi}}{\pi\left(1-x^{2}\right)} |
|
(LegendreP(nu, - mu, x))*diff(LegendreP(nu, mu, x), x)-diff(LegendreP(nu, - mu, x), x)*(LegendreP(nu, mu, x)) = (2*sin(mu*Pi))/(Pi*(1 - (x)^(2)))
|
Wronskian[{LegendreP[\[Nu], - \[Mu], x], LegendreP[\[Nu], \[Mu], x]}, x] == Divide[2*Sin[\[Mu]*Pi],Pi*(1 - (x)^(2))]
|
Failure | Failure | Successful [Tested: 300] | Successful [Tested: 300] |
14.2.E8 | \Wronskian@{\assLegendreP[-\mu]{\nu}@{x},\assLegendreOlverQ[\mu]{\nu}@{x}} = -\frac{1}{\EulerGamma@{\nu+\mu+1}\left(x^{2}-1\right)} |
(LegendreP(nu, - mu, x))*diff(exp(-(mu)*Pi*I)*LegendreQ(nu,mu,x)/GAMMA(nu+mu+1), x)-diff(LegendreP(nu, - mu, x), x)*(exp(-(mu)*Pi*I)*LegendreQ(nu,mu,x)/GAMMA(nu+mu+1)) = -(1)/(GAMMA(nu + mu + 1)*((x)^(2)- 1))
|
Wronskian[{LegendreP[\[Nu], - \[Mu], 3, x], Exp[-(\[Mu]) Pi I] LegendreQ[\[Nu], \[Mu], 3, x]/Gamma[\[Nu] + \[Mu] + 1]}, x] == -Divide[1,Gamma[\[Nu]+ \[Mu]+ 1]*((x)^(2)- 1)]
|
Failure | Failure | Successful [Tested: 195] | Successful [Tested: 207] | |
14.2.E9 | \Wronskian@{\assLegendreOlverQ[\mu]{\nu}@{x},\assLegendreOlverQ[\mu]{-\nu-1}@{x}} = \frac{\cos@{\nu\pi}}{x^{2}-1} |
|
(exp(-(mu)*Pi*I)*LegendreQ(nu,mu,x)/GAMMA(nu+mu+1))*diff(exp(-(mu)*Pi*I)*LegendreQ(- nu - 1,mu,x)/GAMMA(- nu - 1+mu+1), x)-diff(exp(-(mu)*Pi*I)*LegendreQ(nu,mu,x)/GAMMA(nu+mu+1), x)*(exp(-(mu)*Pi*I)*LegendreQ(- nu - 1,mu,x)/GAMMA(- nu - 1+mu+1)) = (cos(nu*Pi))/((x)^(2)- 1)
|
Wronskian[{Exp[-(\[Mu]) Pi I] LegendreQ[\[Nu], \[Mu], 3, x]/Gamma[\[Nu] + \[Mu] + 1], Exp[-(\[Mu]) Pi I] LegendreQ[- \[Nu]- 1, \[Mu], 3, x]/Gamma[- \[Nu]- 1 + \[Mu] + 1]}, x] == Divide[Cos[\[Nu]*Pi],(x)^(2)- 1]
|
Failure | Aborted | Failed [39 / 300] Result: 1.832150333+.7522048283*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, x = 3/2}
Result: -3.053583887-1.253674714*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, x = 1/2}
... skip entries to safe data |
Failed [57 / 300]
Result: Indeterminate
Test Values: {Rule[x, 1.5], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Indeterminate
Test Values: {Rule[x, 1.5], Rule[μ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
14.2.E10 | \Wronskian@{\assLegendreP[\mu]{\nu}@{x},\assLegendreQ[\mu]{\nu}@{x}} = -e^{\mu\pi i}\frac{\EulerGamma@{\nu+\mu+1}}{\EulerGamma@{\nu-\mu+1}\left(x^{2}-1\right)} |
(LegendreP(nu, mu, x))*diff(LegendreQ(nu, mu, x), x)-diff(LegendreP(nu, mu, x), x)*(LegendreQ(nu, mu, x)) = - exp(mu*Pi*I)*(GAMMA(nu + mu + 1))/(GAMMA(nu - mu + 1)*((x)^(2)- 1))
|
Wronskian[{LegendreP[\[Nu], \[Mu], 3, x], LegendreQ[\[Nu], \[Mu], 3, x]}, x] == - Exp[\[Mu]*Pi*I]*Divide[Gamma[\[Nu]+ \[Mu]+ 1],Gamma[\[Nu]- \[Mu]+ 1]*((x)^(2)- 1)]
|
Failure | Failure | Successful [Tested: 120] | Successful [Tested: 135] | |
14.2.E11 | \assLegendreP[\mu]{\nu+1}@{x}\assLegendreQ[\mu]{\nu}@{x}-\assLegendreP[\mu]{\nu}@{x}\assLegendreQ[\mu]{\nu+1}@{x} = e^{\mu\pi i}\frac{\EulerGamma@{\nu+\mu+1}}{\EulerGamma@{\nu-\mu+2}} |
LegendreP(nu + 1, mu, x)*LegendreQ(nu, mu, x)- LegendreP(nu, mu, x)*LegendreQ(nu + 1, mu, x) = exp(mu*Pi*I)*(GAMMA(nu + mu + 1))/(GAMMA(nu - mu + 2))
|
LegendreP[\[Nu]+ 1, \[Mu], 3, x]*LegendreQ[\[Nu], \[Mu], 3, x]- LegendreP[\[Nu], \[Mu], 3, x]*LegendreQ[\[Nu]+ 1, \[Mu], 3, x] == Exp[\[Mu]*Pi*I]*Divide[Gamma[\[Nu]+ \[Mu]+ 1],Gamma[\[Nu]- \[Mu]+ 2]]
|
Failure | Failure | Successful [Tested: 162] | Successful [Tested: 174] | |
14.3.E1 | \FerrersP[\mu]{\nu}@{x} = \left(\frac{1+x}{1-x}\right)^{\mu/2}\hyperOlverF@{\nu+1}{-\nu}{1-\mu}{\tfrac{1}{2}-\tfrac{1}{2}x} |
LegendreP(nu, mu, x) = ((1 + x)/(1 - x))^(mu/2)* hypergeom([nu + 1, - nu], [1 - mu], (1)/(2)-(1)/(2)*x)/GAMMA(1 - mu)
|
LegendreP[\[Nu], \[Mu], x] == (Divide[1 + x,1 - x])^(\[Mu]/2)* Hypergeometric2F1Regularized[\[Nu]+ 1, - \[Nu], 1 - \[Mu], Divide[1,2]-Divide[1,2]*x]
|
Failure | Failure | Failed [186 / 300] Result: .299069150e-1-2.924977300*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, x = 3/2}
Result: 1.647025838-2.840829287*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, x = 2}
... skip entries to safe data |
Failed [159 / 300]
Result: Complex[0.029906915825256147, -2.924977300264846]
Test Values: {Rule[x, 1.5], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-3.067091398010022, -0.8210135056644174]
Test Values: {Rule[x, 1.5], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data | |
14.3.E2 | \FerrersQ[\mu]{\nu}@{x} = \frac{\pi}{2\sin@{\mu\pi}}\left(\cos@{\mu\pi}\left(\frac{1+x}{1-x}\right)^{\mu/2}\hyperOlverF@{\nu+1}{-\nu}{1-\mu}{\tfrac{1}{2}-\tfrac{1}{2}x}-\frac{\EulerGamma@{\nu+\mu+1}}{\EulerGamma@{\nu-\mu+1}}\left(\frac{1-x}{1+x}\right)^{\mu/2}\hyperOlverF@{\nu+1}{-\nu}{1+\mu}{\tfrac{1}{2}-\tfrac{1}{2}x}\right) |
LegendreQ(nu, mu, x) = (Pi)/(2*sin(mu*Pi))*(cos(mu*Pi)*((1 + x)/(1 - x))^(mu/2)* hypergeom([nu + 1, - nu], [1 - mu], (1)/(2)-(1)/(2)*x)/GAMMA(1 - mu)-(GAMMA(nu + mu + 1))/(GAMMA(nu - mu + 1))*((1 - x)/(1 + x))^(mu/2)* hypergeom([nu + 1, - nu], [1 + mu], (1)/(2)-(1)/(2)*x)/GAMMA(1 + mu))
|
LegendreQ[\[Nu], \[Mu], x] == Divide[Pi,2*Sin[\[Mu]*Pi]]*(Cos[\[Mu]*Pi]*(Divide[1 + x,1 - x])^(\[Mu]/2)* Hypergeometric2F1Regularized[\[Nu]+ 1, - \[Nu], 1 - \[Mu], Divide[1,2]-Divide[1,2]*x]-Divide[Gamma[\[Nu]+ \[Mu]+ 1],Gamma[\[Nu]- \[Mu]+ 1]]*(Divide[1 - x,1 + x])^(\[Mu]/2)* Hypergeometric2F1Regularized[\[Nu]+ 1, - \[Nu], 1 + \[Mu], Divide[1,2]-Divide[1,2]*x])
|
Failure | Failure | Failed [52 / 120] Result: -4.859700475+.2639835842*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, x = 3/2}
Result: -4.893385611-2.430027023*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, x = 2}
... skip entries to safe data |
Failed [54 / 135]
Result: Complex[-4.859700475422212, 0.2639835832089452]
Test Values: {Rule[x, 1.5], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-3.597069591108201, 8.997773008153189]
Test Values: {Rule[x, 1.5], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}
... skip entries to safe data | |
14.3.E3 | \hyperOlverF@{a}{b}{c}{x} = \frac{1}{\EulerGamma@{c}}\hyperF@{a}{b}{c}{x} |
hypergeom([a, b], [c], x)/GAMMA(c) = (1)/(GAMMA(c))*hypergeom([a, b], [c], x)
|
Hypergeometric2F1Regularized[a, b, c, x] == Divide[1,Gamma[c]]*Hypergeometric2F1[a, b, c, x]
|
Successful | Successful | - | Successful [Tested: 108] | |
14.3.E4 | \FerrersP[m]{\nu}@{x} = (-1)^{m}\frac{\EulerGamma@{\nu+m+1}}{2^{m}\EulerGamma@{\nu-m+1}}\left(1-x^{2}\right)^{m/2}\hyperOlverF@{\nu+m+1}{m-\nu}{m+1}{\tfrac{1}{2}-\tfrac{1}{2}x} |
LegendreP(nu, m, x) = (- 1)^(m)*(GAMMA(nu + m + 1))/((2)^(m)* GAMMA(nu - m + 1))*(1 - (x)^(2))^(m/2)* hypergeom([nu + m + 1, m - nu], [m + 1], (1)/(2)-(1)/(2)*x)/GAMMA(m + 1)
|
LegendreP[\[Nu], m, x] == (- 1)^(m)*Divide[Gamma[\[Nu]+ m + 1],(2)^(m)* Gamma[\[Nu]- m + 1]]*(1 - (x)^(2))^(m/2)* Hypergeometric2F1Regularized[\[Nu]+ m + 1, m - \[Nu], m + 1, Divide[1,2]-Divide[1,2]*x]
|
Failure | Failure | Successful [Tested: 21] | Successful [Tested: 21] | |
14.3.E5 | \FerrersP[m]{\nu}@{x} = (-1)^{m}\frac{\EulerGamma@{\nu+m+1}}{\EulerGamma@{\nu-m+1}}\left(\frac{1-x}{1+x}\right)^{m/2}\hyperOlverF@{\nu+1}{-\nu}{m+1}{\tfrac{1}{2}-\tfrac{1}{2}x} |
LegendreP(nu, m, x) = (- 1)^(m)*(GAMMA(nu + m + 1))/(GAMMA(nu - m + 1))*((1 - x)/(1 + x))^(m/2)* hypergeom([nu + 1, - nu], [m + 1], (1)/(2)-(1)/(2)*x)/GAMMA(m + 1)
|
LegendreP[\[Nu], m, x] == (- 1)^(m)*Divide[Gamma[\[Nu]+ m + 1],Gamma[\[Nu]- m + 1]]*(Divide[1 - x,1 + x])^(m/2)* Hypergeometric2F1Regularized[\[Nu]+ 1, - \[Nu], m + 1, Divide[1,2]-Divide[1,2]*x]
|
Failure | Failure | Successful [Tested: 21] | Successful [Tested: 21] | |
14.3.E6 | \assLegendreP[\mu]{\nu}@{x} = \left(\frac{x+1}{x-1}\right)^{\mu/2}\hyperOlverF@{\nu+1}{-\nu}{1-\mu}{\tfrac{1}{2}-\tfrac{1}{2}x} |
LegendreP(nu, mu, x) = ((x + 1)/(x - 1))^(mu/2)* hypergeom([nu + 1, - nu], [1 - mu], (1)/(2)-(1)/(2)*x)/GAMMA(1 - mu)
|
LegendreP[\[Nu], \[Mu], 3, x] == (Divide[x + 1,x - 1])^(\[Mu]/2)* Hypergeometric2F1Regularized[\[Nu]+ 1, - \[Nu], 1 - \[Mu], Divide[1,2]-Divide[1,2]*x]
|
Failure | Failure | Failed [106 / 300] Result: -4.719014115+.3779003255*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, x = 1/2}
Result: -1.667629478-3.026452547*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = -1/2+1/2*I*3^(1/2), x = 1/2}
... skip entries to safe data |
Failed [79 / 300]
Result: Complex[-4.719014112853729, 0.37790032166140924]
Test Values: {Rule[x, 0.5], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-1.667629477217065, -3.026452547389477]
Test Values: {Rule[x, 0.5], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data | |
14.3.E7 | \assLegendreQ[\mu]{\nu}@{x} = e^{\mu\pi i}\frac{\pi^{1/2}\EulerGamma@{\nu+\mu+1}\left(x^{2}-1\right)^{\mu/2}}{2^{\nu+1}x^{\nu+\mu+1}}\hyperOlverF@{\tfrac{1}{2}\nu+\tfrac{1}{2}\mu+1}{\tfrac{1}{2}\nu+\tfrac{1}{2}\mu+\tfrac{1}{2}}{\nu+\tfrac{3}{2}}{\frac{1}{x^{2}}} |
LegendreQ(nu, mu, x) = exp(mu*Pi*I)*((Pi)^(1/2)* GAMMA(nu + mu + 1)*((x)^(2)- 1)^(mu/2))/((2)^(nu + 1)* (x)^(nu + mu + 1))*hypergeom([(1)/(2)*nu +(1)/(2)*mu + 1, (1)/(2)*nu +(1)/(2)*mu +(1)/(2)], [nu +(3)/(2)], (1)/((x)^(2)))/GAMMA(nu +(3)/(2))
|
LegendreQ[\[Nu], \[Mu], 3, x] == Exp[\[Mu]*Pi*I]*Divide[(Pi)^(1/2)* Gamma[\[Nu]+ \[Mu]+ 1]*((x)^(2)- 1)^(\[Mu]/2),(2)^(\[Nu]+ 1)* (x)^(\[Nu]+ \[Mu]+ 1)]*Hypergeometric2F1Regularized[Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]+ 1, Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]+Divide[1,2], \[Nu]+Divide[3,2], Divide[1,(x)^(2)]]
|
Failure | Failure | Failed [28 / 200] Result: Float(undefined)+Float(undefined)*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = -3/2, x = 3/2, nu+mu = 1}
Result: Float(undefined)+Float(undefined)*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = -3/2, x = 2, nu+mu = 1}
... skip entries to safe data |
Successful [Tested: 138] | |
14.3.E8 | \assLegendreP[m]{\nu}@{x} = \frac{\EulerGamma@{\nu+m+1}}{2^{m}\EulerGamma@{\nu-m+1}}\left(x^{2}-1\right)^{m/2}\hyperOlverF@{\nu+m+1}{m-\nu}{m+1}{\tfrac{1}{2}-\tfrac{1}{2}x} |
LegendreP(nu, m, x) = (GAMMA(nu + m + 1))/((2)^(m)* GAMMA(nu - m + 1))*((x)^(2)- 1)^(m/2)* hypergeom([nu + m + 1, m - nu], [m + 1], (1)/(2)-(1)/(2)*x)/GAMMA(m + 1)
|
LegendreP[\[Nu], m, 3, x] == Divide[Gamma[\[Nu]+ m + 1],(2)^(m)* Gamma[\[Nu]- m + 1]]*((x)^(2)- 1)^(m/2)* Hypergeometric2F1Regularized[\[Nu]+ m + 1, m - \[Nu], m + 1, Divide[1,2]-Divide[1,2]*x]
|
Failure | Failure | Successful [Tested: 21] | Successful [Tested: 21] | |
14.3.E9 | \assLegendreP[-\mu]{\nu}@{x} = \left(\frac{x-1}{x+1}\right)^{\mu/2}\hyperOlverF@{\nu+1}{-\nu}{\mu+1}{\tfrac{1}{2}-\tfrac{1}{2}x} |
LegendreP(nu, - mu, x) = ((x - 1)/(x + 1))^(mu/2)* hypergeom([nu + 1, - nu], [mu + 1], (1)/(2)-(1)/(2)*x)/GAMMA(mu + 1)
|
LegendreP[\[Nu], - \[Mu], 3, x] == (Divide[x - 1,x + 1])^(\[Mu]/2)* Hypergeometric2F1Regularized[\[Nu]+ 1, - \[Nu], \[Mu]+ 1, Divide[1,2]-Divide[1,2]*x]
|
Failure | Successful | Failed [27 / 300] Result: Float(undefined)+Float(undefined)*I
Test Values: {mu = -2, nu = 1/2*3^(1/2)+1/2*I, x = 3/2}
Result: Float(undefined)+Float(undefined)*I
Test Values: {mu = -2, nu = 1/2*3^(1/2)+1/2*I, x = 1/2}
... skip entries to safe data |
Successful [Tested: 300] | |
14.3.E10 | \assLegendreOlverQ[\mu]{\nu}@{x} = e^{-\mu\pi i}\frac{\assLegendreQ[\mu]{\nu}@{x}}{\EulerGamma@{\nu+\mu+1}} |
exp(-(mu)*Pi*I)*LegendreQ(nu,mu,x)/GAMMA(nu+mu+1) = exp(- mu*Pi*I)*(LegendreQ(nu, mu, x))/(GAMMA(nu + mu + 1))
