Results of Bessel Functions I: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
Line 309: Line 309:
| [https://dlmf.nist.gov/10.14.E2 10.14.E2] || [[Item:Q3139|<math>0 < \BesselJ{\nu}@{\nu}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>0 < \BesselJ{\nu}@{\nu}</syntaxhighlight> || <math>\nu > 0, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>0 < BesselJ(nu, nu)</syntaxhighlight> || <syntaxhighlight lang=mathematica>0 < BesselJ[\[Nu], \[Nu]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
| [https://dlmf.nist.gov/10.14.E2 10.14.E2] || [[Item:Q3139|<math>0 < \BesselJ{\nu}@{\nu}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>0 < \BesselJ{\nu}@{\nu}</syntaxhighlight> || <math>\nu > 0, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>0 < BesselJ(nu, nu)</syntaxhighlight> || <syntaxhighlight lang=mathematica>0 < BesselJ[\[Nu], \[Nu]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
|-  
|-  
| [https://dlmf.nist.gov/10.14.E2 10.14.E2] || [[Item:Q3139|<math>\BesselJ{\nu}@{\nu} < \frac{2^{\frac{1}{3}}}{3^{\frac{2}{3}}\EulerGamma@{\tfrac{2}{3}}\nu^{\frac{1}{3}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BesselJ{\nu}@{\nu} < \frac{2^{\frac{1}{3}}}{3^{\frac{2}{3}}\EulerGamma@{\tfrac{2}{3}}\nu^{\frac{1}{3}}}</syntaxhighlight> || <math>\nu > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{(\tfrac{2}{3})} > 0</math> || <syntaxhighlight lang=mathematica>BesselJ(nu, nu) < ((2)^((1)/(3)))/((3)^((2)/(3))* GAMMA((2)/(3))*(nu)^((1)/(3)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselJ[\[Nu], \[Nu]] < Divide[(2)^(Divide[1,3]),(3)^(Divide[2,3])* Gamma[Divide[2,3]]*\[Nu]^(Divide[1,3])]</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
| [https://dlmf.nist.gov/10.14.E2 10.14.E2] || [[Item:Q3139|<math>\BesselJ{\nu}@{\nu} < \frac{2^{\frac{1}{3}}}{3^{\frac{2}{3}}\EulerGamma@{\tfrac{2}{3}}\nu^{\frac{1}{3}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BesselJ{\nu}@{\nu} < \frac{2^{\frac{1}{3}}}{3^{\frac{2}{3}}\EulerGamma@{\tfrac{2}{3}}\nu^{\frac{1}{3}}}</syntaxhighlight> || <math>\nu > 0, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselJ(nu, nu) < ((2)^((1)/(3)))/((3)^((2)/(3))* GAMMA((2)/(3))*(nu)^((1)/(3)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselJ[\[Nu], \[Nu]] < Divide[(2)^(Divide[1,3]),(3)^(Divide[2,3])* Gamma[Divide[2,3]]*\[Nu]^(Divide[1,3])]</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
|-  
|-  
| [https://dlmf.nist.gov/10.14.E3 10.14.E3] || [[Item:Q3140|<math>|\BesselJ{n}@{z}| \leq e^{|\imagpart@@{z}|}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\BesselJ{n}@{z}| \leq e^{|\imagpart@@{z}|}</syntaxhighlight> || <math>\realpart@@{(n+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>abs(BesselJ(n, z)) <= exp(abs(Im(z)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[BesselJ[n, z]] <= Exp[Abs[Im[z]]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 7] || Successful [Tested: 7]
| [https://dlmf.nist.gov/10.14.E3 10.14.E3] || [[Item:Q3140|<math>|\BesselJ{n}@{z}| \leq e^{|\imagpart@@{z}|}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\BesselJ{n}@{z}| \leq e^{|\imagpart@@{z}|}</syntaxhighlight> || <math>\realpart@@{(n+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>abs(BesselJ(n, z)) <= exp(abs(Im(z)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[BesselJ[n, z]] <= Exp[Abs[Im[z]]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 7] || Successful [Tested: 7]
Line 499: Line 499:
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/10.21#Ex58 10.21#Ex58] || [[Item:Q3370|<math>r = \frac{(\mu^{3}+185\mu^{2}-2053\mu+1899)\lambda^{5}-(\mu-1)(\mu^{2}-114\mu+1073)}{5(4\lambda)^{5}(\lambda-1)}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>r = \frac{(\mu^{3}+185\mu^{2}-2053\mu+1899)\lambda^{5}-(\mu-1)(\mu^{2}-114\mu+1073)}{5(4\lambda)^{5}(\lambda-1)}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(((mu - 1)*((mu)^(2)- 114*mu + 1073)*((lambda)^(5)- 1))/(5*(4*lambda)^(5)*(lambda - 1))) = (((mu)^(3)+ 185*(mu)^(2)- 2053*mu + 1899)*(lambda)^(5)-(mu - 1)*((mu)^(2)- 114*mu + 1073))/(5*(4*lambda)^(5)*(lambda - 1))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(Divide[(\[Mu]- 1)*(\[Mu]^(2)- 114*\[Mu]+ 1073)*(\[Lambda]^(5)- 1),5*(4*\[Lambda])^(5)*(\[Lambda]- 1)]) == Divide[(\[Mu]^(3)+ 185*\[Mu]^(2)- 2053*\[Mu]+ 1899)*\[Lambda]^(5)-(\[Mu]- 1)*(\[Mu]^(2)- 114*\[Mu]+ 1073),5*(4*\[Lambda])^(5)*(\[Lambda]- 1)]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/10.21#Ex58 10.21#Ex58] || [[Item:Q3370|<math>r = \frac{(\mu^{3}+185\mu^{2}-2053\mu+1899)\lambda^{5}-(\mu-1)(\mu^{2}-114\mu+1073)}{5(4\lambda)^{5}(\lambda-1)}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>r = \frac{(\mu^{3}+185\mu^{2}-2053\mu+1899)\lambda^{5}-(\mu-1)(\mu^{2}-114\mu+1073)}{5(4\lambda)^{5}(\lambda-1)}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(((mu - 1)*((mu)^(2)- 114*mu + 1073)*((lambda)^(5)- 1))/(5*(4*lambda)^(5)*(lambda - 1))) = (((mu)^(3)+ 185*(mu)^(2)- 2053*mu + 1899)*(lambda)^(5)-(mu - 1)*((mu)^(2)- 114*mu + 1073))/(5*(4*lambda)^(5)*(lambda - 1))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(Divide[(\[Mu]- 1)*(\[Mu]^(2)- 114*\[Mu]+ 1073)*(\[Lambda]^(5)- 1),5*(4*\[Lambda])^(5)*(\[Lambda]- 1)]) == Divide[(\[Mu]^(3)+ 185*\[Mu]^(2)- 2053*\[Mu]+ 1899)*\[Lambda]^(5)-(\[Mu]- 1)*(\[Mu]^(2)- 114*\[Mu]+ 1073),5*(4*\[Lambda])^(5)*(\[Lambda]- 1)]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-
|-  
| [https://dlmf.nist.gov/10.22.E8 10.22.E8] || [[Item:Q3382|<math>\int_{0}^{x}\BesselJ{\nu}@{t}\diff{t} = 2\sum_{k=0}^{\infty}\BesselJ{\nu+2k+1}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}\BesselJ{\nu}@{t}\diff{t} = 2\sum_{k=0}^{\infty}\BesselJ{\nu+2k+1}@{x}</syntaxhighlight> || <math>\realpart@@{\nu} > -1, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((\nu+2k+1)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(nu, t), t = 0..x) = 2*sum(BesselJ(nu + 2*k + 1, x), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Nu], t], {t, 0, x}, GenerateConditions->None] == 2*Sum[BesselJ[\[Nu]+ 2*k + 1, x], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 24]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.277492396
| [https://dlmf.nist.gov/10.22.E8 10.22.E8] || [[Item:Q3382|<math>\int_{0}^{x}\BesselJ{\nu}@{t}\diff{t} = 2\sum_{k=0}^{\infty}\BesselJ{\nu+2k+1}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}\BesselJ{\nu}@{t}\diff{t} = 2\sum_{k=0}^{\infty}\BesselJ{\nu+2k+1}@{x}</syntaxhighlight> || <math>\realpart@@{\nu} > -1, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((\nu+2k+1)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(nu, t), t = 0..x) = 2*sum(BesselJ(nu + 2*k + 1, x), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Nu], t], {t, 0, x}, GenerateConditions->None] == 2*Sum[BesselJ[\[Nu]+ 2*k + 1, x], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 24]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.277492396
Test Values: {nu = -1/2, x = 3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.1653166018
Test Values: {nu = -1/2, x = 3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.1653166018
Test Values: {nu = 1/2, x = 3/2}</syntaxhighlight><br></div></div> || Skipped - Because timed out
Test Values: {nu = 1/2, x = 3/2}</syntaxhighlight><br></div></div> || Skipped - Because timed out
|-
|-  
| [https://dlmf.nist.gov/10.22.E9 10.22.E9] || [[Item:Q3383|<math>\int_{0}^{x}\BesselJ{2n}@{t}\diff{t} = \int_{0}^{x}\BesselJ{0}@{t}\diff{t}-2\sum_{k=0}^{n-1}\BesselJ{2k+1}@{x},\quad\int_{0}^{x}\BesselJ{2n+1}@{t}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}\BesselJ{2n}@{t}\diff{t} = \int_{0}^{x}\BesselJ{0}@{t}\diff{t}-2\sum_{k=0}^{n-1}\BesselJ{2k+1}@{x},\quad\int_{0}^{x}\BesselJ{2n+1}@{t}\diff{t}</syntaxhighlight> || <math>\realpart@@{((2n)+k+1)} > 0, \realpart@@{(0+k+1)} > 0, \realpart@@{((2k+1)+k+1)} > 0, \realpart@@{((2n+1)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(2*n, t), t = 0..x) = int(BesselJ(0, t), t = 0..x)- 2*sum(BesselJ(2*k + 1, x), k = 0..n - 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[2*n, t], {t, 0, x}, GenerateConditions->None] == Integrate[BesselJ[0, t], {t, 0, x}, GenerateConditions->None]- 2*Sum[BesselJ[2*k + 1, x], {k, 0, n - 1}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Error || Error
| [https://dlmf.nist.gov/10.22.E9 10.22.E9] || [[Item:Q3383|<math>\int_{0}^{x}\BesselJ{2n}@{t}\diff{t} = \int_{0}^{x}\BesselJ{0}@{t}\diff{t}-2\sum_{k=0}^{n-1}\BesselJ{2k+1}@{x},\quad\int_{0}^{x}\BesselJ{2n+1}@{t}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}\BesselJ{2n}@{t}\diff{t} = \int_{0}^{x}\BesselJ{0}@{t}\diff{t}-2\sum_{k=0}^{n-1}\BesselJ{2k+1}@{x},\quad\int_{0}^{x}\BesselJ{2n+1}@{t}\diff{t}</syntaxhighlight> || <math>\realpart@@{((2n)+k+1)} > 0, \realpart@@{(0+k+1)} > 0, \realpart@@{((2k+1)+k+1)} > 0, \realpart@@{((2n+1)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(2*n, t), t = 0..x) = int(BesselJ(0, t), t = 0..x)- 2*sum(BesselJ(2*k + 1, x), k = 0..n - 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[2*n, t], {t, 0, x}, GenerateConditions->None] == Integrate[BesselJ[0, t], {t, 0, x}, GenerateConditions->None]- 2*Sum[BesselJ[2*k + 1, x], {k, 0, n - 1}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Error || Error
|-
|-  
| [https://dlmf.nist.gov/10.22.E9 10.22.E9] || [[Item:Q3383|<math>\int_{0}^{x}\BesselJ{0}@{t}\diff{t}-2\sum_{k=0}^{n-1}\BesselJ{2k+1}@{x},\quad\int_{0}^{x}\BesselJ{2n+1}@{t}\diff{t} = 1-\BesselJ{0}@{x}-2\sum_{k=1}^{n}\BesselJ{2k}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}\BesselJ{0}@{t}\diff{t}-2\sum_{k=0}^{n-1}\BesselJ{2k+1}@{x},\quad\int_{0}^{x}\BesselJ{2n+1}@{t}\diff{t} = 1-\BesselJ{0}@{x}-2\sum_{k=1}^{n}\BesselJ{2k}@{x}</syntaxhighlight> || <math>\realpart@@{((2n)+k+1)} > 0, \realpart@@{(0+k+1)} > 0, \realpart@@{((2k+1)+k+1)} > 0, \realpart@@{((2n+1)+k+1)} > 0, \realpart@@{((2k)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(0, t), t = 0..x)- 2*sum(BesselJ(2*k + 1, x), k = 0..n - 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[0, t], {t, 0, x}, GenerateConditions->None]- 2*Sum[BesselJ[2*k + 1, x], {k, 0, n - 1}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Error || Error
| [https://dlmf.nist.gov/10.22.E9 10.22.E9] || [[Item:Q3383|<math>\int_{0}^{x}\BesselJ{0}@{t}\diff{t}-2\sum_{k=0}^{n-1}\BesselJ{2k+1}@{x},\quad\int_{0}^{x}\BesselJ{2n+1}@{t}\diff{t} = 1-\BesselJ{0}@{x}-2\sum_{k=1}^{n}\BesselJ{2k}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}\BesselJ{0}@{t}\diff{t}-2\sum_{k=0}^{n-1}\BesselJ{2k+1}@{x},\quad\int_{0}^{x}\BesselJ{2n+1}@{t}\diff{t} = 1-\BesselJ{0}@{x}-2\sum_{k=1}^{n}\BesselJ{2k}@{x}</syntaxhighlight> || <math>\realpart@@{((2n)+k+1)} > 0, \realpart@@{(0+k+1)} > 0, \realpart@@{((2k+1)+k+1)} > 0, \realpart@@{((2n+1)+k+1)} > 0, \realpart@@{((2k)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(0, t), t = 0..x)- 2*sum(BesselJ(2*k + 1, x), k = 0..n - 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[0, t], {t, 0, x}, GenerateConditions->None]- 2*Sum[BesselJ[2*k + 1, x], {k, 0, n - 1}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Error || Error
|-
|-  
| [https://dlmf.nist.gov/10.22.E10 10.22.E10] || [[Item:Q3384|<math>\int_{0}^{x}t^{\mu}\BesselJ{\nu}@{t}\diff{t} = x^{\mu}\frac{\EulerGamma@{\frac{1}{2}\nu+\frac{1}{2}\mu+\frac{1}{2}}}{\EulerGamma@{\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2}}}\*\sum_{k=0}^{\infty}\frac{(\nu+2k+1)\EulerGamma@{\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2}+k}}{\EulerGamma@{\frac{1}{2}\nu+\frac{1}{2}\mu+\frac{3}{2}+k}}\BesselJ{\nu+2k+1}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}t^{\mu}\BesselJ{\nu}@{t}\diff{t} = x^{\mu}\frac{\EulerGamma@{\frac{1}{2}\nu+\frac{1}{2}\mu+\frac{1}{2}}}{\EulerGamma@{\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2}}}\*\sum_{k=0}^{\infty}\frac{(\nu+2k+1)\EulerGamma@{\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2}+k}}{\EulerGamma@{\frac{1}{2}\nu+\frac{1}{2}\mu+\frac{3}{2}+k}}\BesselJ{\nu+2k+1}@{x}</syntaxhighlight> || <math>\realpart@{\mu+\nu+1} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((\nu+2k+1)+k+1)} > 0, \realpart@@{(\frac{1}{2}\nu+\frac{1}{2}\mu+\frac{1}{2})} > 0, \realpart@@{(\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2})} > 0, \realpart@@{(\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2}+k)} > 0, \realpart@@{(\frac{1}{2}\nu+\frac{1}{2}\mu+\frac{3}{2}+k)} > 0</math> || <syntaxhighlight lang=mathematica>int((t)^(mu)* BesselJ(nu, t), t = 0..x) = (x)^(mu)*(GAMMA((1)/(2)*nu +(1)/(2)*mu +(1)/(2)))/(GAMMA((1)/(2)*nu -(1)/(2)*mu +(1)/(2)))* sum(((nu + 2*k + 1)*GAMMA((1)/(2)*nu -(1)/(2)*mu +(1)/(2)+ k))/(GAMMA((1)/(2)*nu +(1)/(2)*mu +(3)/(2)+ k))*BesselJ(nu + 2*k + 1, x), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(t)^\[Mu]* BesselJ[\[Nu], t], {t, 0, x}, GenerateConditions->None] == (x)^\[Mu]*Divide[Gamma[Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]+Divide[1,2]],Gamma[Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]+Divide[1,2]]]* Sum[Divide[(\[Nu]+ 2*k + 1)*Gamma[Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]+Divide[1,2]+ k],Gamma[Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]+Divide[3,2]+ k]]*BesselJ[\[Nu]+ 2*k + 1, x], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Error || Failure || - || Skipped - Because timed out
| [https://dlmf.nist.gov/10.22.E10 10.22.E10] || [[Item:Q3384|<math>\int_{0}^{x}t^{\mu}\BesselJ{\nu}@{t}\diff{t} = x^{\mu}\frac{\EulerGamma@{\frac{1}{2}\nu+\frac{1}{2}\mu+\frac{1}{2}}}{\EulerGamma@{\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2}}}\*\sum_{k=0}^{\infty}\frac{(\nu+2k+1)\EulerGamma@{\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2}+k}}{\EulerGamma@{\frac{1}{2}\nu+\frac{1}{2}\mu+\frac{3}{2}+k}}\BesselJ{\nu+2k+1}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}t^{\mu}\BesselJ{\nu}@{t}\diff{t} = x^{\mu}\frac{\EulerGamma@{\frac{1}{2}\nu+\frac{1}{2}\mu+\frac{1}{2}}}{\EulerGamma@{\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2}}}\*\sum_{k=0}^{\infty}\frac{(\nu+2k+1)\EulerGamma@{\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2}+k}}{\EulerGamma@{\frac{1}{2}\nu+\frac{1}{2}\mu+\frac{3}{2}+k}}\BesselJ{\nu+2k+1}@{x}</syntaxhighlight> || <math>\realpart@{\mu+\nu+1} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((\nu+2k+1)+k+1)} > 0, \realpart@@{(\frac{1}{2}\nu+\frac{1}{2}\mu+\frac{1}{2})} > 0, \realpart@@{(\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2})} > 0, \realpart@@{(\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2}+k)} > 0, \realpart@@{(\frac{1}{2}\nu+\frac{1}{2}\mu+\frac{3}{2}+k)} > 0</math> || <syntaxhighlight lang=mathematica>int((t)^(mu)* BesselJ(nu, t), t = 0..x) = (x)^(mu)*(GAMMA((1)/(2)*nu +(1)/(2)*mu +(1)/(2)))/(GAMMA((1)/(2)*nu -(1)/(2)*mu +(1)/(2)))* sum(((nu + 2*k + 1)*GAMMA((1)/(2)*nu -(1)/(2)*mu +(1)/(2)+ k))/(GAMMA((1)/(2)*nu +(1)/(2)*mu +(3)/(2)+ k))*BesselJ(nu + 2*k + 1, x), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(t)^\[Mu]* BesselJ[\[Nu], t], {t, 0, x}, GenerateConditions->None] == (x)^\[Mu]*Divide[Gamma[Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]+Divide[1,2]],Gamma[Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]+Divide[1,2]]]* Sum[Divide[(\[Nu]+ 2*k + 1)*Gamma[Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]+Divide[1,2]+ k],Gamma[Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]+Divide[3,2]+ k]]*BesselJ[\[Nu]+ 2*k + 1, x], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Error || Failure || - || Skipped - Because timed out
|-
|-  
| [https://dlmf.nist.gov/10.22.E11 10.22.E11] || [[Item:Q3385|<math>\int_{0}^{x}\frac{1-\BesselJ{0}@{t}}{t}\diff{t} = \frac{1}{2}\sum_{k=1}^{\infty}\frac{\digamma@{k+1}-\digamma@{1}}{k!}(\tfrac{1}{2}x)^{k}\BesselJ{k}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}\frac{1-\BesselJ{0}@{t}}{t}\diff{t} = \frac{1}{2}\sum_{k=1}^{\infty}\frac{\digamma@{k+1}-\digamma@{1}}{k!}(\tfrac{1}{2}x)^{k}\BesselJ{k}@{x}</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0, \realpart@@{(k+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int((1 - BesselJ(0, t))/(t), t = 0..x) = (1)/(2)*sum((Psi(k + 1)- Psi(1))/(factorial(k))*((1)/(2)*x)^(k)* BesselJ(k, x), k = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[1 - BesselJ[0, t],t], {t, 0, x}, GenerateConditions->None] == Divide[1,2]*Sum[Divide[PolyGamma[k + 1]- PolyGamma[1],(k)!]*(Divide[1,2]*x)^(k)* BesselJ[k, x], {k, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Aborted || Failure || Successful [Tested: 3] || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[0.2622772441151432, Times[-0.5, NSum[Times[Power[0.75, k], BesselJ[k, 1.5], Power[Factorial[k], -1], Plus[EulerGamma, PolyGamma[0, Plus[1, k]]]]
| [https://dlmf.nist.gov/10.22.E11 10.22.E11] || [[Item:Q3385|<math>\int_{0}^{x}\frac{1-\BesselJ{0}@{t}}{t}\diff{t} = \frac{1}{2}\sum_{k=1}^{\infty}\frac{\digamma@{k+1}-\digamma@{1}}{k!}(\tfrac{1}{2}x)^{k}\BesselJ{k}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}\frac{1-\BesselJ{0}@{t}}{t}\diff{t} = \frac{1}{2}\sum_{k=1}^{\infty}\frac{\digamma@{k+1}-\digamma@{1}}{k!}(\tfrac{1}{2}x)^{k}\BesselJ{k}@{x}</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0, \realpart@@{(k+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int((1 - BesselJ(0, t))/(t), t = 0..x) = (1)/(2)*sum((Psi(k + 1)- Psi(1))/(factorial(k))*((1)/(2)*x)^(k)* BesselJ(k, x), k = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[1 - BesselJ[0, t],t], {t, 0, x}, GenerateConditions->None] == Divide[1,2]*Sum[Divide[PolyGamma[k + 1]- PolyGamma[1],(k)!]*(Divide[1,2]*x)^(k)* BesselJ[k, x], {k, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Aborted || Failure || Successful [Tested: 3] || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[0.2622772441151432, Times[-0.5, NSum[Times[Power[0.75, k], BesselJ[k, 1.5], Power[Factorial[k], -1], Plus[EulerGamma, PolyGamma[0, Plus[1, k]]]]
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[0.03100698635091531, Times[-0.5, NSum[Times[Power[0.25, k], BesselJ[k, 0.5], Power[Factorial[k], -1], Plus[EulerGamma, PolyGamma[0, Plus[1, k]]]]
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[0.03100698635091531, Times[-0.5, NSum[Times[Power[0.25, k], BesselJ[k, 0.5], Power[Factorial[k], -1], Plus[EulerGamma, PolyGamma[0, Plus[1, k]]]]
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[x, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[x, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
|-  
| [https://dlmf.nist.gov/10.22.E12 10.22.E12] || [[Item:Q3386|<math>x\int_{0}^{x}\frac{1-\BesselJ{0}@{t}}{t}\diff{t} = 2\sum_{k=0}^{\infty}(2k+3)(\digamma@{k+2}-\digamma@{1})\BesselJ{2k+3}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>x\int_{0}^{x}\frac{1-\BesselJ{0}@{t}}{t}\diff{t} = 2\sum_{k=0}^{\infty}(2k+3)(\digamma@{k+2}-\digamma@{1})\BesselJ{2k+3}@{x}</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0, \realpart@@{((2k+3)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>x*int((1 - BesselJ(0, t))/(t), t = 0..x) = 2*sum((2*k + 3)*(Psi(k + 2)- Psi(1))*BesselJ(2*k + 3, x), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>x*Integrate[Divide[1 - BesselJ[0, t],t], {t, 0, x}, GenerateConditions->None] == 2*Sum[(2*k + 3)*(PolyGamma[k + 2]- PolyGamma[1])*BesselJ[2*k + 3, x], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Successful [Tested: 3] || Skipped - Because timed out
| [https://dlmf.nist.gov/10.22.E12 10.22.E12] || [[Item:Q3386|<math>x\int_{0}^{x}\frac{1-\BesselJ{0}@{t}}{t}\diff{t} = 2\sum_{k=0}^{\infty}(2k+3)(\digamma@{k+2}-\digamma@{1})\BesselJ{2k+3}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>x\int_{0}^{x}\frac{1-\BesselJ{0}@{t}}{t}\diff{t} = 2\sum_{k=0}^{\infty}(2k+3)(\digamma@{k+2}-\digamma@{1})\BesselJ{2k+3}@{x}</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0, \realpart@@{((2k+3)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>x*int((1 - BesselJ(0, t))/(t), t = 0..x) = 2*sum((2*k + 3)*(Psi(k + 2)- Psi(1))*BesselJ(2*k + 3, x), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>x*Integrate[Divide[1 - BesselJ[0, t],t], {t, 0, x}, GenerateConditions->None] == 2*Sum[(2*k + 3)*(PolyGamma[k + 2]- PolyGamma[1])*BesselJ[2*k + 3, x], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Successful [Tested: 3] || Skipped - Because timed out
|-
|-  
| [https://dlmf.nist.gov/10.22.E12 10.22.E12] || [[Item:Q3386|<math>2\sum_{k=0}^{\infty}(2k+3)(\digamma@{k+2}-\digamma@{1})\BesselJ{2k+3}@{x} = x-2\BesselJ{1}@{x}+2\sum_{k=0}^{\infty}(2k+5)\*(\digamma@{k+3}-\digamma@{1}-1)\BesselJ{2k+5}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>2\sum_{k=0}^{\infty}(2k+3)(\digamma@{k+2}-\digamma@{1})\BesselJ{2k+3}@{x} = x-2\BesselJ{1}@{x}+2\sum_{k=0}^{\infty}(2k+5)\*(\digamma@{k+3}-\digamma@{1}-1)\BesselJ{2k+5}@{x}</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0, \realpart@@{((2k+3)+k+1)} > 0, \realpart@@{(1+k+1)} > 0, \realpart@@{((2k+5)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>2*sum((2*k + 3)*(Psi(k + 2)- Psi(1))*BesselJ(2*k + 3, x), k = 0..infinity) = x - 2*BesselJ(1, x)+ 2*sum((2*k + 5)*(Psi(k + 3)- Psi(1)- 1)*BesselJ(2*k + 5, x), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>2*Sum[(2*k + 3)*(PolyGamma[k + 2]- PolyGamma[1])*BesselJ[2*k + 3, x], {k, 0, Infinity}, GenerateConditions->None] == x - 2*BesselJ[1, x]+ 2*Sum[(2*k + 5)*(PolyGamma[k + 3]- PolyGamma[1]- 1)*BesselJ[2*k + 5, x], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Aborted || Aborted || Successful [Tested: 3] || Skipped - Because timed out
| [https://dlmf.nist.gov/10.22.E12 10.22.E12] || [[Item:Q3386|<math>2\sum_{k=0}^{\infty}(2k+3)(\digamma@{k+2}-\digamma@{1})\BesselJ{2k+3}@{x} = x-2\BesselJ{1}@{x}+2\sum_{k=0}^{\infty}(2k+5)\*(\digamma@{k+3}-\digamma@{1}-1)\BesselJ{2k+5}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>2\sum_{k=0}^{\infty}(2k+3)(\digamma@{k+2}-\digamma@{1})\BesselJ{2k+3}@{x} = x-2\BesselJ{1}@{x}+2\sum_{k=0}^{\infty}(2k+5)\*(\digamma@{k+3}-\digamma@{1}-1)\BesselJ{2k+5}@{x}</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0, \realpart@@{((2k+3)+k+1)} > 0, \realpart@@{(1+k+1)} > 0, \realpart@@{((2k+5)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>2*sum((2*k + 3)*(Psi(k + 2)- Psi(1))*BesselJ(2*k + 3, x), k = 0..infinity) = x - 2*BesselJ(1, x)+ 2*sum((2*k + 5)*(Psi(k + 3)- Psi(1)- 1)*BesselJ(2*k + 5, x), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>2*Sum[(2*k + 3)*(PolyGamma[k + 2]- PolyGamma[1])*BesselJ[2*k + 3, x], {k, 0, Infinity}, GenerateConditions->None] == x - 2*BesselJ[1, x]+ 2*Sum[(2*k + 5)*(PolyGamma[k + 3]- PolyGamma[1]- 1)*BesselJ[2*k + 5, x], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Aborted || Aborted || Successful [Tested: 3] || Skipped - Because timed out
|-
|-  
| [https://dlmf.nist.gov/10.22.E13 10.22.E13] || [[Item:Q3387|<math>\int_{0}^{\frac{1}{2}\pi}\BesselJ{2\nu}@{2z\cos@@{\theta}}\cos@{2\mu\theta}\diff{\theta} = \tfrac{1}{2}\pi\BesselJ{\nu+\mu}@{z}\BesselJ{\nu-\mu}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\frac{1}{2}\pi}\BesselJ{2\nu}@{2z\cos@@{\theta}}\cos@{2\mu\theta}\diff{\theta} = \tfrac{1}{2}\pi\BesselJ{\nu+\mu}@{z}\BesselJ{\nu-\mu}@{z}</syntaxhighlight> || <math>\realpart@@{\nu} > -\tfrac{1}{2}, \realpart@@{((2\nu)+k+1)} > 0, \realpart@@{((\nu+\mu)+k+1)} > 0, \realpart@@{((\nu-\mu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(2*nu, 2*z*cos(theta))*cos(2*mu*theta), theta = 0..(1)/(2)*Pi) = (1)/(2)*Pi*BesselJ(nu + mu, z)*BesselJ(nu - mu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[2*\[Nu], 2*z*Cos[\[Theta]]]*Cos[2*\[Mu]*\[Theta]], {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == Divide[1,2]*Pi*BesselJ[\[Nu]+ \[Mu], z]*BesselJ[\[Nu]- \[Mu], z]</syntaxhighlight> || Failure || Failure || Manual Skip! || Skipped - Because timed out
| [https://dlmf.nist.gov/10.22.E13 10.22.E13] || [[Item:Q3387|<math>\int_{0}^{\frac{1}{2}\pi}\BesselJ{2\nu}@{2z\cos@@{\theta}}\cos@{2\mu\theta}\diff{\theta} = \tfrac{1}{2}\pi\BesselJ{\nu+\mu}@{z}\BesselJ{\nu-\mu}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\frac{1}{2}\pi}\BesselJ{2\nu}@{2z\cos@@{\theta}}\cos@{2\mu\theta}\diff{\theta} = \tfrac{1}{2}\pi\BesselJ{\nu+\mu}@{z}\BesselJ{\nu-\mu}@{z}</syntaxhighlight> || <math>\realpart@@{\nu} > -\tfrac{1}{2}, \realpart@@{((2\nu)+k+1)} > 0, \realpart@@{((\nu+\mu)+k+1)} > 0, \realpart@@{((\nu-\mu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(2*nu, 2*z*cos(theta))*cos(2*mu*theta), theta = 0..(1)/(2)*Pi) = (1)/(2)*Pi*BesselJ(nu + mu, z)*BesselJ(nu - mu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[2*\[Nu], 2*z*Cos[\[Theta]]]*Cos[2*\[Mu]*\[Theta]], {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == Divide[1,2]*Pi*BesselJ[\[Nu]+ \[Mu], z]*BesselJ[\[Nu]- \[Mu], z]</syntaxhighlight> || Failure || Failure || Manual Skip! || Skipped - Because timed out
|-
|-  
| [https://dlmf.nist.gov/10.22.E14 10.22.E14] || [[Item:Q3388|<math>\int_{0}^{\pi}\BesselJ{2\nu}@{2z\sin@@{\theta}}\cos@{2\mu\theta}\diff{\theta} = \pi\cos@{\mu\pi}\BesselJ{\nu+\mu}@{z}\BesselJ{\nu-\mu}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\pi}\BesselJ{2\nu}@{2z\sin@@{\theta}}\cos@{2\mu\theta}\diff{\theta} = \pi\cos@{\mu\pi}\BesselJ{\nu+\mu}@{z}\BesselJ{\nu-\mu}@{z}</syntaxhighlight> || <math>\realpart@@{\nu} > -\tfrac{1}{2}, \realpart@@{((2\nu)+k+1)} > 0, \realpart@@{((\nu+\mu)+k+1)} > 0, \realpart@@{((\nu-\mu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(2*nu, 2*z*sin(theta))*cos(2*mu*theta), theta = 0..Pi) = Pi*cos(mu*Pi)*BesselJ(nu + mu, z)*BesselJ(nu - mu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[2*\[Nu], 2*z*Sin[\[Theta]]]*Cos[2*\[Mu]*\[Theta]], {\[Theta], 0, Pi}, GenerateConditions->None] == Pi*Cos[\[Mu]*Pi]*BesselJ[\[Nu]+ \[Mu], z]*BesselJ[\[Nu]- \[Mu], z]</syntaxhighlight> || Failure || Failure || Manual Skip! || Skipped - Because timed out
| [https://dlmf.nist.gov/10.22.E14 10.22.E14] || [[Item:Q3388|<math>\int_{0}^{\pi}\BesselJ{2\nu}@{2z\sin@@{\theta}}\cos@{2\mu\theta}\diff{\theta} = \pi\cos@{\mu\pi}\BesselJ{\nu+\mu}@{z}\BesselJ{\nu-\mu}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\pi}\BesselJ{2\nu}@{2z\sin@@{\theta}}\cos@{2\mu\theta}\diff{\theta} = \pi\cos@{\mu\pi}\BesselJ{\nu+\mu}@{z}\BesselJ{\nu-\mu}@{z}</syntaxhighlight> || <math>\realpart@@{\nu} > -\tfrac{1}{2}, \realpart@@{((2\nu)+k+1)} > 0, \realpart@@{((\nu+\mu)+k+1)} > 0, \realpart@@{((\nu-\mu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(2*nu, 2*z*sin(theta))*cos(2*mu*theta), theta = 0..Pi) = Pi*cos(mu*Pi)*BesselJ(nu + mu, z)*BesselJ(nu - mu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[2*\[Nu], 2*z*Sin[\[Theta]]]*Cos[2*\[Mu]*\[Theta]], {\[Theta], 0, Pi}, GenerateConditions->None] == Pi*Cos[\[Mu]*Pi]*BesselJ[\[Nu]+ \[Mu], z]*BesselJ[\[Nu]- \[Mu], z]</syntaxhighlight> || Failure || Failure || Manual Skip! || Skipped - Because timed out
|-
|-  
| [https://dlmf.nist.gov/10.22.E15 10.22.E15] || [[Item:Q3389|<math>\int_{0}^{\pi}\BesselJ{2\nu}@{2z\sin@@{\theta}}\sin@{2\mu\theta}\diff{\theta} = \pi\sin@{\mu\pi}\BesselJ{\nu+\mu}@{z}\BesselJ{\nu-\mu}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\pi}\BesselJ{2\nu}@{2z\sin@@{\theta}}\sin@{2\mu\theta}\diff{\theta} = \pi\sin@{\mu\pi}\BesselJ{\nu+\mu}@{z}\BesselJ{\nu-\mu}@{z}</syntaxhighlight> || <math>\realpart@@{\nu} > -1, \realpart@@{((2\nu)+k+1)} > 0, \realpart@@{((\nu+\mu)+k+1)} > 0, \realpart@@{((\nu-\mu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(2*nu, 2*z*sin(theta))*sin(2*mu*theta), theta = 0..Pi) = Pi*sin(mu*Pi)*BesselJ(nu + mu, z)*BesselJ(nu - mu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[2*\[Nu], 2*z*Sin[\[Theta]]]*Sin[2*\[Mu]*\[Theta]], {\[Theta], 0, Pi}, GenerateConditions->None] == Pi*Sin[\[Mu]*Pi]*BesselJ[\[Nu]+ \[Mu], z]*BesselJ[\[Nu]- \[Mu], z]</syntaxhighlight> || Failure || Failure || Manual Skip! || Skipped - Because timed out
| [https://dlmf.nist.gov/10.22.E15 10.22.E15] || [[Item:Q3389|<math>\int_{0}^{\pi}\BesselJ{2\nu}@{2z\sin@@{\theta}}\sin@{2\mu\theta}\diff{\theta} = \pi\sin@{\mu\pi}\BesselJ{\nu+\mu}@{z}\BesselJ{\nu-\mu}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\pi}\BesselJ{2\nu}@{2z\sin@@{\theta}}\sin@{2\mu\theta}\diff{\theta} = \pi\sin@{\mu\pi}\BesselJ{\nu+\mu}@{z}\BesselJ{\nu-\mu}@{z}</syntaxhighlight> || <math>\realpart@@{\nu} > -1, \realpart@@{((2\nu)+k+1)} > 0, \realpart@@{((\nu+\mu)+k+1)} > 0, \realpart@@{((\nu-\mu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(2*nu, 2*z*sin(theta))*sin(2*mu*theta), theta = 0..Pi) = Pi*sin(mu*Pi)*BesselJ(nu + mu, z)*BesselJ(nu - mu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[2*\[Nu], 2*z*Sin[\[Theta]]]*Sin[2*\[Mu]*\[Theta]], {\[Theta], 0, Pi}, GenerateConditions->None] == Pi*Sin[\[Mu]*Pi]*BesselJ[\[Nu]+ \[Mu], z]*BesselJ[\[Nu]- \[Mu], z]</syntaxhighlight> || Failure || Failure || Manual Skip! || Skipped - Because timed out
|-
|-  