|
Exp[-(\[Mu]) Pi I] LegendreQ[\[Nu], \[Mu], 3, x]/Gamma[\[Nu] + \[Mu] + 1] == Exp[- \[Mu]*Pi*I]*Divide[LegendreQ[\[Nu], \[Mu], 3, x],Gamma[\[Nu]+ \[Mu]+ 1]]
|
Successful | Successful | - | Successful [Tested: 207] | |
14.3.E11 | \FerrersP[\mu]{\nu}@{x} = \cos@{\tfrac{1}{2}(\nu+\mu)\pi}w_{1}(\nu,\mu,x)+\sin@{\tfrac{1}{2}(\nu+\mu)\pi}w_{2}(\nu,\mu,x) |
LegendreP(nu, mu, x) = cos((1)/(2)*(nu + mu)*Pi)*w[1](nu , mu , x)+ sin((1)/(2)*(nu + mu)*Pi)*w[2](nu , mu , x)
|
LegendreP[\[Nu], \[Mu], x] == Cos[Divide[1,2]*(\[Nu]+ \[Mu])*Pi]*Subscript[w, 1][\[Nu], \[Mu], x]+ Sin[Divide[1,2]*(\[Nu]+ \[Mu])*Pi]*Subscript[w, 2][\[Nu], \[Mu], x]
|
Failure | Failure | Failed [300 / 300] Result: .1996315555-2.444256460*I+(-.424833882+3.265828322*I)*(.8660254040+.5000000000*I, .8660254040+.5000000000*I, 1.500000000)
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, x = 3/2, w[1] = 1/2*3^(1/2)+1/2*I, w[2] = 1/2*3^(1/2)+1/2*I}
Result: .1996315555-2.444256460*I+(.206784146+.21312792e-1*I)*(.8660254040+.5000000000*I, .8660254040+.5000000000*I, 1.500000000)
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, x = 3/2, w[1] = 1/2*3^(1/2)+1/2*I, w[2] = -1/2+1/2*I*3^(1/2)} ... skip entries to safe data |
Error | |
14.3.E12 | \FerrersQ[\mu]{\nu}@{x} = -\tfrac{1}{2}\pi\sin@{\tfrac{1}{2}(\nu+\mu)\pi}w_{1}(\nu,\mu,x)+\tfrac{1}{2}\pi\cos@{\tfrac{1}{2}(\nu+\mu)\pi}w_{2}(\nu,\mu,x) |
LegendreQ(nu, mu, x) = -(1)/(2)*Pi*sin((1)/(2)*(nu + mu)*Pi)*w[1](nu , mu , x)+(1)/(2)*Pi*cos((1)/(2)*(nu + mu)*Pi)*w[2](nu , mu , x) |
LegendreQ[\[Nu], \[Mu], x] == -Divide[1,2]*Pi*Sin[Divide[1,2]*(\[Nu]+ \[Mu])*Pi]*Subscript[w, 1][\[Nu], \[Mu], x]+Divide[1,2]*Pi*Cos[Divide[1,2]*(\[Nu]+ \[Mu])*Pi]*Subscript[w, 2][\[Nu], \[Mu], x] |
Failure | Failure | Failed [300 / 300] Result: -3.819326549-.1470472359*I+(5.421288855+1.025621334*I)*(.8660254040+.5000000000*I, .8660254040+.5000000000*I, 1.500000000)
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, x = 3/2, w[1] = 1/2*3^(1/2)+1/2*I, w[2] = 1/2*3^(1/2)+1/2*I} Result: -3.819326549-.1470472359*I+(-.33478055e-1+.324815778*I)*(.8660254040+.5000000000*I, .8660254040+.5000000000*I, 1.500000000)
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, x = 3/2, w[1] = 1/2*3^(1/2)+1/2*I, w[2] = -1/2+1/2*I*3^(1/2)} ... skip entries to safe data |
Error | |
14.3.E13 | w_{1}(\nu,\mu,x) = \frac{2^{\mu}\EulerGamma@{\frac{1}{2}\nu+\frac{1}{2}\mu+\frac{1}{2}}}{\EulerGamma@{\frac{1}{2}\nu-\frac{1}{2}\mu+1}}\left(1-x^{2}\right)^{-\mu/2}\hyperOlverF@{-\tfrac{1}{2}\nu-\tfrac{1}{2}\mu}{\tfrac{1}{2}\nu-\tfrac{1}{2}\mu+\tfrac{1}{2}}{\tfrac{1}{2}}{x^{2}} |
w[1](nu , mu , x) = ((2)^(mu)* GAMMA((1)/(2)*nu +(1)/(2)*mu +(1)/(2)))/(GAMMA((1)/(2)*nu -(1)/(2)*mu + 1))*(1 - (x)^(2))^(- mu/2)* hypergeom([-(1)/(2)*nu -(1)/(2)*mu, (1)/(2)*nu -(1)/(2)*mu +(1)/(2)], [(1)/(2)], (x)^(2))/GAMMA((1)/(2)) |
Subscript[w, 1][\[Nu], \[Mu], x] == Divide[(2)^\[Mu]* Gamma[Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]+Divide[1,2]],Gamma[Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]+ 1]]*(1 - (x)^(2))^(- \[Mu]/2)* Hypergeometric2F1Regularized[-Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu], Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]+Divide[1,2], Divide[1,2], (x)^(2)] |
Failure | Failure | Failed [300 / 300] Result: (.8660254040+.5000000000*I)*(.8660254040+.5000000000*I, .8660254040+.5000000000*I, .5000000000)-.6893070382-.1737378889*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, x = 1/2, w[1] = 1/2*3^(1/2)+1/2*I} Result: (-.5000000000+.8660254040*I)*(.8660254040+.5000000000*I, .8660254040+.5000000000*I, .5000000000)-.6893070382-.1737378889*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, x = 1/2, w[1] = -1/2+1/2*I*3^(1/2)} ... skip entries to safe data |
Error | |
14.3.E14 | w_{2}(\nu,\mu,x) = \frac{2^{\mu}\EulerGamma@{\frac{1}{2}\nu+\frac{1}{2}\mu+1}}{\EulerGamma@{\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2}}}x\left(1-x^{2}\right)^{-\mu/2}\hyperOlverF@{\tfrac{1}{2}-\tfrac{1}{2}\nu-\tfrac{1}{2}\mu}{\tfrac{1}{2}\nu-\tfrac{1}{2}\mu+1}{\tfrac{3}{2}}{x^{2}} |
w[2](nu , mu , x) = ((2)^(mu)* GAMMA((1)/(2)*nu +(1)/(2)*mu + 1))/(GAMMA((1)/(2)*nu -(1)/(2)*mu +(1)/(2)))*x*(1 - (x)^(2))^(- mu/2)* hypergeom([(1)/(2)-(1)/(2)*nu -(1)/(2)*mu, (1)/(2)*nu -(1)/(2)*mu + 1], [(3)/(2)], (x)^(2))/GAMMA((3)/(2)) |
Subscript[w, 2][\[Nu], \[Mu], x] == Divide[(2)^\[Mu]* Gamma[Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]+ 1],Gamma[Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]+Divide[1,2]]]*x*(1 - (x)^(2))^(- \[Mu]/2)* Hypergeometric2F1Regularized[Divide[1,2]-Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu], Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]+ 1, Divide[3,2], (x)^(2)] |
Failure | Failure | Failed [300 / 300] Result: (.8660254040+.5000000000*I)*(.8660254040+.5000000000*I, .8660254040+.5000000000*I, .5000000000)-.4687612945-.2577588545*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, x = 1/2, w[2] = 1/2*3^(1/2)+1/2*I} Result: (-.5000000000+.8660254040*I)*(.8660254040+.5000000000*I, .8660254040+.5000000000*I, .5000000000)-.4687612945-.2577588545*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, x = 1/2, w[2] = -1/2+1/2*I*3^(1/2)} ... skip entries to safe data |
Error | |
14.3.E15 | \assLegendreP[-\mu]{\nu}@{x} = 2^{-\mu}\left(x^{2}-1\right)^{\mu/2}\hyperOlverF@{\mu-\nu}{\nu+\mu+1}{\mu+1}{\tfrac{1}{2}-\tfrac{1}{2}x} |
LegendreP(nu, - mu, x) = (2)^(- mu)*((x)^(2)- 1)^(mu/2)* hypergeom([mu - nu, nu + mu + 1], [mu + 1], (1)/(2)-(1)/(2)*x)/GAMMA(mu + 1) |
LegendreP[\[Nu], - \[Mu], 3, x] == (2)^(- \[Mu])*((x)^(2)- 1)^(\[Mu]/2)* Hypergeometric2F1Regularized[\[Mu]- \[Nu], \[Nu]+ \[Mu]+ 1, \[Mu]+ 1, Divide[1,2]-Divide[1,2]*x] |
Failure | Failure | Failed [27 / 300] Result: Float(undefined)+Float(undefined)*I
Test Values: {mu = -2, nu = 1/2*3^(1/2)+1/2*I, x = 3/2} Result: Float(undefined)+Float(undefined)*I
Test Values: {mu = -2, nu = 1/2*3^(1/2)+1/2*I, x = 1/2} ... skip entries to safe data |
Successful [Tested: 300] | |
14.3.E16 | \cos@{\nu\pi}\assLegendreP[-\mu]{\nu}@{x} = \frac{2^{\nu}\pi^{1/2}x^{\nu-\mu}\left(x^{2}-1\right)^{\mu/2}}{\EulerGamma@{\nu+\mu+1}}\hyperOlverF@{\tfrac{1}{2}\mu-\tfrac{1}{2}\nu}{\tfrac{1}{2}\mu-\tfrac{1}{2}\nu+\tfrac{1}{2}}{\tfrac{1}{2}-\nu}{\frac{1}{x^{2}}}-\frac{\pi^{1/2}\left(x^{2}-1\right)^{\mu/2}}{2^{\nu+1}\EulerGamma@{\mu-\nu}x^{\nu+\mu+1}}\hyperOlverF@{\tfrac{1}{2}\nu+\tfrac{1}{2}\mu+1}{\tfrac{1}{2}\nu+\tfrac{1}{2}\mu+\tfrac{1}{2}}{\nu+\tfrac{3}{2}}{\frac{1}{x^{2}}} |
cos(nu*Pi)*LegendreP(nu, - mu, x) = ((2)^(nu)* (Pi)^(1/2)* (x)^(nu - mu)*((x)^(2)- 1)^(mu/2))/(GAMMA(nu + mu + 1))*hypergeom([(1)/(2)*mu -(1)/(2)*nu, (1)/(2)*mu -(1)/(2)*nu +(1)/(2)], [(1)/(2)- nu], (1)/((x)^(2)))/GAMMA((1)/(2)- nu)-((Pi)^(1/2)*((x)^(2)- 1)^(mu/2))/((2)^(nu + 1)* GAMMA(mu - nu)*(x)^(nu + mu + 1))*hypergeom([(1)/(2)*nu +(1)/(2)*mu + 1, (1)/(2)*nu +(1)/(2)*mu +(1)/(2)], [nu +(3)/(2)], (1)/((x)^(2)))/GAMMA(nu +(3)/(2)) |
Cos[\[Nu]*Pi]*LegendreP[\[Nu], - \[Mu], 3, x] == Divide[(2)^\[Nu]* (Pi)^(1/2)* (x)^(\[Nu]- \[Mu])*((x)^(2)- 1)^(\[Mu]/2),Gamma[\[Nu]+ \[Mu]+ 1]]*Hypergeometric2F1Regularized[Divide[1,2]*\[Mu]-Divide[1,2]*\[Nu], Divide[1,2]*\[Mu]-Divide[1,2]*\[Nu]+Divide[1,2], Divide[1,2]- \[Nu], Divide[1,(x)^(2)]]-Divide[(Pi)^(1/2)*((x)^(2)- 1)^(\[Mu]/2),(2)^(\[Nu]+ 1)* Gamma[\[Mu]- \[Nu]]*(x)^(\[Nu]+ \[Mu]+ 1)]*Hypergeometric2F1Regularized[Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]+ 1, Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]+Divide[1,2], \[Nu]+Divide[3,2], Divide[1,(x)^(2)]] |
Failure | Failure | Failed [14 / 58] Result: Float(undefined)+Float(undefined)*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = -3/2, x = 3/2} Result: Float(undefined)+Float(undefined)*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = -3/2, x = 2} ... skip entries to safe data |
Successful [Tested: 64] | |
14.3.E17 | \assLegendreP[-\mu]{\nu}@{x} = \frac{\pi\left(x^{2}-1\right)^{\mu/2}}{2^{\mu}}\left(\frac{\hyperOlverF@{\frac{1}{2}\mu-\frac{1}{2}\nu}{\frac{1}{2}\nu+\frac{1}{2}\mu+\frac{1}{2}}{\frac{1}{2}}{x^{2}}}{\EulerGamma@{\frac{1}{2}\mu-\frac{1}{2}\nu+\frac{1}{2}}\EulerGamma@{\frac{1}{2}\nu+\frac{1}{2}\mu+1}}-\frac{x\hyperOlverF@{\frac{1}{2}\mu-\frac{1}{2}\nu+\frac{1}{2}}{\frac{1}{2}\nu+\frac{1}{2}\mu+1}{\frac{3}{2}}{x^{2}}}{\EulerGamma@{\frac{1}{2}\mu-\frac{1}{2}\nu}\EulerGamma@{\frac{1}{2}\nu+\frac{1}{2}\mu+\frac{1}{2}}}\right) |
LegendreP(nu, - mu, x) = (Pi*((x)^(2)- 1)^(mu/2))/((2)^(mu))*((hypergeom([(1)/(2)*mu -(1)/(2)*nu, (1)/(2)*nu +(1)/(2)*mu +(1)/(2)], [(1)/(2)], (x)^(2))/GAMMA((1)/(2)))/(GAMMA((1)/(2)*mu -(1)/(2)*nu +(1)/(2))*GAMMA((1)/(2)*nu +(1)/(2)*mu + 1))-(x*hypergeom([(1)/(2)*mu -(1)/(2)*nu +(1)/(2), (1)/(2)*nu +(1)/(2)*mu + 1], [(3)/(2)], (x)^(2))/GAMMA((3)/(2)))/(GAMMA((1)/(2)*mu -(1)/(2)*nu)*GAMMA((1)/(2)*nu +(1)/(2)*mu +(1)/(2)))) |
LegendreP[\[Nu], - \[Mu], 3, x] == Divide[Pi*((x)^(2)- 1)^(\[Mu]/2),(2)^\[Mu]]*(Divide[Hypergeometric2F1Regularized[Divide[1,2]*\[Mu]-Divide[1,2]*\[Nu], Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]+Divide[1,2], Divide[1,2], (x)^(2)],Gamma[Divide[1,2]*\[Mu]-Divide[1,2]*\[Nu]+Divide[1,2]]*Gamma[Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]+ 1]]-Divide[x*Hypergeometric2F1Regularized[Divide[1,2]*\[Mu]-Divide[1,2]*\[Nu]+Divide[1,2], Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]+ 1, Divide[3,2], (x)^(2)],Gamma[Divide[1,2]*\[Mu]-Divide[1,2]*\[Nu]]*Gamma[Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]+Divide[1,2]]]) |
Failure | Failure | Successful [Tested: 29] | Successful [Tested: 32] | |
14.3.E18 | \assLegendreP[-\mu]{\nu}@{x} = 2^{-\mu}x^{\nu-\mu}\left(x^{2}-1\right)^{\mu/2}\hyperOlverF@{\tfrac{1}{2}\mu-\tfrac{1}{2}\nu}{\tfrac{1}{2}\mu-\tfrac{1}{2}\nu+\tfrac{1}{2}}{\mu+1}{1-\frac{1}{x^{2}}} |
|
LegendreP(nu, - mu, x) = (2)^(- mu)* (x)^(nu - mu)*((x)^(2)- 1)^(mu/2)* hypergeom([(1)/(2)*mu -(1)/(2)*nu, (1)/(2)*mu -(1)/(2)*nu +(1)/(2)], [mu + 1], 1 -(1)/((x)^(2)))/GAMMA(mu + 1) |
LegendreP[\[Nu], - \[Mu], 3, x] == (2)^(- \[Mu])* (x)^(\[Nu]- \[Mu])*((x)^(2)- 1)^(\[Mu]/2)* Hypergeometric2F1Regularized[Divide[1,2]*\[Mu]-Divide[1,2]*\[Nu], Divide[1,2]*\[Mu]-Divide[1,2]*\[Nu]+Divide[1,2], \[Mu]+ 1, 1 -Divide[1,(x)^(2)]] |
Failure | Failure | Failed [18 / 200] Result: Float(undefined)+Float(undefined)*I
Test Values: {mu = -2, nu = 1/2*3^(1/2)+1/2*I, x = 3/2} Result: Float(undefined)+Float(undefined)*I
Test Values: {mu = -2, nu = 1/2*3^(1/2)+1/2*I, x = 2} ... skip entries to safe data |
Successful [Tested: 200] |
14.3.E19 | \assLegendreOlverQ[\mu]{\nu}@{x} = \frac{2^{\nu}\EulerGamma@{\nu+1}(x+1)^{\mu/2}}{(x-1)^{(\mu/2)+\nu+1}}\hyperOlverF@{\nu+1}{\nu+\mu+1}{2\nu+2}{\frac{2}{1-x}} |
exp(-(mu)*Pi*I)*LegendreQ(nu,mu,x)/GAMMA(nu+mu+1) = ((2)^(nu)* GAMMA(nu + 1)*(x + 1)^(mu/2))/((x - 1)^((mu/2)+ nu + 1))*hypergeom([nu + 1, nu + mu + 1], [2*nu + 2], (2)/(1 - x))/GAMMA(2*nu + 2) |
Exp[-(\[Mu]) Pi I] LegendreQ[\[Nu], \[Mu], 3, x]/Gamma[\[Nu] + \[Mu] + 1] == Divide[(2)^\[Nu]* Gamma[\[Nu]+ 1]*(x + 1)^(\[Mu]/2),(x - 1)^((\[Mu]/2)+ \[Nu]+ 1)]*Hypergeometric2F1Regularized[\[Nu]+ 1, \[Nu]+ \[Mu]+ 1, 2*\[Nu]+ 2, Divide[2,1 - x]] |
Failure | Failure | Error | Skip - No test values generated | |
14.3.E20 | \frac{2\sin@{\mu\pi}}{\pi}\assLegendreOlverQ[\mu]{\nu}@{x} = \frac{(x+1)^{\mu/2}}{\EulerGamma@{\nu+\mu+1}(x-1)^{\mu/2}}\hyperOlverF@{\nu+1}{-\nu}{1-\mu}{\tfrac{1}{2}-\tfrac{1}{2}x}-\frac{(x-1)^{\mu/2}}{\EulerGamma@{\nu-\mu+1}(x+1)^{\mu/2}}\hyperOlverF@{\nu+1}{-\nu}{\mu+1}{\tfrac{1}{2}-\tfrac{1}{2}x} |
(2*sin(mu*Pi))/(Pi)*exp(-(mu)*Pi*I)*LegendreQ(nu,mu,x)/GAMMA(nu+mu+1) = ((x + 1)^(mu/2))/(GAMMA(nu + mu + 1)*(x - 1)^(mu/2))*hypergeom([nu + 1, - nu], [1 - mu], (1)/(2)-(1)/(2)*x)/GAMMA(1 - mu)-((x - 1)^(mu/2))/(GAMMA(nu - mu + 1)*(x + 1)^(mu/2))*hypergeom([nu + 1, - nu], [mu + 1], (1)/(2)-(1)/(2)*x)/GAMMA(mu + 1) |
Divide[2*Sin[\[Mu]*Pi],Pi]*Exp[-(\[Mu]) Pi I] LegendreQ[\[Nu], \[Mu], 3, x]/Gamma[\[Nu] + \[Mu] + 1] == Divide[(x + 1)^(\[Mu]/2),Gamma[\[Nu]+ \[Mu]+ 1]*(x - 1)^(\[Mu]/2)]*Hypergeometric2F1Regularized[\[Nu]+ 1, - \[Nu], 1 - \[Mu], Divide[1,2]-Divide[1,2]*x]-Divide[(x - 1)^(\[Mu]/2),Gamma[\[Nu]- \[Mu]+ 1]*(x + 1)^(\[Mu]/2)]*Hypergeometric2F1Regularized[\[Nu]+ 1, - \[Nu], \[Mu]+ 1, Divide[1,2]-Divide[1,2]*x] |
Failure | Successful | Failed [12 / 120] Result: Float(undefined)+Float(undefined)*I
Test Values: {mu = -2, nu = 3/2, x = 3/2} Result: Float(undefined)+Float(undefined)*I
Test Values: {mu = -2, nu = 3/2, x = 1/2} ... skip entries to safe data |
Successful [Tested: 135] | |
14.3.E21 | \FerrersP[\mu]{\nu}@{x} = \frac{2^{\mu}\EulerGamma@{1-2\mu}\EulerGamma@{\nu+\mu+1}}{\EulerGamma@{\nu-\mu+1}\EulerGamma@{1-\mu}\left(1-x^{2}\right)^{\mu/2}}\ultrasphpoly{\frac{1}{2}-\mu}{\nu+\mu}@{x} |
LegendreP(nu, mu, x) = ((2)^(mu)* GAMMA(1 - 2*mu)*GAMMA(nu + mu + 1))/(GAMMA(nu - mu + 1)*GAMMA(1 - mu)*(1 - (x)^(2))^(mu/2))*GegenbauerC(nu + mu, (1)/(2)- mu, x) |
LegendreP[\[Nu], \[Mu], x] == Divide[(2)^\[Mu]* Gamma[1 - 2*\[Mu]]*Gamma[\[Nu]+ \[Mu]+ 1],Gamma[\[Nu]- \[Mu]+ 1]*Gamma[1 - \[Mu]]*(1 - (x)^(2))^(\[Mu]/2)]*GegenbauerC[\[Nu]+ \[Mu], Divide[1,2]- \[Mu], x] |
Failure | Failure | Successful [Tested: 60] | Successful [Tested: 69] | |
14.3.E22 | \assLegendreP[\mu]{\nu}@{x} = \frac{2^{\mu}\EulerGamma@{1-2\mu}\EulerGamma@{\nu+\mu+1}}{\EulerGamma@{\nu-\mu+1}\EulerGamma@{1-\mu}\left(x^{2}-1\right)^{\mu/2}}\ultrasphpoly{\frac{1}{2}-\mu}{\nu+\mu}@{x} |
LegendreP(nu, mu, x) = ((2)^(mu)* GAMMA(1 - 2*mu)*GAMMA(nu + mu + 1))/(GAMMA(nu - mu + 1)*GAMMA(1 - mu)*((x)^(2)- 1)^(mu/2))*GegenbauerC(nu + mu, (1)/(2)- mu, x) |
LegendreP[\[Nu], \[Mu], 3, x] == Divide[(2)^\[Mu]* Gamma[1 - 2*\[Mu]]*Gamma[\[Nu]+ \[Mu]+ 1],Gamma[\[Nu]- \[Mu]+ 1]*Gamma[1 - \[Mu]]*((x)^(2)- 1)^(\[Mu]/2)]*GegenbauerC[\[Nu]+ \[Mu], Divide[1,2]- \[Mu], x] |
Failure | Failure | Successful [Tested: 60] | Successful [Tested: 69] | |
14.3.E23 | \assLegendreP[\mu]{\nu}@{x} = \frac{1}{\EulerGamma@{1-\mu}}\left(\frac{x+1}{x-1}\right)^{\mu/2}\Jacobiphi{-\mu}{\mu}{-\iunit(2\nu+1)}@{\asinh@{(\tfrac{1}{2}x-\tfrac{1}{2})^{\ifrac{1}{2}}}} |
LegendreP(nu, mu, x) = (1)/(GAMMA(1 - mu))*((x + 1)/(x - 1))^(mu/2)* hypergeom([((- mu)+(mu)+1-I*(- I*(2*nu + 1)))/2, ((- mu)+(mu)+1+I*(- I*(2*nu + 1)))], [(- mu)+1], -sinh(arcsinh(((1)/(2)*x -(1)/(2))^((1)/(2))))^2) |
Error |
Failure | Missing Macro Error | Failed [240 / 240] Result: -.318116688-.9248307299*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, x = 3/2} Result: -5.010614457+.9472052439*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, x = 1/2} ... skip entries to safe data |
- | |
14.5.E1 | \FerrersP[\mu]{\nu}@{0} = \frac{2^{\mu}\pi^{1/2}}{\EulerGamma@{\frac{1}{2}\nu-\frac{1}{2}\mu+1}\EulerGamma@{\frac{1}{2}-\frac{1}{2}\nu-\frac{1}{2}\mu}} |
LegendreP(nu, mu, 0) = ((2)^(mu)* (Pi)^(1/2))/(GAMMA((1)/(2)*nu -(1)/(2)*mu + 1)*GAMMA((1)/(2)-(1)/(2)*nu -(1)/(2)*mu)) |
LegendreP[\[Nu], \[Mu], 0] == Divide[(2)^\[Mu]* (Pi)^(1/2),Gamma[Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]+ 1]*Gamma[Divide[1,2]-Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]]] |
Successful | Failure | - | Successful [Tested: 54] | |
14.5.E3 | \FerrersQ[\mu]{\nu}@{0} = -\frac{2^{\mu-1}\pi^{1/2}\sin@{\frac{1}{2}(\nu+\mu)\pi}\EulerGamma@{\frac{1}{2}\nu+\frac{1}{2}\mu+\frac{1}{2}}}{\EulerGamma@{\frac{1}{2}\nu-\frac{1}{2}\mu+1}} |
LegendreQ(nu, mu, 0) = -((2)^(mu - 1)* (Pi)^(1/2)* sin((1)/(2)*(nu + mu)*Pi)*GAMMA((1)/(2)*nu +(1)/(2)*mu +(1)/(2)))/(GAMMA((1)/(2)*nu -(1)/(2)*mu + 1)) |
LegendreQ[\[Nu], \[Mu], 0] == -Divide[(2)^(\[Mu]- 1)* (Pi)^(1/2)* Sin[Divide[1,2]*(\[Nu]+ \[Mu])*Pi]*Gamma[Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]+Divide[1,2]],Gamma[Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]+ 1]] |
Successful | Failure | - | Successful [Tested: 45] | |
14.5.E5 | \FerrersP[]{0}@{x} = \assLegendreP[]{0}@{x} |
|
LegendreP(0, x) = LegendreP(0, x) |
LegendreP[0, x] == LegendreP[0, 0, 3, x] |
Successful | Successful | - | Successful [Tested: 3] |
14.5.E5 | \assLegendreP[]{0}@{x} = 1 |
|
LegendreP(0, x) = 1 |
LegendreP[0, 0, 3, x] == 1 |
Successful | Successful | - | Successful [Tested: 3] |
14.5.E6 | \FerrersP[]{1}@{x} = \assLegendreP[]{1}@{x} |
|
LegendreP(1, x) = LegendreP(1, x) |
LegendreP[1, x] == LegendreP[1, 0, 3, x] |
Successful | Successful | - | Successful [Tested: 3] |
14.5.E6 | \assLegendreP[]{1}@{x} = x |
|
LegendreP(1, x) = x |
LegendreP[1, 0, 3, x] == x |
Successful | Successful | - | Successful [Tested: 3] |
14.5.E7 | \FerrersQ[]{0}@{x} = \frac{1}{2}\ln@{\frac{1+x}{1-x}} |
|
LegendreQ(0, x) = (1)/(2)*ln((1 + x)/(1 - x)) |
LegendreQ[0, x] == Divide[1,2]*Log[Divide[1 + x,1 - x]] |
Failure | Failure | Failed [2 / 3] Result: .2e-9-3.141592654*I
Test Values: {x = 3/2} Result: -.2e-9-3.141592654*I
Test Values: {x = 2} |
Failed [2 / 3]
Result: Complex[1.1102230246251565*^-16, -3.141592653589793]
Test Values: {Rule[x, 1.5]} Result: Complex[0.0, -3.141592653589793]
Test Values: {Rule[x, 2]} |
14.5.E8 | \FerrersQ[]{1}@{x} = \frac{x}{2}\ln@{\frac{1+x}{1-x}}-1 |
|
LegendreQ(1, x) = (x)/(2)*ln((1 + x)/(1 - x))- 1 |
LegendreQ[1, x] == Divide[x,2]*Log[Divide[1 + x,1 - x]]- 1 |
Failure | Failure | Failed [2 / 3] Result: .3e-9-4.712388980*I
Test Values: {x = 3/2} Result: 0.-6.283185308*I
Test Values: {x = 2} |
Failed [2 / 3]
Result: Complex[2.220446049250313*^-16, -4.71238898038469]
Test Values: {Rule[x, 1.5]} Result: Complex[0.0, -6.283185307179586]
Test Values: {Rule[x, 2]} |
14.5.E9 | \assLegendreOlverQ[]{0}@{x} = \frac{1}{2}\ln@{\frac{x+1}{x-1}} |
|
LegendreQ(0,x)/GAMMA(0+1) = (1)/(2)*ln((x + 1)/(x - 1)) |
Exp[-(0) Pi I] LegendreQ[0, 2, 3, x]/Gamma[0 + 3] == Divide[1,2]*Log[Divide[x + 1,x - 1]] |
Failure | Failure | Failed [1 / 3] Result: -.2e-9-3.141592654*I
Test Values: {x = 1/2} |
Failed [3 / 3]
Result: Complex[0.3952810437829498, -2.9391523179536476*^-16]
Test Values: {Rule[x, 1.5]} Result: Complex[-1.2159728110007215, -1.5707963267948966]
Test Values: {Rule[x, 0.5]} ... skip entries to safe data |
14.5.E10 | \assLegendreOlverQ[]{1}@{x} = \frac{x}{2}\ln@{\frac{x+1}{x-1}}-1 |
|
LegendreQ(1,x)/GAMMA(1+1) = (x)/(2)*ln((x + 1)/(x - 1))- 1 |
Exp[-(1) Pi I] LegendreQ[1, 2, 3, x]/Gamma[1 + 3] == Divide[x,2]*Log[Divide[x + 1,x - 1]]- 1 |
Failure | Failure | Failed [1 / 3] Result: 0.-1.570796327*I
Test Values: {x = 1/2} |
Failed [3 / 3]
Result: Complex[-0.47374510099224176, 6.531449595452549*^-17]
Test Values: {Rule[x, 1.5]} Result: Complex[1.1697913722774167, -0.7853981633974483]
Test Values: {Rule[x, 0.5]} ... skip entries to safe data |
14.5.E11 | \FerrersP[1/2]{\nu}@{\cos@@{\theta}} = \left(\frac{2}{\pi\sin@@{\theta}}\right)^{1/2}\cos@{\left(\nu+\tfrac{1}{2}\right)\theta} |
|
LegendreP(nu, 1/2, cos(theta)) = ((2)/(Pi*sin(theta)))^(1/2)* cos((nu +(1)/(2))*theta) |
LegendreP[\[Nu], 1/2, Cos[\[Theta]]] == (Divide[2,Pi*Sin[\[Theta]]])^(1/2)* Cos[(\[Nu]+Divide[1,2])*\[Theta]] |
Failure | Failure | Failed [50 / 100] Result: -.7596743150+.9986452891*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, theta = -1/2+1/2*I*3^(1/2)} Result: -.3969265290-1.700808098*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, theta = -1/2*3^(1/2)-1/2*I} ... skip entries to safe data |
Failed [50 / 100]
Result: Complex[-0.7596743150203076, 0.9986452891592468]
Test Values: {Rule[θ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[0.5932078691227823, 0.7119534787783219]
Test Values: {Rule[θ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |
14.5.E12 | \FerrersP[-1/2]{\nu}@{\cos@@{\theta}} = \left(\frac{2}{\pi\sin@@{\theta}}\right)^{1/2}\frac{\sin@{\left(\nu+\frac{1}{2}\right)\theta}}{\nu+\frac{1}{2}} |
|
LegendreP(nu, - 1/2, cos(theta)) = ((2)/(Pi*sin(theta)))^(1/2)*(sin((nu +(1)/(2))*theta))/(nu +(1)/(2)) |
LegendreP[\[Nu], - 1/2, Cos[\[Theta]]] == (Divide[2,Pi*Sin[\[Theta]]])^(1/2)*Divide[Sin[(\[Nu]+Divide[1,2])*\[Theta]],\[Nu]+Divide[1,2]] |
Failure | Failure | Failed [55 / 100] Result: .5392263657-.8901760048*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, theta = -1/2+1/2*I*3^(1/2)} Result: .9027151592+.9035040024*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, theta = -1/2*3^(1/2)-1/2*I} ... skip entries to safe data |
Failed [55 / 100]
Result: Indeterminate
Test Values: {Rule[θ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -0.5]} Result: Complex[0.5392263655684584, -0.8901760046482097]
Test Values: {Rule[θ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} ... skip entries to safe data |
14.5.E13 | \FerrersQ[1/2]{\nu}@{\cos@@{\theta}} = -\left(\frac{\pi}{2\sin@@{\theta}}\right)^{1/2}\sin@{\left(\nu+\tfrac{1}{2}\right)\theta} |
|
LegendreQ(nu, 1/2, cos(theta)) = -((Pi)/(2*sin(theta)))^(1/2)* sin((nu +(1)/(2))*theta) |
LegendreQ[\[Nu], 1/2, Cos[\[Theta]]] == -(Divide[Pi,2*Sin[\[Theta]]])^(1/2)* Sin[(\[Nu]+Divide[1,2])*\[Theta]] |
Failure | Failure | Failed [25 / 50] Result: -1.856186326+1.486585706*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, theta = -1/2+1/2*I*3^(1/2)} Result: -1.227388580-2.647682452*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, theta = -1/2*3^(1/2)-1/2*I} ... skip entries to safe data |
Failed [25 / 50]
Result: Complex[-1.8561863256089288, 1.4865857054438434]
Test Values: {Rule[θ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[1.690848965325271, 2.3698178156702956]
Test Values: {Rule[θ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]} ... skip entries to safe data |
14.5.E14 | \FerrersQ[-1/2]{\nu}@{\cos@@{\theta}} = \left(\frac{\pi}{2\sin@@{\theta}}\right)^{1/2}\frac{\cos@{\left(\nu+\frac{1}{2}\right)\theta}}{\nu+\frac{1}{2}} |
|
LegendreQ(nu, - 1/2, cos(theta)) = ((Pi)/(2*sin(theta)))^(1/2)*(cos((nu +(1)/(2))*theta))/(nu +(1)/(2)) |
LegendreQ[\[Nu], - 1/2, Cos[\[Theta]]] == (Divide[Pi,2*Sin[\[Theta]]])^(1/2)*Divide[Cos[(\[Nu]+Divide[1,2])*\[Theta]],\[Nu]+Divide[1,2]] |
Failure | Failure | Error | Failed [25 / 50]
Result: Complex[-0.3996810371463801, 1.2946383468829223]
Test Values: {Rule[θ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[-0.41345894273326, 2.4734286705879205]
Test Values: {Rule[θ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]} ... skip entries to safe data |
14.5.E15 | \assLegendreP[1/2]{\nu}@{\cosh@@{\xi}} = \left(\frac{2}{\pi\sinh@@{\xi}}\right)^{1/2}\cosh@{\left(\nu+\tfrac{1}{2}\right)\xi} |
|
LegendreP(nu, 1/2, cosh(xi)) = ((2)/(Pi*sinh(xi)))^(1/2)* cosh((nu +(1)/(2))*xi) |
LegendreP[\[Nu], 1/2, 3, Cosh[\[Xi]]] == (Divide[2,Pi*Sinh[\[Xi]]])^(1/2)* Cosh[(\[Nu]+Divide[1,2])*\[Xi]] |