| [https://dlmf.nist.gov/10.22.E16 10.22.E16] || [[Item:Q3390|<math>\int_{0}^{\frac{1}{2}\pi}\BesselJ{0}@{2z\sin@@{\theta}}\cos@{2n\theta}\diff{\theta} = \tfrac{1}{2}\pi\BesselJ{n}^{2}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\frac{1}{2}\pi}\BesselJ{0}@{2z\sin@@{\theta}}\cos@{2n\theta}\diff{\theta} = \tfrac{1}{2}\pi\BesselJ{n}^{2}@{z}</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0, \realpart@@{(n+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(0, 2*z*sin(theta))*cos(2*n*theta), theta = 0..(1)/(2)*Pi) = (1)/(2)*Pi*(BesselJ(n, z))^(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[0, 2*z*Sin[\[Theta]]]*Cos[2*n*\[Theta]], {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == Divide[1,2]*Pi*(BesselJ[n, z])^(2)</syntaxhighlight> || Failure || Failure || Successful [Tested: 7] || Successful [Tested: 7]
| [https://dlmf.nist.gov/10.22.E16 10.22.E16] || [[Item:Q3390|<math>\int_{0}^{\frac{1}{2}\pi}\BesselJ{0}@{2z\sin@@{\theta}}\cos@{2n\theta}\diff{\theta} = \tfrac{1}{2}\pi\BesselJ{n}^{2}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\frac{1}{2}\pi}\BesselJ{0}@{2z\sin@@{\theta}}\cos@{2n\theta}\diff{\theta} = \tfrac{1}{2}\pi\BesselJ{n}^{2}@{z}</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0, \realpart@@{(n+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(0, 2*z*sin(theta))*cos(2*n*theta), theta = 0..(1)/(2)*Pi) = (1)/(2)*Pi*(BesselJ(n, z))^(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[0, 2*z*Sin[\[Theta]]]*Cos[2*n*\[Theta]], {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == Divide[1,2]*Pi*(BesselJ[n, z])^(2)</syntaxhighlight> || Failure || Failure || Successful [Tested: 7] || Successful [Tested: 7]
|-
|-  
| [https://dlmf.nist.gov/10.22.E17 10.22.E17] || [[Item:Q3391|<math>\int_{0}^{\frac{1}{2}\pi}\BesselY{2\nu}@{2z\cos@@{\theta}}\cos@{2\mu\theta}\diff{\theta} = \tfrac{1}{2}\pi\cot@{2\nu\pi}\BesselJ{\nu+\mu}@{z}\BesselJ{\nu-\mu}@{z}-\tfrac{1}{2}\pi\csc@{2\nu\pi}\BesselJ{\mu-\nu}@{z}\BesselJ{-\mu-\nu}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\frac{1}{2}\pi}\BesselY{2\nu}@{2z\cos@@{\theta}}\cos@{2\mu\theta}\diff{\theta} = \tfrac{1}{2}\pi\cot@{2\nu\pi}\BesselJ{\nu+\mu}@{z}\BesselJ{\nu-\mu}@{z}-\tfrac{1}{2}\pi\csc@{2\nu\pi}\BesselJ{\mu-\nu}@{z}\BesselJ{-\mu-\nu}@{z}</syntaxhighlight> || <math>-\tfrac{1}{2} < \realpart@@{\nu}, \realpart@@{\nu} < \tfrac{1}{2}, \realpart@@{((\nu+\mu)+k+1)} > 0, \realpart@@{((\nu-\mu)+k+1)} > 0, \realpart@@{((\mu-\nu)+k+1)} > 0, \realpart@@{((-\mu-\nu)+k+1)} > 0, \realpart@@{((2\nu)+k+1)} > 0, \realpart@@{((-(2\nu))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselY(2*nu, 2*z*cos(theta))*cos(2*mu*theta), theta = 0..(1)/(2)*Pi) = (1)/(2)*Pi*cot(2*nu*Pi)*BesselJ(nu + mu, z)*BesselJ(nu - mu, z)-(1)/(2)*Pi*csc(2*nu*Pi)*BesselJ(mu - nu, z)*BesselJ(- mu - nu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselY[2*\[Nu], 2*z*Cos[\[Theta]]]*Cos[2*\[Mu]*\[Theta]], {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == Divide[1,2]*Pi*Cot[2*\[Nu]*Pi]*BesselJ[\[Nu]+ \[Mu], z]*BesselJ[\[Nu]- \[Mu], z]-Divide[1,2]*Pi*Csc[2*\[Nu]*Pi]*BesselJ[\[Mu]- \[Nu], z]*BesselJ[- \[Mu]- \[Nu], z]</syntaxhighlight> || Failure || Failure || Error || Skip - No test values generated
| [https://dlmf.nist.gov/10.22.E17 10.22.E17] || [[Item:Q3391|<math>\int_{0}^{\frac{1}{2}\pi}\BesselY{2\nu}@{2z\cos@@{\theta}}\cos@{2\mu\theta}\diff{\theta} = \tfrac{1}{2}\pi\cot@{2\nu\pi}\BesselJ{\nu+\mu}@{z}\BesselJ{\nu-\mu}@{z}-\tfrac{1}{2}\pi\csc@{2\nu\pi}\BesselJ{\mu-\nu}@{z}\BesselJ{-\mu-\nu}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\frac{1}{2}\pi}\BesselY{2\nu}@{2z\cos@@{\theta}}\cos@{2\mu\theta}\diff{\theta} = \tfrac{1}{2}\pi\cot@{2\nu\pi}\BesselJ{\nu+\mu}@{z}\BesselJ{\nu-\mu}@{z}-\tfrac{1}{2}\pi\csc@{2\nu\pi}\BesselJ{\mu-\nu}@{z}\BesselJ{-\mu-\nu}@{z}</syntaxhighlight> || <math>-\tfrac{1}{2} < \realpart@@{\nu}, \realpart@@{\nu} < \tfrac{1}{2}, \realpart@@{((\nu+\mu)+k+1)} > 0, \realpart@@{((\nu-\mu)+k+1)} > 0, \realpart@@{((\mu-\nu)+k+1)} > 0, \realpart@@{((-\mu-\nu)+k+1)} > 0, \realpart@@{((2\nu)+k+1)} > 0, \realpart@@{((-(2\nu))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselY(2*nu, 2*z*cos(theta))*cos(2*mu*theta), theta = 0..(1)/(2)*Pi) = (1)/(2)*Pi*cot(2*nu*Pi)*BesselJ(nu + mu, z)*BesselJ(nu - mu, z)-(1)/(2)*Pi*csc(2*nu*Pi)*BesselJ(mu - nu, z)*BesselJ(- mu - nu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselY[2*\[Nu], 2*z*Cos[\[Theta]]]*Cos[2*\[Mu]*\[Theta]], {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == Divide[1,2]*Pi*Cot[2*\[Nu]*Pi]*BesselJ[\[Nu]+ \[Mu], z]*BesselJ[\[Nu]- \[Mu], z]-Divide[1,2]*Pi*Csc[2*\[Nu]*Pi]*BesselJ[\[Mu]- \[Nu], z]*BesselJ[- \[Mu]- \[Nu], z]</syntaxhighlight> || Failure || Failure || Error || Skip - No test values generated
|-
|-  
| [https://dlmf.nist.gov/10.22.E18 10.22.E18] || [[Item:Q3392|<math>\int_{0}^{\frac{1}{2}\pi}\BesselY{0}@{2z\sin@@{\theta}}\cos@{2n\theta}\diff{\theta} = \tfrac{1}{2}\pi\BesselJ{n}@{z}\BesselY{n}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\frac{1}{2}\pi}\BesselY{0}@{2z\sin@@{\theta}}\cos@{2n\theta}\diff{\theta} = \tfrac{1}{2}\pi\BesselJ{n}@{z}\BesselY{n}@{z}</syntaxhighlight> || <math>\realpart@@{(n+k+1)} > 0, \realpart@@{(0+k+1)} > 0, \realpart@@{((-0)+k+1)} > 0, \realpart@@{((-n)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselY(0, 2*z*sin(theta))*cos(2*n*theta), theta = 0..(1)/(2)*Pi) = (1)/(2)*Pi*BesselJ(n, z)*BesselY(n, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselY[0, 2*z*Sin[\[Theta]]]*Cos[2*n*\[Theta]], {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == Divide[1,2]*Pi*BesselJ[n, z]*BesselY[n, z]</syntaxhighlight> || Failure || Failure || Successful [Tested: 7] || Skipped - Because timed out
| [https://dlmf.nist.gov/10.22.E18 10.22.E18] || [[Item:Q3392|<math>\int_{0}^{\frac{1}{2}\pi}\BesselY{0}@{2z\sin@@{\theta}}\cos@{2n\theta}\diff{\theta} = \tfrac{1}{2}\pi\BesselJ{n}@{z}\BesselY{n}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\frac{1}{2}\pi}\BesselY{0}@{2z\sin@@{\theta}}\cos@{2n\theta}\diff{\theta} = \tfrac{1}{2}\pi\BesselJ{n}@{z}\BesselY{n}@{z}</syntaxhighlight> || <math>\realpart@@{(n+k+1)} > 0, \realpart@@{(0+k+1)} > 0, \realpart@@{((-0)+k+1)} > 0, \realpart@@{((-n)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselY(0, 2*z*sin(theta))*cos(2*n*theta), theta = 0..(1)/(2)*Pi) = (1)/(2)*Pi*BesselJ(n, z)*BesselY(n, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselY[0, 2*z*Sin[\[Theta]]]*Cos[2*n*\[Theta]], {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == Divide[1,2]*Pi*BesselJ[n, z]*BesselY[n, z]</syntaxhighlight> || Failure || Failure || Successful [Tested: 7] || Skipped - Because timed out
|-
|-  
| [https://dlmf.nist.gov/10.22.E19 10.22.E19] || [[Item:Q3393|<math>\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin@@{\theta}}(\sin@@{\theta})^{\mu+1}(\cos@@{\theta})^{2\nu+1}\diff{\theta} = 2^{\nu}\EulerGamma@{\nu+1}z^{-\nu-1}\BesselJ{\mu+\nu+1}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin@@{\theta}}(\sin@@{\theta})^{\mu+1}(\cos@@{\theta})^{2\nu+1}\diff{\theta} = 2^{\nu}\EulerGamma@{\nu+1}z^{-\nu-1}\BesselJ{\mu+\nu+1}@{z}</syntaxhighlight> || <math>\realpart@@{\mu} > -1, \realpart@@{\nu} > -1, \realpart@@{((\mu)+k+1)} > 0, \realpart@@{((\mu+\nu+1)+k+1)} > 0, \realpart@@{(\nu+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(mu, z*sin(theta))*(sin(theta))^(mu + 1)*(cos(theta))^(2*nu + 1), theta = 0..(1)/(2)*Pi) = (2)^(nu)* GAMMA(nu + 1)*(z)^(- nu - 1)* BesselJ(mu + nu + 1, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Mu], z*Sin[\[Theta]]]*(Sin[\[Theta]])^(\[Mu]+ 1)*(Cos[\[Theta]])^(2*\[Nu]+ 1), {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == (2)^\[Nu]* Gamma[\[Nu]+ 1]*(z)^(- \[Nu]- 1)* BesselJ[\[Mu]+ \[Nu]+ 1, z]</syntaxhighlight> || Successful || Aborted || - || Successful [Tested: 300]
| [https://dlmf.nist.gov/10.22.E19 10.22.E19] || [[Item:Q3393|<math>\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin@@{\theta}}(\sin@@{\theta})^{\mu+1}(\cos@@{\theta})^{2\nu+1}\diff{\theta} = 2^{\nu}\EulerGamma@{\nu+1}z^{-\nu-1}\BesselJ{\mu+\nu+1}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin@@{\theta}}(\sin@@{\theta})^{\mu+1}(\cos@@{\theta})^{2\nu+1}\diff{\theta} = 2^{\nu}\EulerGamma@{\nu+1}z^{-\nu-1}\BesselJ{\mu+\nu+1}@{z}</syntaxhighlight> || <math>\realpart@@{\mu} > -1, \realpart@@{\nu} > -1, \realpart@@{((\mu)+k+1)} > 0, \realpart@@{((\mu+\nu+1)+k+1)} > 0, \realpart@@{(\nu+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(mu, z*sin(theta))*(sin(theta))^(mu + 1)*(cos(theta))^(2*nu + 1), theta = 0..(1)/(2)*Pi) = (2)^(nu)* GAMMA(nu + 1)*(z)^(- nu - 1)* BesselJ(mu + nu + 1, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Mu], z*Sin[\[Theta]]]*(Sin[\[Theta]])^(\[Mu]+ 1)*(Cos[\[Theta]])^(2*\[Nu]+ 1), {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == (2)^\[Nu]* Gamma[\[Nu]+ 1]*(z)^(- \[Nu]- 1)* BesselJ[\[Mu]+ \[Nu]+ 1, z]</syntaxhighlight> || Successful || Aborted || - || Successful [Tested: 300]
|-
|-  
| [https://dlmf.nist.gov/10.22.E20 10.22.E20] || [[Item:Q3394|<math>\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin@@{\theta}}(\sin@@{\theta})^{\mu}(\cos@@{\theta})^{2\mu}\diff{\theta} = \pi^{\frac{1}{2}}2^{\mu-1}z^{-\mu}\*\EulerGamma@{\mu+\tfrac{1}{2}}\BesselJ{\mu}^{2}@{\tfrac{1}{2}z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin@@{\theta}}(\sin@@{\theta})^{\mu}(\cos@@{\theta})^{2\mu}\diff{\theta} = \pi^{\frac{1}{2}}2^{\mu-1}z^{-\mu}\*\EulerGamma@{\mu+\tfrac{1}{2}}\BesselJ{\mu}^{2}@{\tfrac{1}{2}z}</syntaxhighlight> || <math>\realpart@@{\mu} > -\tfrac{1}{2}, \realpart@@{((\mu)+k+1)} > 0, \realpart@@{(\mu+\tfrac{1}{2})} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(mu, z*sin(theta))*(sin(theta))^(mu)*(cos(theta))^(2*mu), theta = 0..(1)/(2)*Pi) = (Pi)^((1)/(2))* (2)^(mu - 1)* (z)^(- mu)* GAMMA(mu +(1)/(2))*(BesselJ(mu, (1)/(2)*z))^(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Mu], z*Sin[\[Theta]]]*(Sin[\[Theta]])^\[Mu]*(Cos[\[Theta]])^(2*\[Mu]), {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == (Pi)^(Divide[1,2])* (2)^(\[Mu]- 1)* (z)^(- \[Mu])* Gamma[\[Mu]+Divide[1,2]]*(BesselJ[\[Mu], Divide[1,2]*z])^(2)</syntaxhighlight> || Successful || Aborted || - || Successful [Tested: 35]
| [https://dlmf.nist.gov/10.22.E20 10.22.E20] || [[Item:Q3394|<math>\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin@@{\theta}}(\sin@@{\theta})^{\mu}(\cos@@{\theta})^{2\mu}\diff{\theta} = \pi^{\frac{1}{2}}2^{\mu-1}z^{-\mu}\*\EulerGamma@{\mu+\tfrac{1}{2}}\BesselJ{\mu}^{2}@{\tfrac{1}{2}z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin@@{\theta}}(\sin@@{\theta})^{\mu}(\cos@@{\theta})^{2\mu}\diff{\theta} = \pi^{\frac{1}{2}}2^{\mu-1}z^{-\mu}\*\EulerGamma@{\mu+\tfrac{1}{2}}\BesselJ{\mu}^{2}@{\tfrac{1}{2}z}</syntaxhighlight> || <math>\realpart@@{\mu} > -\tfrac{1}{2}, \realpart@@{((\mu)+k+1)} > 0, \realpart@@{(\mu+\tfrac{1}{2})} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(mu, z*sin(theta))*(sin(theta))^(mu)*(cos(theta))^(2*mu), theta = 0..(1)/(2)*Pi) = (Pi)^((1)/(2))* (2)^(mu - 1)* (z)^(- mu)* GAMMA(mu +(1)/(2))*(BesselJ(mu, (1)/(2)*z))^(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Mu], z*Sin[\[Theta]]]*(Sin[\[Theta]])^\[Mu]*(Cos[\[Theta]])^(2*\[Mu]), {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == (Pi)^(Divide[1,2])* (2)^(\[Mu]- 1)* (z)^(- \[Mu])* Gamma[\[Mu]+Divide[1,2]]*(BesselJ[\[Mu], Divide[1,2]*z])^(2)</syntaxhighlight> || Successful || Aborted || - || Successful [Tested: 35]
|-
|-  
| [https://dlmf.nist.gov/10.22.E21 10.22.E21] || [[Item:Q3395|<math>\int_{0}^{\frac{1}{2}\pi}\BesselY{\mu}@{z\sin@@{\theta}}(\sin@@{\theta})^{\mu}(\cos@@{\theta})^{2\mu}\diff{\theta} = \pi^{\frac{1}{2}}2^{\mu-1}z^{-\mu}\*\EulerGamma@{\mu+\tfrac{1}{2}}\BesselJ{\mu}@{\tfrac{1}{2}z}\BesselY{\mu}@{\tfrac{1}{2}z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\frac{1}{2}\pi}\BesselY{\mu}@{z\sin@@{\theta}}(\sin@@{\theta})^{\mu}(\cos@@{\theta})^{2\mu}\diff{\theta} = \pi^{\frac{1}{2}}2^{\mu-1}z^{-\mu}\*\EulerGamma@{\mu+\tfrac{1}{2}}\BesselJ{\mu}@{\tfrac{1}{2}z}\BesselY{\mu}@{\tfrac{1}{2}z}</syntaxhighlight> || <math>\realpart@@{\mu} > -\tfrac{1}{2}, \realpart@@{((\mu)+k+1)} > 0, \realpart@@{(\mu+\tfrac{1}{2})} > 0, \realpart@@{((-(\mu))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselY(mu, z*sin(theta))*(sin(theta))^(mu)*(cos(theta))^(2*mu), theta = 0..(1)/(2)*Pi) = (Pi)^((1)/(2))* (2)^(mu - 1)* (z)^(- mu)* GAMMA(mu +(1)/(2))*BesselJ(mu, (1)/(2)*z)*BesselY(mu, (1)/(2)*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselY[\[Mu], z*Sin[\[Theta]]]*(Sin[\[Theta]])^\[Mu]*(Cos[\[Theta]])^(2*\[Mu]), {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == (Pi)^(Divide[1,2])* (2)^(\[Mu]- 1)* (z)^(- \[Mu])* Gamma[\[Mu]+Divide[1,2]]*BesselJ[\[Mu], Divide[1,2]*z]*BesselY[\[Mu], Divide[1,2]*z]</syntaxhighlight> || Successful || Aborted || - || Skipped - Because timed out
| [https://dlmf.nist.gov/10.22.E21 10.22.E21] || [[Item:Q3395|<math>\int_{0}^{\frac{1}{2}\pi}\BesselY{\mu}@{z\sin@@{\theta}}(\sin@@{\theta})^{\mu}(\cos@@{\theta})^{2\mu}\diff{\theta} = \pi^{\frac{1}{2}}2^{\mu-1}z^{-\mu}\*\EulerGamma@{\mu+\tfrac{1}{2}}\BesselJ{\mu}@{\tfrac{1}{2}z}\BesselY{\mu}@{\tfrac{1}{2}z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\frac{1}{2}\pi}\BesselY{\mu}@{z\sin@@{\theta}}(\sin@@{\theta})^{\mu}(\cos@@{\theta})^{2\mu}\diff{\theta} = \pi^{\frac{1}{2}}2^{\mu-1}z^{-\mu}\*\EulerGamma@{\mu+\tfrac{1}{2}}\BesselJ{\mu}@{\tfrac{1}{2}z}\BesselY{\mu}@{\tfrac{1}{2}z}</syntaxhighlight> || <math>\realpart@@{\mu} > -\tfrac{1}{2}, \realpart@@{((\mu)+k+1)} > 0, \realpart@@{(\mu+\tfrac{1}{2})} > 0, \realpart@@{((-(\mu))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselY(mu, z*sin(theta))*(sin(theta))^(mu)*(cos(theta))^(2*mu), theta = 0..(1)/(2)*Pi) = (Pi)^((1)/(2))* (2)^(mu - 1)* (z)^(- mu)* GAMMA(mu +(1)/(2))*BesselJ(mu, (1)/(2)*z)*BesselY(mu, (1)/(2)*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselY[\[Mu], z*Sin[\[Theta]]]*(Sin[\[Theta]])^\[Mu]*(Cos[\[Theta]])^(2*\[Mu]), {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == (Pi)^(Divide[1,2])* (2)^(\[Mu]- 1)* (z)^(- \[Mu])* Gamma[\[Mu]+Divide[1,2]]*BesselJ[\[Mu], Divide[1,2]*z]*BesselY[\[Mu], Divide[1,2]*z]</syntaxhighlight> || Successful || Aborted || - || Skipped - Because timed out
|-
|-  
| [https://dlmf.nist.gov/10.22.E22 10.22.E22] || [[Item:Q3396|<math>\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin^{2}@@{\theta}}\BesselJ{\nu}@{z\cos^{2}@@{\theta}}(\sin@@{\theta})^{2\mu+1}(\cos@@{\theta})^{2\nu+1}\diff{\theta} = \frac{\EulerGamma@{\mu+\tfrac{1}{2}}\EulerGamma@{\nu+\tfrac{1}{2}}\BesselJ{\mu+\nu+\frac{1}{2}}@{z}}{(8\pi z)^{\frac{1}{2}}\EulerGamma@{\mu+\nu+1}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin^{2}@@{\theta}}\BesselJ{\nu}@{z\cos^{2}@@{\theta}}(\sin@@{\theta})^{2\mu+1}(\cos@@{\theta})^{2\nu+1}\diff{\theta} = \frac{\EulerGamma@{\mu+\tfrac{1}{2}}\EulerGamma@{\nu+\tfrac{1}{2}}\BesselJ{\mu+\nu+\frac{1}{2}}@{z}}{(8\pi z)^{\frac{1}{2}}\EulerGamma@{\mu+\nu+1}}</syntaxhighlight> || <math>\realpart@@{\mu} > -\tfrac{1}{2}, \realpart@@{\nu} > -\tfrac{1}{2}, \realpart@@{((\mu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((\mu+\nu+\frac{1}{2})+k+1)} > 0, \realpart@@{(\mu+\tfrac{1}{2})} > 0, \realpart@@{(\nu+\tfrac{1}{2})} > 0, \realpart@@{(\mu+\nu+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(mu, z*(sin(theta))^(2))*BesselJ(nu, z*(cos(theta))^(2))*(sin(theta))^(2*mu + 1)*(cos(theta))^(2*nu + 1), theta = 0..(1)/(2)*Pi) = (GAMMA(mu +(1)/(2))*GAMMA(nu +(1)/(2))*BesselJ(mu + nu +(1)/(2), z))/((8*Pi*z)^((1)/(2))* GAMMA(mu + nu + 1))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Mu], z*(Sin[\[Theta]])^(2)]*BesselJ[\[Nu], z*(Cos[\[Theta]])^(2)]*(Sin[\[Theta]])^(2*\[Mu]+ 1)*(Cos[\[Theta]])^(2*\[Nu]+ 1), {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == Divide[Gamma[\[Mu]+Divide[1,2]]*Gamma[\[Nu]+Divide[1,2]]*BesselJ[\[Mu]+ \[Nu]+Divide[1,2], z],(8*Pi*z)^(Divide[1,2])* Gamma[\[Mu]+ \[Nu]+ 1]]</syntaxhighlight> || Error || Aborted || - || Skipped - Because timed out
| [https://dlmf.nist.gov/10.22.E22 10.22.E22] || [[Item:Q3396|<math>\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin^{2}@@{\theta}}\BesselJ{\nu}@{z\cos^{2}@@{\theta}}(\sin@@{\theta})^{2\mu+1}(\cos@@{\theta})^{2\nu+1}\diff{\theta} = \frac{\EulerGamma@{\mu+\tfrac{1}{2}}\EulerGamma@{\nu+\tfrac{1}{2}}\BesselJ{\mu+\nu+\frac{1}{2}}@{z}}{(8\pi z)^{\frac{1}{2}}\EulerGamma@{\mu+\nu+1}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin^{2}@@{\theta}}\BesselJ{\nu}@{z\cos^{2}@@{\theta}}(\sin@@{\theta})^{2\mu+1}(\cos@@{\theta})^{2\nu+1}\diff{\theta} = \frac{\EulerGamma@{\mu+\tfrac{1}{2}}\EulerGamma@{\nu+\tfrac{1}{2}}\BesselJ{\mu+\nu+\frac{1}{2}}@{z}}{(8\pi z)^{\frac{1}{2}}\EulerGamma@{\mu+\nu+1}}</syntaxhighlight> || <math>\realpart@@{\mu} > -\tfrac{1}{2}, \realpart@@{\nu} > -\tfrac{1}{2}, \realpart@@{((\mu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((\mu+\nu+\frac{1}{2})+k+1)} > 0, \realpart@@{(\mu+\tfrac{1}{2})} > 0, \realpart@@{(\nu+\tfrac{1}{2})} > 0, \realpart@@{(\mu+\nu+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(mu, z*(sin(theta))^(2))*BesselJ(nu, z*(cos(theta))^(2))*(sin(theta))^(2*mu + 1)*(cos(theta))^(2*nu + 1), theta = 0..(1)/(2)*Pi) = (GAMMA(mu +(1)/(2))*GAMMA(nu +(1)/(2))*BesselJ(mu + nu +(1)/(2), z))/((8*Pi*z)^((1)/(2))* GAMMA(mu + nu + 1))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Mu], z*(Sin[\[Theta]])^(2)]*BesselJ[\[Nu], z*(Cos[\[Theta]])^(2)]*(Sin[\[Theta]])^(2*\[Mu]+ 1)*(Cos[\[Theta]])^(2*\[Nu]+ 1), {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == Divide[Gamma[\[Mu]+Divide[1,2]]*Gamma[\[Nu]+Divide[1,2]]*BesselJ[\[Mu]+ \[Nu]+Divide[1,2], z],(8*Pi*z)^(Divide[1,2])* Gamma[\[Mu]+ \[Nu]+ 1]]</syntaxhighlight> || Error || Aborted || - || Skipped - Because timed out
|-
|-  
| [https://dlmf.nist.gov/10.22.E23 10.22.E23] || [[Item:Q3397|<math>\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin^{2}@@{\theta}}\BesselJ{\nu}@{z\cos^{2}@@{\theta}}(\sin@@{\theta})^{2\alpha-1}\sec@@{\theta}\diff{\theta} = \frac{(\mu+\nu+\alpha)\EulerGamma@{\mu+\alpha}2^{\alpha-1}}{\nu\EulerGamma@{\mu+1}z^{\alpha}}\BesselJ{\mu+\nu+\alpha}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin^{2}@@{\theta}}\BesselJ{\nu}@{z\cos^{2}@@{\theta}}(\sin@@{\theta})^{2\alpha-1}\sec@@{\theta}\diff{\theta} = \frac{(\mu+\nu+\alpha)\EulerGamma@{\mu+\alpha}2^{\alpha-1}}{\nu\EulerGamma@{\mu+1}z^{\alpha}}\BesselJ{\mu+\nu+\alpha}@{z}</syntaxhighlight> || <math>\realpart@{\mu+\alpha} > 0, \realpart@@{\nu} > 0, \realpart@@{((\mu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((\mu+\nu+\alpha)+k+1)} > 0, \realpart@@{(\mu+\alpha)} > 0, \realpart@@{(\mu+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(mu, z*(sin(theta))^(2))*BesselJ(nu, z*(cos(theta))^(2))*(sin(theta))^(2*alpha - 1)* sec(theta), theta = 0..(1)/(2)*Pi) = ((mu + nu + alpha)*GAMMA(mu + alpha)*(2)^(alpha - 1))/(nu*GAMMA(mu + 1)*(z)^(alpha))*BesselJ(mu + nu + alpha, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Mu], z*(Sin[\[Theta]])^(2)]*BesselJ[\[Nu], z*(Cos[\[Theta]])^(2)]*(Sin[\[Theta]])^(2*\[Alpha]- 1)* Sec[\[Theta]], {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == Divide[(\[Mu]+ \[Nu]+ \[Alpha])*Gamma[\[Mu]+ \[Alpha]]*(2)^(\[Alpha]- 1),\[Nu]*Gamma[\[Mu]+ 1]*(z)^\[Alpha]]*BesselJ[\[Mu]+ \[Nu]+ \[Alpha], z]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out
| [https://dlmf.nist.gov/10.22.E23 10.22.E23] || [[Item:Q3397|<math>\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin^{2}@@{\theta}}\BesselJ{\nu}@{z\cos^{2}@@{\theta}}(\sin@@{\theta})^{2\alpha-1}\sec@@{\theta}\diff{\theta} = \frac{(\mu+\nu+\alpha)\EulerGamma@{\mu+\alpha}2^{\alpha-1}}{\nu\EulerGamma@{\mu+1}z^{\alpha}}\BesselJ{\mu+\nu+\alpha}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin^{2}@@{\theta}}\BesselJ{\nu}@{z\cos^{2}@@{\theta}}(\sin@@{\theta})^{2\alpha-1}\sec@@{\theta}\diff{\theta} = \frac{(\mu+\nu+\alpha)\EulerGamma@{\mu+\alpha}2^{\alpha-1}}{\nu\EulerGamma@{\mu+1}z^{\alpha}}\BesselJ{\mu+\nu+\alpha}@{z}</syntaxhighlight> || <math>\realpart@{\mu+\alpha} > 0, \realpart@@{\nu} > 0, \realpart@@{((\mu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((\mu+\nu+\alpha)+k+1)} > 0, \realpart@@{(\mu+\alpha)} > 0, \realpart@@{(\mu+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(mu, z*(sin(theta))^(2))*BesselJ(nu, z*(cos(theta))^(2))*(sin(theta))^(2*alpha - 1)* sec(theta), theta = 0..(1)/(2)*Pi) = ((mu + nu + alpha)*GAMMA(mu + alpha)*(2)^(alpha - 1))/(nu*GAMMA(mu + 1)*(z)^(alpha))*BesselJ(mu + nu + alpha, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Mu], z*(Sin[\[Theta]])^(2)]*BesselJ[\[Nu], z*(Cos[\[Theta]])^(2)]*(Sin[\[Theta]])^(2*\[Alpha]- 1)* Sec[\[Theta]], {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == Divide[(\[Mu]+ \[Nu]+ \[Alpha])*Gamma[\[Mu]+ \[Alpha]]*(2)^(\[Alpha]- 1),\[Nu]*Gamma[\[Mu]+ 1]*(z)^\[Alpha]]*BesselJ[\[Mu]+ \[Nu]+ \[Alpha], z]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out
|-
|-  
| [https://dlmf.nist.gov/10.22.E24 10.22.E24] || [[Item:Q3398|<math>\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin^{2}@@{\theta}}\BesselJ{\nu}@{z\cos^{2}@@{\theta}}\cot@@{\theta}\diff{\theta} = \tfrac{1}{2}\mu^{-1}\BesselJ{\mu+\nu}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin^{2}@@{\theta}}\BesselJ{\nu}@{z\cos^{2}@@{\theta}}\cot@@{\theta}\diff{\theta} = \tfrac{1}{2}\mu^{-1}\BesselJ{\mu+\nu}@{z}</syntaxhighlight> || <math>\realpart@@{\mu} > 0, \realpart@@{\nu} > -1, \realpart@@{((\mu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((\mu+\nu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(mu, z*(sin(theta))^(2))*BesselJ(nu, z*(cos(theta))^(2))*cot(theta), theta = 0..(1)/(2)*Pi) = (1)/(2)*(mu)^(- 1)* BesselJ(mu + nu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Mu], z*(Sin[\[Theta]])^(2)]*BesselJ[\[Nu], z*(Cos[\[Theta]])^(2)]*Cot[\[Theta]], {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == Divide[1,2]*\[Mu]^(- 1)* BesselJ[\[Mu]+ \[Nu], z]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skip - No test values generated
| [https://dlmf.nist.gov/10.22.E24 10.22.E24] || [[Item:Q3398|<math>\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin^{2}@@{\theta}}\BesselJ{\nu}@{z\cos^{2}@@{\theta}}\cot@@{\theta}\diff{\theta} = \tfrac{1}{2}\mu^{-1}\BesselJ{\mu+\nu}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin^{2}@@{\theta}}\BesselJ{\nu}@{z\cos^{2}@@{\theta}}\cot@@{\theta}\diff{\theta} = \tfrac{1}{2}\mu^{-1}\BesselJ{\mu+\nu}@{z}</syntaxhighlight> || <math>\realpart@@{\mu} > 0, \realpart@@{\nu} > -1, \realpart@@{((\mu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((\mu+\nu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(mu, z*(sin(theta))^(2))*BesselJ(nu, z*(cos(theta))^(2))*cot(theta), theta = 0..(1)/(2)*Pi) = (1)/(2)*(mu)^(- 1)* BesselJ(mu + nu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Mu], z*(Sin[\[Theta]])^(2)]*BesselJ[\[Nu], z*(Cos[\[Theta]])^(2)]*Cot[\[Theta]], {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == Divide[1,2]*\[Mu]^(- 1)* BesselJ[\[Mu]+ \[Nu], z]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skip - No test values generated
|-
|-  
| [https://dlmf.nist.gov/10.22.E25 10.22.E25] || [[Item:Q3399|<math>\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin@@{\theta}}\modBesselI{\nu}@{z\cos@@{\theta}}(\tan@@{\theta})^{\mu+1}\diff{\theta} = \frac{\EulerGamma@{\tfrac{1}{2}\nu-\tfrac{1}{2}\mu}(\tfrac{1}{2}z)^{\mu}}{2\EulerGamma@{\tfrac{1}{2}\nu+\tfrac{1}{2}\mu+1}}\BesselJ{\nu}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin@@{\theta}}\modBesselI{\nu}@{z\cos@@{\theta}}(\tan@@{\theta})^{\mu+1}\diff{\theta} = \frac{\EulerGamma@{\tfrac{1}{2}\nu-\tfrac{1}{2}\mu}(\tfrac{1}{2}z)^{\mu}}{2\EulerGamma@{\tfrac{1}{2}\nu+\tfrac{1}{2}\mu+1}}\BesselJ{\nu}@{z}</syntaxhighlight> || <math>\realpart@@{\nu} > \realpart@@{\mu}, \realpart@@{\mu} > -1, \realpart@@{((\mu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{(\tfrac{1}{2}\nu-\tfrac{1}{2}\mu)} > 0, \realpart@@{(\tfrac{1}{2}\nu+\tfrac{1}{2}\mu+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(mu, z*sin(theta))*BesselI(nu, z*cos(theta))*(tan(theta))^(mu + 1), theta = 0..(1)/(2)*Pi) = (GAMMA((1)/(2)*nu -(1)/(2)*mu)*((1)/(2)*z)^(mu))/(2*GAMMA((1)/(2)*nu +(1)/(2)*mu + 1))*BesselJ(nu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Mu], z*Sin[\[Theta]]]*BesselI[\[Nu], z*Cos[\[Theta]]]*(Tan[\[Theta]])^(\[Mu]+ 1), {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == Divide[Gamma[Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]]*(Divide[1,2]*z)^\[Mu],2*Gamma[Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]+ 1]]*BesselJ[\[Nu], z]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out
| [https://dlmf.nist.gov/10.22.E25 10.22.E25] || [[Item:Q3399|<math>\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin@@{\theta}}\modBesselI{\nu}@{z\cos@@{\theta}}(\tan@@{\theta})^{\mu+1}\diff{\theta} = \frac{\EulerGamma@{\tfrac{1}{2}\nu-\tfrac{1}{2}\mu}(\tfrac{1}{2}z)^{\mu}}{2\EulerGamma@{\tfrac{1}{2}\nu+\tfrac{1}{2}\mu+1}}\BesselJ{\nu}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin@@{\theta}}\modBesselI{\nu}@{z\cos@@{\theta}}(\tan@@{\theta})^{\mu+1}\diff{\theta} = \frac{\EulerGamma@{\tfrac{1}{2}\nu-\tfrac{1}{2}\mu}(\tfrac{1}{2}z)^{\mu}}{2\EulerGamma@{\tfrac{1}{2}\nu+\tfrac{1}{2}\mu+1}}\BesselJ{\nu}@{z}</syntaxhighlight> || <math>\realpart@@{\nu} > \realpart@@{\mu}, \realpart@@{\mu} > -1, \realpart@@{((\mu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{(\tfrac{1}{2}\nu-\tfrac{1}{2}\mu)} > 0, \realpart@@{(\tfrac{1}{2}\nu+\tfrac{1}{2}\mu+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(mu, z*sin(theta))*BesselI(nu, z*cos(theta))*(tan(theta))^(mu + 1), theta = 0..(1)/(2)*Pi) = (GAMMA((1)/(2)*nu -(1)/(2)*mu)*((1)/(2)*z)^(mu))/(2*GAMMA((1)/(2)*nu +(1)/(2)*mu + 1))*BesselJ(nu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Mu], z*Sin[\[Theta]]]*BesselI[\[Nu], z*Cos[\[Theta]]]*(Tan[\[Theta]])^(\[Mu]+ 1), {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == Divide[Gamma[Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]]*(Divide[1,2]*z)^\[Mu],2*Gamma[Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]+ 1]]*BesselJ[\[Nu], z]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out
|-
|-  
| [https://dlmf.nist.gov/10.22.E26 10.22.E26] || [[Item:Q3400|<math>\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin@@{\theta}}\BesselJ{\nu}@{\zeta\cos@@{\theta}}(\sin@@{\theta})^{\mu+1}(\cos@@{\theta})^{\nu+1}\diff{\theta} = \frac{z^{\mu}\zeta^{\nu}\BesselJ{\mu+\nu+1}@{\sqrt{\zeta^{2}+z^{2}}}}{(\zeta^{2}+z^{2})^{\frac{1}{2}(\mu+\nu+1)}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin@@{\theta}}\BesselJ{\nu}@{\zeta\cos@@{\theta}}(\sin@@{\theta})^{\mu+1}(\cos@@{\theta})^{\nu+1}\diff{\theta} = \frac{z^{\mu}\zeta^{\nu}\BesselJ{\mu+\nu+1}@{\sqrt{\zeta^{2}+z^{2}}}}{(\zeta^{2}+z^{2})^{\frac{1}{2}(\mu+\nu+1)}}</syntaxhighlight> || <math>\realpart@@{\mu} > -1, \realpart@@{\nu} > -1, \realpart@@{((\mu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((\mu+\nu+1)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(mu, z*sin(theta))*BesselJ(nu, zeta*cos(theta))*(sin(theta))^(mu + 1)*(cos(theta))^(nu + 1), theta = 0..(1)/(2)*Pi) = ((z)^(mu)* (zeta)^(nu)* BesselJ(mu + nu + 1, sqrt((zeta)^(2)+ (z)^(2))))/(((zeta)^(2)+ (z)^(2))^((1)/(2)*(mu + nu + 1)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Mu], z*Sin[\[Theta]]]*BesselJ[\[Nu], \[Zeta]*Cos[\[Theta]]]*(Sin[\[Theta]])^(\[Mu]+ 1)*(Cos[\[Theta]])^(\[Nu]+ 1), {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == Divide[(z)^\[Mu]* \[Zeta]^\[Nu]* BesselJ[\[Mu]+ \[Nu]+ 1, Sqrt[\[Zeta]^(2)+ (z)^(2)]],(\[Zeta]^(2)+ (z)^(2))^(Divide[1,2]*(\[Mu]+ \[Nu]+ 1))]</syntaxhighlight> || Error || Aborted || - || Skipped - Because timed out
| [https://dlmf.nist.gov/10.22.E26 10.22.E26] || [[Item:Q3400|<math>\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin@@{\theta}}\BesselJ{\nu}@{\zeta\cos@@{\theta}}(\sin@@{\theta})^{\mu+1}(\cos@@{\theta})^{\nu+1}\diff{\theta} = \frac{z^{\mu}\zeta^{\nu}\BesselJ{\mu+\nu+1}@{\sqrt{\zeta^{2}+z^{2}}}}{(\zeta^{2}+z^{2})^{\frac{1}{2}(\mu+\nu+1)}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin@@{\theta}}\BesselJ{\nu}@{\zeta\cos@@{\theta}}(\sin@@{\theta})^{\mu+1}(\cos@@{\theta})^{\nu+1}\diff{\theta} = \frac{z^{\mu}\zeta^{\nu}\BesselJ{\mu+\nu+1}@{\sqrt{\zeta^{2}+z^{2}}}}{(\zeta^{2}+z^{2})^{\frac{1}{2}(\mu+\nu+1)}}</syntaxhighlight> || <math>\realpart@@{\mu} > -1, \realpart@@{\nu} > -1, \realpart@@{((\mu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((\mu+\nu+1)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(mu, z*sin(theta))*BesselJ(nu, zeta*cos(theta))*(sin(theta))^(mu + 1)*(cos(theta))^(nu + 1), theta = 0..(1)/(2)*Pi) = ((z)^(mu)* (zeta)^(nu)* BesselJ(mu + nu + 1, sqrt((zeta)^(2)+ (z)^(2))))/(((zeta)^(2)+ (z)^(2))^((1)/(2)*(mu + nu + 1)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Mu], z*Sin[\[Theta]]]*BesselJ[\[Nu], \[Zeta]*Cos[\[Theta]]]*(Sin[\[Theta]])^(\[Mu]+ 1)*(Cos[\[Theta]])^(\[Nu]+ 1), {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == Divide[(z)^\[Mu]* \[Zeta]^\[Nu]* BesselJ[\[Mu]+ \[Nu]+ 1, Sqrt[\[Zeta]^(2)+ (z)^(2)]],(\[Zeta]^(2)+ (z)^(2))^(Divide[1,2]*(\[Mu]+ \[Nu]+ 1))]</syntaxhighlight> || Error || Aborted || - || Skipped - Because timed out
|-
|-  