Failure | Failure | Failed [100 / 100] Result: -.5866633690+.3419889424*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, xi = 1/2*3^(1/2)+1/2*I} Result: .9326102256+.153785626*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, xi = -1/2+1/2*I*3^(1/2)} ... skip entries to safe data |
Failed [50 / 100]
Result: Complex[1.483322380543576, 0.9219835006286831]
Test Values: {Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ξ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} Result: Complex[1.2433197156086089, -0.16897799632039867]
Test Values: {Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ξ, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]} ... skip entries to safe data |
14.5.E16 | \assLegendreP[-1/2]{\nu}@{\cosh@@{\xi}} = \left(\frac{2}{\pi\sinh@@{\xi}}\right)^{1/2}\frac{\sinh@{\left(\nu+\frac{1}{2}\right)\xi}}{\nu+\frac{1}{2}} |
|
LegendreP(nu, - 1/2, cosh(xi)) = ((2)/(Pi*sinh(xi)))^(1/2)*(sinh((nu +(1)/(2))*xi))/(nu +(1)/(2)) |
LegendreP[\[Nu], - 1/2, 3, Cosh[\[Xi]]] == (Divide[2,Pi*Sinh[\[Xi]]])^(1/2)*Divide[Sinh[(\[Nu]+Divide[1,2])*\[Xi]],\[Nu]+Divide[1,2]] |
Failure | Failure | Failed [100 / 100] Result: .852516959e-1-.5567654394*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, xi = 1/2*3^(1/2)+1/2*I} Result: .2647935712-.6384793854*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, xi = -1/2+1/2*I*3^(1/2)} ... skip entries to safe data |
Failed [55 / 100]
Result: Complex[5.577974291320897*^-4, -1.2771898182050043]
Test Values: {Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ξ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} Result: Complex[0.2481588696482635, 1.0107401090243302]
Test Values: {Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ξ, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]} ... skip entries to safe data |
14.5.E17 | \assLegendreOlverQ[+ 1/2]{\nu}@{\cosh@@{\xi}} = \left(\frac{\pi}{2\sinh@@{\xi}}\right)^{1/2}\frac{\exp@{-\left(\nu+\frac{1}{2}\right)\xi}}{\EulerGamma@{\nu+\frac{3}{2}}} |
exp(-(+ 1/2)*Pi*I)*LegendreQ(nu,+ 1/2,cosh(xi))/GAMMA(nu++ 1/2+1) = ((Pi)/(2*sinh(xi)))^(1/2)*(exp(-(nu +(1)/(2))*xi))/(GAMMA(nu +(3)/(2))) |
Exp[-(+ 1/2) Pi I] LegendreQ[\[Nu], + 1/2, 3, Cosh[\[Xi]]]/Gamma[\[Nu] + + 1/2 + 1] == (Divide[Pi,2*Sinh[\[Xi]]])^(1/2)*Divide[Exp[-(\[Nu]+Divide[1,2])*\[Xi]],Gamma[\[Nu]+Divide[3,2]]] |
Error | Failure | - | Failed [40 / 80]
Result: Complex[2.271329177520301, 3.117315294925537]
Test Values: {Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ξ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} Result: Complex[1.110539983099107, -2.8061475441370582]
Test Values: {Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ξ, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]} ... skip entries to safe data | |
14.5.E17 | \assLegendreOlverQ[- 1/2]{\nu}@{\cosh@@{\xi}} = \left(\frac{\pi}{2\sinh@@{\xi}}\right)^{1/2}\frac{\exp@{-\left(\nu+\frac{1}{2}\right)\xi}}{\EulerGamma@{\nu+\frac{3}{2}}} |
exp(-(- 1/2)*Pi*I)*LegendreQ(nu,- 1/2,cosh(xi))/GAMMA(nu+- 1/2+1) = ((Pi)/(2*sinh(xi)))^(1/2)*(exp(-(nu +(1)/(2))*xi))/(GAMMA(nu +(3)/(2))) |
Exp[-(- 1/2) Pi I] LegendreQ[\[Nu], - 1/2, 3, Cosh[\[Xi]]]/Gamma[\[Nu] + - 1/2 + 1] == (Divide[Pi,2*Sinh[\[Xi]]])^(1/2)*Divide[Exp[-(\[Nu]+Divide[1,2])*\[Xi]],Gamma[\[Nu]+Divide[3,2]]] |
Error | Failure | - | Failed [45 / 80]
Result: Complex[2.271329177520301, 3.1173152949255365]
Test Values: {Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ξ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} Result: Complex[1.1105399830991072, -2.806147544137058]
Test Values: {Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ξ, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]} ... skip entries to safe data | |
14.5.E18 | \FerrersP[-\nu]{\nu}@{\cos@@{\theta}} = \frac{(\sin@@{\theta})^{\nu}}{2^{\nu}\EulerGamma@{\nu+1}} |
LegendreP(nu, - nu, cos(theta)) = ((sin(theta))^(nu))/((2)^(nu)* GAMMA(nu + 1)) |
LegendreP[\[Nu], - \[Nu], Cos[\[Theta]]] == Divide[(Sin[\[Theta]])^\[Nu],(2)^\[Nu]* Gamma[\[Nu]+ 1]] |
Failure | Failure | Failed [35 / 80] Result: .2949209281-1.238111915*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, theta = -1/2+1/2*I*3^(1/2)} Result: 2.775912070+.3102767417*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, theta = -1/2*3^(1/2)-1/2*I} ... skip entries to safe data |
Failed [35 / 80]
Result: Complex[0.29492092804949727, -1.2381119148256148]
Test Values: {Rule[θ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[2.772257638440087, 3.7251537153578904]
Test Values: {Rule[θ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data | |
14.5.E19 | \assLegendreP[-\nu]{\nu}@{\cosh@@{\xi}} = \frac{(\sinh@@{\xi})^{\nu}}{2^{\nu}\EulerGamma@{\nu+1}} |
LegendreP(nu, - nu, cosh(xi)) = ((sinh(xi))^(nu))/((2)^(nu)* GAMMA(nu + 1)) |
LegendreP[\[Nu], - \[Nu], 3, Cosh[\[Xi]]] == Divide[(Sinh[\[Xi]])^\[Nu],(2)^\[Nu]* Gamma[\[Nu]+ 1]] |
Failure | Failure | Failed [35 / 80] Result: -.1260431913-1.267273114*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, xi = -1/2+1/2*I*3^(1/2)} Result: 2.520491622+1.199838208*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, xi = -1/2*3^(1/2)-1/2*I} ... skip entries to safe data |
Failed [35 / 80]
Result: Complex[-0.12604319089926652, -1.2672731138072273]
Test Values: {Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ξ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} Result: Complex[2.5204916224127887, 1.1998382094597244]
Test Values: {Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ξ, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]} ... skip entries to safe data | |
14.5.E20 | \FerrersP[]{\frac{1}{2}}@{\cos@@{\theta}} = \frac{2}{\pi}\left(2\compellintEk@{\sin@{\tfrac{1}{2}\theta}}-\compellintKk@{\sin@{\tfrac{1}{2}\theta}}\right) |
|
LegendreP((1)/(2), cos(theta)) = (2)/(Pi)*(2*EllipticE(sin((1)/(2)*theta))- EllipticK(sin((1)/(2)*theta))) |
LegendreP[Divide[1,2], Cos[\[Theta]]] == Divide[2,Pi]*(2*EllipticE[(Sin[Divide[1,2]*\[Theta]])^2]- EllipticK[(Sin[Divide[1,2]*\[Theta]])^2]) |
Failure | Failure | Successful [Tested: 10] | Successful [Tested: 10] |
14.5.E21 | \FerrersP[]{-\frac{1}{2}}@{\cos@@{\theta}} = \frac{2}{\pi}\compellintKk@{\sin@{\tfrac{1}{2}\theta}} |
|
LegendreP(-(1)/(2), cos(theta)) = (2)/(Pi)*EllipticK(sin((1)/(2)*theta)) |
LegendreP[-Divide[1,2], Cos[\[Theta]]] == Divide[2,Pi]*EllipticK[(Sin[Divide[1,2]*\[Theta]])^2] |
Failure | Successful | Successful [Tested: 10] | Successful [Tested: 10] |
14.5.E22 | \FerrersQ[]{\frac{1}{2}}@{\cos@@{\theta}} = \compellintKk@{\cos@{\tfrac{1}{2}\theta}}-2\compellintEk@{\cos@{\tfrac{1}{2}\theta}} |
|
LegendreQ((1)/(2), cos(theta)) = EllipticK(cos((1)/(2)*theta))- 2*EllipticE(cos((1)/(2)*theta)) |
LegendreQ[Divide[1,2], Cos[\[Theta]]] == EllipticK[(Cos[Divide[1,2]*\[Theta]])^2]- 2*EllipticE[(Cos[Divide[1,2]*\[Theta]])^2] |
Failure | Failure | Successful [Tested: 10] | Successful [Tested: 10] |
14.5.E23 | \FerrersQ[]{-\frac{1}{2}}@{\cos@@{\theta}} = \compellintKk@{\cos@{\tfrac{1}{2}\theta}} |
|
LegendreQ(-(1)/(2), cos(theta)) = EllipticK(cos((1)/(2)*theta)) |
LegendreQ[-Divide[1,2], Cos[\[Theta]]] == EllipticK[(Cos[Divide[1,2]*\[Theta]])^2] |
Failure | Failure | Successful [Tested: 10] | Successful [Tested: 10] |
14.5.E24 | \assLegendreP[]{\frac{1}{2}}@{\cosh@@{\xi}} = \frac{2}{\pi}e^{\xi/2}\compellintEk@{\left(1-e^{-2\xi}\right)^{1/2}} |
|
LegendreP((1)/(2), cosh(xi)) = (2)/(Pi)*exp(xi/2)*EllipticE((1 - exp(- 2*xi))^(1/2)) |
LegendreP[Divide[1,2], 0, 3, Cosh[\[Xi]]] == Divide[2,Pi]*Exp[\[Xi]/2]*EllipticE[((1 - Exp[- 2*\[Xi]])^(1/2))^2] |
Failure | Failure | Successful [Tested: 10] | Successful [Tested: 10] |
14.5.E25 | \assLegendreP[]{-\frac{1}{2}}@{\cosh@@{\xi}} = \frac{2}{\pi\cosh@{\frac{1}{2}\xi}}\compellintKk@{\tanh@{\tfrac{1}{2}\xi}} |
|
LegendreP(-(1)/(2), cosh(xi)) = (2)/(Pi*cosh((1)/(2)*xi))*EllipticK(tanh((1)/(2)*xi)) |
LegendreP[-Divide[1,2], 0, 3, Cosh[\[Xi]]] == Divide[2,Pi*Cosh[Divide[1,2]*\[Xi]]]*EllipticK[(Tanh[Divide[1,2]*\[Xi]])^2] |
Failure | Failure | Successful [Tested: 10] | Successful [Tested: 10] |
14.5.E26 | \assLegendreOlverQ[]{\frac{1}{2}}@{\cosh@@{\xi}} = 2\pi^{-1/2}\cosh@@{\xi}\sech@{\tfrac{1}{2}\xi}\compellintKk@{\sech@{\tfrac{1}{2}\xi}}-4\pi^{-1/2}\cosh@{\tfrac{1}{2}\xi}\compellintEk@{\sech@{\tfrac{1}{2}\xi}} |
|
LegendreQ((1)/(2),cosh(xi))/GAMMA((1)/(2)+1) = 2*(Pi)^(- 1/2)* cosh(xi)*sech((1)/(2)*xi)*EllipticK(sech((1)/(2)*xi))- 4*(Pi)^(- 1/2)* cosh((1)/(2)*xi)*EllipticE(sech((1)/(2)*xi)) |
Exp[-(Divide[1,2]) Pi I] LegendreQ[Divide[1,2], 2, 3, Cosh[\[Xi]]]/Gamma[Divide[1,2] + 3] == 2*(Pi)^(- 1/2)* Cosh[\[Xi]]*Sech[Divide[1,2]*\[Xi]]*EllipticK[(Sech[Divide[1,2]*\[Xi]])^2]- 4*(Pi)^(- 1/2)* Cosh[Divide[1,2]*\[Xi]]*EllipticE[(Sech[Divide[1,2]*\[Xi]])^2] |
Failure | Failure | Successful [Tested: 10] | Failed [10 / 10]
Result: Complex[-0.8843996963296057, 0.10723567454157107]
Test Values: {Rule[ξ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[0.4538488510851968, -0.4630204881028235]
Test Values: {Rule[ξ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |
14.5.E27 | \assLegendreOlverQ[]{-\frac{1}{2}}@{\cosh@@{\xi}} = 2\pi^{-1/2}e^{-\xi/2}\compellintKk@{e^{-\xi}} |
|
LegendreQ(-(1)/(2),cosh(xi))/GAMMA(-(1)/(2)+1) = 2*(Pi)^(- 1/2)* exp(- xi/2)*EllipticK(exp(- xi)) |
Exp[-(-Divide[1,2]) Pi I] LegendreQ[-Divide[1,2], 2, 3, Cosh[\[Xi]]]/Gamma[-Divide[1,2] + 3] == 2*(Pi)^(- 1/2)* Exp[- \[Xi]/2]*EllipticK[(Exp[- \[Xi]])^2] |
Failure | Failure | Failed [5 / 10] Result: -.101404509+1.824239856*I
Test Values: {xi = -1/2+1/2*I*3^(1/2)} Result: -.90465021e-1-1.714290815*I
Test Values: {xi = -1/2*3^(1/2)-1/2*I} ... skip entries to safe data |
Failed [10 / 10]
Result: Complex[0.16749403535362406, 1.47562407248214]
Test Values: {Rule[ξ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[-2.5106529782887232, 0.796583020821415]
Test Values: {Rule[ξ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |
14.5.E28 | \FerrersP[]{2}@{x} = \assLegendreP[]{2}@{x} |
|
LegendreP(2, x) = LegendreP(2, x) |
LegendreP[2, x] == LegendreP[2, 0, 3, x] |
Successful | Successful | - | Successful [Tested: 3] |
14.5.E28 | \assLegendreP[]{2}@{x} = \frac{3x^{2}-1}{2} |
|
LegendreP(2, x) = (3*(x)^(2)- 1)/(2) |
LegendreP[2, 0, 3, x] == Divide[3*(x)^(2)- 1,2] |
Successful | Successful | - | Successful [Tested: 3] |
14.5.E29 | \FerrersQ[]{2}@{x} = \frac{3x^{2}-1}{4}\ln@{\frac{1+x}{1-x}}-\frac{3}{2}x |
|
LegendreQ(2, x) = (3*(x)^(2)- 1)/(4)*ln((1 + x)/(1 - x))-(3)/(2)*x |
LegendreQ[2, x] == Divide[3*(x)^(2)- 1,4]*Log[Divide[1 + x,1 - x]]-Divide[3,2]*x |
Failure | Failure | Failed [2 / 3] Result: .1e-8-9.032078880*I
Test Values: {x = 3/2} Result: -.1e-8-17.27875960*I
Test Values: {x = 2} |
Failed [2 / 3]
Result: Complex[0.0, -9.032078879070655]
Test Values: {Rule[x, 1.5]} Result: Complex[0.0, -17.27875959474386]
Test Values: {Rule[x, 2]} |
14.5.E30 | \assLegendreOlverQ[]{2}@{x} = \frac{3x^{2}-1}{8}\ln@{\frac{x+1}{x-1}}-\frac{3}{4}x |
|
LegendreQ(2,x)/GAMMA(2+1) = (3*(x)^(2)- 1)/(8)*ln((x + 1)/(x - 1))-(3)/(4)*x |
Exp[-(2) Pi I] LegendreQ[2, 2, 3, x]/Gamma[2 + 3] == Divide[3*(x)^(2)- 1,8]*Log[Divide[x + 1,x - 1]]-Divide[3,4]*x |
Failure | Failure | Failed [1 / 3] Result: 0.+.1963495409*I
Test Values: {x = 1/2} |
Failed [2 / 3]
Result: Complex[0.006453837346904523, -9.365446450684121*^-18]
Test Values: {Rule[x, 1.5]} Result: Complex[0.23977862743400533, 0.2454369260617026]
Test Values: {Rule[x, 0.5]} |
14.6.E1 | \FerrersP[m]{\nu}@{x} = (-1)^{m}\left(1-x^{2}\right)^{m/2}\deriv[m]{\FerrersP[]{\nu}@{x}}{x} |
LegendreP(nu, m, x) = (- 1)^(m)*(1 - (x)^(2))^(m/2)* diff(LegendreP(nu, x), [x$(m)]) |
LegendreP[\[Nu], m, x] == (- 1)^(m)*(1 - (x)^(2))^(m/2)* D[LegendreP[\[Nu], x], {x, m}] |
Failure | Failure | Failed [3 / 90] Result: Float(undefined)+Float(undefined)*I
Test Values: {nu = -2, x = 3/2, m = 1} Result: Float(undefined)+Float(undefined)*I
Test Values: {nu = -2, x = 1/2, m = 1} ... skip entries to safe data |
Successful [Tested: 90] | |
14.6.E2 | \FerrersQ[m]{\nu}@{x} = (-1)^{m}\left(1-x^{2}\right)^{m/2}\deriv[m]{\FerrersQ[]{\nu}@{x}}{x} |
LegendreQ(nu, m, x) = (- 1)^(m)*(1 - (x)^(2))^(m/2)* diff(LegendreQ(nu, x), [x$(m)]) |
LegendreQ[\[Nu], m, x] == (- 1)^(m)*(1 - (x)^(2))^(m/2)* D[LegendreQ[\[Nu], x], {x, m}] |
Failure | Failure | Successful [Tested: 21] | Successful [Tested: 21] | |
14.6.E3 | \assLegendreP[m]{\nu}@{x} = \left(x^{2}-1\right)^{m/2}\deriv[m]{\assLegendreP[]{\nu}@{x}}{x} |
|
LegendreP(nu, m, x) = ((x)^(2)- 1)^(m/2)* diff(LegendreP(nu, x), [x$(m)]) |
LegendreP[\[Nu], m, 3, x] == ((x)^(2)- 1)^(m/2)* D[LegendreP[\[Nu], 0, 3, x], {x, m}] |
Failure | Failure | Failed [3 / 90] Result: Float(undefined)+Float(undefined)*I
Test Values: {nu = -2, x = 3/2, m = 1} Result: Float(undefined)+Float(undefined)*I
Test Values: {nu = -2, x = 1/2, m = 1} ... skip entries to safe data |
Successful [Tested: 90] |
14.6.E4 | \assLegendreQ[m]{\nu}@{x} = \left(x^{2}-1\right)^{m/2}\deriv[m]{\assLegendreQ[]{\nu}@{x}}{x} |
|
LegendreQ(nu, m, x) = ((x)^(2)- 1)^(m/2)* diff(LegendreQ(nu, x), [x$(m)]) |
LegendreQ[\[Nu], m, 3, x] == ((x)^(2)- 1)^(m/2)* D[LegendreQ[\[Nu], 0, 3, x], {x, m}] |
Failure | Failure | Error | Failed [75 / 90]
Result: Plus[Complex[-0.4598393885300628, 0.18181080125096066], Times[-1.118033988749895, DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[Plus[, Times[-1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Plus[1, , Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], []], Times[2, Power[Plus[1, ], 2], 1.5, [Plus[1, ]]], Times[Plus[1, ], Plus[2, ], Plus[-1, 1.5], Plus[1, 1.5], [Plus[2, ]]]], 0], Equal[[0], LegendreQ[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 0, 3, 1.5]], Equal[[1], Times[-1, Power[Plus[-1, Power[1.5, 2]], -1], Plus[1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Plus[Times[1.5, LegendreQ[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 0, 3, 1.5]], Times[-1, LegendreQ[Plus[1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], 0, 3, 1.5]]]]]}]][1.0]]], {Rule[m, 1], Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Plus[Complex[1.6909557968522604, -0.413901027514361], Times[-2.5, DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[Plus[, Times[-1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Plus[1, , Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], []], Times[2, Power[Plus[1, ], 2], 1.5, [Plus[1, ]]], Times[Plus[1, ], Plus[2, ], Plus[-1, 1.5], Plus[1, 1.5], [Plus[2, ]]]], 0], Equal[[0], LegendreQ[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 0, 3, 1.5]], Equal[[1], Times[-1, Power[Plus[-1, Power[1.5, 2]], -1], Plus[1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Plus[Times[1.5, LegendreQ[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 0, 3, 1.5]], Times[-1, LegendreQ[Plus[1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], 0, 3, 1.5]]]]]}]][2.0]]], {Rule[m, 2], Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} ... skip entries to safe data |
14.6.E5 | \Pochhammersym{\nu+1}{m}\assLegendreOlverQ[m]{\nu}@{x} = (-1)^{m}\left(x^{2}-1\right)^{m/2}\deriv[m]{\assLegendreOlverQ[]{\nu}@{x}}{x} |
|
pochhammer(nu + 1, m)*exp(-(m)*Pi*I)*LegendreQ(nu,m,x)/GAMMA(nu+m+1) = (- 1)^(m)*((x)^(2)- 1)^(m/2)* diff(LegendreQ(nu,x)/GAMMA(nu+1), [x$(m)]) |
Pochhammer[\[Nu]+ 1, m]*Exp[-(m) Pi I] LegendreQ[\[Nu], m, 3, x]/Gamma[\[Nu] + m + 1] == (- 1)^(m)*((x)^(2)- 1)^(m/2)* D[Exp[-(\[Nu]) Pi I] LegendreQ[\[Nu], 2, 3, x]/Gamma[\[Nu] + 3], {x, m}] |
Failure | Failure | Error | Failed [90 / 90]
Result: Plus[Complex[0.482758812955306, -0.29762130115013324], Times[Complex[-1.0778621920495528, 0.20681719187113978], DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[Plus[, Times[-1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Plus[1, , Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], []], Times[2, 1.5, Plus[3, Times[5, ], Times[2, Power[, 2]], Times[-1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Times[-1, Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2]]], [Plus[1, ]]], Times[Plus[-12, Times[-8, ], Times[-2, Power[, 2]], Times[24, Power[1.5, 2]], Times[24, , Power[1.5, 2]], Times[6, Power[, 2], Power[1.5, 2]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]], Times[-1, Power[1.5, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2], Times[-1, Power[1.5, 2], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2]]], [Plus[2, ]]], Times[2, P<syntaxhighlight lang=mathematica>Result: Plus[Complex[1.8263637314445087, -0.806860371328253], Times[Complex[2.4101731317997332, -0.4624572999394857], DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[Plus[, Times[-1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Plus[1, , Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], []], Times[2, 1.5, Plus[3, Times[5, ], Times[2, Power[, 2]], Times[-1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Times[-1, Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2]]], [Plus[1, ]]], Times[Plus[-12, Times[-8, ], Times[-2, Power[, 2]], Times[24, Power[1.5, 2]], Times[24, , Power[1.5, 2]], Times[6, Power[, 2], Power[1.5, 2]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]], Times[-1, Power[1.5, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2], Times[-1, Power[1.5, 2], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2]]], [Plus[2, ]]], Times[2, Plus[3, ], Plus[5, Times[2, ]], Plus[-1, 1.5], 1.5, Plus[1, 1.5], [Plus[3, ]]], Times[Plus[3, ], Plus[4, ], Power[Plus[-1, 1.5], 2], Power[Plus[1, 1.5], 2], [Plus[4, ]]]], 0], Equal[[0], LegendreQ[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2, 3, 1.5]], Equal[[1], Times[Power[Plus[-1, Power[1.5, 2]], -1], Plus[Times[-1, 1.5, Plus[1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], LegendreQ[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2, 3, 1.5]], Times[Plus[-1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], LegendreQ[Plus[1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], 2, 3, 1.5]]]]], Equal[[2], Times[Rational[1, 2], Power[Plus[-1, Power[1.5, 2]], -2], Plus[Times[4, LegendreQ[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2, 3, 1.5]], Times[2, Power[1.5, 2], LegendreQ[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2, 3, 1.5]], Times[-1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]], LegendreQ[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2, 3, 1.5]], Times[3, Power[1.5, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]], LegendreQ[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2, 3, 1.5]], Times[-1, Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2], LegendreQ[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2, 3, 1.5]], Times[Power[1.5, 2], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2], LegendreQ[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2, 3, 1.5]], Times[2, 1.5, LegendreQ[Plus[1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], 2, 3, 1.5]], Times[-2, 1.5, Power[E, Times[Complex[0, Rational[1, 6]], Pi]], LegendreQ[Plus[1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], 2, 3, 1.5]]]]], Equal[[3], Times[Rational[-1, 6], Power[Plus[-1, Power[1.5, 2]], -3], Plus[Times[30, 1.5, LegendreQ[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2, 3, 1.5]], Times[6, Power[1.5, 3], LegendreQ[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2, 3, 1.5]], Times[1.5, Power[E, Times[Complex[0, Rational[1, 6]], Pi]], LegendreQ[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2, 3, 1.5]], Times[11, Power[1.5, 3], Power[E, Times[Complex[0, Rational[1, 6]], Pi]], LegendreQ[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2, 3, 1.5]], Times[-6, 1.5, Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2], LegendreQ[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2, 3, 1.5]], Times[6, Power[1.5, 3], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2], LegendreQ[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2, 3, 1.5]], Times[-1, 1.5, Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 3], LegendreQ[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2, 3, 1.5]], Times[Power[1.5, 3], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 3], LegendreQ[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2, 3, 1.5]], Times[6, LegendreQ[Plus[1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], 2, 3, 1.5]], Times[6, Power[1.5, 2], LegendreQ[Plus[1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], 2, 3, 1.5]], Times[-7, Power[E, Times[Complex[0, Rational[1, 6]], Pi]], LegendreQ[Plus[1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], 2, 3, 1.5]], Times[-5, Power[1.5, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]], LegendreQ[Plus[1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], 2, 3, 1.5]], Times[Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 3], LegendreQ[Plus[1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], 2, 3, 1.5]], Times[-1, Power[1.5, 2], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 3], LegendreQ[Plus[1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], 2, 3, 1.5]]]]]}]][2.0]]], {Rule[m, 2], Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} ... skip entries to safe data |
14.7.E1 | \FerrersP[0]{n}@{x} = \FerrersP[]{n}@{x} |
LegendreP(n, 0, x) = LegendreP(n, x) |
LegendreP[n, 0, x] == LegendreP[n, x] |
Successful | Successful | - | Successful [Tested: 3] | |
14.7.E1 | \FerrersP[]{n}@{x} = \assLegendreP[0]{n}@{x} |
LegendreP(n, x) = LegendreP(n, 0, x) |
LegendreP[n, x] == LegendreP[n, 0, 3, x] |
Successful | Successful | - | Successful [Tested: 3] | |
14.7.E1 | \assLegendreP[0]{n}@{x} = \LegendrepolyP{n}@{x} |
LegendreP(n, 0, x) = LegendreP(n, x) |
LegendreP[n, 0, 3, x] == LegendreP[n, x] |
Successful | Successful | - | Successful [Tested: 3] | |
14.7.E2 | \FerrersQ[0]{n}@{x} = \FerrersQ[]{n}@{x} |
LegendreQ(n, 0, x) = LegendreQ(n, x) |
LegendreQ[n, 0, x] == LegendreQ[n, x] |
Successful | Successful | Skip - symbolical successful subtest | Successful [Tested: 9] | |
14.7.E2 | \FerrersQ[]{n}@{x} = \frac{1}{2}\LegendrepolyP{n}@{x}\ln@{\frac{1+x}{1-x}}-W_{n-1}(x) |
LegendreQ(n, x) = (1)/(2)*LegendreP(n, x)*ln((1 + x)/(1 - x))- W[n - 1](x) |
LegendreQ[n, x] == Divide[1,2]*LegendreP[n, x]*Log[Divide[1 + x,1 - x]]- Subscript[W, n - 1][x] |
Failure | Failure | Failed [88 / 90] Result: .2990381063-3.962388980*I
Test Values: {x = 3/2, W[n-1] = 1/2*3^(1/2)+1/2*I, n = 1} Result: -.950961893-8.282078880*I
Test Values: {x = 3/2, W[n-1] = 1/2*3^(1/2)+1/2*I, n = 2} ... skip entries to safe data |