| [https://dlmf.nist.gov/10.22.E27 10.22.E27] || [[Item:Q3401|<math>\int_{0}^{x}t\BesselJ{\nu-1}^{2}@{t}\diff{t} = 2\sum_{k=0}^{\infty}(\nu+2k)\BesselJ{\nu+2k}^{2}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}t\BesselJ{\nu-1}^{2}@{t}\diff{t} = 2\sum_{k=0}^{\infty}(\nu+2k)\BesselJ{\nu+2k}^{2}@{x}</syntaxhighlight> || <math>\realpart@@{\nu} > 0, \realpart@@{((\nu-1)+k+1)} > 0, \realpart@@{((\nu+2k)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(t*(BesselJ(nu - 1, t))^(2), t = 0..x) = 2*sum((nu + 2*k)*(BesselJ(nu + 2*k, x))^(2), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[t*(BesselJ[\[Nu]- 1, t])^(2), {t, 0, x}, GenerateConditions->None] == 2*Sum[(\[Nu]+ 2*k)*(BesselJ[\[Nu]+ 2*k, x])^(2), {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || Successful [Tested: 15] || Successful [Tested: 15]
| [https://dlmf.nist.gov/10.22.E27 10.22.E27] || [[Item:Q3401|<math>\int_{0}^{x}t\BesselJ{\nu-1}^{2}@{t}\diff{t} = 2\sum_{k=0}^{\infty}(\nu+2k)\BesselJ{\nu+2k}^{2}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}t\BesselJ{\nu-1}^{2}@{t}\diff{t} = 2\sum_{k=0}^{\infty}(\nu+2k)\BesselJ{\nu+2k}^{2}@{x}</syntaxhighlight> || <math>\realpart@@{\nu} > 0, \realpart@@{((\nu-1)+k+1)} > 0, \realpart@@{((\nu+2k)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(t*(BesselJ(nu - 1, t))^(2), t = 0..x) = 2*sum((nu + 2*k)*(BesselJ(nu + 2*k, x))^(2), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[t*(BesselJ[\[Nu]- 1, t])^(2), {t, 0, x}, GenerateConditions->None] == 2*Sum[(\[Nu]+ 2*k)*(BesselJ[\[Nu]+ 2*k, x])^(2), {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || Successful [Tested: 15] || Successful [Tested: 15]
|-
|-  
| [https://dlmf.nist.gov/10.22.E28 10.22.E28] || [[Item:Q3402|<math>\int_{0}^{x}t\left(\BesselJ{\nu-1}^{2}@{t}-\BesselJ{\nu+1}^{2}@{t}\right)\diff{t} = 2\nu\BesselJ{\nu}^{2}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}t\left(\BesselJ{\nu-1}^{2}@{t}-\BesselJ{\nu+1}^{2}@{t}\right)\diff{t} = 2\nu\BesselJ{\nu}^{2}@{x}</syntaxhighlight> || <math>\realpart@@{\nu} > 0, \realpart@@{((\nu-1)+k+1)} > 0, \realpart@@{((\nu+1)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(t*((BesselJ(nu - 1, t))^(2)- (BesselJ(nu + 1, t))^(2)), t = 0..x) = 2*nu*(BesselJ(nu, x))^(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[t*((BesselJ[\[Nu]- 1, t])^(2)- (BesselJ[\[Nu]+ 1, t])^(2)), {t, 0, x}, GenerateConditions->None] == 2*\[Nu]*(BesselJ[\[Nu], x])^(2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 15]
| [https://dlmf.nist.gov/10.22.E28 10.22.E28] || [[Item:Q3402|<math>\int_{0}^{x}t\left(\BesselJ{\nu-1}^{2}@{t}-\BesselJ{\nu+1}^{2}@{t}\right)\diff{t} = 2\nu\BesselJ{\nu}^{2}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}t\left(\BesselJ{\nu-1}^{2}@{t}-\BesselJ{\nu+1}^{2}@{t}\right)\diff{t} = 2\nu\BesselJ{\nu}^{2}@{x}</syntaxhighlight> || <math>\realpart@@{\nu} > 0, \realpart@@{((\nu-1)+k+1)} > 0, \realpart@@{((\nu+1)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(t*((BesselJ(nu - 1, t))^(2)- (BesselJ(nu + 1, t))^(2)), t = 0..x) = 2*nu*(BesselJ(nu, x))^(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[t*((BesselJ[\[Nu]- 1, t])^(2)- (BesselJ[\[Nu]+ 1, t])^(2)), {t, 0, x}, GenerateConditions->None] == 2*\[Nu]*(BesselJ[\[Nu], x])^(2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 15]
|-
|-  
| [https://dlmf.nist.gov/10.22.E29 10.22.E29] || [[Item:Q3403|<math>\int_{0}^{x}t\BesselJ{0}^{2}@{t}\diff{t} = \tfrac{1}{2}x^{2}\left(\BesselJ{0}^{2}@{x}+\BesselJ{1}^{2}@{x}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}t\BesselJ{0}^{2}@{t}\diff{t} = \tfrac{1}{2}x^{2}\left(\BesselJ{0}^{2}@{x}+\BesselJ{1}^{2}@{x}\right)</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0, \realpart@@{(1+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(t*(BesselJ(0, t))^(2), t = 0..x) = (1)/(2)*(x)^(2)*((BesselJ(0, x))^(2)+ (BesselJ(1, x))^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[t*(BesselJ[0, t])^(2), {t, 0, x}, GenerateConditions->None] == Divide[1,2]*(x)^(2)*((BesselJ[0, x])^(2)+ (BesselJ[1, x])^(2))</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 3]
| [https://dlmf.nist.gov/10.22.E29 10.22.E29] || [[Item:Q3403|<math>\int_{0}^{x}t\BesselJ{0}^{2}@{t}\diff{t} = \tfrac{1}{2}x^{2}\left(\BesselJ{0}^{2}@{x}+\BesselJ{1}^{2}@{x}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}t\BesselJ{0}^{2}@{t}\diff{t} = \tfrac{1}{2}x^{2}\left(\BesselJ{0}^{2}@{x}+\BesselJ{1}^{2}@{x}\right)</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0, \realpart@@{(1+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(t*(BesselJ(0, t))^(2), t = 0..x) = (1)/(2)*(x)^(2)*((BesselJ(0, x))^(2)+ (BesselJ(1, x))^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[t*(BesselJ[0, t])^(2), {t, 0, x}, GenerateConditions->None] == Divide[1,2]*(x)^(2)*((BesselJ[0, x])^(2)+ (BesselJ[1, x])^(2))</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 3]
|-
|-  
| [https://dlmf.nist.gov/10.22.E30 10.22.E30] || [[Item:Q3404|<math>\int_{0}^{x}\BesselJ{n}@{t}\BesselJ{n+1}@{t}\diff{t} = \tfrac{1}{2}\left(1-\BesselJ{0}^{2}@{x}\right)-\sum_{k=1}^{n}\BesselJ{k}^{2}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}\BesselJ{n}@{t}\BesselJ{n+1}@{t}\diff{t} = \tfrac{1}{2}\left(1-\BesselJ{0}^{2}@{x}\right)-\sum_{k=1}^{n}\BesselJ{k}^{2}@{x}</syntaxhighlight> || <math>\realpart@@{(n+k+1)} > 0, \realpart@@{((n+1)+k+1)} > 0, \realpart@@{(0+k+1)} > 0, \realpart@@{(k+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(n, t)*BesselJ(n + 1, t), t = 0..x) = (1)/(2)*(1 - (BesselJ(0, x))^(2))- sum((BesselJ(k, x))^(2), k = 1..n)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[n, t]*BesselJ[n + 1, t], {t, 0, x}, GenerateConditions->None] == Divide[1,2]*(1 - (BesselJ[0, x])^(2))- Sum[(BesselJ[k, x])^(2), {k, 1, n}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Successful [Tested: 3] || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[-0.6308420033135872, DifferenceRoot[Function[{, }
| [https://dlmf.nist.gov/10.22.E30 10.22.E30] || [[Item:Q3404|<math>\int_{0}^{x}\BesselJ{n}@{t}\BesselJ{n+1}@{t}\diff{t} = \tfrac{1}{2}\left(1-\BesselJ{0}^{2}@{x}\right)-\sum_{k=1}^{n}\BesselJ{k}^{2}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}\BesselJ{n}@{t}\BesselJ{n+1}@{t}\diff{t} = \tfrac{1}{2}\left(1-\BesselJ{0}^{2}@{x}\right)-\sum_{k=1}^{n}\BesselJ{k}^{2}@{x}</syntaxhighlight> || <math>\realpart@@{(n+k+1)} > 0, \realpart@@{((n+1)+k+1)} > 0, \realpart@@{(0+k+1)} > 0, \realpart@@{(k+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(n, t)*BesselJ(n + 1, t), t = 0..x) = (1)/(2)*(1 - (BesselJ(0, x))^(2))- sum((BesselJ(k, x))^(2), k = 1..n)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[n, t]*BesselJ[n + 1, t], {t, 0, x}, GenerateConditions->None] == Divide[1,2]*(1 - (BesselJ[0, x])^(2))- Sum[(BesselJ[k, x])^(2), {k, 1, n}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Successful [Tested: 3] || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[-0.6308420033135872, DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[Plus[2, ], Power[1.5, 2], []], Times[Plus[-8, Times[-20, ], Times[-16, Power[, 2]], Times[-4, Power[, 3]], Times[-1, Power[1.5, 2]]], [Plus[1, ]]], Times[Plus[3, Times[2, ]], Plus[8, Times[12, ], Times[4, Power[, 2]], Times[-1, Power[1.5, 2]]], [Plus[2, ]]], Times[Plus[-16, Times[-32, ], Times[-20, Power[, 2]], Times[-4, Power[, 3]], Power[1.5, 2]], [Plus[3, ]]], Times[Plus[1, ], Power[1.5, 2], [Plus[4, ]]]], 0], Equal[[0], 0], Equal[[1], Power[BesselJ[0, 1.5], 2]], Equal[[2], Plus[Power[BesselJ[0, 1.5], 2], Power[BesselJ[1, 1.5], 2]]], Equal[[3], Plus[Power[BesselJ[0, 1.5], 2], Power[BesselJ[1, 1.5], 2], Times[Power[1.5, -2], Power[Plus[Times[-1, 1.5, BesselJ[0, 1.5]], Times[2, BesselJ[1, 1.5]]], 2]]]]}]][4.0]], {Rule[n, 3], Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[-0.9403627636501156, DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[Plus[2, ], Power[1.5, 2], []], Times[Plus[-8, Times[-20, ], Times[-16, Power[, 2]], Times[-4, Power[, 3]], Times[-1, Power[1.5, 2]]], [Plus[1, ]]], Times[Plus[3, Times[2, ]], Plus[8, Times[12, ], Times[4, Power[, 2]], Times[-1, Power[1.5, 2]]], [Plus[2, ]]], Times[Plus[-16, Times[-32, ], Times[-20, Power[, 2]], Times[-4, Power[, 3]], Power[1.5, 2]], [Plus[3, ]]], Times[Plus[1, ], Power[1.5, 2], [Plus[4, ]]]], 0], Equal[[0], 0], Equal[[1], Power[BesselJ[0, 1.5], 2]], Equal[[2], Plus[Power[BesselJ[0, 1.5], 2], Power[BesselJ[1, 1.5], 2]]], Equal[[3], Plus[Power[BesselJ[0, 1.5], 2], Power[BesselJ[1, 1.5], 2], Times[Power[1.5, -2], Power[Plus[Times[-1, 1.5, BesselJ[0, 1.5]], Times[2, BesselJ[1, 1.5]]], 2]]]]}]][4.0]], {Rule[n, 3], Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[-0.9403627636501156, DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[Plus[2, ], Power[0.5, 2], []], Times[Plus[-8, Times[-20, ], Times[-16, Power[, 2]], Times[-4, Power[, 3]], Times[-1, Power[0.5, 2]]], [Plus[1, ]]], Times[Plus[3, Times[2, ]], Plus[8, Times[12, ], Times[4, Power[, 2]], Times[-1, Power[0.5, 2]]], [Plus[2, ]]], Times[Plus[-16, Times[-32, ], Times[-20, Power[, 2]], Times[-4, Power[, 3]], Power[0.5, 2]], [Plus[3, ]]], Times[Plus[1, ], Power[0.5, 2], [Plus[4, ]]]], 0], Equal[[0], 0], Equal[[1], Power[BesselJ[0, 0.5], 2]], Equal[[2], Plus[Power[BesselJ[0, 0.5], 2], Power[BesselJ[1, 0.5], 2]]], Equal[[3], Plus[Power[BesselJ[0, 0.5], 2], Power[BesselJ[1, 0.5], 2], Times[Power[0.5, -2], Power[Plus[Times[-1, 0.5, BesselJ[0, 0.5]], Times[2, BesselJ[1, 0.5]]], 2]]]]}]][4.0]], {Rule[n, 3], Rule[x, 0.5]}</syntaxhighlight><br></div></div>
Test Values: {Equal[Plus[Times[Plus[2, ], Power[0.5, 2], []], Times[Plus[-8, Times[-20, ], Times[-16, Power[, 2]], Times[-4, Power[, 3]], Times[-1, Power[0.5, 2]]], [Plus[1, ]]], Times[Plus[3, Times[2, ]], Plus[8, Times[12, ], Times[4, Power[, 2]], Times[-1, Power[0.5, 2]]], [Plus[2, ]]], Times[Plus[-16, Times[-32, ], Times[-20, Power[, 2]], Times[-4, Power[, 3]], Power[0.5, 2]], [Plus[3, ]]], Times[Plus[1, ], Power[0.5, 2], [Plus[4, ]]]], 0], Equal[[0], 0], Equal[[1], Power[BesselJ[0, 0.5], 2]], Equal[[2], Plus[Power[BesselJ[0, 0.5], 2], Power[BesselJ[1, 0.5], 2]]], Equal[[3], Plus[Power[BesselJ[0, 0.5], 2], Power[BesselJ[1, 0.5], 2], Times[Power[0.5, -2], Power[Plus[Times[-1, 0.5, BesselJ[0, 0.5]], Times[2, BesselJ[1, 0.5]]], 2]]]]}]][4.0]], {Rule[n, 3], Rule[x, 0.5]}</syntaxhighlight><br></div></div>
|-
|-  
| [https://dlmf.nist.gov/10.22.E30 10.22.E30] || [[Item:Q3404|<math>\tfrac{1}{2}\left(1-\BesselJ{0}^{2}@{x}\right)-\sum_{k=1}^{n}\BesselJ{k}^{2}@{x} = \sum_{k=n+1}^{\infty}\BesselJ{k}^{2}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tfrac{1}{2}\left(1-\BesselJ{0}^{2}@{x}\right)-\sum_{k=1}^{n}\BesselJ{k}^{2}@{x} = \sum_{k=n+1}^{\infty}\BesselJ{k}^{2}@{x}</syntaxhighlight> || <math>\realpart@@{(n+k+1)} > 0, \realpart@@{((n+1)+k+1)} > 0, \realpart@@{(0+k+1)} > 0, \realpart@@{(k+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>(1)/(2)*(1 - (BesselJ(0, x))^(2))- sum((BesselJ(k, x))^(2), k = 1..n) = sum((BesselJ(k, x))^(2), k = n + 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,2]*(1 - (BesselJ[0, x])^(2))- Sum[(BesselJ[k, x])^(2), {k, 1, n}, GenerateConditions->None] == Sum[(BesselJ[k, x])^(2), {k, n + 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[0.6309837827773054, Times[-1.0, NSum[Power[BesselJ[k, 1.5], 2]
| [https://dlmf.nist.gov/10.22.E30 10.22.E30] || [[Item:Q3404|<math>\tfrac{1}{2}\left(1-\BesselJ{0}^{2}@{x}\right)-\sum_{k=1}^{n}\BesselJ{k}^{2}@{x} = \sum_{k=n+1}^{\infty}\BesselJ{k}^{2}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tfrac{1}{2}\left(1-\BesselJ{0}^{2}@{x}\right)-\sum_{k=1}^{n}\BesselJ{k}^{2}@{x} = \sum_{k=n+1}^{\infty}\BesselJ{k}^{2}@{x}</syntaxhighlight> || <math>\realpart@@{(n+k+1)} > 0, \realpart@@{((n+1)+k+1)} > 0, \realpart@@{(0+k+1)} > 0, \realpart@@{(k+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>(1)/(2)*(1 - (BesselJ(0, x))^(2))- sum((BesselJ(k, x))^(2), k = 1..n) = sum((BesselJ(k, x))^(2), k = n + 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,2]*(1 - (BesselJ[0, x])^(2))- Sum[(BesselJ[k, x])^(2), {k, 1, n}, GenerateConditions->None] == Sum[(BesselJ[k, x])^(2), {k, n + 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[0.6309837827773054, Times[-1.0, NSum[Power[BesselJ[k, 1.5], 2]
Test Values: {k, 4, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], Times[-1.0, DifferenceRoot[Function[{, }, {Equal[Plus[Times[Plus[2, ], Power[1.5, 2], []], Times[Plus[-8, Times[-20, ], Times[-16, Power[, 2]], Times[-4, Power[, 3]], Times[-1, Power[1.5, 2]]], [Plus[1, ]]], Times[Plus[3, Times[2, ]], Plus[8, Times[12, ], Times[4, Power[, 2]], Times[-1, Power[1.5, 2]]], [Plus[2, ]]], Times[Plus[-16, Times[-32, ], Times[-20, Power[, 2]], Times[-4, Power[, 3]], Power[1.5, 2]], [Plus[3, ]]], Times[Plus[1, ], Power[1.5, 2], [Plus[4, ]]]], 0], Equal[[0], 0], Equal[[1], Power[BesselJ[0, 1.5], 2]], Equal[[2], Plus[Power[BesselJ[0, 1.5], 2], Power[BesselJ[1, 1.5], 2]]], Equal[[3], Plus[Power[BesselJ[0, 1.5], 2], Power[BesselJ[1, 1.5], 2], Times[Power[1.5, -2], Power[Plus[Times[-1, 1.5, BesselJ[0, 1.5]], Times[2, BesselJ[1, 1.5]]], 2]]]]}]][4.0]]], {Ru<syntaxhighlight lang=mathematica>Result: Plus[0.9403627895513045, Times[-1.0, NSum[Power[BesselJ[k, 0.5], 2]
Test Values: {k, 4, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], Times[-1.0, DifferenceRoot[Function[{, }, {Equal[Plus[Times[Plus[2, ], Power[1.5, 2], []], Times[Plus[-8, Times[-20, ], Times[-16, Power[, 2]], Times[-4, Power[, 3]], Times[-1, Power[1.5, 2]]], [Plus[1, ]]], Times[Plus[3, Times[2, ]], Plus[8, Times[12, ], Times[4, Power[, 2]], Times[-1, Power[1.5, 2]]], [Plus[2, ]]], Times[Plus[-16, Times[-32, ], Times[-20, Power[, 2]], Times[-4, Power[, 3]], Power[1.5, 2]], [Plus[3, ]]], Times[Plus[1, ], Power[1.5, 2], [Plus[4, ]]]], 0], Equal[[0], 0], Equal[[1], Power[BesselJ[0, 1.5], 2]], Equal[[2], Plus[Power[BesselJ[0, 1.5], 2], Power[BesselJ[1, 1.5], 2]]], Equal[[3], Plus[Power[BesselJ[0, 1.5], 2], Power[BesselJ[1, 1.5], 2], Times[Power[1.5, -2], Power[Plus[Times[-1, 1.5, BesselJ[0, 1.5]], Times[2, BesselJ[1, 1.5]]], 2]]]]}]][4.0]]], {Ru<syntaxhighlight lang=mathematica>Result: Plus[0.9403627895513045, Times[-1.0, NSum[Power[BesselJ[k, 0.5], 2]
Test Values: {k, 4, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], Times[-1.0, DifferenceRoot[Function[{, }, {Equal[Plus[Times[Plus[2, ], Power[0.5, 2], []], Times[Plus[-8, Times[-20, ], Times[-16, Power[, 2]], Times[-4, Power[, 3]], Times[-1, Power[0.5, 2]]], [Plus[1, ]]], Times[Plus[3, Times[2, ]], Plus[8, Times[12, ], Times[4, Power[, 2]], Times[-1, Power[0.5, 2]]], [Plus[2, ]]], Times[Plus[-16, Times[-32, ], Times[-20, Power[, 2]], Times[-4, Power[, 3]], Power[0.5, 2]], [Plus[3, ]]], Times[Plus[1, ], Power[0.5, 2], [Plus[4, ]]]], 0], Equal[[0], 0], Equal[[1], Power[BesselJ[0, 0.5], 2]], Equal[[2], Plus[Power[BesselJ[0, 0.5], 2], Power[BesselJ[1, 0.5], 2]]], Equal[[3], Plus[Power[BesselJ[0, 0.5], 2], Power[BesselJ[1, 0.5], 2], Times[Power[0.5, -2], Power[Plus[Times[-1, 0.5, BesselJ[0, 0.5]], Times[2, BesselJ[1, 0.5]]], 2]]]]}]][4.0]]], {Rule[n, 3], Rule[x, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {k, 4, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], Times[-1.0, DifferenceRoot[Function[{, }, {Equal[Plus[Times[Plus[2, ], Power[0.5, 2], []], Times[Plus[-8, Times[-20, ], Times[-16, Power[, 2]], Times[-4, Power[, 3]], Times[-1, Power[0.5, 2]]], [Plus[1, ]]], Times[Plus[3, Times[2, ]], Plus[8, Times[12, ], Times[4, Power[, 2]], Times[-1, Power[0.5, 2]]], [Plus[2, ]]], Times[Plus[-16, Times[-32, ], Times[-20, Power[, 2]], Times[-4, Power[, 3]], Power[0.5, 2]], [Plus[3, ]]], Times[Plus[1, ], Power[0.5, 2], [Plus[4, ]]]], 0], Equal[[0], 0], Equal[[1], Power[BesselJ[0, 0.5], 2]], Equal[[2], Plus[Power[BesselJ[0, 0.5], 2], Power[BesselJ[1, 0.5], 2]]], Equal[[3], Plus[Power[BesselJ[0, 0.5], 2], Power[BesselJ[1, 0.5], 2], Times[Power[0.5, -2], Power[Plus[Times[-1, 0.5, BesselJ[0, 0.5]], Times[2, BesselJ[1, 0.5]]], 2]]]]}]][4.0]]], {Rule[n, 3], Rule[x, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
|-  
| [https://dlmf.nist.gov/10.22.E31 10.22.E31] || [[Item:Q3405|<math>\int_{0}^{x}\BesselJ{\mu}@{t}\BesselJ{\nu}@{x-t}\diff{t} = 2\sum_{k=0}^{\infty}(-1)^{k}\BesselJ{\mu+\nu+2k+1}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}\BesselJ{\mu}@{t}\BesselJ{\nu}@{x-t}\diff{t} = 2\sum_{k=0}^{\infty}(-1)^{k}\BesselJ{\mu+\nu+2k+1}@{x}</syntaxhighlight> || <math>\realpart@@{\mu} > -1, \realpart@@{\nu} > -1, \realpart@@{((\mu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((\mu+\nu+2k+1)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(mu, t)*BesselJ(nu, x - t), t = 0..x) = 2*sum((- 1)^(k)* BesselJ(mu + nu + 2*k + 1, x), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Mu], t]*BesselJ[\[Nu], x - t], {t, 0, x}, GenerateConditions->None] == 2*Sum[(- 1)^(k)* BesselJ[\[Mu]+ \[Nu]+ 2*k + 1, x], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Error || Failure || - || Skip - No test values generated
| [https://dlmf.nist.gov/10.22.E31 10.22.E31] || [[Item:Q3405|<math>\int_{0}^{x}\BesselJ{\mu}@{t}\BesselJ{\nu}@{x-t}\diff{t} = 2\sum_{k=0}^{\infty}(-1)^{k}\BesselJ{\mu+\nu+2k+1}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}\BesselJ{\mu}@{t}\BesselJ{\nu}@{x-t}\diff{t} = 2\sum_{k=0}^{\infty}(-1)^{k}\BesselJ{\mu+\nu+2k+1}@{x}</syntaxhighlight> || <math>\realpart@@{\mu} > -1, \realpart@@{\nu} > -1, \realpart@@{((\mu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((\mu+\nu+2k+1)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(mu, t)*BesselJ(nu, x - t), t = 0..x) = 2*sum((- 1)^(k)* BesselJ(mu + nu + 2*k + 1, x), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Mu], t]*BesselJ[\[Nu], x - t], {t, 0, x}, GenerateConditions->None] == 2*Sum[(- 1)^(k)* BesselJ[\[Mu]+ \[Nu]+ 2*k + 1, x], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Error || Failure || - || Skip - No test values generated
|-
|-  
| [https://dlmf.nist.gov/10.22.E32 10.22.E32] || [[Item:Q3406|<math>\int_{0}^{x}\BesselJ{\nu}@{t}\BesselJ{1-\nu}@{x-t}\diff{t} = \BesselJ{0}@{x}-\cos@@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}\BesselJ{\nu}@{t}\BesselJ{1-\nu}@{x-t}\diff{t} = \BesselJ{0}@{x}-\cos@@{x}</syntaxhighlight> || <math>-1 < \realpart@@{\nu}, \realpart@@{\nu} < 2, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((1-\nu)+k+1)} > 0, \realpart@@{(0+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(nu, t)*BesselJ(1 - nu, x - t), t = 0..x) = BesselJ(0, x)- cos(x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Nu], t]*BesselJ[1 - \[Nu], x - t], {t, 0, x}, GenerateConditions->None] == BesselJ[0, x]- Cos[x]</syntaxhighlight> || Failure || Failure || Manual Skip! || Skipped - Because timed out
| [https://dlmf.nist.gov/10.22.E32 10.22.E32] || [[Item:Q3406|<math>\int_{0}^{x}\BesselJ{\nu}@{t}\BesselJ{1-\nu}@{x-t}\diff{t} = \BesselJ{0}@{x}-\cos@@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}\BesselJ{\nu}@{t}\BesselJ{1-\nu}@{x-t}\diff{t} = \BesselJ{0}@{x}-\cos@@{x}</syntaxhighlight> || <math>-1 < \realpart@@{\nu}, \realpart@@{\nu} < 2, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((1-\nu)+k+1)} > 0, \realpart@@{(0+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(nu, t)*BesselJ(1 - nu, x - t), t = 0..x) = BesselJ(0, x)- cos(x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Nu], t]*BesselJ[1 - \[Nu], x - t], {t, 0, x}, GenerateConditions->None] == BesselJ[0, x]- Cos[x]</syntaxhighlight> || Failure || Failure || Manual Skip! || Skipped - Because timed out
|-
|-  
| [https://dlmf.nist.gov/10.22.E33 10.22.E33] || [[Item:Q3407|<math>\int_{0}^{x}\BesselJ{\nu}@{t}\BesselJ{-\nu}@{x-t}\diff{t} = \sin@@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}\BesselJ{\nu}@{t}\BesselJ{-\nu}@{x-t}\diff{t} = \sin@@{x}</syntaxhighlight> || <math>|\realpart@@{\nu}| < 1, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(nu, t)*BesselJ(- nu, x - t), t = 0..x) = sin(x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Nu], t]*BesselJ[- \[Nu], x - t], {t, 0, x}, GenerateConditions->None] == Sin[x]</syntaxhighlight> || Failure || Failure || Manual Skip! || Skipped - Because timed out
| [https://dlmf.nist.gov/10.22.E33 10.22.E33] || [[Item:Q3407|<math>\int_{0}^{x}\BesselJ{\nu}@{t}\BesselJ{-\nu}@{x-t}\diff{t} = \sin@@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}\BesselJ{\nu}@{t}\BesselJ{-\nu}@{x-t}\diff{t} = \sin@@{x}</syntaxhighlight> || <math>|\realpart@@{\nu}| < 1, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(BesselJ(nu, t)*BesselJ(- nu, x - t), t = 0..x) = sin(x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[BesselJ[\[Nu], t]*BesselJ[- \[Nu], x - t], {t, 0, x}, GenerateConditions->None] == Sin[x]</syntaxhighlight> || Failure || Failure || Manual Skip! || Skipped - Because timed out
|-
|-  
| [https://dlmf.nist.gov/10.22.E34 10.22.E34] || [[Item:Q3408|<math>\int_{0}^{x}t^{-1}\BesselJ{\mu}@{t}\BesselJ{\nu}@{x-t}\diff{t} = \frac{\BesselJ{\mu+\nu}@{x}}{\mu}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}t^{-1}\BesselJ{\mu}@{t}\BesselJ{\nu}@{x-t}\diff{t} = \frac{\BesselJ{\mu+\nu}@{x}}{\mu}</syntaxhighlight> || <math>\realpart@@{\mu} > 0, \realpart@@{\nu} > -1, \realpart@@{((\mu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((\mu+\nu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int((t)^(- 1)* BesselJ(mu, t)*BesselJ(nu, x - t), t = 0..x) = (BesselJ(mu + nu, x))/(mu)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(t)^(- 1)* BesselJ[\[Mu], t]*BesselJ[\[Nu], x - t], {t, 0, x}, GenerateConditions->None] == Divide[BesselJ[\[Mu]+ \[Nu], x],\[Mu]]</syntaxhighlight> || Failure || Failure || Manual Skip! || Skip - No test values generated
| [https://dlmf.nist.gov/10.22.E34 10.22.E34] || [[Item:Q3408|<math>\int_{0}^{x}t^{-1}\BesselJ{\mu}@{t}\BesselJ{\nu}@{x-t}\diff{t} = \frac{\BesselJ{\mu+\nu}@{x}}{\mu}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}t^{-1}\BesselJ{\mu}@{t}\BesselJ{\nu}@{x-t}\diff{t} = \frac{\BesselJ{\mu+\nu}@{x}}{\mu}</syntaxhighlight> || <math>\realpart@@{\mu} > 0, \realpart@@{\nu} > -1, \realpart@@{((\mu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((\mu+\nu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int((t)^(- 1)* BesselJ(mu, t)*BesselJ(nu, x - t), t = 0..x) = (BesselJ(mu + nu, x))/(mu)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(t)^(- 1)* BesselJ[\[Mu], t]*BesselJ[\[Nu], x - t], {t, 0, x}, GenerateConditions->None] == Divide[BesselJ[\[Mu]+ \[Nu], x],\[Mu]]</syntaxhighlight> || Failure || Failure || Manual Skip! || Skip - No test values generated
|-
|-  
| [https://dlmf.nist.gov/10.22.E35 10.22.E35] || [[Item:Q3409|<math>\int_{0}^{x}\frac{\BesselJ{\mu}@{t}\BesselJ{\nu}@{x-t}\diff{t}}{t(x-t)} = \frac{(\mu+\nu)\BesselJ{\mu+\nu}@{x}}{\mu\nu x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}\frac{\BesselJ{\mu}@{t}\BesselJ{\nu}@{x-t}\diff{t}}{t(x-t)} = \frac{(\mu+\nu)\BesselJ{\mu+\nu}@{x}}{\mu\nu x}</syntaxhighlight> || <math>\realpart@@{\mu} > 0, \realpart@@{\nu} > 0, \realpart@@{((\mu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((\mu+\nu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int((BesselJ(mu, t)*BesselJ(nu, x - t))/(t*(x - t)), t = 0..x) = ((mu + nu)*BesselJ(mu + nu, x))/(mu*nu*x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[BesselJ[\[Mu], t]*BesselJ[\[Nu], x - t],t*(x - t)], {t, 0, x}, GenerateConditions->None] == Divide[(\[Mu]+ \[Nu])*BesselJ[\[Mu]+ \[Nu], x],\[Mu]*\[Nu]*x]</syntaxhighlight> || Error || Failure || - || Skip - No test values generated
| [https://dlmf.nist.gov/10.22.E35 10.22.E35] || [[Item:Q3409|<math>\int_{0}^{x}\frac{\BesselJ{\mu}@{t}\BesselJ{\nu}@{x-t}\diff{t}}{t(x-t)} = \frac{(\mu+\nu)\BesselJ{\mu+\nu}@{x}}{\mu\nu x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}\frac{\BesselJ{\mu}@{t}\BesselJ{\nu}@{x-t}\diff{t}}{t(x-t)} = \frac{(\mu+\nu)\BesselJ{\mu+\nu}@{x}}{\mu\nu x}</syntaxhighlight> || <math>\realpart@@{\mu} > 0, \realpart@@{\nu} > 0, \realpart@@{((\mu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((\mu+\nu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int((BesselJ(mu, t)*BesselJ(nu, x - t))/(t*(x - t)), t = 0..x) = ((mu + nu)*BesselJ(mu + nu, x))/(mu*nu*x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[BesselJ[\[Mu], t]*BesselJ[\[Nu], x - t],t*(x - t)], {t, 0, x}, GenerateConditions->None] == Divide[(\[Mu]+ \[Nu])*BesselJ[\[Mu]+ \[Nu], x],\[Mu]*\[Nu]*x]</syntaxhighlight> || Error || Failure || - || Skip - No test values generated
|-
|-  
| [https://dlmf.nist.gov/10.22.E36 10.22.E36] || [[Item:Q3410|<math>\frac{1}{\EulerGamma@{\alpha}}\int_{0}^{x}(x-t)^{\alpha-1}\BesselJ{\nu}@{t}\diff{t} = 2^{\alpha}\sum_{k=0}^{\infty}\frac{(\alpha)_{k}}{k!}\BesselJ{\nu+\alpha+2k}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1}{\EulerGamma@{\alpha}}\int_{0}^{x}(x-t)^{\alpha-1}\BesselJ{\nu}@{t}\diff{t} = 2^{\alpha}\sum_{k=0}^{\infty}\frac{(\alpha)_{k}}{k!}\BesselJ{\nu+\alpha+2k}@{x}</syntaxhighlight> || <math>\realpart@@{\alpha} > 0, \realpart@@{\nu} \geq 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((\nu+\alpha+2k)+k+1)} > 0, \realpart@@{(\alpha)} > 0</math> || <syntaxhighlight lang=mathematica>(1)/(GAMMA(alpha))*int((x - t)^(alpha - 1)* BesselJ(nu, t), t = 0..x) = (2)^(alpha)* sum((alpha[k])/(factorial(k))*BesselJ(nu + alpha + 2*k, x), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,Gamma[\[Alpha]]]*Integrate[(x - t)^(\[Alpha]- 1)* BesselJ[\[Nu], t], {t, 0, x}, GenerateConditions->None] == (2)^\[Alpha]* Sum[Divide[Subscript[\[Alpha], k],(k)!]*BesselJ[\[Nu]+ \[Alpha]+ 2*k, x], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Error || Failure || - || Skip - No test values generated
| [https://dlmf.nist.gov/10.22.E36 10.22.E36] || [[Item:Q3410|<math>\frac{1}{\EulerGamma@{\alpha}}\int_{0}^{x}(x-t)^{\alpha-1}\BesselJ{\nu}@{t}\diff{t} = 2^{\alpha}\sum_{k=0}^{\infty}\frac{(\alpha)_{k}}{k!}\BesselJ{\nu+\alpha+2k}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1}{\EulerGamma@{\alpha}}\int_{0}^{x}(x-t)^{\alpha-1}\BesselJ{\nu}@{t}\diff{t} = 2^{\alpha}\sum_{k=0}^{\infty}\frac{(\alpha)_{k}}{k!}\BesselJ{\nu+\alpha+2k}@{x}</syntaxhighlight> || <math>\realpart@@{\alpha} > 0, \realpart@@{\nu} \geq 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((\nu+\alpha+2k)+k+1)} > 0, \realpart@@{(\alpha)} > 0</math> || <syntaxhighlight lang=mathematica>(1)/(GAMMA(alpha))*int((x - t)^(alpha - 1)* BesselJ(nu, t), t = 0..x) = (2)^(alpha)* sum((alpha[k])/(factorial(k))*BesselJ(nu + alpha + 2*k, x), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,Gamma[\[Alpha]]]*Integrate[(x - t)^(\[Alpha]- 1)* BesselJ[\[Nu], t], {t, 0, x}, GenerateConditions->None] == (2)^\[Alpha]* Sum[Divide[Subscript[\[Alpha], k],(k)!]*BesselJ[\[Nu]+ \[Alpha]+ 2*k, x], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Error || Failure || - || Skip - No test values generated
|-
|-  
| [https://dlmf.nist.gov/10.22.E37 10.22.E37] || [[Item:Q3411|<math>\int_{0}^{1}t\BesselJ{\nu}@{j_{\nu,\ell}t}\BesselJ{\nu}@{j_{\nu,m}t}\diff{t} = \tfrac{1}{2}\left(\BesselJ{\nu}'@{j_{\nu,\ell}}\right)^{2}\Kroneckerdelta{\ell}{m}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{1}t\BesselJ{\nu}@{j_{\nu,\ell}t}\BesselJ{\nu}@{j_{\nu,m}t}\diff{t} = \tfrac{1}{2}\left(\BesselJ{\nu}'@{j_{\nu,\ell}}\right)^{2}\Kroneckerdelta{\ell}{m}</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(t*BesselJ(nu, j[nu , ell]*t)*BesselJ(nu, j[nu , m]*t), t = 0..1) = (1)/(2)*(diff( BesselJ(nu, j[nu , ell]), j[nu , ell]$(1) ))^(2)* KroneckerDelta[ell, m]</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[t*BesselJ[\[Nu], Subscript[j, \[Nu], \[ScriptL]]*t]*BesselJ[\[Nu], Subscript[j, \[Nu], m]*t], {t, 0, 1}, GenerateConditions->None] == Divide[1,2]*(D[BesselJ[\[Nu], Subscript[j, \[Nu], \[ScriptL]]], {Subscript[j, \[Nu], \[ScriptL]], 1}])^(2)* KroneckerDelta[\[ScriptL], m]</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
| [https://dlmf.nist.gov/10.22.E37 10.22.E37] || [[Item:Q3411|<math>\int_{0}^{1}t\BesselJ{\nu}@{j_{\nu,\ell}t}\BesselJ{\nu}@{j_{\nu,m}t}\diff{t} = \tfrac{1}{2}\left(\BesselJ{\nu}'@{j_{\nu,\ell}}\right)^{2}\Kroneckerdelta{\ell}{m}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{1}t\BesselJ{\nu}@{j_{\nu,\ell}t}\BesselJ{\nu}@{j_{\nu,m}t}\diff{t} = \tfrac{1}{2}\left(\BesselJ{\nu}'@{j_{\nu,\ell}}\right)^{2}\Kroneckerdelta{\ell}{m}</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(t*BesselJ(nu, j[nu , ell]*t)*BesselJ(nu, j[nu , m]*t), t = 0..1) = (1)/(2)*(diff( BesselJ(nu, j[nu , ell]), j[nu , ell]$(1) ))^(2)* KroneckerDelta[ell, m]</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[t*BesselJ[\[Nu], Subscript[j, \[Nu], \[ScriptL]]*t]*BesselJ[\[Nu], Subscript[j, \[Nu], m]*t], {t, 0, 1}, GenerateConditions->None] == Divide[1,2]*(D[BesselJ[\[Nu], Subscript[j, \[Nu], \[ScriptL]]], {Subscript[j, \[Nu], \[ScriptL]], 1}])^(2)* KroneckerDelta[\[ScriptL], m]</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[m, 1], Rule[ℓ, 1], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[j, ν, m], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[j, ν, ℓ], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[m, 1], Rule[ℓ, 1], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[j, ν, m], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[j, ν, ℓ], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate

Latest revision as of 06:59, 25 May 2021

DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
10.2.E1 z 2 d 2 w d z 2 + z d w d z + ( z 2 - ν 2 ) w = 0 superscript 𝑧 2 derivative 𝑤 𝑧 2 𝑧 derivative 𝑤 𝑧 superscript 𝑧 2 superscript 𝜈 2 𝑤 0 {\displaystyle{\displaystyle z^{2}\frac{{\mathrm{d}}^{2}w}{{\mathrm{d}z}^{2}}+% z\frac{\mathrm{d}w}{\mathrm{d}z}+(z^{2}-\nu^{2})w=0}}
z^{2}\deriv[2]{w}{z}+z\deriv{w}{z}+(z^{2}-\nu^{2})w = 0

(z)^(2)* diff(w, [z$(2)])+ z*diff(w, z)+((z)^(2)- (nu)^(2))*w = 0
(z)^(2)* D[w, {z, 2}]+ z*D[w, z]+((z)^(2)- \[Nu]^(2))*w == 0
Failure Failure
Failed [217 / 300]
Result: -.8660254040e-9-2.000000001*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}

Result: -.8660254040e-9-2.000000001*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}

... skip entries to safe data
Failed [240 / 300]
Result: Complex[1.1102230246251565*^-16, 2.0]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

Result: Complex[1.1102230246251565*^-16, 2.0]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}

... skip entries to safe data
10.2.E2 J ν ( z ) = ( 1 2 z ) ν k = 0 ( - 1 ) k ( 1 4 z 2 ) k k ! Γ ( ν + k + 1 ) Bessel-J 𝜈 𝑧 superscript 1 2 𝑧 𝜈 superscript subscript 𝑘 0 superscript 1 𝑘 superscript 1 4 superscript 𝑧 2 𝑘 𝑘 Euler-Gamma 𝜈 𝑘 1 {\displaystyle{\displaystyle J_{\nu}\left(z\right)=(\tfrac{1}{2}z)^{\nu}\sum_{% k=0}^{\infty}(-1)^{k}\frac{(\tfrac{1}{4}z^{2})^{k}}{k!\Gamma\left(\nu+k+1% \right)}}}
\BesselJ{\nu}@{z} = (\tfrac{1}{2}z)^{\nu}\sum_{k=0}^{\infty}(-1)^{k}\frac{(\tfrac{1}{4}z^{2})^{k}}{k!\EulerGamma@{\nu+k+1}}
( ν + k + 1 ) > 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0}}
BesselJ(nu, z) = ((1)/(2)*z)^(nu)* sum((- 1)^(k)*(((1)/(4)*(z)^(2))^(k))/(factorial(k)*GAMMA(nu + k + 1)), k = 0..infinity)
BesselJ[\[Nu], z] == (Divide[1,2]*z)^\[Nu]* Sum[(- 1)^(k)*Divide[(Divide[1,4]*(z)^(2))^(k),(k)!*Gamma[\[Nu]+ k + 1]], {k, 0, Infinity}, GenerateConditions->None]
Successful Successful - Successful [Tested: 70]
10.2.E3 Y ν ( z ) = J ν ( z ) cos ( ν π ) - J - ν ( z ) sin ( ν π ) Bessel-Y-Weber 𝜈 𝑧 Bessel-J 𝜈 𝑧 𝜈 𝜋 Bessel-J 𝜈 𝑧 𝜈 𝜋 {\displaystyle{\displaystyle Y_{\nu}\left(z\right)=\frac{J_{\nu}\left(z\right)% \cos\left(\nu\pi\right)-J_{-\nu}\left(z\right)}{\sin\left(\nu\pi\right)}}}
\BesselY{\nu}@{z} = \frac{\BesselJ{\nu}@{z}\cos@{\nu\pi}-\BesselJ{-\nu}@{z}}{\sin@{\nu\pi}}
( ν + k + 1 ) > 0 , ( ( - ν ) + k + 1 ) > 0 formulae-sequence 𝜈 𝑘 1 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0,\Re((-\nu)+k+1)>0}}
BesselY(nu, z) = (BesselJ(nu, z)*cos(nu*Pi)- BesselJ(- nu, z))/(sin(nu*Pi))
BesselY[\[Nu], z] == Divide[BesselJ[\[Nu], z]*Cos[\[Nu]*Pi]- BesselJ[- \[Nu], z],Sin[\[Nu]*Pi]]
Successful Successful -
Failed [14 / 70]
Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]}

Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]}

... skip entries to safe data
10.4#Ex1 J - n ( z ) = ( - 1 ) n J n ( z ) Bessel-J 𝑛 𝑧 superscript 1 𝑛 Bessel-J 𝑛 𝑧 {\displaystyle{\displaystyle J_{-n}\left(z\right)=(-1)^{n}J_{n}\left(z\right)}}
\BesselJ{-n}@{z} = (-1)^{n}\BesselJ{n}@{z}
( ( - n ) + k + 1 ) > 0 , ( n + k + 1 ) > 0 formulae-sequence 𝑛 𝑘 1 0 𝑛 𝑘 1 0 {\displaystyle{\displaystyle\Re((-n)+k+1)>0,\Re(n+k+1)>0}}
BesselJ(- n, z) = (- 1)^(n)* BesselJ(n, z)
BesselJ[- n, z] == (- 1)^(n)* BesselJ[n, z]
Failure Failure Successful [Tested: 21] Successful [Tested: 21]
10.4#Ex2 Y - n ( z ) = ( - 1 ) n Y n ( z ) Bessel-Y-Weber 𝑛 𝑧 superscript 1 𝑛 Bessel-Y-Weber 𝑛 𝑧 {\displaystyle{\displaystyle Y_{-n}\left(z\right)=(-1)^{n}Y_{n}\left(z\right)}}
\BesselY{-n}@{z} = (-1)^{n}\BesselY{n}@{z}
( ( - n ) + k + 1 ) > 0 , ( n + k + 1 ) > 0 , ( ( - ( - n ) ) + k + 1 ) > 0 formulae-sequence 𝑛 𝑘 1 0 formulae-sequence 𝑛 𝑘 1 0 𝑛 𝑘 1 0 {\displaystyle{\displaystyle\Re((-n)+k+1)>0,\Re(n+k+1)>0,\Re((-(-n))+k+1)>0}}
BesselY(- n, z) = (- 1)^(n)* BesselY(n, z)
BesselY[- n, z] == (- 1)^(n)* BesselY[n, z]
Failure Failure Successful [Tested: 21] Successful [Tested: 21]
10.4#Ex3 H - n ( 1 ) ( z ) = ( - 1 ) n H n ( 1 ) ( z ) Hankel-H-1-Bessel-third-kind 𝑛 𝑧 superscript 1 𝑛 Hankel-H-1-Bessel-third-kind 𝑛 𝑧 {\displaystyle{\displaystyle{H^{(1)}_{-n}}\left(z\right)=(-1)^{n}{H^{(1)}_{n}}% \left(z\right)}}
\HankelH{1}{-n}@{z} = (-1)^{n}\HankelH{1}{n}@{z}

HankelH1(- n, z) = (- 1)^(n)* HankelH1(n, z)
HankelH1[- n, z] == (- 1)^(n)* HankelH1[n, z]
Failure Failure Successful [Tested: 21] Successful [Tested: 21]
10.4#Ex4 H - n ( 2 ) ( z ) = ( - 1 ) n H n ( 2 ) ( z ) Hankel-H-2-Bessel-third-kind 𝑛 𝑧 superscript 1 𝑛 Hankel-H-2-Bessel-third-kind 𝑛 𝑧 {\displaystyle{\displaystyle{H^{(2)}_{-n}}\left(z\right)=(-1)^{n}{H^{(2)}_{n}}% \left(z\right)}}
\HankelH{2}{-n}@{z} = (-1)^{n}\HankelH{2}{n}@{z}