Failed [88 / 90]
Result: Complex[0.299038105676658, -3.9623889803846897]
Test Values: {Rule[n, 1], Rule[x, 1.5], Rule[Subscript[W, Plus[-1, n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[-0.9509618943233424, -8.282078879070655]
Test Values: {Rule[n, 2], Rule[x, 1.5], Rule[Subscript[W, Plus[-1, n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} ... skip entries to safe data | |
14.7.E3 | W_{n-1}(x) = \sum_{s=0}^{n-1}\frac{(n+s)!(\digamma@{n+1}-\digamma@{s+1})}{2^{s}(n-s)!(s!)^{2}}{(x-1)^{s}} |
|
W[n - 1](x) = sum((factorial(n + s)*(Psi(n + 1)- Psi(s + 1)))/((2)^(s)*factorial(n - s)*(factorial(s))^(2))*(x - 1)^(s), s = 0..n - 1) |
Subscript[W, n - 1][x] == Sum[Divide[(n + s)!*(PolyGamma[n + 1]- PolyGamma[s + 1]),(2)^(s)*(n - s)!*((s)!)^(2)]*(x - 1)^(s), {s, 0, n - 1}, GenerateConditions->None] |
Failure | Failure | Failed [85 / 90] Result: .2990381061+.7500000000*I
Test Values: {x = 3/2, W[n-1] = 1/2*3^(1/2)+1/2*I, n = 1} Result: -.950961893+.7500000000*I
Test Values: {x = 3/2, W[n-1] = 1/2*3^(1/2)+1/2*I, n = 2} ... skip entries to safe data |
Failed [88 / 90]
Result: Plus[Complex[1.299038105676658, 0.7499999999999999], Times[0.5, Plus[-0.845568670196934, Times[2.0, DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[-1, Plus[-1, Times[-1, ], 1], Plus[Times[-1, ], 1], Plus[1, , 1], Plus[2, , 1], Power[Plus[-1, 1.5], 2], []], Times[Plus[-1, Times[-1, ], 1], Plus[2, , 1], Plus[-1, 1.5], Plus[6, Times[11, ], Times[5, Power[, 2]], Times[-1, 1], Times[-1, Power[1, 2]], Times[-1, , 1.5], Times[-1, Power[, 2], 1.5], Times[1, 1.5], Times[Power[1, 2], 1.5]], [Plus[1, ]]], Times[2, Plus[1, ], Plus[-22, Times[-37, ], Times[-21, Power[, 2]], Times[-4, Power[, 3]], Times[3, 1], Times[2, , 1], Times[3, Power[1, 2]], Times[2, , Power[1, 2]], Times[6, 1.5], Times[13, , 1.5], Times[9, Power[, 2], 1.5], Times[2, Power[, 3], 1.5], Times[-3, 1, 1.5], Times[-2, , 1, 1.5], Times[-3, Power[1, 2], 1.5], Times[-2, , Power[1, 2], 1.5]], [Plus[2, ]]], Times[4, Plus[1, ], Power[Plus[2, ], 3], [Pl<syntaxhighlight lang=mathematica>Result: Plus[Complex[1.299038105676658, 0.7499999999999999], Times[0.0625, Plus[-36.91137340393869, Times[16.0, DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[-1, Plus[-1, Times[-1, ], 2], Plus[Times[-1, ], 2], Plus[1, , 2], Plus[2, , 2], Power[Plus[-1, 1.5], 2], []], Times[Plus[-1, Times[-1, ], 2], Plus[2, , 2], Plus[-1, 1.5], Plus[6, Times[11, ], Times[5, Power[, 2]], Times[-1, 2], Times[-1, Power[2, 2]], Times[-1, , 1.5], Times[-1, Power[, 2], 1.5], Times[2, 1.5], Times[Power[2, 2], 1.5]], [Plus[1, ]]], Times[2, Plus[1, ], Plus[-22, Times[-37, ], Times[-21, Power[, 2]], Times[-4, Power[, 3]], Times[3, 2], Times[2, , 2], Times[3, Power[2, 2]], Times[2, , Power[2, 2]], Times[6, 1.5], Times[13, , 1.5], Times[9, Power[, 2], 1.5], Times[2, Power[, 3], 1.5], Times[-3, 2, 1.5], Times[-2, , 2, 1.5], Times[-3, Power[2, 2], 1.5], Times[-2, , Power[2, 2], 1.5]], [Plus[2, ]]], Times[4, Plus[1, ], Power[Plus[2, ], 3], [Plus[3, ]]]], 0], Equal[[0], 0], Equal[[1], Times[-1, EulerGamma]], Equal[[2], Plus[Times[-1, EulerGamma], Times[Rational[1, 2], Plus[1, Times[-1, EulerGamma]], 2, Plus[1, 2], Plus[-1, 1.5]]]]}]][2.0]]]]], {Rule[n, 2], Rule[x, 1.5], Rule[Subscript[W, Plus[-1, n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} ... skip entries to safe data |
14.7.E4 | W_{n-1}(x) = \sum_{k=1}^{n}\frac{1}{k}\LegendrepolyP{k-1}@{x}\LegendrepolyP{n-k}@{x} |
|
W[n - 1](x) = sum((1)/(k)*LegendreP(k - 1, x)*LegendreP(n - k, x), k = 1..n) |
Subscript[W, n - 1][x] == Sum[Divide[1,k]*LegendreP[k - 1, x]*LegendreP[n - k, x], {k, 1, n}, GenerateConditions->None] |
Failure | Failure | Failed [85 / 90] Result: .299038106+.7500000000*I
Test Values: {x = 3/2, W[n-1] = 1/2*3^(1/2)+1/2*I, n = 1} Result: -.950961894+.7500000000*I
Test Values: {x = 3/2, W[n-1] = 1/2*3^(1/2)+1/2*I, n = 2} ... skip entries to safe data |
Skipped - Because timed out |
14.7#Ex1 | W_{0}(x) = 1 |
|
W[0](x) = 1 |
Subscript[W, 0][x] == 1 |
Skipped - no semantic math | Skipped - no semantic math | - | - |
14.7#Ex2 | W_{1}(x) = \tfrac{3}{2}x |
|
W[1](x) = (3)/(2)*x |
Subscript[W, 1][x] == Divide[3,2]*x |
Skipped - no semantic math | Skipped - no semantic math | - | - |
14.7#Ex3 | W_{2}(x) = \tfrac{5}{2}x^{2}-\tfrac{2}{3} |
|
W[2](x) = (5)/(2)*(x)^(2)-(2)/(3) |
Subscript[W, 2][x] == Divide[5,2]*(x)^(2)-Divide[2,3] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
14.7.E6 | \assLegendreQ[0]{n}@{x} = \assLegendreQ[]{n}@{x} |
|
LegendreQ(n, 0, x) = LegendreQ(n, x) |
LegendreQ[n, 0, 3, x] == LegendreQ[n, 0, 3, x] |
Successful | Successful | - | Successful [Tested: 9] |
14.7.E6 | \assLegendreQ[]{n}@{x} = n!\assLegendreOlverQ[0]{n}@{x} |
|
LegendreQ(n, x) = factorial(n)*exp(-(0)*Pi*I)*LegendreQ(n,0,x)/GAMMA(n+0+1) |
LegendreQ[n, 0, 3, x] == (n)!*Exp[-(0) Pi I] LegendreQ[n, 0, 3, x]/Gamma[n + 0 + 1] |
Successful | Successful | - | Successful [Tested: 9] |
14.7.E6 | n!\assLegendreOlverQ[0]{n}@{x} = n!\assLegendreOlverQ[]{n}@{x} |
|
factorial(n)*exp(-(0)*Pi*I)*LegendreQ(n,0,x)/GAMMA(n+0+1) = factorial(n)*LegendreQ(n,x)/GAMMA(n+1) |
(n)!*Exp[-(0) Pi I] LegendreQ[n, 0, 3, x]/Gamma[n + 0 + 1] == (n)!*Exp[-(n) Pi I] LegendreQ[n, 2, 3, x]/Gamma[n + 3] |
Successful | Failure | - | Failed [9 / 9]
Result: Complex[0.47374510099224165, -6.531449595452549*^-17]
Test Values: {Rule[n, 1], Rule[x, 1.5]} Result: Complex[-0.012907674693808963, 1.8730892901368242*^-17]
Test Values: {Rule[n, 2], Rule[x, 1.5]} ... skip entries to safe data |
14.7.E7 | \assLegendreQ[]{n}@{x} = \frac{1}{2}\LegendrepolyP{n}@{x}\ln@{\frac{x+1}{x-1}}-W_{n-1}(x) |
|
LegendreQ(n, x) = (1)/(2)*LegendreP(n, x)*ln((x + 1)/(x - 1))- W[n - 1](x) |
LegendreQ[n, 0, 3, x] == Divide[1,2]*LegendreP[n, x]*Log[Divide[x + 1,x - 1]]- Subscript[W, n - 1][x] |
Failure | Failure | Failed [30 / 30] Result: -3.659295226+.7500000000*I
Test Values: {x = 3/2, W[n-1] = 1/2*3^(1/2)+1/2*I, n = 3} Result: -5.708333332+1.299038106*I
Test Values: {x = 3/2, W[n-1] = -1/2+1/2*I*3^(1/2), n = 3} ... skip entries to safe data |
Failed [30 / 30]
Result: Complex[-3.659295227656675, 0.7499999999999999]
Test Values: {Rule[n, 3], Rule[x, 1.5], Rule[Subscript[W, Plus[-1, n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[-5.708333333333333, 1.299038105676658]
Test Values: {Rule[n, 3], Rule[x, 1.5], Rule[Subscript[W, Plus[-1, n]], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |
14.7.E8 | \FerrersP[m]{n}@{x} = (-1)^{m}\left(1-x^{2}\right)^{m/2}\deriv[m]{}{x}\FerrersP[]{n}@{x} |
LegendreP(n, m, x) = (- 1)^(m)*(1 - (x)^(2))^(m/2)* diff(LegendreP(n, x), [x$(m)]) |
LegendreP[n, m, x] == (- 1)^(m)*(1 - (x)^(2))^(m/2)* D[LegendreP[n, x], {x, m}] |
Failure | Failure | Successful [Tested: 27] | Successful [Tested: 27] | |
14.7.E9 | \FerrersQ[m]{n}@{x} = (-1)^{m}\left(1-x^{2}\right)^{m/2}\deriv[m]{}{x}\FerrersQ[]{n}@{x} |
LegendreQ(n, m, x) = (- 1)^(m)*(1 - (x)^(2))^(m/2)* diff(LegendreQ(n, x), [x$(m)]) |
LegendreQ[n, m, x] == (- 1)^(m)*(1 - (x)^(2))^(m/2)* D[LegendreQ[n, x], {x, m}] |
Failure | Failure | Successful [Tested: 27] | Successful [Tested: 27] | |
14.7.E10 | \FerrersP[m]{n}@{x} = (-1)^{m+n}\frac{\left(1-x^{2}\right)^{m/2}}{2^{n}n!}\deriv[m+n]{}{x}\left(1-x^{2}\right)^{n} |
LegendreP(n, m, x) = (- 1)^(m + n)*((1 - (x)^(2))^(m/2))/((2)^(n)* factorial(n))*diff((1 - (x)^(2))^(n), [x$(m + n)]) |
LegendreP[n, m, x] == (- 1)^(m + n)*Divide[(1 - (x)^(2))^(m/2),(2)^(n)* (n)!]*D[(1 - (x)^(2))^(n), {x, m + n}] |
Failure | Failure | Failed [18 / 27] Result: Float(undefined)+Float(undefined)*I
Test Values: {x = 3/2, m = 1, n = 1} Result: Float(undefined)+Float(undefined)*I
Test Values: {x = 3/2, m = 1, n = 2} ... skip entries to safe data |
Failed [27 / 27]
Result: Plus[Complex[0.0, -1.118033988749895], Times[Complex[0.0, -0.5590169943749475], D[-1.25
Test Values: {1.5, 2.0}]]], {Rule[m, 1], Rule[n, 1], Rule[x, 1.5]} Result: Plus[Complex[0.0, -5.031152949374526], Times[Complex[0.0, 0.13975424859373686], D[1.5625
Test Values: {1.5, 3.0}]]], {Rule[m, 1], Rule[n, 2], Rule[x, 1.5]} ... skip entries to safe data | |
14.7.E11 | \assLegendreP[m]{n}@{x} = \left(x^{2}-1\right)^{m/2}\deriv[m]{}{x}\LegendrepolyP{n}@{x} |
|
LegendreP(n, m, x) = ((x)^(2)- 1)^(m/2)* diff(LegendreP(n, x), [x$(m)]) |
LegendreP[n, m, 3, x] == ((x)^(2)- 1)^(m/2)* D[LegendreP[n, x], {x, m}] |
Failure | Failure | Successful [Tested: 27] | Successful [Tested: 27] |
14.7.E12 | \assLegendreQ[m]{n}@{x} = \left(x^{2}-1\right)^{m/2}\deriv[m]{}{x}\assLegendreQ[]{n}@{x} |
|
LegendreQ(n, m, x) = ((x)^(2)- 1)^(m/2)* diff(LegendreQ(n, x), [x$(m)]) |
LegendreQ[n, m, 3, x] == ((x)^(2)- 1)^(m/2)* D[LegendreQ[n, 0, 3, x], {x, m}] |
Failure | Failure | Successful [Tested: 27] | Failed [18 / 27]
Result: Plus[Complex[-0.4419376420578732, 5.412175187689032*^-17], Times[-1.118033988749895, DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[-1, Plus[Times[-1, ], 1], Plus[1, , 1], []], Times[2, Power[Plus[1, ], 2], 1.5, [Plus[1, ]]], Times[Plus[1, ], Plus[2, ], Plus[-1, 1.5], Plus[1, 1.5], [Plus[2, ]]]], 0], Equal[[0], LegendreQ[1, 0, 3, 1.5]], Equal[[1], Times[-1, Plus[1, 1], Power[Plus[-1, Power[1.5, 2]], -1], Plus[Times[1.5, LegendreQ[1, 0, 3, 1.5]], Times[-1, LegendreQ[Plus[1, 1], 0, 3, 1.5]]]]]}]][1.0]]], {Rule[m, 1], Rule[n, 1], Rule[x, 1.5]} Result: Plus[Complex[-0.1998650072605977, 2.447640414032535*^-17], Times[-1.118033988749895, DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[-1, Plus[Times[-1, ], 2], Plus[1, , 2], []], Times[2, Power[Plus[1, ], 2], 1.5, [Plus[1, ]]], Times[Plus[1, ], Plus[2, ], Plus[-1, 1.5], Plus[1, 1.5], [Plus[2, ]]]], 0], Equal[[0], LegendreQ[2, 0, 3, 1.5]], Equal[[1], Times[-1, Plus[1, 2], Power[Plus[-1, Power[1.5, 2]], -1], Plus[Times[1.5, LegendreQ[2, 0, 3, 1.5]], Times[-1, LegendreQ[Plus[1, 2], 0, 3, 1.5]]]]]}]][1.0]]], {Rule[m, 1], Rule[n, 2], Rule[x, 1.5]} ... skip entries to safe data |
14.7.E13 | \LegendrepolyP{n}@{x} = \frac{1}{2^{n}n!}\deriv[n]{}{x}\left(x^{2}-1\right)^{n} |
|
LegendreP(n, x) = (1)/((2)^(n)* factorial(n))*diff(((x)^(2)- 1)^(n), [x$(n)]) |
LegendreP[n, x] == Divide[1,(2)^(n)* (n)!]*D[((x)^(2)- 1)^(n), {x, n}] |
Failure | Failure | Error | Failed [6 / 9]
Result: Plus[1.5, Times[-0.5, DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[Plus[, Times[-2, 1]], []], Times[-2, Plus[-1, Times[-1, ], 1], 1.5, [Plus[1, ]]], Times[Plus[2, ], Plus[-1, 1.5], Plus[1, 1.5], [Plus[2, ]]]], 0], Equal[[0], Power[Plus[-1, Power[1.5, 2]], 1]], Equal[[1], Times[2, 1, 1.5, Power[Plus[-1, Power[1.5, 2]], Plus[-1, 1]]]]}]][1.0]]], {Rule[n, 1], Rule[x, 1.5]} Result: Plus[2.875, Times[-0.25, DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[Plus[, Times[-2, 2]], []], Times[-2, Plus[-1, Times[-1, ], 2], 1.5, [Plus[1, ]]], Times[Plus[2, ], Plus[-1, 1.5], Plus[1, 1.5], [Plus[2, ]]]], 0], Equal[[0], Power[Plus[-1, Power[1.5, 2]], 2]], Equal[[1], Times[2, 2, 1.5, Power[Plus[-1, Power[1.5, 2]], Plus[-1, 2]]]]}]][2.0]]], {Rule[n, 2], Rule[x, 1.5]} ... skip entries to safe data |
14.7.E14 | \assLegendreP[m]{n}@{x} = \frac{\left(x^{2}-1\right)^{m/2}}{2^{n}n!}\deriv[m+n]{}{x}\left(x^{2}-1\right)^{n} |
|
LegendreP(n, m, x) = (((x)^(2)- 1)^(m/2))/((2)^(n)* factorial(n))*diff(((x)^(2)- 1)^(n), [x$(m + n)]) |