HankelH2(- n, z) = (- 1)^(n)* HankelH2(n, z)
HankelH2[- n, z] == (- 1)^(n)* HankelH2[n, z]
Failure Failure Successful [Tested: 21] Successful [Tested: 21]
10.4#Ex5 H ν ( 1 ) ( z ) = J ν ( z ) + i Y ν ( z ) Hankel-H-1-Bessel-third-kind 𝜈 𝑧 Bessel-J 𝜈 𝑧 𝑖 Bessel-Y-Weber 𝜈 𝑧 {\displaystyle{\displaystyle{H^{(1)}_{\nu}}\left(z\right)=J_{\nu}\left(z\right% )+iY_{\nu}\left(z\right)}}
\HankelH{1}{\nu}@{z} = \BesselJ{\nu}@{z}+i\BesselY{\nu}@{z}
( ν + k + 1 ) > 0 , ( ( - ν ) + k + 1 ) > 0 formulae-sequence 𝜈 𝑘 1 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0,\Re((-\nu)+k+1)>0}}
HankelH1(nu, z) = BesselJ(nu, z)+ I*BesselY(nu, z)
HankelH1[\[Nu], z] == BesselJ[\[Nu], z]+ I*BesselY[\[Nu], z]
Successful Successful - Successful [Tested: 70]
10.4#Ex6 H ν ( 2 ) ( z ) = J ν ( z ) - i Y ν ( z ) Hankel-H-2-Bessel-third-kind 𝜈 𝑧 Bessel-J 𝜈 𝑧 𝑖 Bessel-Y-Weber 𝜈 𝑧 {\displaystyle{\displaystyle{H^{(2)}_{\nu}}\left(z\right)=J_{\nu}\left(z\right% )-iY_{\nu}\left(z\right)}}
\HankelH{2}{\nu}@{z} = \BesselJ{\nu}@{z}-i\BesselY{\nu}@{z}
( ν + k + 1 ) > 0 , ( ( - ν ) + k + 1 ) > 0 formulae-sequence 𝜈 𝑘 1 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0,\Re((-\nu)+k+1)>0}}
HankelH2(nu, z) = BesselJ(nu, z)- I*BesselY(nu, z)
HankelH2[\[Nu], z] == BesselJ[\[Nu], z]- I*BesselY[\[Nu], z]
Successful Successful - Successful [Tested: 70]
10.4#Ex7 J ν ( z ) = 1 2 ( H ν ( 1 ) ( z ) + H ν ( 2 ) ( z ) ) Bessel-J 𝜈 𝑧 1 2 Hankel-H-1-Bessel-third-kind 𝜈 𝑧 Hankel-H-2-Bessel-third-kind 𝜈 𝑧 {\displaystyle{\displaystyle J_{\nu}\left(z\right)=\frac{1}{2}\left({H^{(1)}_{% \nu}}\left(z\right)+{H^{(2)}_{\nu}}\left(z\right)\right)}}
\BesselJ{\nu}@{z} = \frac{1}{2}\left(\HankelH{1}{\nu}@{z}+\HankelH{2}{\nu}@{z}\right)
( ν + k + 1 ) > 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0}}
BesselJ(nu, z) = (1)/(2)*(HankelH1(nu, z)+ HankelH2(nu, z))
BesselJ[\[Nu], z] == Divide[1,2]*(HankelH1[\[Nu], z]+ HankelH2[\[Nu], z])
Successful Successful - Successful [Tested: 70]
10.4#Ex8 Y ν ( z ) = 1 2 i ( H ν ( 1 ) ( z ) - H ν ( 2 ) ( z ) ) Bessel-Y-Weber 𝜈 𝑧 1 2 𝑖 Hankel-H-1-Bessel-third-kind 𝜈 𝑧 Hankel-H-2-Bessel-third-kind 𝜈 𝑧 {\displaystyle{\displaystyle Y_{\nu}\left(z\right)=\frac{1}{2i}\left({H^{(1)}_% {\nu}}\left(z\right)-{H^{(2)}_{\nu}}\left(z\right)\right)}}
\BesselY{\nu}@{z} = \frac{1}{2i}\left(\HankelH{1}{\nu}@{z}-\HankelH{2}{\nu}@{z}\right)
( ν + k + 1 ) > 0 , ( ( - ν ) + k + 1 ) > 0 formulae-sequence 𝜈 𝑘 1 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0,\Re((-\nu)+k+1)>0}}
BesselY(nu, z) = (1)/(2*I)*(HankelH1(nu, z)- HankelH2(nu, z))
BesselY[\[Nu], z] == Divide[1,2*I]*(HankelH1[\[Nu], z]- HankelH2[\[Nu], z])
Successful Successful - Successful [Tested: 70]
10.4.E5 J ν ( z ) = csc ( ν π ) ( Y - ν ( z ) - Y ν ( z ) cos ( ν π ) ) Bessel-J 𝜈 𝑧 𝜈 𝜋 Bessel-Y-Weber 𝜈 𝑧 Bessel-Y-Weber 𝜈 𝑧 𝜈 𝜋 {\displaystyle{\displaystyle J_{\nu}\left(z\right)=\csc\left(\nu\pi\right)% \left(Y_{-\nu}\left(z\right)-Y_{\nu}\left(z\right)\cos\left(\nu\pi\right)% \right)}}
\BesselJ{\nu}@{z} = \csc@{\nu\pi}\left(\BesselY{-\nu}@{z}-\BesselY{\nu}@{z}\cos@{\nu\pi}\right)
( ν + k + 1 ) > 0 , ( ( - ν ) + k + 1 ) > 0 , ( ( - ( - ν ) ) + k + 1 ) > 0 formulae-sequence 𝜈 𝑘 1 0 formulae-sequence 𝜈 𝑘 1 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0,\Re((-\nu)+k+1)>0,\Re((-(-\nu))+k+1% )>0}}
BesselJ(nu, z) = csc(nu*Pi)*(BesselY(- nu, z)- BesselY(nu, z)*cos(nu*Pi))
BesselJ[\[Nu], z] == Csc[\[Nu]*Pi]*(BesselY[- \[Nu], z]- BesselY[\[Nu], z]*Cos[\[Nu]*Pi])
Successful Successful -
Failed [14 / 70]
Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]}

Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]}

... skip entries to safe data
10.4#Ex9 H - ν ( 1 ) ( z ) = e ν π i H ν ( 1 ) ( z ) Hankel-H-1-Bessel-third-kind 𝜈 𝑧 superscript 𝑒 𝜈 𝜋 𝑖 Hankel-H-1-Bessel-third-kind 𝜈 𝑧 {\displaystyle{\displaystyle{H^{(1)}_{-\nu}}\left(z\right)=e^{\nu\pi i}{H^{(1)% }_{\nu}}\left(z\right)}}
\HankelH{1}{-\nu}@{z} = e^{\nu\pi i}\HankelH{1}{\nu}@{z}

HankelH1(- nu, z) = exp(nu*Pi*I)*HankelH1(nu, z)
HankelH1[- \[Nu], z] == Exp[\[Nu]*Pi*I]*HankelH1[\[Nu], z]
Successful Failure - Successful [Tested: 70]
10.4#Ex10 H - ν ( 2 ) ( z ) = e - ν π i H ν ( 2 ) ( z ) Hankel-H-2-Bessel-third-kind 𝜈 𝑧 superscript 𝑒 𝜈 𝜋 𝑖 Hankel-H-2-Bessel-third-kind 𝜈 𝑧 {\displaystyle{\displaystyle{H^{(2)}_{-\nu}}\left(z\right)=e^{-\nu\pi i}{H^{(2% )}_{\nu}}\left(z\right)}}
\HankelH{2}{-\nu}@{z} = e^{-\nu\pi i}\HankelH{2}{\nu}@{z}

HankelH2(- nu, z) = exp(- nu*Pi*I)*HankelH2(nu, z)
HankelH2[- \[Nu], z] == Exp[- \[Nu]*Pi*I]*HankelH2[\[Nu], z]
Successful Failure - Successful [Tested: 70]
10.4.E7 H ν ( 1 ) ( z ) = i csc ( ν π ) ( e - ν π i J ν ( z ) - J - ν ( z ) ) Hankel-H-1-Bessel-third-kind 𝜈 𝑧 𝑖 𝜈 𝜋 superscript 𝑒 𝜈 𝜋 𝑖 Bessel-J 𝜈 𝑧 Bessel-J 𝜈 𝑧 {\displaystyle{\displaystyle{H^{(1)}_{\nu}}\left(z\right)=i\csc\left(\nu\pi% \right)\left(e^{-\nu\pi i}J_{\nu}\left(z\right)-J_{-\nu}\left(z\right)\right)}}
\HankelH{1}{\nu}@{z} = i\csc@{\nu\pi}\left(e^{-\nu\pi i}\BesselJ{\nu}@{z}-\BesselJ{-\nu}@{z}\right)
( ν + k + 1 ) > 0 , ( ( - ν ) + k + 1 ) > 0 formulae-sequence 𝜈 𝑘 1 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0,\Re((-\nu)+k+1)>0}}
HankelH1(nu, z) = I*csc(nu*Pi)*(exp(- nu*Pi*I)*BesselJ(nu, z)- BesselJ(- nu, z))
HankelH1[\[Nu], z] == I*Csc[\[Nu]*Pi]*(Exp[- \[Nu]*Pi*I]*BesselJ[\[Nu], z]- BesselJ[- \[Nu], z])
Successful Successful -
Failed [14 / 70]
Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]}

Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]}

... skip entries to safe data
10.4.E7 i csc ( ν π ) ( e - ν π i J ν ( z ) - J - ν ( z ) ) = csc ( ν π ) ( Y - ν ( z ) - e - ν π i Y ν ( z ) ) 𝑖 𝜈 𝜋 superscript 𝑒 𝜈 𝜋 𝑖 Bessel-J 𝜈 𝑧 Bessel-J 𝜈 𝑧 𝜈 𝜋 Bessel-Y-Weber 𝜈 𝑧 superscript 𝑒 𝜈 𝜋 𝑖 Bessel-Y-Weber 𝜈 𝑧 {\displaystyle{\displaystyle i\csc\left(\nu\pi\right)\left(e^{-\nu\pi i}J_{\nu% }\left(z\right)-J_{-\nu}\left(z\right)\right)=\csc\left(\nu\pi\right)\left(Y_{% -\nu}\left(z\right)-e^{-\nu\pi i}Y_{\nu}\left(z\right)\right)}}
i\csc@{\nu\pi}\left(e^{-\nu\pi i}\BesselJ{\nu}@{z}-\BesselJ{-\nu}@{z}\right) = \csc@{\nu\pi}\left(\BesselY{-\nu}@{z}-e^{-\nu\pi i}\BesselY{\nu}@{z}\right)
( ν + k + 1 ) > 0 , ( ( - ν ) + k + 1 ) > 0 , ( ( - ( - ν ) ) + k + 1 ) > 0 formulae-sequence 𝜈 𝑘 1 0 formulae-sequence 𝜈 𝑘 1 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0,\Re((-\nu)+k+1)>0,\Re((-(-\nu))+k+1% )>0}}
I*csc(nu*Pi)*(exp(- nu*Pi*I)*BesselJ(nu, z)- BesselJ(- nu, z)) = csc(nu*Pi)*(BesselY(- nu, z)- exp(- nu*Pi*I)*BesselY(nu, z))
I*Csc[\[Nu]*Pi]*(Exp[- \[Nu]*Pi*I]*BesselJ[\[Nu], z]- BesselJ[- \[Nu], z]) == Csc[\[Nu]*Pi]*(BesselY[- \[Nu], z]- Exp[- \[Nu]*Pi*I]*BesselY[\[Nu], z])
Successful Successful -
Failed [14 / 70]
Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]}

Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]}

... skip entries to safe data
10.4.E8 H ν ( 2 ) ( z ) = i csc ( ν π ) ( J - ν ( z ) - e ν π i J ν ( z ) ) Hankel-H-2-Bessel-third-kind 𝜈 𝑧 𝑖 𝜈 𝜋 Bessel-J 𝜈 𝑧 superscript 𝑒 𝜈 𝜋 𝑖 Bessel-J 𝜈 𝑧 {\displaystyle{\displaystyle{H^{(2)}_{\nu}}\left(z\right)=i\csc\left(\nu\pi% \right)\left(J_{-\nu}\left(z\right)-e^{\nu\pi i}J_{\nu}\left(z\right)\right)}}
\HankelH{2}{\nu}@{z} = i\csc@{\nu\pi}\left(\BesselJ{-\nu}@{z}-e^{\nu\pi i}\BesselJ{\nu}@{z}\right)
( ( - ν ) + k + 1 ) > 0 , ( ν + k + 1 ) > 0 formulae-sequence 𝜈 𝑘 1 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re((-\nu)+k+1)>0,\Re(\nu+k+1)>0}}
HankelH2(nu, z) = I*csc(nu*Pi)*(BesselJ(- nu, z)- exp(nu*Pi*I)*BesselJ(nu, z))
HankelH2[\[Nu], z] == I*Csc[\[Nu]*Pi]*(BesselJ[- \[Nu], z]- Exp[\[Nu]*Pi*I]*BesselJ[\[Nu], z])
Successful Successful -
Failed [14 / 70]
Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]}

Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]}

... skip entries to safe data
10.4.E8 i csc ( ν π ) ( J - ν ( z ) - e ν π i J ν ( z ) ) = csc ( ν π ) ( Y - ν ( z ) - e ν π i Y ν ( z ) ) 𝑖 𝜈 𝜋 Bessel-J 𝜈 𝑧 superscript 𝑒 𝜈 𝜋 𝑖 Bessel-J 𝜈 𝑧 𝜈 𝜋 Bessel-Y-Weber 𝜈 𝑧 superscript 𝑒 𝜈 𝜋 𝑖 Bessel-Y-Weber 𝜈 𝑧 {\displaystyle{\displaystyle i\csc\left(\nu\pi\right)\left(J_{-\nu}\left(z% \right)-e^{\nu\pi i}J_{\nu}\left(z\right)\right)=\csc\left(\nu\pi\right)\left(% Y_{-\nu}\left(z\right)-e^{\nu\pi i}Y_{\nu}\left(z\right)\right)}}
i\csc@{\nu\pi}\left(\BesselJ{-\nu}@{z}-e^{\nu\pi i}\BesselJ{\nu}@{z}\right) = \csc@{\nu\pi}\left(\BesselY{-\nu}@{z}-e^{\nu\pi i}\BesselY{\nu}@{z}\right)
( ( - ν ) + k + 1 ) > 0 , ( ν + k + 1 ) > 0 , ( ( - ( - ν ) ) + k + 1 ) > 0 formulae-sequence 𝜈 𝑘 1 0 formulae-sequence 𝜈 𝑘 1 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re((-\nu)+k+1)>0,\Re(\nu+k+1)>0,\Re((-(-\nu))+k+1% )>0}}
I*csc(nu*Pi)*(BesselJ(- nu, z)- exp(nu*Pi*I)*BesselJ(nu, z)) = csc(nu*Pi)*(BesselY(- nu, z)- exp(nu*Pi*I)*BesselY(nu, z))
I*Csc[\[Nu]*Pi]*(BesselJ[- \[Nu], z]- Exp[\[Nu]*Pi*I]*BesselJ[\[Nu], z]) == Csc[\[Nu]*Pi]*(BesselY[- \[Nu], z]- Exp[\[Nu]*Pi*I]*BesselY[\[Nu], z])
Successful Successful -
Failed [14 / 70]
Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]}

Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]}

... skip entries to safe data
10.5.E1 𝒲 { J ν ( z ) , J - ν ( z ) } = J ν + 1 ( z ) J - ν ( z ) + J ν ( z ) J - ν - 1 ( z ) Wronskian Bessel-J 𝜈 𝑧 Bessel-J 𝜈 𝑧 Bessel-J 𝜈 1 𝑧 Bessel-J 𝜈 𝑧 Bessel-J 𝜈 𝑧 Bessel-J 𝜈 1 𝑧 {\displaystyle{\displaystyle\mathscr{W}\left\{J_{\nu}\left(z\right),J_{-\nu}% \left(z\right)\right\}=J_{\nu+1}\left(z\right)J_{-\nu}\left(z\right)+J_{\nu}% \left(z\right)J_{-\nu-1}\left(z\right)}}
\Wronskian@{\BesselJ{\nu}@{z},\BesselJ{-\nu}@{z}} = \BesselJ{\nu+1}@{z}\BesselJ{-\nu}@{z}+\BesselJ{\nu}@{z}\BesselJ{-\nu-1}@{z}
( ν + k + 1 ) > 0 , ( ( - ν ) + k + 1 ) > 0 , ( ( ν + 1 ) + k + 1 ) > 0 , ( ( - ν - 1 ) + k + 1 ) > 0 formulae-sequence 𝜈 𝑘 1 0 formulae-sequence 𝜈 𝑘 1 0 formulae-sequence 𝜈 1 𝑘 1 0 𝜈 1 𝑘 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0,\Re((-\nu)+k+1)>0,\Re((\nu+1)+k+1)>% 0,\Re((-\nu-1)+k+1)>0}}
(BesselJ(nu, z))*diff(BesselJ(- nu, z), z)-diff(BesselJ(nu, z), z)*(BesselJ(- nu, z)) = BesselJ(nu + 1, z)*BesselJ(- nu, z)+ BesselJ(nu, z)*BesselJ(- nu - 1, z)
Wronskian[{BesselJ[\[Nu], z], BesselJ[- \[Nu], z]}, z] == BesselJ[\[Nu]+ 1, z]*BesselJ[- \[Nu], z]+ BesselJ[\[Nu], z]*BesselJ[- \[Nu]- 1, z]
Successful Successful Skip - symbolical successful subtest Successful [Tested: 70]
10.5.E1 J ν + 1 ( z ) J - ν ( z ) + J ν ( z ) J - ν - 1 ( z ) = - 2 sin ( ν π ) / ( π z ) Bessel-J 𝜈 1 𝑧 Bessel-J 𝜈 𝑧 Bessel-J 𝜈 𝑧 Bessel-J 𝜈 1 𝑧 2 𝜈 𝜋 𝜋 𝑧 {\displaystyle{\displaystyle J_{\nu+1}\left(z\right)J_{-\nu}\left(z\right)+J_{% \nu}\left(z\right)J_{-\nu-1}\left(z\right)=-2\sin\left(\nu\pi\right)/(\pi z)}}
\BesselJ{\nu+1}@{z}\BesselJ{-\nu}@{z}+\BesselJ{\nu}@{z}\BesselJ{-\nu-1}@{z} = -2\sin@{\nu\pi}/(\pi z)
( ν + k + 1 ) > 0 , ( ( - ν ) + k + 1 ) > 0 , ( ( ν + 1 ) + k + 1 ) > 0 , ( ( - ν - 1 ) + k + 1 ) > 0 formulae-sequence 𝜈 𝑘 1 0 formulae-sequence 𝜈 𝑘 1 0 formulae-sequence 𝜈 1 𝑘 1 0 𝜈 1 𝑘 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0,\Re((-\nu)+k+1)>0,\Re((\nu+1)+k+1)>% 0,\Re((-\nu-1)+k+1)>0}}
BesselJ(nu + 1, z)*BesselJ(- nu, z)+ BesselJ(nu, z)*BesselJ(- nu - 1, z) = - 2*sin(nu*Pi)/(Pi*z)
BesselJ[\[Nu]+ 1, z]*BesselJ[- \[Nu], z]+ BesselJ[\[Nu], z]*BesselJ[- \[Nu]- 1, z] == - 2*Sin[\[Nu]*Pi]/(Pi*z)
Failure Successful Successful [Tested: 70] Successful [Tested: 70]
10.5.E2 𝒲 { J ν ( z ) , Y ν ( z ) } = J ν + 1 ( z ) Y ν ( z ) - J ν ( z ) Y ν + 1 ( z ) Wronskian Bessel-J 𝜈 𝑧 Bessel-Y-Weber 𝜈 𝑧 Bessel-J 𝜈 1 𝑧 Bessel-Y-Weber 𝜈 𝑧 Bessel-J 𝜈 𝑧 Bessel-Y-Weber 𝜈 1 𝑧 {\displaystyle{\displaystyle\mathscr{W}\left\{J_{\nu}\left(z\right),Y_{\nu}% \left(z\right)\right\}=J_{\nu+1}\left(z\right)Y_{\nu}\left(z\right)-J_{\nu}% \left(z\right)Y_{\nu+1}\left(z\right)}}
\Wronskian@{\BesselJ{\nu}@{z},\BesselY{\nu}@{z}} = \BesselJ{\nu+1}@{z}\BesselY{\nu}@{z}-\BesselJ{\nu}@{z}\BesselY{\nu+1}@{z}
( ν + k + 1 ) > 0 , ( ( ν + 1 ) + k + 1 ) > 0 , ( ( - ν ) + k + 1 ) > 0 , ( ( - ( ν + 1 ) ) + k + 1 ) > 0 formulae-sequence 𝜈 𝑘 1 0 formulae-sequence 𝜈 1 𝑘 1 0 formulae-sequence 𝜈 𝑘 1 0 𝜈 1 𝑘 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0,\Re((\nu+1)+k+1)>0,\Re((-\nu)+k+1)>% 0,\Re((-(\nu+1))+k+1)>0}}
(BesselJ(nu, z))*diff(BesselY(nu, z), z)-diff(BesselJ(nu, z), z)*(BesselY(nu, z)) = BesselJ(nu + 1, z)*BesselY(nu, z)- BesselJ(nu, z)*BesselY(nu + 1, z)
Wronskian[{BesselJ[\[Nu], z], BesselY[\[Nu], z]}, z] == BesselJ[\[Nu]+ 1, z]*BesselY[\[Nu], z]- BesselJ[\[Nu], z]*BesselY[\[Nu]+ 1, z]
Successful Successful Skip - symbolical successful subtest Successful [Tested: 70]
10.5.E2 J ν + 1 ( z ) Y ν ( z ) - J ν ( z ) Y ν + 1 ( z ) = 2 / ( π z ) Bessel-J 𝜈 1 𝑧 Bessel-Y-Weber 𝜈 𝑧 Bessel-J 𝜈 𝑧 Bessel-Y-Weber 𝜈 1 𝑧 2 𝜋 𝑧 {\displaystyle{\displaystyle J_{\nu+1}\left(z\right)Y_{\nu}\left(z\right)-J_{% \nu}\left(z\right)Y_{\nu+1}\left(z\right)=2/(\pi z)}}
\BesselJ{\nu+1}@{z}\BesselY{\nu}@{z}-\BesselJ{\nu}@{z}\BesselY{\nu+1}@{z} = 2/(\pi z)
( ν + k + 1 ) > 0 , ( ( ν + 1 ) + k + 1 ) > 0 , ( ( - ν ) + k + 1 ) > 0 , ( ( - ( ν + 1 ) ) + k + 1 ) > 0 formulae-sequence 𝜈 𝑘 1 0 formulae-sequence 𝜈 1 𝑘 1 0 formulae-sequence 𝜈 𝑘 1 0 𝜈 1 𝑘 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0,\Re((\nu+1)+k+1)>0,\Re((-\nu)+k+1)>% 0,\Re((-(\nu+1))+k+1)>0}}
BesselJ(nu + 1, z)*BesselY(nu, z)- BesselJ(nu, z)*BesselY(nu + 1, z) = 2/(Pi*z)
BesselJ[\[Nu]+ 1, z]*BesselY[\[Nu], z]- BesselJ[\[Nu], z]*BesselY[\[Nu]+ 1, z] == 2/(Pi*z)
Failure Successful Successful [Tested: 70] Successful [Tested: 70]
10.5.E3 𝒲 { J ν ( z ) , H ν ( 1 ) ( z ) } = J ν + 1 ( z ) H ν ( 1 ) ( z ) - J ν ( z ) H ν + 1 ( 1 ) ( z ) Wronskian Bessel-J 𝜈 𝑧 Hankel-H-1-Bessel-third-kind 𝜈 𝑧 Bessel-J 𝜈 1 𝑧 Hankel-H-1-Bessel-third-kind 𝜈 𝑧 Bessel-J 𝜈 𝑧 Hankel-H-1-Bessel-third-kind 𝜈 1 𝑧 {\displaystyle{\displaystyle\mathscr{W}\left\{J_{\nu}\left(z\right),{H^{(1)}_{% \nu}}\left(z\right)\right\}=J_{\nu+1}\left(z\right){H^{(1)}_{\nu}}\left(z% \right)-J_{\nu}\left(z\right){H^{(1)}_{\nu+1}}\left(z\right)}}
\Wronskian@{\BesselJ{\nu}@{z},\HankelH{1}{\nu}@{z}} = \BesselJ{\nu+1}@{z}\HankelH{1}{\nu}@{z}-\BesselJ{\nu}@{z}\HankelH{1}{\nu+1}@{z}
( ν + k + 1 ) > 0 , ( ( ν + 1 ) + k + 1 ) > 0 formulae-sequence 𝜈 𝑘 1 0 𝜈 1 𝑘 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0,\Re((\nu+1)+k+1)>0}}
(BesselJ(nu, z))*diff(HankelH1(nu, z), z)-diff(BesselJ(nu, z), z)*(HankelH1(nu, z)) = BesselJ(nu + 1, z)*HankelH1(nu, z)- BesselJ(nu, z)*HankelH1(nu + 1, z)
Wronskian[{BesselJ[\[Nu], z], HankelH1[\[Nu], z]}, z] == BesselJ[\[Nu]+ 1, z]*HankelH1[\[Nu], z]- BesselJ[\[Nu], z]*HankelH1[\[Nu]+ 1, z]
Successful Successful Skip - symbolical successful subtest Successful [Tested: 70]
10.5.E3 J ν + 1 ( z ) H ν ( 1 ) ( z ) - J ν ( z ) H ν + 1 ( 1 ) ( z ) = 2 i / ( π z ) Bessel-J 𝜈 1 𝑧 Hankel-H-1-Bessel-third-kind 𝜈 𝑧 Bessel-J 𝜈 𝑧 Hankel-H-1-Bessel-third-kind 𝜈 1 𝑧 2 𝑖 𝜋 𝑧 {\displaystyle{\displaystyle J_{\nu+1}\left(z\right){H^{(1)}_{\nu}}\left(z% \right)-J_{\nu}\left(z\right){H^{(1)}_{\nu+1}}\left(z\right)=2i/(\pi z)}}
\BesselJ{\nu+1}@{z}\HankelH{1}{\nu}@{z}-\BesselJ{\nu}@{z}\HankelH{1}{\nu+1}@{z} = 2i/(\pi z)
( ν + k + 1 ) > 0 , ( ( ν + 1 ) + k + 1 ) > 0 formulae-sequence 𝜈 𝑘 1 0 𝜈 1 𝑘 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0,\Re((\nu+1)+k+1)>0}}
BesselJ(nu + 1, z)*HankelH1(nu, z)- BesselJ(nu, z)*HankelH1(nu + 1, z) = 2*I/(Pi*z)
BesselJ[\[Nu]+ 1, z]*HankelH1[\[Nu], z]- BesselJ[\[Nu], z]*HankelH1[\[Nu]+ 1, z] == 2*I/(Pi*z)
Failure Successful Successful [Tested: 70] Successful [Tested: 70]
10.5.E4 𝒲 { J ν ( z ) , H ν ( 2 ) ( z ) } = J ν + 1 ( z ) H ν ( 2 ) ( z ) - J ν ( z ) H ν + 1 ( 2 ) ( z ) Wronskian Bessel-J 𝜈 𝑧 Hankel-H-2-Bessel-third-kind 𝜈 𝑧 Bessel-J 𝜈 1 𝑧 Hankel-H-2-Bessel-third-kind 𝜈 𝑧 Bessel-J 𝜈 𝑧 Hankel-H-2-Bessel-third-kind 𝜈 1 𝑧 {\displaystyle{\displaystyle\mathscr{W}\left\{J_{\nu}\left(z\right),{H^{(2)}_{% \nu}}\left(z\right)\right\}=J_{\nu+1}\left(z\right){H^{(2)}_{\nu}}\left(z% \right)-J_{\nu}\left(z\right){H^{(2)}_{\nu+1}}\left(z\right)}}
\Wronskian@{\BesselJ{\nu}@{z},\HankelH{2}{\nu}@{z}} = \BesselJ{\nu+1}@{z}\HankelH{2}{\nu}@{z}-\BesselJ{\nu}@{z}\HankelH{2}{\nu+1}@{z}
( ν + k + 1 ) > 0 , ( ( ν + 1 ) + k + 1 ) > 0 formulae-sequence 𝜈 𝑘 1 0 𝜈 1 𝑘 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0,\Re((\nu+1)+k+1)>0}}
(BesselJ(nu, z))*diff(HankelH2(nu, z), z)-diff(BesselJ(nu, z), z)*(HankelH2(nu, z)) = BesselJ(nu + 1, z)*HankelH2(nu, z)- BesselJ(nu, z)*HankelH2(nu + 1, z)
Wronskian[{BesselJ[\[Nu], z], HankelH2[\[Nu], z]}, z] == BesselJ[\[Nu]+ 1, z]*HankelH2[\[Nu], z]- BesselJ[\[Nu], z]*HankelH2[\[Nu]+ 1, z]
Successful Successful Skip - symbolical successful subtest Successful [Tested: 70]
10.5.E4 J ν + 1 ( z ) H ν ( 2 ) ( z ) - J ν ( z ) H ν + 1 ( 2 ) ( z ) = - 2 i / ( π z ) Bessel-J 𝜈 1 𝑧 Hankel-H-2-Bessel-third-kind 𝜈 𝑧 Bessel-J 𝜈 𝑧 Hankel-H-2-Bessel-third-kind 𝜈 1 𝑧 2 𝑖 𝜋 𝑧 {\displaystyle{\displaystyle J_{\nu+1}\left(z\right){H^{(2)}_{\nu}}\left(z% \right)-J_{\nu}\left(z\right){H^{(2)}_{\nu+1}}\left(z\right)=-2i/(\pi z)}}
\BesselJ{\nu+1}@{z}\HankelH{2}{\nu}@{z}-\BesselJ{\nu}@{z}\HankelH{2}{\nu+1}@{z} = -2i/(\pi z)
( ν + k + 1 ) > 0 , ( ( ν + 1 ) + k + 1 ) > 0 formulae-sequence 𝜈 𝑘 1 0 𝜈 1 𝑘 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0,\Re((\nu+1)+k+1)>0}}
BesselJ(nu + 1, z)*HankelH2(nu, z)- BesselJ(nu, z)*HankelH2(nu + 1, z) = - 2*I/(Pi*z)
BesselJ[\[Nu]+ 1, z]*HankelH2[\[Nu], z]- BesselJ[\[Nu], z]*HankelH2[\[Nu]+ 1, z] == - 2*I/(Pi*z)
Failure Successful Successful [Tested: 70] Successful [Tested: 70]
10.5.E5 𝒲 { H ν ( 1 ) ( z ) , H ν ( 2 ) ( z ) } = H ν + 1 ( 1 ) ( z ) H ν ( 2 ) ( z ) - H ν ( 1 ) ( z ) H ν + 1 ( 2 ) ( z ) Wronskian Hankel-H-1-Bessel-third-kind 𝜈 𝑧 Hankel-H-2-Bessel-third-kind 𝜈 𝑧 Hankel-H-1-Bessel-third-kind 𝜈 1 𝑧 Hankel-H-2-Bessel-third-kind 𝜈 𝑧 Hankel-H-1-Bessel-third-kind 𝜈 𝑧 Hankel-H-2-Bessel-third-kind 𝜈 1 𝑧 {\displaystyle{\displaystyle\mathscr{W}\left\{{H^{(1)}_{\nu}}\left(z\right),{H% ^{(2)}_{\nu}}\left(z\right)\right\}={H^{(1)}_{\nu+1}}\left(z\right){H^{(2)}_{% \nu}}\left(z\right)-{H^{(1)}_{\nu}}\left(z\right){H^{(2)}_{\nu+1}}\left(z% \right)}}
\Wronskian@{\HankelH{1}{\nu}@{z},\HankelH{2}{\nu}@{z}} = \HankelH{1}{\nu+1}@{z}\HankelH{2}{\nu}@{z}-\HankelH{1}{\nu}@{z}\HankelH{2}{\nu+1}@{z}

(HankelH1(nu, z))*diff(HankelH2(nu, z), z)-diff(HankelH1(nu, z), z)*(HankelH2(nu, z)) = HankelH1(nu + 1, z)*HankelH2(nu, z)- HankelH1(nu, z)*HankelH2(nu + 1, z)
Wronskian[{HankelH1[\[Nu], z], HankelH2[\[Nu], z]}, z] == HankelH1[\[Nu]+ 1, z]*HankelH2[\[Nu], z]- HankelH1[\[Nu], z]*HankelH2[\[Nu]+ 1, z]
Successful Successful Skip - symbolical successful subtest Successful [Tested: 70]
10.5.E5 H ν + 1 ( 1 ) ( z ) H ν ( 2 ) ( z ) - H ν ( 1 ) ( z ) H ν + 1 ( 2 ) ( z ) = - 4 i / ( π z ) Hankel-H-1-Bessel-third-kind 𝜈 1 𝑧 Hankel-H-2-Bessel-third-kind 𝜈 𝑧 Hankel-H-1-Bessel-third-kind 𝜈 𝑧 Hankel-H-2-Bessel-third-kind 𝜈 1 𝑧 4 𝑖 𝜋 𝑧 {\displaystyle{\displaystyle{H^{(1)}_{\nu+1}}\left(z\right){H^{(2)}_{\nu}}% \left(z\right)-{H^{(1)}_{\nu}}\left(z\right){H^{(2)}_{\nu+1}}\left(z\right)=-4% i/(\pi z)}}
\HankelH{1}{\nu+1}@{z}\HankelH{2}{\nu}@{z}-\HankelH{1}{\nu}@{z}\HankelH{2}{\nu+1}@{z} = -4i/(\pi z)

HankelH1(nu + 1, z)*HankelH2(nu, z)- HankelH1(nu, z)*HankelH2(nu + 1, z) = - 4*I/(Pi*z)
HankelH1[\[Nu]+ 1, z]*HankelH2[\[Nu], z]- HankelH1[\[Nu], z]*HankelH2[\[Nu]+ 1, z] == - 4*I/(Pi*z)
Failure Successful Successful [Tested: 70] Successful [Tested: 70]
10.6#E3X J 0 ( z ) = - J 1 ( z ) diffop Bessel-J 0 1 𝑧 Bessel-J 1 𝑧 {\displaystyle{\displaystyle\displaystyle J_{0}'\left(z\right)=-J_{1}\left(z% \right)}}
\displaystyle\BesselJ{0}'@{z} = -\BesselJ{1}@{z}
( 0 + k + 1 ) > 0 , ( 1 + k + 1 ) > 0 formulae-sequence 0 𝑘 1 0 1 𝑘 1 0 {\displaystyle{\displaystyle\Re(0+k+1)>0,\Re(1+k+1)>0}}
diff( BesselJ(0, z), z$(1) ) = - BesselJ(1, z)
D[BesselJ[0, z], {z, 1}] == - BesselJ[1, z]
Skipped - no semantic math Skipped - no semantic math - -
10.6#E3X Y 0 ( z ) = - Y 1 ( z ) diffop Bessel-Y-Weber 0 1 𝑧 Bessel-Y-Weber 1 𝑧 {\displaystyle{\displaystyle\displaystyle Y_{0}'\left(z\right)=-Y_{1}\left(z% \right)}}
\displaystyle\BesselY{0}'@{z} = -\BesselY{1}@{z}
( 0 + k + 1 ) > 0 , ( 1 + k + 1 ) > 0 , ( ( - 0 ) + k + 1 ) > 0 , ( ( - 1 ) + k + 1 ) > 0 formulae-sequence 0 𝑘 1 0 formulae-sequence 1 𝑘 1 0 formulae-sequence 0 𝑘 1 0 1 𝑘 1 0 {\displaystyle{\displaystyle\Re(0+k+1)>0,\Re(1+k+1)>0,\Re((-0)+k+1)>0,\Re((-1)% +k+1)>0}}
diff( BesselY(0, z), z$(1) ) = - BesselY(1, z)
D[BesselY[0, z], {z, 1}] == - BesselY[1, z]
Skipped - no semantic math Skipped - no semantic math - -
10.6#E3Xa H 0 ( 1 ) ( z ) = - H 1 ( 1 ) ( z ) diffop Hankel-H-1-Bessel-third-kind 0 1 𝑧 Hankel-H-1-Bessel-third-kind 1 𝑧 {\displaystyle{\displaystyle\displaystyle{H^{(1)}_{0}}'\left(z\right)=-{H^{(1)% }_{1}}\left(z\right)}}
\displaystyle\HankelH{1}{0}'@{z} = -\HankelH{1}{1}@{z}

diff( HankelH1(0, z), z$(1) ) = - HankelH1(1, z)
D[HankelH1[0, z], {z, 1}] == - HankelH1[1, z]
Skipped - no semantic math Skipped - no semantic math - -
10.6#E3Xa H 0 ( 2 ) ( z ) = - H 1 ( 2 ) ( z ) diffop Hankel-H-2-Bessel-third-kind 0 1 𝑧 Hankel-H-2-Bessel-third-kind 1 𝑧 {\displaystyle{\displaystyle\displaystyle{H^{(2)}_{0}}'\left(z\right)=-{H^{(2)% }_{1}}\left(z\right)}}
\displaystyle\HankelH{2}{0}'@{z} = -\HankelH{2}{1}@{z}

diff( HankelH2(0, z), z$(1) ) = - HankelH2(1, z)
D[HankelH2[0, z], {z, 1}] == - HankelH2[1, z]
Skipped - no semantic math Skipped - no semantic math - -
10.6#Ex5 f ν - 1 ( z ) + f ν + 1 ( z ) = ( 2 ν / λ ) z - q f ν ( z ) subscript 𝑓 𝜈 1 𝑧 subscript 𝑓 𝜈 1 𝑧 2 𝜈 𝜆 superscript 𝑧 𝑞 subscript 𝑓 𝜈 𝑧 {\displaystyle{\displaystyle f_{\nu-1}(z)+f_{\nu+1}(z)=(2\nu/\lambda)z^{-q}f_{% \nu}(z)}}
f_{\nu-1}(z)+f_{\nu+1}(z) = (2\nu/\lambda)z^{-q}f_{\nu}(z)

f[nu - 1](z)+ f[nu + 1](z) = (2*nu/lambda)*(z)^(- q)* f[nu](z)
Subscript[f, \[Nu]- 1][z]+ Subscript[f, \[Nu]+ 1][z] == (2*\[Nu]/\[Lambda])*(z)^(- q)* Subscript[f, \[Nu]][z]
Skipped - no semantic math Skipped - no semantic math - -
10.6#Ex15 p ν + 1 - p ν - 1 = - 2 ν a q ν - 2 ν b r ν subscript 𝑝 𝜈 1 subscript 𝑝 𝜈 1 2 𝜈 𝑎 subscript 𝑞 𝜈 2 𝜈 𝑏 subscript 𝑟 𝜈 {\displaystyle{\displaystyle p_{\nu+1}-p_{\nu-1}=-\frac{2\nu}{a}q_{\nu}-\frac{% 2\nu}{b}r_{\nu}}}
p_{\nu+1}-p_{\nu-1} = -\frac{2\nu}{a}q_{\nu}-\frac{2\nu}{b}r_{\nu}

p[nu + 1]- p[nu - 1] = -(2*nu)/(a)*q[nu]-(2*nu)/(b)*r[nu]
Subscript[p, \[Nu]+ 1]- Subscript[p, \[Nu]- 1] == -Divide[2*\[Nu],a]*Subscript[q, \[Nu]]-Divide[2*\[Nu],b]*Subscript[r, \[Nu]]
Skipped - no semantic math Skipped - no semantic math - -
10.6#Ex16 q ν + 1 + r ν = ν a p ν - ν + 1 b p ν + 1 subscript 𝑞 𝜈 1 subscript 𝑟 𝜈 𝜈 𝑎 subscript 𝑝 𝜈 𝜈 1 𝑏 subscript 𝑝 𝜈 1 {\displaystyle{\displaystyle q_{\nu+1}+r_{\nu}=\frac{\nu}{a}p_{\nu}-\frac{\nu+% 1}{b}p_{\nu+1}}}
q_{\nu+1}+r_{\nu} = \frac{\nu}{a}p_{\nu}-\frac{\nu+1}{b}p_{\nu+1}

q[nu + 1]+ r[nu] = (nu)/(a)*p[nu]-(nu + 1)/(b)*p[nu + 1]
Subscript[q, \[Nu]+ 1]+ Subscript[r, \[Nu]] == Divide[\[Nu],a]*Subscript[p, \[Nu]]-Divide[\[Nu]+ 1,b]*Subscript[p, \[Nu]+ 1]
Skipped - no semantic math Skipped - no semantic math - -
10.6#Ex17 r ν + 1 + q ν = ν b p ν - ν + 1 a p ν + 1 subscript 𝑟 𝜈 1 subscript 𝑞 𝜈 𝜈 𝑏 subscript 𝑝 𝜈 𝜈 1 𝑎 subscript 𝑝 𝜈 1 {\displaystyle{\displaystyle r_{\nu+1}+q_{\nu}=\frac{\nu}{b}p_{\nu}-\frac{\nu+% 1}{a}p_{\nu+1}}}
r_{\nu+1}+q_{\nu} = \frac{\nu}{b}p_{\nu}-\frac{\nu+1}{a}p_{\nu+1}

r[nu + 1]+ q[nu] = (nu)/(b)*p[nu]-(nu + 1)/(a)*p[nu + 1]
Subscript[r, \[Nu]+ 1]+ Subscript[q, \[Nu]] == Divide[\[Nu],b]*Subscript[p, \[Nu]]-Divide[\[Nu]+ 1,a]*Subscript[p, \[Nu]+ 1]
Skipped - no semantic math Skipped - no semantic math - -
10.6#Ex18 s ν = 1 2 p ν + 1 + 1 2 p ν - 1 - ν 2 a b p ν subscript 𝑠 𝜈 1 2 subscript 𝑝 𝜈 1 1 2 subscript 𝑝 𝜈 1 superscript 𝜈 2 𝑎 𝑏 subscript 𝑝 𝜈 {\displaystyle{\displaystyle s_{\nu}=\tfrac{1}{2}p_{\nu+1}+\tfrac{1}{2}p_{\nu-% 1}-\frac{\nu^{2}}{ab}p_{\nu}}}
s_{\nu} = \tfrac{1}{2}p_{\nu+1}+\tfrac{1}{2}p_{\nu-1}-\frac{\nu^{2}}{ab}p_{\nu}
( ν + k + 1 ) > 0 , ( ( - ν ) + k + 1 ) > 0 formulae-sequence 𝜈 𝑘 1 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0,\Re((-\nu)+k+1)>0}}
(diff( BesselJ(nu, a), a$(1) )*diff( BesselY(nu, b), b$(1) )- diff( BesselJ(nu, b), b$(1) )*diff( BesselY(nu, a), a$(1) )) = (1)/(2)*p[nu + 1]+(1)/(2)*p[nu - 1]-((nu)^(2))/(a*b)*p[nu]
(D[BesselJ[\[Nu], a], {a, 1}]*D[BesselY[\[Nu], b], {b, 1}]- D[BesselJ[\[Nu], b], {b, 1}]*D[BesselY[\[Nu], a], {a, 1}]) == Divide[1,2]*Subscript[p, \[Nu]+ 1]+Divide[1,2]*Subscript[p, \[Nu]- 1]-Divide[\[Nu]^(2),a*b]*Subscript[p, \[Nu]]
Skipped - no semantic math Skipped - no semantic math - -
10.6.E10 p ν s ν - q ν r ν = 4 / ( π 2 a b ) subscript 𝑝 𝜈 subscript 𝑠 𝜈 subscript 𝑞 𝜈 subscript 𝑟 𝜈 4 superscript 𝜋 2 𝑎 𝑏 {\displaystyle{\displaystyle p_{\nu}s_{\nu}-q_{\nu}r_{\nu}=4/(\pi^{2}ab)}}
p_{\nu}s_{\nu}-q_{\nu}r_{\nu} = 4/(\pi^{2}ab)
( ν + k + 1 ) > 0 , ( ( - ν ) + k + 1 ) > 0 formulae-sequence 𝜈 𝑘 1 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0,\Re((-\nu)+k+1)>0}}
p[nu]*(diff( BesselJ(nu, a), a$(1) )*diff( BesselY(nu, b), b$(1) )- diff( BesselJ(nu, b), b$(1) )*diff( BesselY(nu, a), a$(1) ))- q[nu]*r[nu] = 4/((Pi)^(2)* a*b)
Subscript[p, \[Nu]]*(D[BesselJ[\[Nu], a], {a, 1}]*D[BesselY[\[Nu], b], {b, 1}]- D[BesselJ[\[Nu], b], {b, 1}]*D[BesselY[\[Nu], a], {a, 1}])- Subscript[q, \[Nu]]*Subscript[r, \[Nu]] == 4/((Pi)^(2)* a*b)
Skipped - no semantic math Skipped - no semantic math - -
10.8.E1 Y n ( z ) = - ( 1 2 z ) - n π k = 0 n - 1 ( n - k - 1 ) ! k ! ( 1 4 z 2 ) k + 2 π ln ( 1 2 z ) J n ( z ) - ( 1 2 z ) n π k = 0 ( ψ ( k + 1 ) + ψ ( n + k + 1 ) ) ( - 1 4 z 2 ) k k ! ( n + k ) ! Bessel-Y-Weber 𝑛 𝑧 superscript 1 2 𝑧 𝑛 𝜋 superscript subscript 𝑘 0 𝑛 1 𝑛 𝑘 1 𝑘 superscript 1 4 superscript 𝑧 2 𝑘 2 𝜋 1 2 𝑧 Bessel-J 𝑛 𝑧 superscript 1 2 𝑧 𝑛 𝜋 superscript subscript 𝑘 0 digamma 𝑘 1 digamma 𝑛 𝑘 1 superscript 1 4 superscript 𝑧 2 𝑘 𝑘 𝑛 𝑘 {\displaystyle{\displaystyle Y_{n}\left(z\right)=-\frac{(\tfrac{1}{2}z)^{-n}}{% \pi}\sum_{k=0}^{n-1}\frac{(n-k-1)!}{k!}\left(\tfrac{1}{4}z^{2}\right)^{k}+% \frac{2}{\pi}\ln\left(\tfrac{1}{2}z\right)J_{n}\left(z\right)-\frac{(\tfrac{1}% {2}z)^{n}}{\pi}\sum_{k=0}^{\infty}(\psi\left(k+1\right)+\psi\left(n+k+1\right)% )\frac{(-\tfrac{1}{4}z^{2})^{k}}{k!(n+k)!}}}
\BesselY{n}@{z} = -\frac{(\tfrac{1}{2}z)^{-n}}{\pi}\sum_{k=0}^{n-1}\frac{(n-k-1)!}{k!}\left(\tfrac{1}{4}z^{2}\right)^{k}+\frac{2}{\pi}\ln@{\tfrac{1}{2}z}\BesselJ{n}@{z}-\frac{(\tfrac{1}{2}z)^{n}}{\pi}\sum_{k=0}^{\infty}(\digamma@{k+1}+\digamma@{n+k+1})\frac{(-\tfrac{1}{4}z^{2})^{k}}{k!(n+k)!}
( n + k + 1 ) > 0 , ( ( - n ) + k + 1 ) > 0 formulae-sequence 𝑛 𝑘 1 0 𝑛 𝑘 1 0 {\displaystyle{\displaystyle\Re(n+k+1)>0,\Re((-n)+k+1)>0}}
BesselY(n, z) = -(((1)/(2)*z)^(- n))/(Pi)*sum((factorial(n - k - 1))/(factorial(k))*((1)/(4)*(z)^(2))^(k), k = 0..n - 1)+(2)/(Pi)*ln((1)/(2)*z)*BesselJ(n, z)-(((1)/(2)*z)^(n))/(Pi)*sum((Psi(k + 1)+ Psi(n + k + 1))*((-(1)/(4)*(z)^(2))^(k))/(factorial(k)*factorial(n + k)), k = 0..infinity)
BesselY[n, z] == -Divide[(Divide[1,2]*z)^(- n),Pi]*Sum[Divide[(n - k - 1)!,(k)!]*(Divide[1,4]*(z)^(2))^(k), {k, 0, n - 1}, GenerateConditions->None]+Divide[2,Pi]*Log[Divide[1,2]*z]*BesselJ[n, z]-Divide[(Divide[1,2]*z)^(n),Pi]*Sum[(PolyGamma[k + 1]+ PolyGamma[n + k + 1])*Divide[(-Divide[1,4]*(z)^(2))^(k),(k)!*(n + k)!], {k, 0, Infinity}, GenerateConditions->None]
Failure Failure Skipped - Because timed out
Failed [6 / 21]
Result: Plus[-0.4244131815783875, Times[0.4244131815783876, DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[-4, []], Times[Plus[12, Times[8, ]], [Plus[1, ]]], Times[Plus[-16, Times[-16, ], Times[-4, Power[, 2]], Times[-1, Power[1.5, 2]]], [Plus[2, ]]], Times[Plus[2, ], Power[1.5, 2], [Plus[3, ]]]], 0], Equal[[1], 1], Equal[[2], Plus[1, Times[4, Power[1.5, -2]]]], Equal[[3], Plus[Rational[1, 2], Times[16, Power[1.5, -4], Plus[2, Times[Rational[1, 4], Power[1.5, 2]]]]]], Equal[[4], Times[Rational[32, 3], Power[1.5, -6], Plus[3, Times[Rational[1, 4], Power[1.5, 2]]], Plus[12, Times[Rational[1, 16], Power[1.5, 4]]]]]}]][1.0]]], {Rule[n, 1], Rule[z, 1.5]}

Result: Plus[-0.8841941282883073, Times[0.3183098861837907, DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[-4, []], Times[Plus[12, Times[8, ]], [Plus[1, ]]], Times[Plus[-16, Times[-16, ], Times[-4, Power[, 2]], Times[-1, Power[1.5, 2]]], [Plus[2, ]]], Times[Plus[2, ], Power[1.5, 2], [Plus[3, ]]]], 0], Equal[[1], 1], Equal[[2], Plus[1, Times[4, Power[1.5, -2]]]], Equal[[3], Plus[Rational[1, 2], Times[16, Power[1.5, -4], Plus[2, Times[Rational[1, 4], Power[1.5, 2]]]]]], Equal[[4], Times[Rational[32, 3], Power[1.5, -6], Plus[3, Times[Rational[1, 4], Power[1.5, 2]]], Plus[12, Times[Rational[1, 16], Power[1.5, 4]]]]]}]][2.0]]], {Rule[n, 2], Rule[z, 1.5]}

... skip entries to safe data
10.8.E2 Y 0 ( z ) = 2 π ( ln ( 1 2 z ) + γ ) J 0 ( z ) + 2 π ( 1 4 z 2 ( 1 ! ) 2 - ( 1 + 1 2 ) ( 1 4 z 2 ) 2 ( 2 ! ) 2 + ( 1 + 1 2 + 1 3 ) ( 1 4 z 2 ) 3 ( 3 ! ) 2 - ) Bessel-Y-Weber 0 𝑧 2 𝜋 1 2 𝑧 Bessel-J 0 𝑧 2 𝜋 1 4 superscript 𝑧 2 superscript 1 2 1 1 2 superscript 1 4 superscript 𝑧 2 2 superscript 2 2 1 1 2 1 3 superscript 1 4 superscript 𝑧 2 3 superscript 3 2 {\displaystyle{\displaystyle Y_{0}\left(z\right)=\frac{2}{\pi}\left(\ln\left(% \tfrac{1}{2}z\right)+\gamma\right)J_{0}\left(z\right)+\frac{2}{\pi}\left(\frac% {\tfrac{1}{4}z^{2}}{(1!)^{2}}-(1+\tfrac{1}{2})\frac{(\tfrac{1}{4}z^{2})^{2}}{(% 2!)^{2}}+(1+\tfrac{1}{2}+\tfrac{1}{3})\frac{(\tfrac{1}{4}z^{2})^{3}}{(3!)^{2}}% -\cdots\right)}}
\BesselY{0}@{z} = \frac{2}{\pi}\left(\ln@{\tfrac{1}{2}z}+\EulerConstant\right)\BesselJ{0}@{z}+\frac{2}{\pi}\left(\frac{\tfrac{1}{4}z^{2}}{(1!)^{2}}-(1+\tfrac{1}{2})\frac{(\tfrac{1}{4}z^{2})^{2}}{(2!)^{2}}+(1+\tfrac{1}{2}+\tfrac{1}{3})\frac{(\tfrac{1}{4}z^{2})^{3}}{(3!)^{2}}-\dotsi\right)
( 0 + k + 1 ) > 0 , ( ( - 0 ) + k + 1 ) > 0 formulae-sequence 0 𝑘 1 0 0 𝑘 1 0 {\displaystyle{\displaystyle\Re(0+k+1)>0,\Re((-0)+k+1)>0}}
BesselY(0, z) = (2)/(Pi)*(ln((1)/(2)*z)+ gamma)*BesselJ(0, z)+(2)/(Pi)*(((1)/(4)*(z)^(2))/((factorial(1))^(2))-(1 +(1)/(2))*(((1)/(4)*(z)^(2))^(2))/((factorial(2))^(2))+(1 +(1)/(2)+(1)/(3))*(((1)/(4)*(z)^(2))^(3))/((factorial(3))^(2))- ..)
BesselY[0, z] == Divide[2,Pi]*(Log[Divide[1,2]*z]+ EulerGamma)*BesselJ[0, z]+Divide[2,Pi]*(Divide[Divide[1,4]*(z)^(2),((1)!)^(2)]-(1 +Divide[1,2])*Divide[(Divide[1,4]*(z)^(2))^(2),((2)!)^(2)]+(1 +Divide[1,2]+Divide[1,3])*Divide[(Divide[1,4]*(z)^(2))^(3),((3)!)^(2)]- \[Ellipsis])
Error Failure -
Failed [7 / 7]
Result: Plus[Complex[0.08653583575184755, 0.12491815695491987], Times[-0.6366197723675814, Plus[Complex[0.13592303240740744, 0.19620888054491187], Times[-1.0, …]]]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[-0.07160606681826986, -0.15074612001799426], Times[-0.6366197723675814, Plus[Complex[-0.11248553240740736, -0.23680382134730746], Times[-1.0, …]]]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.8.E3 J ν ( z ) J μ ( z ) = ( 1 2 z ) ν + μ k = 0 ( ν + μ + k + 1 ) k ( - 1 4 z 2 ) k k ! Γ ( ν + k + 1 ) Γ ( μ + k + 1 ) Bessel-J 𝜈 𝑧 Bessel-J 𝜇 𝑧 superscript 1 2 𝑧 𝜈 𝜇 superscript subscript 𝑘 0 subscript 𝜈 𝜇 𝑘 1 𝑘 superscript 1 4 superscript 𝑧 2 𝑘 𝑘 Euler-Gamma 𝜈 𝑘 1 Euler-Gamma 𝜇 𝑘 1 {\displaystyle{\displaystyle J_{\nu}\left(z\right)J_{\mu}\left(z\right)=(% \tfrac{1}{2}z)^{\nu+\mu}\sum_{k=0}^{\infty}\frac{(\nu+\mu+k+1)_{k}(-\tfrac{1}{% 4}z^{2})^{k}}{k!\Gamma\left(\nu+k+1\right)\Gamma\left(\mu+k+1\right)}}}
\BesselJ{\nu}@{z}\BesselJ{\mu}@{z} = (\tfrac{1}{2}z)^{\nu+\mu}\sum_{k=0}^{\infty}\frac{(\nu+\mu+k+1)_{k}(-\tfrac{1}{4}z^{2})^{k}}{k!\EulerGamma@{\nu+k+1}\EulerGamma@{\mu+k+1}}
( ν + k + 1 ) > 0 , ( ( μ ) + k + 1 ) > 0 , ( μ + k + 1 ) > 0 formulae-sequence 𝜈 𝑘 1 0 formulae-sequence 𝜇 𝑘 1 0 𝜇 𝑘 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0,\Re((\mu)+k+1)>0,\Re(\mu+k+1)>0}}
BesselJ(nu, z)*BesselJ(mu, z) = ((1)/(2)*z)^(nu + mu)* sum((nu + mu + k + 1[k]*(-(1)/(4)*(z)^(2))^(k))/(factorial(k)*GAMMA(nu + k + 1)*GAMMA(mu + k + 1)), k = 0..infinity)
BesselJ[\[Nu], z]*BesselJ[\[Mu], z] == (Divide[1,2]*z)^(\[Nu]+ \[Mu])* Sum[Divide[Subscript[\[Nu]+ \[Mu]+ k + 1, k]*(-Divide[1,4]*(z)^(2))^(k),(k)!*Gamma[\[Nu]+ k + 1]*Gamma[\[Mu]+ k + 1]], {k, 0, Infinity}, GenerateConditions->None]
Failure Failure Skipped - Because timed out
Failed [300 / 300]
Result: Plus[Complex[0.18482793500467376, -0.06270111308873656], Times[Complex[-0.17426361621858172, -0.037827155645948574], NSum[Times[Power[Times[Rational[-1, 4], Power[E, Times[Complex[0, Rational[1, 3]], Pi]]], k], Power[Factorial[k], -1], Power[Gamma[Plus[1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]], k]], -2], Subscript[Plus[1, Times[2, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], k], k]]
Test Values: {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[0.47215054540190965, -0.036453907426047115], Times[Complex[-0.27630938504679325, 0.26010894184513544], NSum[Times[Power[Times[Rational[-1, 4], Power[E, Times[Complex[0, Rational[1, 3]], Pi]]], k], Power[Factorial[k], -1], Power[Gamma[Plus[1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]], k]], -1], Power[Gamma[Plus[1, Power[E, Times[Complex[0, Rational[2, 3]], Pi]], k]], -1], Subscript[Plus[1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]], Power[E, Times[Complex[0, Rational[2, 3]], Pi]], k], k]]
Test Values: {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.9.E1 J 0 ( z ) = 1 π 0 π cos ( z sin θ ) d θ Bessel-J 0 𝑧 1 𝜋 superscript subscript 0 𝜋 𝑧 𝜃 𝜃 {\displaystyle{\displaystyle J_{0}\left(z\right)=\frac{1}{\pi}\int_{0}^{\pi}% \cos\left(z\sin\theta\right)\mathrm{d}\theta}}
\BesselJ{0}@{z} = \frac{1}{\pi}\int_{0}^{\pi}\cos@{z\sin@@{\theta}}\diff{\theta}
( 0 + k + 1 ) > 0 0 𝑘 1 0 {\displaystyle{\displaystyle\Re(0+k+1)>0}}
BesselJ(0, z) = (1)/(Pi)*int(cos(z*sin(theta)), theta = 0..Pi)
BesselJ[0, z] == Divide[1,Pi]*Integrate[Cos[z*Sin[\[Theta]]], {\[Theta], 0, Pi}, GenerateConditions->None]
Successful Successful -
Failed [4 / 7]
Result: Complex[0.1024204169391214, -0.20298051839359257]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.35155242920280916, 0.2300320660405755]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.9.E1 1 π 0 π cos ( z sin θ ) d θ = 1 π 0 π cos ( z cos θ ) d θ 1 𝜋 superscript subscript 0 𝜋 𝑧 𝜃 𝜃 1 𝜋 superscript subscript 0 𝜋 𝑧 𝜃 𝜃 {\displaystyle{\displaystyle\frac{1}{\pi}\int_{0}^{\pi}\cos\left(z\sin\theta% \right)\mathrm{d}\theta=\frac{1}{\pi}\int_{0}^{\pi}\cos\left(z\cos\theta\right% )\mathrm{d}\theta}}
\frac{1}{\pi}\int_{0}^{\pi}\cos@{z\sin@@{\theta}}\diff{\theta} = \frac{1}{\pi}\int_{0}^{\pi}\cos@{z\cos@@{\theta}}\diff{\theta}
( 0 + k + 1 ) > 0 0 𝑘 1 0 {\displaystyle{\displaystyle\Re(0+k+1)>0}}
(1)/(Pi)*int(cos(z*sin(theta)), theta = 0..Pi) = (1)/(Pi)*int(cos(z*cos(theta)), theta = 0..Pi)
Divide[1,Pi]*Integrate[Cos[z*Sin[\[Theta]]], {\[Theta], 0, Pi}, GenerateConditions->None] == Divide[1,Pi]*Integrate[Cos[z*Cos[\[Theta]]], {\[Theta], 0, Pi}, GenerateConditions->None]
Successful Successful - Successful [Tested: 7]
10.9.E2 J n ( z ) = 1 π 0 π cos ( z sin θ - n θ ) d θ Bessel-J 𝑛 𝑧 1 𝜋 superscript subscript 0 𝜋 𝑧 𝜃 𝑛 𝜃 𝜃 {\displaystyle{\displaystyle J_{n}\left(z\right)=\frac{1}{\pi}\int_{0}^{\pi}% \cos\left(z\sin\theta-n\theta\right)\mathrm{d}\theta}}
\BesselJ{n}@{z} = \frac{1}{\pi}\int_{0}^{\pi}\cos@{z\sin@@{\theta}-n\theta}\diff{\theta}
( n + k + 1 ) > 0 𝑛 𝑘 1 0 {\displaystyle{\displaystyle\Re(n+k+1)>0}}
BesselJ(n, z) = (1)/(Pi)*int(cos(z*sin(theta)- n*theta), theta = 0..Pi)
BesselJ[n, z] == Divide[1,Pi]*Integrate[Cos[z*Sin[\[Theta]]- n*\[Theta]], {\[Theta], 0, Pi}, GenerateConditions->None]
Failure Aborted Successful [Tested: 7] Successful [Tested: 7]
10.9.E2 1 π 0 π cos ( z sin θ - n θ ) d θ = i - n π 0 π e i z cos θ cos ( n θ ) d θ 1 𝜋 superscript subscript 0 𝜋 𝑧 𝜃 𝑛 𝜃 𝜃 superscript 𝑖 𝑛 𝜋 superscript subscript 0 𝜋 superscript 𝑒 𝑖 𝑧 𝜃 𝑛 𝜃 𝜃 {\displaystyle{\displaystyle\frac{1}{\pi}\int_{0}^{\pi}\cos\left(z\sin\theta-n% \theta\right)\mathrm{d}\theta=\frac{i^{-n}}{\pi}\int_{0}^{\pi}e^{iz\cos\theta}% \cos\left(n\theta\right)\mathrm{d}\theta}}
\frac{1}{\pi}\int_{0}^{\pi}\cos@{z\sin@@{\theta}-n\theta}\diff{\theta} = \frac{i^{-n}}{\pi}\int_{0}^{\pi}e^{iz\cos@@{\theta}}\cos@{n\theta}\diff{\theta}
( n + k + 1 ) > 0 𝑛 𝑘 1 0 {\displaystyle{\displaystyle\Re(n+k+1)>0}}
(1)/(Pi)*int(cos(z*sin(theta)- n*theta), theta = 0..Pi) = ((I)^(- n))/(Pi)*int(exp(I*z*cos(theta))*cos(n*theta), theta = 0..Pi)
Divide[1,Pi]*Integrate[Cos[z*Sin[\[Theta]]- n*\[Theta]], {\[Theta], 0, Pi}, GenerateConditions->None] == Divide[(I)^(- n),Pi]*Integrate[Exp[I*z*Cos[\[Theta]]]*Cos[n*\[Theta]], {\[Theta], 0, Pi}, GenerateConditions->None]
Failure Aborted Successful [Tested: 7] Skipped - Because timed out
10.9.E3 Y 0 ( z ) = 4 π 2 0 1 2 π cos ( z cos θ ) ( γ + ln ( 2 z sin 2 θ ) ) d θ Bessel-Y-Weber 0 𝑧 4 superscript 𝜋 2 superscript subscript 0 1 2 𝜋 𝑧 𝜃 2 𝑧 2 𝜃 𝜃 {\displaystyle{\displaystyle Y_{0}\left(z\right)=\frac{4}{\pi^{2}}\int_{0}^{% \frac{1}{2}\pi}\cos\left(z\cos\theta\right)\left(\gamma+\ln\left(2z{\sin^{2}}% \theta\right)\right)\mathrm{d}\theta}}
\BesselY{0}@{z} = \frac{4}{\pi^{2}}\int_{0}^{\frac{1}{2}\pi}\cos@{z\cos@@{\theta}}\left(\EulerConstant+\ln@{2z\sin^{2}@@{\theta}}\right)\diff{\theta}
( 0 + k + 1 ) > 0 , ( ( - 0 ) + k + 1 ) > 0 formulae-sequence 0 𝑘 1 0 0 𝑘 1 0 {\displaystyle{\displaystyle\Re(0+k+1)>0,\Re((-0)+k+1)>0}}
BesselY(0, z) = (4)/((Pi)^(2))*int(cos(z*cos(theta))*(gamma + ln(2*z*(sin(theta))^(2))), theta = 0..(1)/(2)*Pi)
BesselY[0, z] == Divide[4,(Pi)^(2)]*Integrate[Cos[z*Cos[\[Theta]]]*(EulerGamma + Log[2*z*(Sin[\[Theta]])^(2)]), {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None]
Aborted Aborted Successful [Tested: 7] Skipped - Because timed out
10.9.E4 J ν ( z ) = ( 1 2 z ) ν π 1 2 Γ ( ν + 1 2 ) 0 π cos ( z cos θ ) ( sin θ ) 2 ν d θ Bessel-J 𝜈 𝑧 superscript 1 2 𝑧 𝜈 superscript 𝜋 1 2 Euler-Gamma 𝜈 1 2 superscript subscript 0 𝜋 𝑧 𝜃 superscript 𝜃 2 𝜈 𝜃 {\displaystyle{\displaystyle J_{\nu}\left(z\right)=\frac{(\tfrac{1}{2}z)^{\nu}% }{\pi^{\frac{1}{2}}\Gamma\left(\nu+\tfrac{1}{2}\right)}\int_{0}^{\pi}\cos\left% (z\cos\theta\right)(\sin\theta)^{2\nu}\mathrm{d}\theta}}
\BesselJ{\nu}@{z} = \frac{(\tfrac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}\EulerGamma@{\nu+\tfrac{1}{2}}}\int_{0}^{\pi}\cos@{z\cos@@{\theta}}(\sin@@{\theta})^{2\nu}\diff{\theta}
ν > - 1 2 , ( ν + k + 1 ) > 0 , ( ν + 1 2 ) > 0 formulae-sequence 𝜈 1 2 formulae-sequence 𝜈 𝑘 1 0 𝜈 1 2 0 {\displaystyle{\displaystyle\Re\nu>-\tfrac{1}{2},\Re(\nu+k+1)>0,\Re(\nu+\tfrac% {1}{2})>0}}
BesselJ(nu, z) = (((1)/(2)*z)^(nu))/((Pi)^((1)/(2))* GAMMA(nu +(1)/(2)))*int(cos(z*cos(theta))*(sin(theta))^(2*nu), theta = 0..Pi)
BesselJ[\[Nu], z] == Divide[(Divide[1,2]*z)^\[Nu],(Pi)^(Divide[1,2])* Gamma[\[Nu]+Divide[1,2]]]*Integrate[Cos[z*Cos[\[Theta]]]*(Sin[\[Theta]])^(2*\[Nu]), {\[Theta], 0, Pi}, GenerateConditions->None]
Error Successful -
Failed [20 / 35]
Result: Complex[0.009683985979314524, -0.05759180507972181]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.21993206762171735, 0.08917811286212163]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}