LegendreP[n, m, 3, x] == Divide[((x)^(2)- 1)^(m/2),(2)^(n)* (n)!]*D[((x)^(2)- 1)^(n), {x, m + n}] |
Failure | Failure | Failed [18 / 27] Result: Float(undefined)+Float(undefined)*I
Test Values: {x = 3/2, m = 1, n = 1} Result: Float(undefined)+Float(undefined)*I
Test Values: {x = 3/2, m = 1, n = 2} ... skip entries to safe data |
Failed [27 / 27]
Result: Plus[1.118033988749895, Times[-0.5590169943749475, D[1.25
Test Values: {1.5, 2.0}]]], {Rule[m, 1], Rule[n, 1], Rule[x, 1.5]} Result: Plus[5.031152949374526, Times[-0.13975424859373686, D[1.5625
Test Values: {1.5, 3.0}]]], {Rule[m, 1], Rule[n, 2], Rule[x, 1.5]} ... skip entries to safe data |
14.7.E15 | \assLegendreP[m]{m}@{x} = \frac{(2m)!}{2^{m}m!}\left(x^{2}-1\right)^{m/2} |
|
LegendreP(m, m, x) = (factorial(2*m))/((2)^(m)* factorial(m))*((x)^(2)- 1)^(m/2) |
LegendreP[m, m, 3, x] == Divide[(2*m)!,(2)^(m)* (m)!]*((x)^(2)- 1)^(m/2) |
Failure | Failure | Successful [Tested: 9] | Successful [Tested: 9] |
14.7.E16 | \FerrersP[m]{n}@{x} = \assLegendreP[m]{n}@{x} |
LegendreP(n, m, x) = LegendreP(n, m, x) |
LegendreP[n, m, x] == LegendreP[n, m, 3, x] |
Successful | Failure | Skip - symbolical successful subtest | Successful [Tested: 9] | |
14.7.E16 | \assLegendreP[m]{n}@{x} = 0 |
LegendreP(n, m, x) = 0 |
LegendreP[n, m, 3, x] == 0 |
Failure | Failure | Successful [Tested: 9] | Successful [Tested: 9] | |
14.7.E17 | \FerrersP[m]{n}@{-x} = (-1)^{n-m}\FerrersP[m]{n}@{x} |
LegendreP(n, m, - x) = (- 1)^(n - m)* LegendreP(n, m, x) |
LegendreP[n, m, - x] == (- 1)^(n - m)* LegendreP[n, m, x] |
Failure | Failure | Successful [Tested: 9] | Successful [Tested: 9] | |
14.7.E18 | \FerrersQ[+ m]{n}@{-x} = (-1)^{n-m-1}\FerrersQ[+ m]{n}@{x} |
|
LegendreQ(n, + m, - x) = (- 1)^(n - m - 1)* LegendreQ(n, + m, x) |
LegendreQ[n, + m, - x] == (- 1)^(n - m - 1)* LegendreQ[n, + m, x] |
Failure | Failure | Error | Successful [Tested: 9] |
14.7.E18 | \FerrersQ[- m]{n}@{-x} = (-1)^{n-m-1}\FerrersQ[- m]{n}@{x} |
LegendreQ(n, - m, - x) = (- 1)^(n - m - 1)* LegendreQ(n, - m, x) |
LegendreQ[n, - m, - x] == (- 1)^(n - m - 1)* LegendreQ[n, - m, x] |
Failure | Failure | Error | Failed [3 / 9]
Result: Indeterminate
Test Values: {Rule[m, 2], Rule[n, 1], Rule[x, 0.5]} Result: Indeterminate
Test Values: {Rule[m, 3], Rule[n, 1], Rule[x, 0.5]} ... skip entries to safe data | |
14.7.E19 | \sum_{n=0}^{\infty}\FerrersP[]{n}@{x}h^{n} = \left(1-2xh+h^{2}\right)^{-1/2} |
|
sum(LegendreP(n, x)*(h)^(n), n = 0..infinity) = (1 - 2*x*h + (h)^(2))^(- 1/2) |
Sum[LegendreP[n, x]*(h)^(n), {n, 0, Infinity}, GenerateConditions->None] == (1 - 2*x*h + (h)^(2))^(- 1/2) |
Failure | Successful | Error | Successful [Tested: 30] |
14.7.E20 | \sum_{n=0}^{\infty}\FerrersQ[]{n}@{x}h^{n} = \frac{1}{\left(1-2xh+h^{2}\right)^{1/2}}\*\ln@{\frac{x-h+\left(1-2xh+h^{2}\right)^{1/2}}{\left(1-x^{2}\right)^{1/2}}} |
|
sum(LegendreQ(n, x)*(h)^(n), n = 0..infinity) = (1)/((1 - 2*x*h + (h)^(2))^(1/2))* ln((x - h +(1 - 2*x*h + (h)^(2))^(1/2))/((1 - (x)^(2))^(1/2))) |
Sum[LegendreQ[n, x]*(h)^(n), {n, 0, Infinity}, GenerateConditions->None] == Divide[1,(1 - 2*x*h + (h)^(2))^(1/2)]* Log[Divide[x - h +(1 - 2*x*h + (h)^(2))^(1/2),(1 - (x)^(2))^(1/2)]] |
Failure | Failure | Manual Skip! | Skipped - Because timed out |
14.7.E21 | \sum_{n=0}^{\infty}\FerrersP[]{n}@{x}h^{-n-1} = \left(1-2xh+h^{2}\right)^{-1/2} |
|
sum(LegendreP(n, x)*(h)^(- n - 1), n = 0..infinity) = (1 - 2*x*h + (h)^(2))^(- 1/2) |
Sum[LegendreP[n, x]*(h)^(- n - 1), {n, 0, Infinity}, GenerateConditions->None] == (1 - 2*x*h + (h)^(2))^(- 1/2) |
Failure | Failure | Error | Failed [20 / 30]
Result: Complex[-0.45970084338098294, -1.7156269037800917]
Test Values: {Rule[h, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5]} Result: Complex[-0.3437237693334403, -1.2827945709214845]
Test Values: {Rule[h, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 2]} ... skip entries to safe data |
14.7.E22 | \sum_{n=0}^{\infty}\assLegendreQ[]{n}@{x}h^{n} = \frac{1}{\left(1-2xh+h^{2}\right)^{1/2}}\*\ln@{\frac{x-h+\left(1-2xh+h^{2}\right)^{1/2}}{\left(x^{2}-1\right)^{1/2}}} |
|
sum(LegendreQ(n, x)*(h)^(n), n = 0..infinity) = (1)/((1 - 2*x*h + (h)^(2))^(1/2))* ln((x - h +(1 - 2*x*h + (h)^(2))^(1/2))/(((x)^(2)- 1)^(1/2))) |
Sum[LegendreQ[n, 0, 3, x]*(h)^(n), {n, 0, Infinity}, GenerateConditions->None] == Divide[1,(1 - 2*x*h + (h)^(2))^(1/2)]* Log[Divide[x - h +(1 - 2*x*h + (h)^(2))^(1/2),((x)^(2)- 1)^(1/2)]] |
Failure | Failure | Successful [Tested: 30] | Skipped - Because timed out |
14.9.E1 | \frac{\pi\sin@{\mu\pi}}{2\EulerGamma@{\nu-\mu+1}}\FerrersP[-\mu]{\nu}@{x} = -\frac{1}{\EulerGamma@{\nu+\mu+1}}\FerrersQ[\mu]{\nu}@{x}+\frac{\cos@{\mu\pi}}{\EulerGamma@{\nu-\mu+1}}\FerrersQ[-\mu]{\nu}@{x} |
(Pi*sin(mu*Pi))/(2*GAMMA(nu - mu + 1))*LegendreP(nu, - mu, x) = -(1)/(GAMMA(nu + mu + 1))*LegendreQ(nu, mu, x)+(cos(mu*Pi))/(GAMMA(nu - mu + 1))*LegendreQ(nu, - mu, x) |
Divide[Pi*Sin[\[Mu]*Pi],2*Gamma[\[Nu]- \[Mu]+ 1]]*LegendreP[\[Nu], - \[Mu], x] == -Divide[1,Gamma[\[Nu]+ \[Mu]+ 1]]*LegendreQ[\[Nu], \[Mu], x]+Divide[Cos[\[Mu]*Pi],Gamma[\[Nu]- \[Mu]+ 1]]*LegendreQ[\[Nu], - \[Mu], x] |
Successful | Successful | - | Successful [Tested: 135] | |
14.9.E2 | \frac{2\sin@{\mu\pi}}{\pi\EulerGamma@{\nu-\mu+1}}\FerrersQ[-\mu]{\nu}@{x} = \frac{1}{\EulerGamma@{\nu+\mu+1}}\FerrersP[\mu]{\nu}@{x}-\frac{\cos@{\mu\pi}}{\EulerGamma@{\nu-\mu+1}}\FerrersP[-\mu]{\nu}@{x} |
(2*sin(mu*Pi))/(Pi*GAMMA(nu - mu + 1))*LegendreQ(nu, - mu, x) = (1)/(GAMMA(nu + mu + 1))*LegendreP(nu, mu, x)-(cos(mu*Pi))/(GAMMA(nu - mu + 1))*LegendreP(nu, - mu, x) |
Divide[2*Sin[\[Mu]*Pi],Pi*Gamma[\[Nu]- \[Mu]+ 1]]*LegendreQ[\[Nu], - \[Mu], x] == Divide[1,Gamma[\[Nu]+ \[Mu]+ 1]]*LegendreP[\[Nu], \[Mu], x]-Divide[Cos[\[Mu]*Pi],Gamma[\[Nu]- \[Mu]+ 1]]*LegendreP[\[Nu], - \[Mu], x] |
Successful | Successful | - | Successful [Tested: 135] | |
14.9.E3 | \FerrersP[-m]{\nu}@{x} = (-1)^{m}\frac{\EulerGamma@{\nu-m+1}}{\EulerGamma@{\nu+m+1}}\FerrersP[m]{\nu}@{x} |
LegendreP(nu, - m, x) = (- 1)^(m)*(GAMMA(nu - m + 1))/(GAMMA(nu + m + 1))*LegendreP(nu, m, x) |
LegendreP[\[Nu], - m, x] == (- 1)^(m)*Divide[Gamma[\[Nu]- m + 1],Gamma[\[Nu]+ m + 1]]*LegendreP[\[Nu], m, x] |
Failure | Failure | Successful [Tested: 21] | Successful [Tested: 21] | |
14.9.E4 | \FerrersQ[-m]{\nu}@{x} = (-1)^{m}\frac{\EulerGamma@{\nu-m+1}}{\EulerGamma@{\nu+m+1}}\FerrersQ[m]{\nu}@{x} |
LegendreQ(nu, - m, x) = (- 1)^(m)*(GAMMA(nu - m + 1))/(GAMMA(nu + m + 1))*LegendreQ(nu, m, x) |
LegendreQ[\[Nu], - m, x] == (- 1)^(m)*Divide[Gamma[\[Nu]- m + 1],Gamma[\[Nu]+ m + 1]]*LegendreQ[\[Nu], m, x] |
Failure | Failure | Error | Successful [Tested: 21] | |
14.9#Ex1 | \FerrersP[\mu]{-\nu-1}@{x} = \FerrersP[\mu]{\nu}@{x} |
LegendreP(- nu - 1, mu, x) = LegendreP(nu, mu, x) |
LegendreP[- \[Nu]- 1, \[Mu], x] == LegendreP[\[Nu], \[Mu], x] |
Successful | Failure | - | Successful [Tested: 300] | |
14.9#Ex2 | \FerrersP[-\mu]{-\nu-1}@{x} = \FerrersP[-\mu]{\nu}@{x} |
LegendreP(- nu - 1, - mu, x) = LegendreP(nu, - mu, x) |
LegendreP[- \[Nu]- 1, - \[Mu], x] == LegendreP[\[Nu], - \[Mu], x] |
Successful | Failure | - | Successful [Tested: 300] | |
14.9.E6 | \pi\cos@{\nu\pi}\cos@{\mu\pi}\FerrersP[\mu]{\nu}@{x} = \sin@{(\nu+\mu)\pi}\FerrersQ[\mu]{\nu}@{x}-\sin@{(\nu-\mu)\pi}\FerrersQ[\mu]{-\nu-1}@{x} |
Pi*cos(nu*Pi)*cos(mu*Pi)*LegendreP(nu, mu, x) = sin((nu + mu)*Pi)*LegendreQ(nu, mu, x)- sin((nu - mu)*Pi)*LegendreQ(- nu - 1, mu, x) |
Pi*Cos[\[Nu]*Pi]*Cos[\[Mu]*Pi]*LegendreP[\[Nu], \[Mu], x] == Sin[(\[Nu]+ \[Mu])*Pi]*LegendreQ[\[Nu], \[Mu], x]- Sin[(\[Nu]- \[Mu])*Pi]*LegendreQ[- \[Nu]- 1, \[Mu], x] |
Successful | Failure | - | Successful [Tested: 3] | |
14.9.E7 | \frac{\sin@{(\nu-\mu)\pi}}{\EulerGamma@{\nu+\mu+1}}\FerrersP[\mu]{\nu}@{x} = \frac{\sin@{\nu\pi}}{\EulerGamma@{\nu-\mu+1}}\FerrersP[-\mu]{\nu}@{x}-\frac{\sin@{\mu\pi}}{\EulerGamma@{\nu-\mu+1}}\FerrersP[-\mu]{\nu}@{-x} |
(sin((nu - mu)*Pi))/(GAMMA(nu + mu + 1))*LegendreP(nu, mu, x) = (sin(nu*Pi))/(GAMMA(nu - mu + 1))*LegendreP(nu, - mu, x)-(sin(mu*Pi))/(GAMMA(nu - mu + 1))*LegendreP(nu, - mu, - x) |
Divide[Sin[(\[Nu]- \[Mu])*Pi],Gamma[\[Nu]+ \[Mu]+ 1]]*LegendreP[\[Nu], \[Mu], x] == Divide[Sin[\[Nu]*Pi],Gamma[\[Nu]- \[Mu]+ 1]]*LegendreP[\[Nu], - \[Mu], x]-Divide[Sin[\[Mu]*Pi],Gamma[\[Nu]- \[Mu]+ 1]]*LegendreP[\[Nu], - \[Mu], - x] |
Failure | Failure | Successful [Tested: 40] | Successful [Tested: 45] | |
14.9.E8 | \tfrac{1}{2}\pi\sin@{(\nu-\mu)\pi}\FerrersP[-\mu]{\nu}@{x} = -\cos@{(\nu-\mu)\pi}\FerrersQ[-\mu]{\nu}@{x}-\FerrersQ[-\mu]{\nu}@{-x} |
(1)/(2)*Pi*sin((nu - mu)*Pi)*LegendreP(nu, - mu, x) = - cos((nu - mu)*Pi)*LegendreQ(nu, - mu, x)- LegendreQ(nu, - mu, - x) |
Divide[1,2]*Pi*Sin[(\[Nu]- \[Mu])*Pi]*LegendreP[\[Nu], - \[Mu], x] == - Cos[(\[Nu]- \[Mu])*Pi]*LegendreQ[\[Nu], - \[Mu], x]- LegendreQ[\[Nu], - \[Mu], - x] |
Failure | Failure | Error | Successful [Tested: 45] | |
14.9.E9 | \frac{2}{\EulerGamma@{\nu+\mu+1}\EulerGamma@{\mu-\nu}}\FerrersQ[\mu]{\nu}@{x} = -\cos@{\nu\pi}\FerrersP[-\mu]{\nu}@{x}+\cos@{\mu\pi}\FerrersP[-\mu]{\nu}@{-x} |
(2)/(GAMMA(nu + mu + 1)*GAMMA(mu - nu))*LegendreQ(nu, mu, x) = - cos(nu*Pi)*LegendreP(nu, - mu, x)+ cos(mu*Pi)*LegendreP(nu, - mu, - x) |
Divide[2,Gamma[\[Nu]+ \[Mu]+ 1]*Gamma[\[Mu]- \[Nu]]]*LegendreQ[\[Nu], \[Mu], x] == - Cos[\[Nu]*Pi]*LegendreP[\[Nu], - \[Mu], x]+ Cos[\[Mu]*Pi]*LegendreP[\[Nu], - \[Mu], - x] |
Failure | Failure | Successful [Tested: 4] | Successful [Tested: 8] | |
14.9.E10 | (2/\pi)\sin@{(\nu-\mu)\pi}\FerrersQ[-\mu]{\nu}@{x} = \cos@{(\nu-\mu)\pi}\FerrersP[-\mu]{\nu}@{x}-\FerrersP[-\mu]{\nu}@{-x} |
(2/Pi)*sin((nu - mu)*Pi)*LegendreQ(nu, - mu, x) = cos((nu - mu)*Pi)*LegendreP(nu, - mu, x)- LegendreP(nu, - mu, - x) |
(2/Pi)*Sin[(\[Nu]- \[Mu])*Pi]*LegendreQ[\[Nu], - \[Mu], x] == Cos[(\[Nu]- \[Mu])*Pi]*LegendreP[\[Nu], - \[Mu], x]- LegendreP[\[Nu], - \[Mu], - x] |
Failure | Failure | Error | Successful [Tested: 45] | |
14.9#Ex3 | \assLegendreP[-\mu]{-\nu-1}@{x} = \assLegendreP[-\mu]{\nu}@{x} |
|
LegendreP(- nu - 1, - mu, x) = LegendreP(nu, - mu, x) |
LegendreP[- \[Nu]- 1, - \[Mu], 3, x] == LegendreP[\[Nu], - \[Mu], 3, x] |
Successful | Successful | - | Successful [Tested: 300] |
14.9#Ex4 | \assLegendreP[\mu]{-\nu-1}@{x} = \assLegendreP[\mu]{\nu}@{x} |
|
LegendreP(- nu - 1, mu, x) = LegendreP(nu, mu, x) |
LegendreP[- \[Nu]- 1, \[Mu], 3, x] == LegendreP[\[Nu], \[Mu], 3, x] |
Successful | Successful | - | Successful [Tested: 300] |
14.9.E12 | \cos@{\nu\pi}\assLegendreP[-\mu]{\nu}@{x} = -\frac{\assLegendreOlverQ[\mu]{\nu}@{x}}{\EulerGamma@{\mu-\nu}}+\frac{\assLegendreOlverQ[\mu]{-\nu-1}@{x}}{\EulerGamma@{\nu+\mu+1}} |
cos(nu*Pi)*LegendreP(nu, - mu, x) = -(exp(-(mu)*Pi*I)*LegendreQ(nu,mu,x)/GAMMA(nu+mu+1))/(GAMMA(mu - nu))+(exp(-(mu)*Pi*I)*LegendreQ(- nu - 1,mu,x)/GAMMA(- nu - 1+mu+1))/(GAMMA(nu + mu + 1)) |
Cos[\[Nu]*Pi]*LegendreP[\[Nu], - \[Mu], 3, x] == -Divide[Exp[-(\[Mu]) Pi I] LegendreQ[\[Nu], \[Mu], 3, x]/Gamma[\[Nu] + \[Mu] + 1],Gamma[\[Mu]- \[Nu]]]+Divide[Exp[-(\[Mu]) Pi I] LegendreQ[- \[Nu]- 1, \[Mu], 3, x]/Gamma[- \[Nu]- 1 + \[Mu] + 1],Gamma[\[Nu]+ \[Mu]+ 1]] |
Failure | Failure | Failed [36 / 87] Result: -9.22033570+3.98641277*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = -1/2+1/2*I*3^(1/2), x = 3/2} Result: 4.85982369+35.02749311*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = -1/2+1/2*I*3^(1/2), x = 1/2} ... skip entries to safe data |