... skip entries to safe data
10.9.E4 ( 1 2 z ) ν π 1 2 Γ ( ν + 1 2 ) 0 π cos ( z cos θ ) ( sin θ ) 2 ν d θ = 2 ( 1 2 z ) ν π 1 2 Γ ( ν + 1 2 ) 0 1 ( 1 - t 2 ) ν - 1 2 cos ( z t ) d t superscript 1 2 𝑧 𝜈 superscript 𝜋 1 2 Euler-Gamma 𝜈 1 2 superscript subscript 0 𝜋 𝑧 𝜃 superscript 𝜃 2 𝜈 𝜃 2 superscript 1 2 𝑧 𝜈 superscript 𝜋 1 2 Euler-Gamma 𝜈 1 2 superscript subscript 0 1 superscript 1 superscript 𝑡 2 𝜈 1 2 𝑧 𝑡 𝑡 {\displaystyle{\displaystyle\frac{(\tfrac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}% \Gamma\left(\nu+\tfrac{1}{2}\right)}\int_{0}^{\pi}\cos\left(z\cos\theta\right)% (\sin\theta)^{2\nu}\mathrm{d}\theta=\frac{2(\tfrac{1}{2}z)^{\nu}}{\pi^{\frac{1% }{2}}\Gamma\left(\nu+\tfrac{1}{2}\right)}\int_{0}^{1}(1-t^{2})^{\nu-\frac{1}{2% }}\cos\left(zt\right)\mathrm{d}t}}
\frac{(\tfrac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}\EulerGamma@{\nu+\tfrac{1}{2}}}\int_{0}^{\pi}\cos@{z\cos@@{\theta}}(\sin@@{\theta})^{2\nu}\diff{\theta} = \frac{2(\tfrac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}\EulerGamma@{\nu+\tfrac{1}{2}}}\int_{0}^{1}(1-t^{2})^{\nu-\frac{1}{2}}\cos@{zt}\diff{t}
ν > - 1 2 , ( ν + k + 1 ) > 0 , ( ν + 1 2 ) > 0 formulae-sequence 𝜈 1 2 formulae-sequence 𝜈 𝑘 1 0 𝜈 1 2 0 {\displaystyle{\displaystyle\Re\nu>-\tfrac{1}{2},\Re(\nu+k+1)>0,\Re(\nu+\tfrac% {1}{2})>0}}
(((1)/(2)*z)^(nu))/((Pi)^((1)/(2))* GAMMA(nu +(1)/(2)))*int(cos(z*cos(theta))*(sin(theta))^(2*nu), theta = 0..Pi) = (2*((1)/(2)*z)^(nu))/((Pi)^((1)/(2))* GAMMA(nu +(1)/(2)))*int((1 - (t)^(2))^(nu -(1)/(2))* cos(z*t), t = 0..1)
Divide[(Divide[1,2]*z)^\[Nu],(Pi)^(Divide[1,2])* Gamma[\[Nu]+Divide[1,2]]]*Integrate[Cos[z*Cos[\[Theta]]]*(Sin[\[Theta]])^(2*\[Nu]), {\[Theta], 0, Pi}, GenerateConditions->None] == Divide[2*(Divide[1,2]*z)^\[Nu],(Pi)^(Divide[1,2])* Gamma[\[Nu]+Divide[1,2]]]*Integrate[(1 - (t)^(2))^(\[Nu]-Divide[1,2])* Cos[z*t], {t, 0, 1}, GenerateConditions->None]
Error Successful - Successful [Tested: 35]
10.9.E5 Y ν ( z ) = 2 ( 1 2 z ) ν π 1 2 Γ ( ν + 1 2 ) ( 0 1 ( 1 - t 2 ) ν - 1 2 sin ( z t ) d t - 0 e - z t ( 1 + t 2 ) ν - 1 2 d t ) Bessel-Y-Weber 𝜈 𝑧 2 superscript 1 2 𝑧 𝜈 superscript 𝜋 1 2 Euler-Gamma 𝜈 1 2 superscript subscript 0 1 superscript 1 superscript 𝑡 2 𝜈 1 2 𝑧 𝑡 𝑡 superscript subscript 0 superscript 𝑒 𝑧 𝑡 superscript 1 superscript 𝑡 2 𝜈 1 2 𝑡 {\displaystyle{\displaystyle Y_{\nu}\left(z\right)=\frac{2(\tfrac{1}{2}z)^{\nu% }}{\pi^{\frac{1}{2}}\Gamma\left(\nu+\tfrac{1}{2}\right)}\left(\int_{0}^{1}(1-t% ^{2})^{\nu-\frac{1}{2}}\sin\left(zt\right)\mathrm{d}t-\int_{0}^{\infty}e^{-zt}% (1+t^{2})^{\nu-\frac{1}{2}}\mathrm{d}t\right)}}
\BesselY{\nu}@{z} = \frac{2(\tfrac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}\EulerGamma@{\nu+\tfrac{1}{2}}}\left(\int_{0}^{1}(1-t^{2})^{\nu-\frac{1}{2}}\sin@{zt}\diff{t}-\int_{0}^{\infty}e^{-zt}(1+t^{2})^{\nu-\frac{1}{2}}\diff{t}\right)
ν > - 1 2 , | ph z | < 1 2 π , ( ν + k + 1 ) > 0 , ( ( - ν ) + k + 1 ) > 0 , ( ν + 1 2 ) > 0 formulae-sequence 𝜈 1 2 formulae-sequence phase 𝑧 1 2 𝜋 formulae-sequence 𝜈 𝑘 1 0 formulae-sequence 𝜈 𝑘 1 0 𝜈 1 2 0 {\displaystyle{\displaystyle\Re\nu>-\tfrac{1}{2},|\operatorname{ph}z|<\tfrac{1% }{2}\pi,\Re(\nu+k+1)>0,\Re((-\nu)+k+1)>0,\Re(\nu+\tfrac{1}{2})>0}}
BesselY(nu, z) = (2*((1)/(2)*z)^(nu))/((Pi)^((1)/(2))* GAMMA(nu +(1)/(2)))*(int((1 - (t)^(2))^(nu -(1)/(2))* sin(z*t), t = 0..1)- int(exp(- z*t)*(1 + (t)^(2))^(nu -(1)/(2)), t = 0..infinity))
BesselY[\[Nu], z] == Divide[2*(Divide[1,2]*z)^\[Nu],(Pi)^(Divide[1,2])* Gamma[\[Nu]+Divide[1,2]]]*(Integrate[(1 - (t)^(2))^(\[Nu]-Divide[1,2])* Sin[z*t], {t, 0, 1}, GenerateConditions->None]- Integrate[Exp[- z*t]*(1 + (t)^(2))^(\[Nu]-Divide[1,2]), {t, 0, Infinity}, GenerateConditions->None])
Successful Successful -
Failed [15 / 25]
Result: Complex[-0.9495382353861556, 0.46093572348323536]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 1.5]}

Result: Complex[-0.7706973036767981, 0.20650772012904162]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 0.5]}

... skip entries to safe data
10.9.E6 J ν ( z ) = 1 π 0 π cos ( z sin θ - ν θ ) d θ - sin ( ν π ) π 0 e - z sinh t - ν t d t Bessel-J 𝜈 𝑧 1 𝜋 superscript subscript 0 𝜋 𝑧 𝜃 𝜈 𝜃 𝜃 𝜈 𝜋 𝜋 superscript subscript 0 superscript 𝑒 𝑧 𝑡 𝜈 𝑡 𝑡 {\displaystyle{\displaystyle J_{\nu}\left(z\right)=\frac{1}{\pi}\int_{0}^{\pi}% \cos\left(z\sin\theta-\nu\theta\right)\mathrm{d}\theta-\frac{\sin\left(\nu\pi% \right)}{\pi}\int_{0}^{\infty}e^{-z\sinh t-\nu t}\mathrm{d}t}}
\BesselJ{\nu}@{z} = \frac{1}{\pi}\int_{0}^{\pi}\cos@{z\sin@@{\theta}-\nu\theta}\diff{\theta}-\frac{\sin@{\nu\pi}}{\pi}\int_{0}^{\infty}e^{-z\sinh@@{t}-\nu t}\diff{t}
| ph z | < 1 2 π , ( ν + k + 1 ) > 0 formulae-sequence phase 𝑧 1 2 𝜋 𝜈 𝑘 1 0 {\displaystyle{\displaystyle|\operatorname{ph}z|<\tfrac{1}{2}\pi,\Re(\nu+k+1)>% 0}}
BesselJ(nu, z) = (1)/(Pi)*int(cos(z*sin(theta)- nu*theta), theta = 0..Pi)-(sin(nu*Pi))/(Pi)*int(exp(- z*sinh(t)- nu*t), t = 0..infinity)
BesselJ[\[Nu], z] == Divide[1,Pi]*Integrate[Cos[z*Sin[\[Theta]]- \[Nu]*\[Theta]], {\[Theta], 0, Pi}, GenerateConditions->None]-Divide[Sin[\[Nu]*Pi],Pi]*Integrate[Exp[- z*Sinh[t]- \[Nu]*t], {t, 0, Infinity}, GenerateConditions->None]
Failure Aborted
Failed [1 / 50]
Result: -.1812319652
Test Values: {nu = -1/2, z = 3/2}

Skipped - Because timed out
10.9.E7 Y ν ( z ) = 1 π 0 π sin ( z sin θ - ν θ ) d θ - 1 π 0 ( e ν t + e - ν t cos ( ν π ) ) e - z sinh t d t Bessel-Y-Weber 𝜈 𝑧 1 𝜋 superscript subscript 0 𝜋 𝑧 𝜃 𝜈 𝜃 𝜃 1 𝜋 superscript subscript 0 superscript 𝑒 𝜈 𝑡 superscript 𝑒 𝜈 𝑡 𝜈 𝜋 superscript 𝑒 𝑧 𝑡 𝑡 {\displaystyle{\displaystyle Y_{\nu}\left(z\right)=\frac{1}{\pi}\int_{0}^{\pi}% \sin\left(z\sin\theta-\nu\theta\right)\mathrm{d}\theta-\frac{1}{\pi}\int_{0}^{% \infty}\left(e^{\nu t}+e^{-\nu t}\cos\left(\nu\pi\right)\right)e^{-z\sinh t}% \mathrm{d}t}}
\BesselY{\nu}@{z} = \frac{1}{\pi}\int_{0}^{\pi}\sin@{z\sin@@{\theta}-\nu\theta}\diff{\theta}-\frac{1}{\pi}\int_{0}^{\infty}\left(e^{\nu t}+e^{-\nu t}\cos@{\nu\pi}\right)e^{-z\sinh@@{t}}\diff{t}
| ph z | < 1 2 π , ( ν + k + 1 ) > 0 , ( ( - ν ) + k + 1 ) > 0 formulae-sequence phase 𝑧 1 2 𝜋 formulae-sequence 𝜈 𝑘 1 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle|\operatorname{ph}z|<\tfrac{1}{2}\pi,\Re(\nu+k+1)>% 0,\Re((-\nu)+k+1)>0}}
BesselY(nu, z) = (1)/(Pi)*int(sin(z*sin(theta)- nu*theta), theta = 0..Pi)-(1)/(Pi)*int((exp(nu*t)+ exp(- nu*t)*cos(nu*Pi))*exp(- z*sinh(t)), t = 0..infinity)
BesselY[\[Nu], z] == Divide[1,Pi]*Integrate[Sin[z*Sin[\[Theta]]- \[Nu]*\[Theta]], {\[Theta], 0, Pi}, GenerateConditions->None]-Divide[1,Pi]*Integrate[(Exp[\[Nu]*t]+ Exp[- \[Nu]*t]*Cos[\[Nu]*Pi])*Exp[- z*Sinh[t]], {t, 0, Infinity}, GenerateConditions->None]
Failure Aborted Skipped - Because timed out Skipped - Because timed out
10.9#Ex1 J ν ( x ) = 2 π 0 sin ( x cosh t - 1 2 ν π ) cosh ( ν t ) d t Bessel-J 𝜈 𝑥 2 𝜋 superscript subscript 0 𝑥 𝑡 1 2 𝜈 𝜋 𝜈 𝑡 𝑡 {\displaystyle{\displaystyle J_{\nu}\left(x\right)=\frac{2}{\pi}\int_{0}^{% \infty}\sin\left(x\cosh t-\tfrac{1}{2}\nu\pi\right)\cosh\left(\nu t\right)% \mathrm{d}t}}
\BesselJ{\nu}@{x} = \frac{2}{\pi}\int_{0}^{\infty}\sin@{x\cosh@@{t}-\tfrac{1}{2}\nu\pi}\cosh@{\nu t}\diff{t}
( ν + k + 1 ) > 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0}}
BesselJ(nu, x) = (2)/(Pi)*int(sin(x*cosh(t)-(1)/(2)*nu*Pi)*cosh(nu*t), t = 0..infinity)
BesselJ[\[Nu], x] == Divide[2,Pi]*Integrate[Sin[x*Cosh[t]-Divide[1,2]*\[Nu]*Pi]*Cosh[\[Nu]*t], {t, 0, Infinity}, GenerateConditions->None]
Failure Aborted Skipped - Because timed out Skipped - Because timed out
10.9#Ex2 Y ν ( x ) = - 2 π 0 cos ( x cosh t - 1 2 ν π ) cosh ( ν t ) d t Bessel-Y-Weber 𝜈 𝑥 2 𝜋 superscript subscript 0 𝑥 𝑡 1 2 𝜈 𝜋 𝜈 𝑡 𝑡 {\displaystyle{\displaystyle Y_{\nu}\left(x\right)=-\frac{2}{\pi}\int_{0}^{% \infty}\cos\left(x\cosh t-\tfrac{1}{2}\nu\pi\right)\cosh\left(\nu t\right)% \mathrm{d}t}}
\BesselY{\nu}@{x} = -\frac{2}{\pi}\int_{0}^{\infty}\cos@{x\cosh@@{t}-\tfrac{1}{2}\nu\pi}\cosh@{\nu t}\diff{t}
| ν | < 1 , x > 0 , ( ν + k + 1 ) > 0 , ( ( - ν ) + k + 1 ) > 0 formulae-sequence 𝜈 1 formulae-sequence 𝑥 0 formulae-sequence 𝜈 𝑘 1 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle|\Re\nu|<1,x>0,\Re(\nu+k+1)>0,\Re((-\nu)+k+1)>0}}
BesselY(nu, x) = -(2)/(Pi)*int(cos(x*cosh(t)-(1)/(2)*nu*Pi)*cosh(nu*t), t = 0..infinity)
BesselY[\[Nu], x] == -Divide[2,Pi]*Integrate[Cos[x*Cosh[t]-Divide[1,2]*\[Nu]*Pi]*Cosh[\[Nu]*t], {t, 0, Infinity}, GenerateConditions->None]
Failure Aborted Skipped - Because timed out Skipped - Because timed out
10.9#Ex3 J 0 ( x ) = 2 π 0 sin ( x cosh t ) d t Bessel-J 0 𝑥 2 𝜋 superscript subscript 0 𝑥 𝑡 𝑡 {\displaystyle{\displaystyle J_{0}\left(x\right)=\frac{2}{\pi}\int_{0}^{\infty% }\sin\left(x\cosh t\right)\mathrm{d}t}}
\BesselJ{0}@{x} = \frac{2}{\pi}\int_{0}^{\infty}\sin@{x\cosh@@{t}}\diff{t}
x > 0 , ( 0 + k + 1 ) > 0 formulae-sequence 𝑥 0 0 𝑘 1 0 {\displaystyle{\displaystyle x>0,\Re(0+k+1)>0}}
BesselJ(0, x) = (2)/(Pi)*int(sin(x*cosh(t)), t = 0..infinity)
BesselJ[0, x] == Divide[2,Pi]*Integrate[Sin[x*Cosh[t]], {t, 0, Infinity}, GenerateConditions->None]
Failure Aborted Skipped - Because timed out Skipped - Because timed out
10.9#Ex4 Y 0 ( x ) = - 2 π 0 cos ( x cosh t ) d t Bessel-Y-Weber 0 𝑥 2 𝜋 superscript subscript 0 𝑥 𝑡 𝑡 {\displaystyle{\displaystyle Y_{0}\left(x\right)=-\frac{2}{\pi}\int_{0}^{% \infty}\cos\left(x\cosh t\right)\mathrm{d}t}}
\BesselY{0}@{x} = -\frac{2}{\pi}\int_{0}^{\infty}\cos@{x\cosh@@{t}}\diff{t}
x > 0 , ( 0 + k + 1 ) > 0 , ( ( - 0 ) + k + 1 ) > 0 formulae-sequence 𝑥 0 formulae-sequence 0 𝑘 1 0 0 𝑘 1 0 {\displaystyle{\displaystyle x>0,\Re(0+k+1)>0,\Re((-0)+k+1)>0}}
BesselY(0, x) = -(2)/(Pi)*int(cos(x*cosh(t)), t = 0..infinity)
BesselY[0, x] == -Divide[2,Pi]*Integrate[Cos[x*Cosh[t]], {t, 0, Infinity}, GenerateConditions->None]
Failure Aborted Skipped - Because timed out Skipped - Because timed out
10.9.E10 H ν ( 1 ) ( z ) = e - 1 2 ν π i π i - e i z cosh t - ν t d t Hankel-H-1-Bessel-third-kind 𝜈 𝑧 superscript 𝑒 1 2 𝜈 𝜋 𝑖 𝜋 𝑖 superscript subscript superscript 𝑒 𝑖 𝑧 𝑡 𝜈 𝑡 𝑡 {\displaystyle{\displaystyle{H^{(1)}_{\nu}}\left(z\right)=\frac{e^{-\frac{1}{2% }\nu\pi i}}{\pi i}\int_{-\infty}^{\infty}e^{iz\cosh t-\nu t}\mathrm{d}t}}
\HankelH{1}{\nu}@{z} = \frac{e^{-\frac{1}{2}\nu\pi i}}{\pi i}\int_{-\infty}^{\infty}e^{iz\cosh@@{t}-\nu t}\diff{t}
0 < ph z , ph z < π formulae-sequence 0 phase 𝑧 phase 𝑧 𝜋 {\displaystyle{\displaystyle 0<\operatorname{ph}z,\operatorname{ph}z<\pi}}
HankelH1(nu, z) = (exp(-(1)/(2)*nu*Pi*I))/(Pi*I)*int(exp(I*z*cosh(t)- nu*t), t = - infinity..infinity)
HankelH1[\[Nu], z] == Divide[Exp[-Divide[1,2]*\[Nu]*Pi*I],Pi*I]*Integrate[Exp[I*z*Cosh[t]- \[Nu]*t], {t, - Infinity, Infinity}, GenerateConditions->None]
Error Aborted - Skipped - Because timed out
10.9.E11 H ν ( 2 ) ( z ) = - e 1 2 ν π i π i - e - i z cosh t - ν t d t Hankel-H-2-Bessel-third-kind 𝜈 𝑧 superscript 𝑒 1 2 𝜈 𝜋 𝑖 𝜋 𝑖 superscript subscript superscript 𝑒 𝑖 𝑧 𝑡 𝜈 𝑡 𝑡 {\displaystyle{\displaystyle{H^{(2)}_{\nu}}\left(z\right)=-\frac{e^{\frac{1}{2% }\nu\pi i}}{\pi i}\int_{-\infty}^{\infty}e^{-iz\cosh t-\nu t}\mathrm{d}t}}
\HankelH{2}{\nu}@{z} = -\frac{e^{\frac{1}{2}\nu\pi i}}{\pi i}\int_{-\infty}^{\infty}e^{-iz\cosh@@{t}-\nu t}\diff{t}
- π < ph z , ph z < 0 formulae-sequence 𝜋 phase 𝑧 phase 𝑧 0 {\displaystyle{\displaystyle-\pi<\operatorname{ph}z,\operatorname{ph}z<0}}
HankelH2(nu, z) = -(exp((1)/(2)*nu*Pi*I))/(Pi*I)*int(exp(- I*z*cosh(t)- nu*t), t = - infinity..infinity)
HankelH2[\[Nu], z] == -Divide[Exp[Divide[1,2]*\[Nu]*Pi*I],Pi*I]*Integrate[Exp[- I*z*Cosh[t]- \[Nu]*t], {t, - Infinity, Infinity}, GenerateConditions->None]
Error Aborted - Skipped - Because timed out
10.9#Ex5 J ν ( x ) = 2 ( 1 2 x ) - ν π 1 2 Γ ( 1 2 - ν ) 1 sin ( x t ) d t ( t 2 - 1 ) ν + 1 2 Bessel-J 𝜈 𝑥 2 superscript 1 2 𝑥 𝜈 superscript 𝜋 1 2 Euler-Gamma 1 2 𝜈 superscript subscript 1 𝑥 𝑡 𝑡 superscript superscript 𝑡 2 1 𝜈 1 2 {\displaystyle{\displaystyle J_{\nu}\left(x\right)=\frac{2(\tfrac{1}{2}x)^{-% \nu}}{\pi^{\frac{1}{2}}\Gamma\left(\tfrac{1}{2}-\nu\right)}\int_{1}^{\infty}% \frac{\sin\left(xt\right)\mathrm{d}t}{(t^{2}-1)^{\nu+\frac{1}{2}}}}}
\BesselJ{\nu}@{x} = \frac{2(\tfrac{1}{2}x)^{-\nu}}{\pi^{\frac{1}{2}}\EulerGamma@{\tfrac{1}{2}-\nu}}\int_{1}^{\infty}\frac{\sin@{xt}\diff{t}}{(t^{2}-1)^{\nu+\frac{1}{2}}}
( ν + k + 1 ) > 0 , ( 1 2 - ν ) > 0 formulae-sequence 𝜈 𝑘 1 0 1 2 𝜈 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0,\Re(\tfrac{1}{2}-\nu)>0}}
BesselJ(nu, x) = (2*((1)/(2)*x)^(- nu))/((Pi)^((1)/(2))* GAMMA((1)/(2)- nu))*int((sin(x*t))/(((t)^(2)- 1)^(nu +(1)/(2))), t = 1..infinity)
BesselJ[\[Nu], x] == Divide[2*(Divide[1,2]*x)^(- \[Nu]),(Pi)^(Divide[1,2])* Gamma[Divide[1,2]- \[Nu]]]*Integrate[Divide[Sin[x*t],((t)^(2)- 1)^(\[Nu]+Divide[1,2])], {t, 1, Infinity}, GenerateConditions->None]
Successful Aborted - Successful [Tested: 15]
10.9#Ex6 Y ν ( x ) = - 2 ( 1 2 x ) - ν π 1 2 Γ ( 1 2 - ν ) 1 cos ( x t ) d t ( t 2 - 1 ) ν + 1 2 Bessel-Y-Weber 𝜈 𝑥 2 superscript 1 2 𝑥 𝜈 superscript 𝜋 1 2 Euler-Gamma 1 2 𝜈 superscript subscript 1 𝑥 𝑡 𝑡 superscript superscript 𝑡 2 1 𝜈 1 2 {\displaystyle{\displaystyle Y_{\nu}\left(x\right)=-\frac{2(\tfrac{1}{2}x)^{-% \nu}}{\pi^{\frac{1}{2}}\Gamma\left(\tfrac{1}{2}-\nu\right)}\int_{1}^{\infty}% \frac{\cos\left(xt\right)\mathrm{d}t}{(t^{2}-1)^{\nu+\frac{1}{2}}}}}
\BesselY{\nu}@{x} = -\frac{2(\tfrac{1}{2}x)^{-\nu}}{\pi^{\frac{1}{2}}\EulerGamma@{\tfrac{1}{2}-\nu}}\int_{1}^{\infty}\frac{\cos@{xt}\diff{t}}{(t^{2}-1)^{\nu+\frac{1}{2}}}
| ν | < 1 2 , x > 0 , ( 1 2 - ν ) > 0 , ( ν + k + 1 ) > 0 , ( ( - ν ) + k + 1 ) > 0 formulae-sequence 𝜈 1 2 formulae-sequence 𝑥 0 formulae-sequence 1 2 𝜈 0 formulae-sequence 𝜈 𝑘 1 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle|\Re\nu|<\tfrac{1}{2},x>0,\Re(\tfrac{1}{2}-\nu)>0,% \Re(\nu+k+1)>0,\Re((-\nu)+k+1)>0}}
BesselY(nu, x) = -(2*((1)/(2)*x)^(- nu))/((Pi)^((1)/(2))* GAMMA((1)/(2)- nu))*int((cos(x*t))/(((t)^(2)- 1)^(nu +(1)/(2))), t = 1..infinity)
BesselY[\[Nu], x] == -Divide[2*(Divide[1,2]*x)^(- \[Nu]),(Pi)^(Divide[1,2])* Gamma[Divide[1,2]- \[Nu]]]*Integrate[Divide[Cos[x*t],((t)^(2)- 1)^(\[Nu]+Divide[1,2])], {t, 1, Infinity}, GenerateConditions->None]
Successful Aborted - Skip - No test values generated
10.9.E13 ( z + ζ z - ζ ) 1 2 ν J ν ( ( z 2 - ζ 2 ) 1 2 ) = 1 π 0 π e ζ cos θ cos ( z sin θ - ν θ ) d θ - sin ( ν π ) π 0 e - ζ cosh t - z sinh t - ν t d t superscript 𝑧 𝜁 𝑧 𝜁 1 2 𝜈 Bessel-J 𝜈 superscript superscript 𝑧 2 superscript 𝜁 2 1 2 1 𝜋 superscript subscript 0 𝜋 superscript 𝑒 𝜁 𝜃 𝑧 𝜃 𝜈 𝜃 𝜃 𝜈 𝜋 𝜋 superscript subscript 0 superscript 𝑒 𝜁 𝑡 𝑧 𝑡 𝜈 𝑡 𝑡 {\displaystyle{\displaystyle\left(\frac{z+\zeta}{z-\zeta}\right)^{\frac{1}{2}% \nu}J_{\nu}\left((z^{2}-\zeta^{2})^{\frac{1}{2}}\right)=\frac{1}{\pi}\int_{0}^% {\pi}e^{\zeta\cos\theta}\cos\left(z\sin\theta-\nu\theta\right)\mathrm{d}\theta% -\frac{\sin\left(\nu\pi\right)}{\pi}\int_{0}^{\infty}e^{-\zeta\cosh t-z\sinh t% -\nu t}\mathrm{d}t}}
\left(\frac{z+\zeta}{z-\zeta}\right)^{\frac{1}{2}\nu}\BesselJ{\nu}@{(z^{2}-\zeta^{2})^{\frac{1}{2}}} = \frac{1}{\pi}\int_{0}^{\pi}e^{\zeta\cos@@{\theta}}\cos@{z\sin@@{\theta}-\nu\theta}\diff{\theta}-\frac{\sin@{\nu\pi}}{\pi}\int_{0}^{\infty}e^{-\zeta\cosh@@{t}-z\sinh@@{t}-\nu t}\diff{t}
( z + ζ ) > 0 , ( ν + k + 1 ) > 0 formulae-sequence 𝑧 𝜁 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re\left(z+\zeta\right)>0,\Re(\nu+k+1)>0}}
((z + zeta)/(z - zeta))^((1)/(2)*nu)* BesselJ(nu, ((z)^(2)- (zeta)^(2))^((1)/(2))) = (1)/(Pi)*int(exp(zeta*cos(theta))*cos(z*sin(theta)- nu*theta), theta = 0..Pi)-(sin(nu*Pi))/(Pi)*int(exp(- zeta*cosh(t)- z*sinh(t)- nu*t), t = 0..infinity)
(Divide[z + \[Zeta],z - \[Zeta]])^(Divide[1,2]*\[Nu])* BesselJ[\[Nu], ((z)^(2)- \[Zeta]^(2))^(Divide[1,2])] == Divide[1,Pi]*Integrate[Exp[\[Zeta]*Cos[\[Theta]]]*Cos[z*Sin[\[Theta]]- \[Nu]*\[Theta]], {\[Theta], 0, Pi}, GenerateConditions->None]-Divide[Sin[\[Nu]*Pi],Pi]*Integrate[Exp[- \[Zeta]*Cosh[t]- z*Sinh[t]- \[Nu]*t], {t, 0, Infinity}, GenerateConditions->None]
Error Aborted - Skipped - Because timed out
10.9.E14 ( z + ζ z - ζ ) 1 2 ν Y ν ( ( z 2 - ζ 2 ) 1 2 ) = 1 π 0 π e ζ cos θ sin ( z sin θ - ν θ ) d θ - 1 π 0 ( e ν t + ζ cosh t + e - ν t - ζ cosh t cos ( ν π ) ) e - z sinh t d t superscript 𝑧 𝜁 𝑧 𝜁 1 2 𝜈 Bessel-Y-Weber 𝜈 superscript superscript 𝑧 2 superscript 𝜁 2 1 2 1 𝜋 superscript subscript 0 𝜋 superscript 𝑒 𝜁 𝜃 𝑧 𝜃 𝜈 𝜃 𝜃 1 𝜋 superscript subscript 0 superscript 𝑒 𝜈 𝑡 𝜁 𝑡 superscript 𝑒 𝜈 𝑡 𝜁 𝑡 𝜈 𝜋 superscript 𝑒 𝑧 𝑡 𝑡 {\displaystyle{\displaystyle\left(\frac{z+\zeta}{z-\zeta}\right)^{\frac{1}{2}% \nu}Y_{\nu}\left((z^{2}-\zeta^{2})^{\frac{1}{2}}\right)=\frac{1}{\pi}\int_{0}^% {\pi}e^{\zeta\cos\theta}\sin\left(z\sin\theta-\nu\theta\right)\mathrm{d}\theta% -\frac{1}{\pi}\int_{0}^{\infty}\left(e^{\nu t+\zeta\cosh t}+e^{-\nu t-\zeta% \cosh t}\cos\left(\nu\pi\right)\right)\*e^{-z\sinh t}\mathrm{d}t}}
\left(\frac{z+\zeta}{z-\zeta}\right)^{\frac{1}{2}\nu}\BesselY{\nu}@{(z^{2}-\zeta^{2})^{\frac{1}{2}}} = \frac{1}{\pi}\int_{0}^{\pi}e^{\zeta\cos@@{\theta}}\sin@{z\sin@@{\theta}-\nu\theta}\diff{\theta}-\frac{1}{\pi}\int_{0}^{\infty}\left(e^{\nu t+\zeta\cosh@@{t}}+e^{-\nu t-\zeta\cosh@@{t}}\cos@{\nu\pi}\right)\*e^{-z\sinh@@{t}}\diff{t}
( z + ζ ) > 0 , ( z - ζ ) > 0 , ( ν + k + 1 ) > 0 , ( ( - ν ) + k + 1 ) > 0 formulae-sequence 𝑧 𝜁 0 formulae-sequence 𝑧 𝜁 0 formulae-sequence 𝜈 𝑘 1 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re\left(z+\zeta\right)>0,\Re\left(z-\zeta\right)>% 0,\Re(\nu+k+1)>0,\Re((-\nu)+k+1)>0}}
((z + zeta)/(z - zeta))^((1)/(2)*nu)* BesselY(nu, ((z)^(2)- (zeta)^(2))^((1)/(2))) = (1)/(Pi)*int(exp(zeta*cos(theta))*sin(z*sin(theta)- nu*theta), theta = 0..Pi)-(1)/(Pi)*int((exp(nu*t + zeta*cosh(t))+ exp(- nu*t - zeta*cosh(t))*cos(nu*Pi))* exp(- z*sinh(t)), t = 0..infinity)
(Divide[z + \[Zeta],z - \[Zeta]])^(Divide[1,2]*\[Nu])* BesselY[\[Nu], ((z)^(2)- \[Zeta]^(2))^(Divide[1,2])] == Divide[1,Pi]*Integrate[Exp[\[Zeta]*Cos[\[Theta]]]*Sin[z*Sin[\[Theta]]- \[Nu]*\[Theta]], {\[Theta], 0, Pi}, GenerateConditions->None]-Divide[1,Pi]*Integrate[(Exp[\[Nu]*t + \[Zeta]*Cosh[t]]+ Exp[- \[Nu]*t - \[Zeta]*Cosh[t]]*Cos[\[Nu]*Pi])* Exp[- z*Sinh[t]], {t, 0, Infinity}, GenerateConditions->None]
Error Aborted - Skipped - Because timed out
10.9.E15 ( z + ζ z - ζ ) 1 2 ν H ν ( 1 ) ( ( z 2 - ζ 2 ) 1 2 ) = 1 π i e - 1 2 ν π i - e i z cosh t + i ζ sinh t - ν t d t superscript 𝑧 𝜁 𝑧 𝜁 1 2 𝜈 Hankel-H-1-Bessel-third-kind 𝜈 superscript superscript 𝑧 2 superscript 𝜁 2 1 2 1 𝜋 𝑖 superscript 𝑒 1 2 𝜈 𝜋 𝑖 superscript subscript superscript 𝑒 𝑖 𝑧 𝑡 𝑖 𝜁 𝑡 𝜈 𝑡 𝑡 {\displaystyle{\displaystyle\left(\frac{z+\zeta}{z-\zeta}\right)^{\frac{1}{2}% \nu}{H^{(1)}_{\nu}}\left((z^{2}-\zeta^{2})^{\frac{1}{2}}\right)=\frac{1}{\pi i% }e^{-\frac{1}{2}\nu\pi i}\int_{-\infty}^{\infty}e^{iz\cosh t+i\zeta\sinh t-\nu t% }\mathrm{d}t}}
\left(\frac{z+\zeta}{z-\zeta}\right)^{\frac{1}{2}\nu}\HankelH{1}{\nu}@{(z^{2}-\zeta^{2})^{\frac{1}{2}}} = \frac{1}{\pi i}e^{-\frac{1}{2}\nu\pi i}\int_{-\infty}^{\infty}e^{iz\cosh@@{t}+i\zeta\sinh@@{t}-\nu t}\diff{t}