Successful [Tested: 96] | |
14.9.E13 | \assLegendreP[-m]{\nu}@{x} = \frac{\EulerGamma@{\nu-m+1}}{\EulerGamma@{\nu+m+1}}\assLegendreP[m]{\nu}@{x} |
LegendreP(nu, - m, x) = (GAMMA(nu - m + 1))/(GAMMA(nu + m + 1))*LegendreP(nu, m, x) |
LegendreP[\[Nu], - m, 3, x] == Divide[Gamma[\[Nu]- m + 1],Gamma[\[Nu]+ m + 1]]*LegendreP[\[Nu], m, 3, x] |
Failure | Failure | Failed [15 / 21] Result: -.1566814731+1.035406980*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, x = 3/2, m = 1} Result: .9394863529-.1899097116*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, x = 1/2, m = 1} ... skip entries to safe data |
Successful [Tested: 21] | |
14.9.E14 | \assLegendreOlverQ[-\mu]{\nu}@{x} = \assLegendreOlverQ[\mu]{\nu}@{x} |
|
exp(-(- mu)*Pi*I)*LegendreQ(nu,- mu,x)/GAMMA(nu+- mu+1) = exp(-(mu)*Pi*I)*LegendreQ(nu,mu,x)/GAMMA(nu+mu+1) |
Exp[-(- \[Mu]) Pi I] LegendreQ[\[Nu], - \[Mu], 3, x]/Gamma[\[Nu] + - \[Mu] + 1] == Exp[-(\[Mu]) Pi I] LegendreQ[\[Nu], \[Mu], 3, x]/Gamma[\[Nu] + \[Mu] + 1] |
Error | Successful | - | Failed [36 / 300]
Result: Indeterminate
Test Values: {Rule[x, 1.5], Rule[μ, -1.5], Rule[ν, -1.5]} Result: Indeterminate
Test Values: {Rule[x, 1.5], Rule[μ, -1.5], Rule[ν, -0.5]} ... skip entries to safe data |
14.9.E15 | \frac{2\sin@{\mu\pi}}{\pi}\assLegendreOlverQ[\mu]{\nu}@{x} = \frac{\assLegendreP[\mu]{\nu}@{x}}{\EulerGamma@{\nu+\mu+1}}-\frac{\assLegendreP[-\mu]{\nu}@{x}}{\EulerGamma@{\nu-\mu+1}} |
(2*sin(mu*Pi))/(Pi)*exp(-(mu)*Pi*I)*LegendreQ(nu,mu,x)/GAMMA(nu+mu+1) = (LegendreP(nu, mu, x))/(GAMMA(nu + mu + 1))-(LegendreP(nu, - mu, x))/(GAMMA(nu - mu + 1)) |
Divide[2*Sin[\[Mu]*Pi],Pi]*Exp[-(\[Mu]) Pi I] LegendreQ[\[Nu], \[Mu], 3, x]/Gamma[\[Nu] + \[Mu] + 1] == Divide[LegendreP[\[Nu], \[Mu], 3, x],Gamma[\[Nu]+ \[Mu]+ 1]]-Divide[LegendreP[\[Nu], - \[Mu], 3, x],Gamma[\[Nu]- \[Mu]+ 1]] |
Failure | Successful | Failed [108 / 120] Result: 3.058402749-19.69019192*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, x = 3/2} Result: .1602155595-16.40144782*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, x = 1/2} ... skip entries to safe data |
Successful [Tested: 135] | |
14.9.E16 | \assLegendreOlverQ[\mu]{\nu}@{x} = \left(\tfrac{1}{2}\pi\right)^{1/2}\left(x^{2}-1\right)^{-1/4}\*\assLegendreP[-\nu-(1/2)]{-\mu-(1/2)}@{x\left(x^{2}-1\right)^{-1/2}} |
|
exp(-(mu)*Pi*I)*LegendreQ(nu,mu,x)/GAMMA(nu+mu+1) = ((1)/(2)*Pi)^(1/2)*((x)^(2)- 1)^(- 1/4)* LegendreP(- mu -(1/2), - nu -(1/2), x*((x)^(2)- 1)^(- 1/2)) |
Exp[-(\[Mu]) Pi I] LegendreQ[\[Nu], \[Mu], 3, x]/Gamma[\[Nu] + \[Mu] + 1] == (Divide[1,2]*Pi)^(1/2)*((x)^(2)- 1)^(- 1/4)* LegendreP[- \[Mu]-(1/2), - \[Nu]-(1/2), 3, x*((x)^(2)- 1)^(- 1/2)] |
Failure | Failure | Failed [292 / 300] Result: 13.31105553-5.485346831*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, x = 3/2} Result: 8.925040493-5.300266523*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, x = 1/2} ... skip entries to safe data |
Failed [21 / 300]
Result: Indeterminate
Test Values: {Rule[x, 1.5], Rule[μ, -1.5], Rule[ν, -1.5]} Result: Indeterminate
Test Values: {Rule[x, 1.5], Rule[μ, -1.5], Rule[ν, -0.5]} ... skip entries to safe data |
14.9.E17 | \assLegendreP[\mu]{\nu}@{x} = (2/\pi)^{1/2}\left(x^{2}-1\right)^{-1/4}\*\assLegendreOlverQ[\nu+(1/2)]{-\mu-(1/2)}@{x\left(x^{2}-1\right)^{-1/2}} |
|
LegendreP(nu, mu, x) = (2/Pi)^(1/2)*((x)^(2)- 1)^(- 1/4)* exp(-(nu +(1/2))*Pi*I)*LegendreQ(- mu -(1/2),nu +(1/2),x*((x)^(2)- 1)^(- 1/2))/GAMMA(- mu -(1/2)+nu +(1/2)+1) |
LegendreP[\[Nu], \[Mu], 3, x] == (2/Pi)^(1/2)*((x)^(2)- 1)^(- 1/4)* Exp[-(\[Nu]+(1/2)) Pi I] LegendreQ[- \[Mu]-(1/2), \[Nu]+(1/2), 3, x*((x)^(2)- 1)^(- 1/2)]/Gamma[- \[Mu]-(1/2) + \[Nu]+(1/2) + 1] |
Failure | Failure | Failed [297 / 300] Result: 15.05963282-19.56004465*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, x = 3/2} Result: 2.964591568-6.756538622*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, x = 1/2} ... skip entries to safe data |
Failed [21 / 300]
Result: Indeterminate
Test Values: {Rule[x, 1.5], Rule[μ, 1.5], Rule[ν, -1.5]} Result: Indeterminate
Test Values: {Rule[x, 1.5], Rule[μ, 1.5], Rule[ν, -0.5]} ... skip entries to safe data |
14.10.E1 | {\FerrersP[\mu+2]{\nu}@{x}+2(\mu+1)x\left(1-x^{2}\right)^{-1/2}\FerrersP[\mu+1]{\nu}@{x}}+(\nu-\mu)(\nu+\mu+1)\FerrersP[\mu]{\nu}@{x} = 0 |
LegendreP(nu, mu + 2, x)+ 2*(mu + 1)*x*(1 - (x)^(2))^(- 1/2)* LegendreP(nu, mu + 1, x)+(nu - mu)*(nu + mu + 1)*LegendreP(nu, mu, x) = 0 |
LegendreP[\[Nu], \[Mu]+ 2, x]+ 2*(\[Mu]+ 1)*x*(1 - (x)^(2))^(- 1/2)* LegendreP[\[Nu], \[Mu]+ 1, x]+(\[Nu]- \[Mu])*(\[Nu]+ \[Mu]+ 1)*LegendreP[\[Nu], \[Mu], x] == 0 |
Failure | Successful | Successful [Tested: 300] | Successful [Tested: 300] | |
14.10.E2 | {\left(1-x^{2}\right)^{1/2}\FerrersP[\mu+1]{\nu}@{x}-(\nu-\mu+1)\FerrersP[\mu]{\nu+1}@{x}}+(\nu+\mu+1)x\FerrersP[\mu]{\nu}@{x} = 0 |
(1 - (x)^(2))^(1/2)* LegendreP(nu, mu + 1, x)-(nu - mu + 1)*LegendreP(nu + 1, mu, x)+(nu + mu + 1)*x*LegendreP(nu, mu, x) = 0 |
(1 - (x)^(2))^(1/2)* LegendreP[\[Nu], \[Mu]+ 1, x]-(\[Nu]- \[Mu]+ 1)*LegendreP[\[Nu]+ 1, \[Mu], x]+(\[Nu]+ \[Mu]+ 1)*x*LegendreP[\[Nu], \[Mu], x] == 0 |
Failure | Successful | Successful [Tested: 300] | Successful [Tested: 300] | |
14.10.E3 | {(\nu-\mu+2)\FerrersP[\mu]{\nu+2}@{x}-(2\nu+3)x\FerrersP[\mu]{\nu+1}@{x}}+(\nu+\mu+1)\FerrersP[\mu]{\nu}@{x} = 0 |
(nu - mu + 2)*LegendreP(nu + 2, mu, x)-(2*nu + 3)*x*LegendreP(nu + 1, mu, x)+(nu + mu + 1)*LegendreP(nu, mu, x) = 0 |
(\[Nu]- \[Mu]+ 2)*LegendreP[\[Nu]+ 2, \[Mu], x]-(2*\[Nu]+ 3)*x*LegendreP[\[Nu]+ 1, \[Mu], x]+(\[Nu]+ \[Mu]+ 1)*LegendreP[\[Nu], \[Mu], x] == 0 |
Successful | Successful | - | Successful [Tested: 300] | |
14.10.E4 | \left(1-x^{2}\right)\deriv{\FerrersP[\mu]{\nu}@{x}}{x} = {(\mu-\nu-1)\FerrersP[\mu]{\nu+1}@{x}+(\nu+1)x\FerrersP[\mu]{\nu}@{x}} |
(1 - (x)^(2))*diff(LegendreP(nu, mu, x), x) = (mu - nu - 1)*LegendreP(nu + 1, mu, x)+(nu + 1)*x*LegendreP(nu, mu, x) |
(1 - (x)^(2))*D[LegendreP[\[Nu], \[Mu], x], x] == (\[Mu]- \[Nu]- 1)*LegendreP[\[Nu]+ 1, \[Mu], x]+(\[Nu]+ 1)*x*LegendreP[\[Nu], \[Mu], x] |
Successful | Successful | - | Successful [Tested: 300] | |
14.10.E5 | \left(1-x^{2}\right)\deriv{\FerrersP[\mu]{\nu}@{x}}{x} = (\nu+\mu)\FerrersP[\mu]{\nu-1}@{x}-\nu x\FerrersP[\mu]{\nu}@{x} |
(1 - (x)^(2))*diff(LegendreP(nu, mu, x), x) = (nu + mu)*LegendreP(nu - 1, mu, x)- nu*x*LegendreP(nu, mu, x) |
(1 - (x)^(2))*D[LegendreP[\[Nu], \[Mu], x], x] == (\[Nu]+ \[Mu])*LegendreP[\[Nu]- 1, \[Mu], x]- \[Nu]*x*LegendreP[\[Nu], \[Mu], x] |
Successful | Successful | - | Successful [Tested: 300] | |
14.10.E6 | {\assLegendreP[\mu+2]{\nu}@{x}+2(\mu+1)x\left(x^{2}-1\right)^{-1/2}\assLegendreP[\mu+1]{\nu}@{x}}-(\nu-\mu)(\nu+\mu+1)\assLegendreP[\mu]{\nu}@{x} = 0 |
|
LegendreP(nu, mu + 2, x)+ 2*(mu + 1)*x*((x)^(2)- 1)^(- 1/2)* LegendreP(nu, mu + 1, x)-(nu - mu)*(nu + mu + 1)*LegendreP(nu, mu, x) = 0 |
LegendreP[\[Nu], \[Mu]+ 2, 3, x]+ 2*(\[Mu]+ 1)*x*((x)^(2)- 1)^(- 1/2)* LegendreP[\[Nu], \[Mu]+ 1, 3, x]-(\[Nu]- \[Mu])*(\[Nu]+ \[Mu]+ 1)*LegendreP[\[Nu], \[Mu], 3, x] == 0 |
Failure | Failure | Successful [Tested: 300] | Successful [Tested: 300] |
14.10.E7 | {\left(x^{2}-1\right)^{1/2}\assLegendreP[\mu+1]{\nu}@{x}-(\nu-\mu+1)\assLegendreP[\mu]{\nu+1}@{x}}+(\nu+\mu+1)x\assLegendreP[\mu]{\nu}@{x} = 0 |
|
((x)^(2)- 1)^(1/2)* LegendreP(nu, mu + 1, x)-(nu - mu + 1)*LegendreP(nu + 1, mu, x)+(nu + mu + 1)*x*LegendreP(nu, mu, x) = 0 |
((x)^(2)- 1)^(1/2)* LegendreP[\[Nu], \[Mu]+ 1, 3, x]-(\[Nu]- \[Mu]+ 1)*LegendreP[\[Nu]+ 1, \[Mu], 3, x]+(\[Nu]+ \[Mu]+ 1)*x*LegendreP[\[Nu], \[Mu], 3, x] == 0 |
Failure | Failure | Successful [Tested: 300] | Successful [Tested: 300] |
14.11.E1 | \pderiv{}{\nu}\FerrersP[\mu]{\nu}@{x} = \pi\cot@{\nu\pi}\FerrersP[\mu]{\nu}@{x}-\frac{1}{\pi}\mathsf{A}_{\nu}^{\mu}(x) |
diff(LegendreP(nu, mu, x), nu) = Pi*cot(nu*Pi)*LegendreP(nu, mu, x)-(1)/(Pi)*(A[nu])^(mu)(x) |
D[LegendreP[\[Nu], \[Mu], x], \[Nu]] == Pi*Cot[\[Nu]*Pi]*LegendreP[\[Nu], \[Mu], x]-Divide[1,Pi]*(Subscript[A, \[Nu]])^\[Mu][x] |
Failure | Failure | Failed [300 / 300] Result: 11.90824559-1.654502830*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, x = 3/2, A[nu] = 1/2*3^(1/2)+1/2*I} Result: 11.53757926-1.652858974*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, x = 3/2, A[nu] = -1/2+1/2*I*3^(1/2)} ... skip entries to safe data |
Failed [300 / 300]
Result: Complex[11.90824558684297, -1.654502826549051]
Test Values: {Rule[x, 1.5], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[A, ν], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[11.53757925943594, -1.6528589711511499]
Test Values: {Rule[x, 1.5], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[A, ν], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data | |
14.11.E2 | \pderiv{}{\nu}\FerrersQ[\mu]{\nu}@{x} = -\tfrac{1}{2}\pi^{2}\FerrersP[\mu]{\nu}@{x}+\frac{\pi\sin@{\mu\pi}}{\sin@{\nu\pi}\sin@{(\nu+\mu)\pi}}\FerrersQ[\mu]{\nu}@{x}-\tfrac{1}{2}\cot@{(\nu+\mu)\pi}\mathsf{A}_{\nu}^{\mu}(x)+\tfrac{1}{2}\csc@{(\nu+\mu)\pi}\mathsf{A}_{\nu}^{\mu}(-x) |
diff(LegendreQ(nu, mu, x), nu) = -(1)/(2)*(Pi)^(2)* LegendreP(nu, mu, x)+(Pi*sin(mu*Pi))/(sin(nu*Pi)*sin((nu + mu)*Pi))*LegendreQ(nu, mu, x)-(1)/(2)*cot((nu + mu)*Pi)*(A[nu])^(mu)(x)+(1)/(2)*csc((nu + mu)*Pi)*(A[nu])^(mu)(- x) |
D[LegendreQ[\[Nu], \[Mu], x], \[Nu]] == -Divide[1,2]*(Pi)^(2)* LegendreP[\[Nu], \[Mu], x]+Divide[Pi*Sin[\[Mu]*Pi],Sin[\[Nu]*Pi]*Sin[(\[Nu]+ \[Mu])*Pi]]*LegendreQ[\[Nu], \[Mu], x]-Divide[1,2]*Cot[(\[Nu]+ \[Mu])*Pi]*(Subscript[A, \[Nu]])^\[Mu][x]+Divide[1,2]*Csc[(\[Nu]+ \[Mu])*Pi]*(Subscript[A, \[Nu]])^\[Mu][- x] |
Failure | Failure | Failed [300 / 300] Result: -2.639260453-18.83790600*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, x = 3/2, A[nu] = 1/2*3^(1/2)+1/2*I} Result: -2.596785248-18.22264548*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, x = 3/2, A[nu] = -1/2+1/2*I*3^(1/2)} ... skip entries to safe data |
Failed [300 / 300]
Result: Complex[-2.639260449912798, -18.837906001053177]
Test Values: {Rule[x, 1.5], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[A, ν], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[-2.5967852433828247, -18.222645474383306]
Test Values: {Rule[x, 1.5], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[A, ν], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data | |
14.11.E3 | \mathsf{A}_{\nu}^{\mu}(x) = \sin@{\nu\pi}\left(\frac{1+x}{1-x}\right)^{\mu/2}\*\sum_{k=0}^{\infty}\frac{\left(\frac{1}{2}-\frac{1}{2}x\right)^{k}\EulerGamma@{k-\nu}\EulerGamma@{k+\nu+1}}{k!\EulerGamma@{k-\mu+1}}\*\left(\digamma@{k+\nu+1}-\digamma@{k-\nu}\right) |
(A[nu])^(mu)(x) = sin(nu*Pi)*((1 + x)/(1 - x))^(mu/2)* sum((((1)/(2)-(1)/(2)*x)^(k)* GAMMA(k - nu)*GAMMA(k + nu + 1))/(factorial(k)*GAMMA(k - mu + 1))*(Psi(k + nu + 1)- Psi(k - nu)), k = 0..infinity) |
(Subscript[A, \[Nu]])^\[Mu][x] == Sin[\[Nu]*Pi]*(Divide[1 + x,1 - x])^(\[Mu]/2)* Sum[Divide[(Divide[1,2]-Divide[1,2]*x)^(k)* Gamma[k - \[Nu]]*Gamma[k + \[Nu]+ 1],(k)!*Gamma[k - \[Mu]+ 1]]*(PolyGamma[k + \[Nu]+ 1]- PolyGamma[k - \[Nu]]), {k, 0, Infinity}, GenerateConditions->None] |
Failure | Aborted | Skipped - Because timed out | Skipped - Because timed out |