((z + zeta)/(z - zeta))^((1)/(2)*nu)* HankelH1(nu, ((z)^(2)- (zeta)^(2))^((1)/(2))) = (1)/(Pi*I)*exp(-(1)/(2)*nu*Pi*I)*int(exp(I*z*cosh(t)+ I*zeta*sinh(t)- nu*t), t = - infinity..infinity)
(Divide[z + \[Zeta],z - \[Zeta]])^(Divide[1,2]*\[Nu])* HankelH1[\[Nu], ((z)^(2)- \[Zeta]^(2))^(Divide[1,2])] == Divide[1,Pi*I]*Exp[-Divide[1,2]*\[Nu]*Pi*I]*Integrate[Exp[I*z*Cosh[t]+ I*\[Zeta]*Sinh[t]- \[Nu]*t], {t, - Infinity, Infinity}, GenerateConditions->None]
Error Aborted - Skipped - Because timed out
10.9.E16 ( z + ζ z - ζ ) 1 2 ν H ν ( 2 ) ( ( z 2 - ζ 2 ) 1 2 ) = - 1 π i e 1 2 ν π i - e - i z cosh t - i ζ sinh t - ν t d t superscript 𝑧 𝜁 𝑧 𝜁 1 2 𝜈 Hankel-H-2-Bessel-third-kind 𝜈 superscript superscript 𝑧 2 superscript 𝜁 2 1 2 1 𝜋 𝑖 superscript 𝑒 1 2 𝜈 𝜋 𝑖 superscript subscript superscript 𝑒 𝑖 𝑧 𝑡 𝑖 𝜁 𝑡 𝜈 𝑡 𝑡 {\displaystyle{\displaystyle\left(\frac{z+\zeta}{z-\zeta}\right)^{\frac{1}{2}% \nu}{H^{(2)}_{\nu}}\left((z^{2}-\zeta^{2})^{\frac{1}{2}}\right)=-\frac{1}{\pi i% }e^{\frac{1}{2}\nu\pi i}\int_{-\infty}^{\infty}e^{-iz\cosh t-i\zeta\sinh t-\nu t% }\mathrm{d}t}}
\left(\frac{z+\zeta}{z-\zeta}\right)^{\frac{1}{2}\nu}\HankelH{2}{\nu}@{(z^{2}-\zeta^{2})^{\frac{1}{2}}} = -\frac{1}{\pi i}e^{\frac{1}{2}\nu\pi i}\int_{-\infty}^{\infty}e^{-iz\cosh@@{t}-i\zeta\sinh@@{t}-\nu t}\diff{t}
( z + ζ ) < 0 , ( z - ζ ) < 0 formulae-sequence 𝑧 𝜁 0 𝑧 𝜁 0 {\displaystyle{\displaystyle\Im\left(z+\zeta\right)<0,\Im\left(z-\zeta\right)<% 0}}
((z + zeta)/(z - zeta))^((1)/(2)*nu)* HankelH2(nu, ((z)^(2)- (zeta)^(2))^((1)/(2))) = -(1)/(Pi*I)*exp((1)/(2)*nu*Pi*I)*int(exp(- I*z*cosh(t)- I*zeta*sinh(t)- nu*t), t = - infinity..infinity)
(Divide[z + \[Zeta],z - \[Zeta]])^(Divide[1,2]*\[Nu])* HankelH2[\[Nu], ((z)^(2)- \[Zeta]^(2))^(Divide[1,2])] == -Divide[1,Pi*I]*Exp[Divide[1,2]*\[Nu]*Pi*I]*Integrate[Exp[- I*z*Cosh[t]- I*\[Zeta]*Sinh[t]- \[Nu]*t], {t, - Infinity, Infinity}, GenerateConditions->None]
Error Aborted - Skipped - Because timed out
10.9.E17 J ν ( z ) = 1 2 π i - π i + π i e z sinh t - ν t d t Bessel-J 𝜈 𝑧 1 2 𝜋 𝑖 superscript subscript 𝜋 𝑖 𝜋 𝑖 superscript 𝑒 𝑧 𝑡 𝜈 𝑡 𝑡 {\displaystyle{\displaystyle J_{\nu}\left(z\right)=\frac{1}{2\pi i}\int_{% \infty-\pi i}^{\infty+\pi i}e^{z\sinh t-\nu t}\mathrm{d}t}}
\BesselJ{\nu}@{z} = \frac{1}{2\pi i}\int_{\infty-\pi i}^{\infty+\pi i}e^{z\sinh@@{t}-\nu t}\diff{t}
( ν + k + 1 ) > 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0}}
BesselJ(nu, z) = (1)/(2*Pi*I)*int(exp(z*sinh(t)- nu*t), t = infinity - Pi*I..infinity + Pi*I)
BesselJ[\[Nu], z] == Divide[1,2*Pi*I]*Integrate[Exp[z*Sinh[t]- \[Nu]*t], {t, Infinity - Pi*I, Infinity + Pi*I}, GenerateConditions->None]
Error Failure -
Failed [70 / 70]
Result: Complex[0.4358908643715884, -0.07192294931339177]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[1.0679098760861825, 0.09257666026367889]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.9#Ex7 H ν ( 1 ) ( z ) = 1 π i - + π i e z sinh t - ν t d t Hankel-H-1-Bessel-third-kind 𝜈 𝑧 1 𝜋 𝑖 superscript subscript 𝜋 𝑖 superscript 𝑒 𝑧 𝑡 𝜈 𝑡 𝑡 {\displaystyle{\displaystyle{H^{(1)}_{\nu}}\left(z\right)=\frac{1}{\pi i}\int_% {-\infty}^{\infty+\pi i}e^{z\sinh t-\nu t}\mathrm{d}t}}
\HankelH{1}{\nu}@{z} = \frac{1}{\pi i}\int_{-\infty}^{\infty+\pi i}e^{z\sinh@@{t}-\nu t}\diff{t}

HankelH1(nu, z) = (1)/(Pi*I)*int(exp(z*sinh(t)- nu*t), t = - infinity..infinity + Pi*I)
HankelH1[\[Nu], z] == Divide[1,Pi*I]*Integrate[Exp[z*Sinh[t]- \[Nu]*t], {t, - Infinity, Infinity + Pi*I}, GenerateConditions->None]
Failure Aborted Skipped - Because timed out Skipped - Because timed out
10.9#Ex8 H ν ( 2 ) ( z ) = - 1 π i - - π i e z sinh t - ν t d t Hankel-H-2-Bessel-third-kind 𝜈 𝑧 1 𝜋 𝑖 superscript subscript 𝜋 𝑖 superscript 𝑒 𝑧 𝑡 𝜈 𝑡 𝑡 {\displaystyle{\displaystyle{H^{(2)}_{\nu}}\left(z\right)=-\frac{1}{\pi i}\int% _{-\infty}^{\infty-\pi i}e^{z\sinh t-\nu t}\mathrm{d}t}}
\HankelH{2}{\nu}@{z} = -\frac{1}{\pi i}\int_{-\infty}^{\infty-\pi i}e^{z\sinh@@{t}-\nu t}\diff{t}

HankelH2(nu, z) = -(1)/(Pi*I)*int(exp(z*sinh(t)- nu*t), t = - infinity..infinity - Pi*I)
HankelH2[\[Nu], z] == -Divide[1,Pi*I]*Integrate[Exp[z*Sinh[t]- \[Nu]*t], {t, - Infinity, Infinity - Pi*I}, GenerateConditions->None]
Failure Aborted Skipped - Because timed out Skipped - Because timed out
10.9.E19 J ν ( z ) = ( 1 2 z ) ν 2 π i - ( 0 + ) exp ( t - z 2 4 t ) d t t ν + 1 Bessel-J 𝜈 𝑧 superscript 1 2 𝑧 𝜈 2 𝜋 𝑖 superscript subscript limit-from 0 𝑡 superscript 𝑧 2 4 𝑡 𝑡 superscript 𝑡 𝜈 1 {\displaystyle{\displaystyle J_{\nu}\left(z\right)=\frac{(\tfrac{1}{2}z)^{\nu}% }{2\pi i}\int_{-\infty}^{(0+)}\exp\left(t-\frac{z^{2}}{4t}\right)\frac{\mathrm% {d}t}{t^{\nu+1}}}}
\BesselJ{\nu}@{z} = \frac{(\tfrac{1}{2}z)^{\nu}}{2\pi i}\int_{-\infty}^{(0+)}\exp@{t-\frac{z^{2}}{4t}}\frac{\diff{t}}{t^{\nu+1}}
( ν + k + 1 ) > 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0}}
BesselJ(nu, z) = (((1)/(2)*z)^(nu))/(2*Pi*I)*int(exp(t -((z)^(2))/(4*t))*(1)/((t)^(nu + 1)), t = - infinity..(0 +))
BesselJ[\[Nu], z] == Divide[(Divide[1,2]*z)^\[Nu],2*Pi*I]*Integrate[Exp[t -Divide[(z)^(2),4*t]]*Divide[1,(t)^(\[Nu]+ 1)], {t, - Infinity, (0 +)}, GenerateConditions->None]
Error Failure - Error
10.9.E20 J ν ( z ) = Γ ( 1 2 - ν ) ( 1 2 z ) ν π 3 2 i 0 ( 1 + ) cos ( z t ) ( t 2 - 1 ) ν - 1 2 d t Bessel-J 𝜈 𝑧 Euler-Gamma 1 2 𝜈 superscript 1 2 𝑧 𝜈 superscript 𝜋 3 2 𝑖 superscript subscript 0 limit-from 1 𝑧 𝑡 superscript superscript 𝑡 2 1 𝜈 1 2 𝑡 {\displaystyle{\displaystyle J_{\nu}\left(z\right)=\frac{\Gamma\left(\frac{1}{% 2}-\nu\right)(\frac{1}{2}z)^{\nu}}{\pi^{\frac{3}{2}}i}\int_{0}^{(1+)}\cos\left% (zt\right)(t^{2}-1)^{\nu-\frac{1}{2}}\mathrm{d}t}}
\BesselJ{\nu}@{z} = \frac{\EulerGamma@{\frac{1}{2}-\nu}(\frac{1}{2}z)^{\nu}}{\pi^{\frac{3}{2}}i}\int_{0}^{(1+)}\cos@{zt}(t^{2}-1)^{\nu-\frac{1}{2}}\diff{t}
ν 1 2 , ( ν + k + 1 ) > 0 , ( 1 2 - ν ) > 0 formulae-sequence 𝜈 1 2 formulae-sequence 𝜈 𝑘 1 0 1 2 𝜈 0 {\displaystyle{\displaystyle\nu\neq\tfrac{1}{2},\Re(\nu+k+1)>0,\Re(\frac{1}{2}% -\nu)>0}}
BesselJ(nu, z) = (GAMMA((1)/(2)- nu)*((1)/(2)*z)^(nu))/((Pi)^((3)/(2))* I)*int(cos(z*t)*((t)^(2)- 1)^(nu -(1)/(2)), t = 0..(1 +))
BesselJ[\[Nu], z] == Divide[Gamma[Divide[1,2]- \[Nu]]*(Divide[1,2]*z)^\[Nu],(Pi)^(Divide[3,2])* I]*Integrate[Cos[z*t]*((t)^(2)- 1)^(\[Nu]-Divide[1,2]), {t, 0, (1 +)}, GenerateConditions->None]
Error Failure - Error
10.9#Ex9 H ν ( 1 ) ( z ) = Γ ( 1 2 - ν ) ( 1 2 z ) ν π 3 2 i 1 + i ( 1 + ) e i z t ( t 2 - 1 ) ν - 1 2 d t Hankel-H-1-Bessel-third-kind 𝜈 𝑧 Euler-Gamma 1 2 𝜈 superscript 1 2 𝑧 𝜈 superscript 𝜋 3 2 𝑖 superscript subscript 1 𝑖 limit-from 1 superscript 𝑒 𝑖 𝑧 𝑡 superscript superscript 𝑡 2 1 𝜈 1 2 𝑡 {\displaystyle{\displaystyle{H^{(1)}_{\nu}}\left(z\right)=\frac{\Gamma\left(% \tfrac{1}{2}-\nu\right)(\tfrac{1}{2}z)^{\nu}}{\pi^{\frac{3}{2}}i}\int_{1+i% \infty}^{(1+)}e^{izt}(t^{2}-1)^{\nu-\frac{1}{2}}\mathrm{d}t}}
\HankelH{1}{\nu}@{z} = \frac{\EulerGamma@{\tfrac{1}{2}-\nu}(\tfrac{1}{2}z)^{\nu}}{\pi^{\frac{3}{2}}i}\int_{1+i\infty}^{(1+)}e^{izt}(t^{2}-1)^{\nu-\frac{1}{2}}\diff{t}
ν 1 2 , 3 2 < 1 2 π , < 1 2 π , | ph z | < 1 2 π , ( 1 2 - ν ) > 0 formulae-sequence 𝜈 1 2 formulae-sequence 3 2 1 2 𝜋 formulae-sequence 1 2 𝜋 formulae-sequence phase 𝑧 1 2 𝜋 1 2 𝜈 0 {\displaystyle{\displaystyle\nu\neq\tfrac{1}{2},\tfrac{3}{2}<\tfrac{1}{2}\pi,% \ldots<\tfrac{1}{2}\pi,|\operatorname{ph}z|<\tfrac{1}{2}\pi,\Re(\tfrac{1}{2}-% \nu)>0}}
HankelH1(nu, z) = (GAMMA((1)/(2)- nu)*((1)/(2)*z)^(nu))/((Pi)^((3)/(2))* I)*int(exp(I*z*t)*((t)^(2)- 1)^(nu -(1)/(2)), t = 1 + I*infinity..(1 +))
HankelH1[\[Nu], z] == Divide[Gamma[Divide[1,2]- \[Nu]]*(Divide[1,2]*z)^\[Nu],(Pi)^(Divide[3,2])* I]*Integrate[Exp[I*z*t]*((t)^(2)- 1)^(\[Nu]-Divide[1,2]), {t, 1 + I*Infinity, (1 +)}, GenerateConditions->None]
Error Failure - Error
10.9#Ex10 H ν ( 2 ) ( z ) = Γ ( 1 2 - ν ) ( 1 2 z ) ν π 3 2 i 1 - i ( 1 + ) e - i z t ( t 2 - 1 ) ν - 1 2 d t Hankel-H-2-Bessel-third-kind 𝜈 𝑧 Euler-Gamma 1 2 𝜈 superscript 1 2 𝑧 𝜈 superscript 𝜋 3 2 𝑖 superscript subscript 1 𝑖 limit-from 1 superscript 𝑒 𝑖 𝑧 𝑡 superscript superscript 𝑡 2 1 𝜈 1 2 𝑡 {\displaystyle{\displaystyle{H^{(2)}_{\nu}}\left(z\right)=\frac{\Gamma\left(% \tfrac{1}{2}-\nu\right)(\tfrac{1}{2}z)^{\nu}}{\pi^{\frac{3}{2}}i}\int_{1-i% \infty}^{(1+)}e^{-izt}(t^{2}-1)^{\nu-\frac{1}{2}}\mathrm{d}t}}
\HankelH{2}{\nu}@{z} = \frac{\EulerGamma@{\tfrac{1}{2}-\nu}(\tfrac{1}{2}z)^{\nu}}{\pi^{\frac{3}{2}}i}\int_{1-i\infty}^{(1+)}e^{-izt}(t^{2}-1)^{\nu-\frac{1}{2}}\diff{t}
ν 1 2 , 3 2 < 1 2 π , < 1 2 π , | ph z | < 1 2 π , ( 1 2 - ν ) > 0 formulae-sequence 𝜈 1 2 formulae-sequence 3 2 1 2 𝜋 formulae-sequence 1 2 𝜋 formulae-sequence phase 𝑧 1 2 𝜋 1 2 𝜈 0 {\displaystyle{\displaystyle\nu\neq\tfrac{1}{2},\tfrac{3}{2}<\tfrac{1}{2}\pi,% \ldots<\tfrac{1}{2}\pi,|\operatorname{ph}z|<\tfrac{1}{2}\pi,\Re(\tfrac{1}{2}-% \nu)>0}}
HankelH2(nu, z) = (GAMMA((1)/(2)- nu)*((1)/(2)*z)^(nu))/((Pi)^((3)/(2))* I)*int(exp(- I*z*t)*((t)^(2)- 1)^(nu -(1)/(2)), t = 1 - I*infinity..(1 +))
HankelH2[\[Nu], z] == Divide[Gamma[Divide[1,2]- \[Nu]]*(Divide[1,2]*z)^\[Nu],(Pi)^(Divide[3,2])* I]*Integrate[Exp[- I*z*t]*((t)^(2)- 1)^(\[Nu]-Divide[1,2]), {t, 1 - I*Infinity, (1 +)}, GenerateConditions->None]
Error Failure - Error
10.9.E22 J ν ( x ) = 1 2 π i - i i Γ ( - t ) ( 1 2 x ) ν + 2 t Γ ( ν + t + 1 ) d t Bessel-J 𝜈 𝑥 1 2 𝜋 𝑖 superscript subscript 𝑖 𝑖 Euler-Gamma 𝑡 superscript 1 2 𝑥 𝜈 2 𝑡 Euler-Gamma 𝜈 𝑡 1 𝑡 {\displaystyle{\displaystyle J_{\nu}\left(x\right)=\frac{1}{2\pi i}\int_{-i% \infty}^{i\infty}\frac{\Gamma\left(-t\right)(\tfrac{1}{2}x)^{\nu+2t}}{\Gamma% \left(\nu+t+1\right)}\mathrm{d}t}}
\BesselJ{\nu}@{x} = \frac{1}{2\pi i}\int_{-i\infty}^{i\infty}\frac{\EulerGamma@{-t}(\tfrac{1}{2}x)^{\nu+2t}}{\EulerGamma@{\nu+t+1}}\diff{t}
ν > 0 , x > 0 , ( ν + k + 1 ) > 0 , ( - t ) > 0 , ( ν + t + 1 ) > 0 formulae-sequence 𝜈 0 formulae-sequence 𝑥 0 formulae-sequence 𝜈 𝑘 1 0 formulae-sequence 𝑡 0 𝜈 𝑡 1 0 {\displaystyle{\displaystyle\Re\nu>0,x>0,\Re(\nu+k+1)>0,\Re(-t)>0,\Re(\nu+t+1)% >0}}
BesselJ(nu, x) = (1)/(2*Pi*I)*int((GAMMA(- t)*((1)/(2)*x)^(nu + 2*t))/(GAMMA(nu + t + 1)), t = - I*infinity..I*infinity)
BesselJ[\[Nu], x] == Divide[1,2*Pi*I]*Integrate[Divide[Gamma[- t]*(Divide[1,2]*x)^(\[Nu]+ 2*t),Gamma[\[Nu]+ t + 1]], {t, - I*Infinity, I*Infinity}, GenerateConditions->None]
Error Aborted - Skipped - Because timed out
10.9.E23 J ν ( z ) = 1 2 π i - - i c - + i c Γ ( t ) Γ ( ν - t + 1 ) ( 1 2 z ) ν - 2 t d t Bessel-J 𝜈 𝑧 1 2 𝜋 𝑖 superscript subscript 𝑖 𝑐 𝑖 𝑐 Euler-Gamma 𝑡 Euler-Gamma 𝜈 𝑡 1 superscript 1 2 𝑧 𝜈 2 𝑡 𝑡 {\displaystyle{\displaystyle J_{\nu}\left(z\right)=\frac{1}{2\pi i}\int_{-% \infty-ic}^{-\infty+ic}\frac{\Gamma\left(t\right)}{\Gamma\left(\nu-t+1\right)}% (\tfrac{1}{2}z)^{\nu-2t}\mathrm{d}t}}
\BesselJ{\nu}@{z} = \frac{1}{2\pi i}\int_{-\infty-ic}^{-\infty+ic}\frac{\EulerGamma@{t}}{\EulerGamma@{\nu-t+1}}(\tfrac{1}{2}z)^{\nu-2t}\diff{t}
( ν + k + 1 ) > 0 , t > 0 , ( ν - t + 1 ) > 0 formulae-sequence 𝜈 𝑘 1 0 formulae-sequence 𝑡 0 𝜈 𝑡 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0,\Re t>0,\Re(\nu-t+1)>0}}
BesselJ(nu, z) = (1)/(2*Pi*I)*int((GAMMA(t))/(GAMMA(nu - t + 1))*((1)/(2)*z)^(nu - 2*t), t = - infinity - I*c..- infinity + I*c)
BesselJ[\[Nu], z] == Divide[1,2*Pi*I]*Integrate[Divide[Gamma[t],Gamma[\[Nu]- t + 1]]*(Divide[1,2]*z)^(\[Nu]- 2*t), {t, - Infinity - I*c, - Infinity + I*c}, GenerateConditions->None]
Failure Failure Skipped - Because timed out
Failed [300 / 300]
Result: Complex[0.4358908643715884, -0.07192294931339177]
Test Values: {Rule[c, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[1.0679098760861825, 0.09257666026367889]
Test Values: {Rule[c, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.9.E24 H ν ( 1 ) ( z ) = - e - 1 2 ν π i 2 π 2 c - i c + i Γ ( t ) Γ ( t - ν ) ( - 1 2 i z ) ν - 2 t d t Hankel-H-1-Bessel-third-kind 𝜈 𝑧 superscript 𝑒 1 2 𝜈 𝜋 𝑖 2 superscript 𝜋 2 superscript subscript 𝑐 𝑖 𝑐 𝑖 Euler-Gamma 𝑡 Euler-Gamma 𝑡 𝜈 superscript 1 2 𝑖 𝑧 𝜈 2 𝑡 𝑡 {\displaystyle{\displaystyle{H^{(1)}_{\nu}}\left(z\right)=-\frac{e^{-\frac{1}{% 2}\nu\pi i}}{2\pi^{2}}\*\int_{c-i\infty}^{c+i\infty}\Gamma\left(t\right)\Gamma% \left(t-\nu\right)(-\tfrac{1}{2}iz)^{\nu-2t}\mathrm{d}t}}
\HankelH{1}{\nu}@{z} = -\frac{e^{-\frac{1}{2}\nu\pi i}}{2\pi^{2}}\*\int_{c-i\infty}^{c+i\infty}\EulerGamma@{t}\EulerGamma@{t-\nu}(-\tfrac{1}{2}iz)^{\nu-2t}\diff{t}
0 < ph z , ph z < π , t > 0 , ( t - ν ) > 0 formulae-sequence 0 phase 𝑧 formulae-sequence phase 𝑧 𝜋 formulae-sequence 𝑡 0 𝑡 𝜈 0 {\displaystyle{\displaystyle 0<\operatorname{ph}z,\operatorname{ph}z<\pi,\Re t% >0,\Re(t-\nu)>0}}
HankelH1(nu, z) = -(exp(-(1)/(2)*nu*Pi*I))/(2*(Pi)^(2))* int(GAMMA(t)*GAMMA(t - nu)*(-(1)/(2)*I*z)^(nu - 2*t), t = c - I*infinity..c + I*infinity)
HankelH1[\[Nu], z] == -Divide[Exp[-Divide[1,2]*\[Nu]*Pi*I],2*(Pi)^(2)]* Integrate[Gamma[t]*Gamma[t - \[Nu]]*(-Divide[1,2]*I*z)^(\[Nu]- 2*t), {t, c - I*Infinity, c + I*Infinity}, GenerateConditions->None]
Failure Aborted
Failed [120 / 120]
Result: .2971181619-.8401954886*I
Test Values: {c = -3/2, nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}

Result: -.8661908042+.2691615148*I
Test Values: {c = -3/2, nu = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Skipped - Because timed out
10.9.E25 H ν ( 2 ) ( z ) = e 1 2 ν π i 2 π 2 c - i c + i Γ ( t ) Γ ( t - ν ) ( 1 2 i z ) ν - 2 t d t Hankel-H-2-Bessel-third-kind 𝜈 𝑧 superscript 𝑒 1 2 𝜈 𝜋 𝑖 2 superscript 𝜋 2 superscript subscript 𝑐 𝑖 𝑐 𝑖 Euler-Gamma 𝑡 Euler-Gamma 𝑡 𝜈 superscript 1 2 𝑖 𝑧 𝜈 2 𝑡 𝑡 {\displaystyle{\displaystyle{H^{(2)}_{\nu}}\left(z\right)=\frac{e^{\frac{1}{2}% \nu\pi i}}{2\pi^{2}}\int_{c-i\infty}^{c+i\infty}\Gamma\left(t\right)\Gamma% \left(t-\nu\right)(\tfrac{1}{2}iz)^{\nu-2t}\mathrm{d}t}}
\HankelH{2}{\nu}@{z} = \frac{e^{\frac{1}{2}\nu\pi i}}{2\pi^{2}}\int_{c-i\infty}^{c+i\infty}\EulerGamma@{t}\EulerGamma@{t-\nu}(\tfrac{1}{2}iz)^{\nu-2t}\diff{t}
- π < ph z , ph z < 0 , t > 0 , ( t - ν ) > 0 formulae-sequence 𝜋 phase 𝑧 formulae-sequence phase 𝑧 0 formulae-sequence 𝑡 0 𝑡 𝜈 0 {\displaystyle{\displaystyle-\pi<\operatorname{ph}z,\operatorname{ph}z<0,\Re t% >0,\Re(t-\nu)>0}}
HankelH2(nu, z) = (exp((1)/(2)*nu*Pi*I))/(2*(Pi)^(2))*int(GAMMA(t)*GAMMA(t - nu)*((1)/(2)*I*z)^(nu - 2*t), t = c - I*infinity..c + I*infinity)
HankelH2[\[Nu], z] == Divide[Exp[Divide[1,2]*\[Nu]*Pi*I],2*(Pi)^(2)]*Integrate[Gamma[t]*Gamma[t - \[Nu]]*(Divide[1,2]*I*z)^(\[Nu]- 2*t), {t, c - I*Infinity, c + I*Infinity}, GenerateConditions->None]
Failure Aborted
Failed [120 / 120]
Result: -.1414870617+.1246394392*I
Test Values: {c = -3/2, nu = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}

Result: -.1498748781e-1-.1846515642*I
Test Values: {c = -3/2, nu = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Skipped - Because timed out
10.9.E26 J μ ( z ) J ν ( z ) = 2 π 0 π / 2 J μ + ν ( 2 z cos θ ) cos ( ( μ - ν ) θ ) d θ Bessel-J 𝜇 𝑧 Bessel-J 𝜈 𝑧 2 𝜋 superscript subscript 0 𝜋 2 Bessel-J 𝜇 𝜈 2 𝑧 𝜃 𝜇 𝜈 𝜃 𝜃 {\displaystyle{\displaystyle J_{\mu}\left(z\right)J_{\nu}\left(z\right)=\frac{% 2}{\pi}\int_{0}^{\pi/2}J_{\mu+\nu}\left(2z\cos\theta\right)\cos\left((\mu-\nu)% \theta\right)\mathrm{d}\theta}}
\BesselJ{\mu}@{z}\BesselJ{\nu}@{z} = \frac{2}{\pi}\int_{0}^{\pi/2}\BesselJ{\mu+\nu}@{2z\cos@@{\theta}}\cos@{(\mu-\nu)\theta}\diff{\theta}
( μ + ν ) > - 1 , ( ( μ ) + k + 1 ) > 0 , ( ν + k + 1 ) > 0 , ( ( μ + ν ) + k + 1 ) > 0 formulae-sequence 𝜇 𝜈 1 formulae-sequence 𝜇 𝑘 1 0 formulae-sequence 𝜈 𝑘 1 0 𝜇 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re\left(\mu+\nu\right)>-1,\Re((\mu)+k+1)>0,\Re(% \nu+k+1)>0,\Re((\mu+\nu)+k+1)>0}}
BesselJ(mu, z)*BesselJ(nu, z) = (2)/(Pi)*int(BesselJ(mu + nu, 2*z*cos(theta))*cos((mu - nu)*theta), theta = 0..Pi/2)
BesselJ[\[Mu], z]*BesselJ[\[Nu], z] == Divide[2,Pi]*Integrate[BesselJ[\[Mu]+ \[Nu], 2*z*Cos[\[Theta]]]*Cos[(\[Mu]- \[Nu])*\[Theta]], {\[Theta], 0, Pi/2}, GenerateConditions->None]
Failure Aborted Manual Skip! Skipped - Because timed out
10.9.E27 J ν ( z ) J ν ( ζ ) = 2 π 0 π / 2 J 2 ν ( 2 ( z ζ ) 1 2 sin θ ) cos ( ( z - ζ ) cos θ ) d θ Bessel-J 𝜈 𝑧 Bessel-J 𝜈 𝜁 2 𝜋 superscript subscript 0 𝜋 2 Bessel-J 2 𝜈 2 superscript 𝑧 𝜁 1 2 𝜃 𝑧 𝜁 𝜃 𝜃 {\displaystyle{\displaystyle J_{\nu}\left(z\right)J_{\nu}\left(\zeta\right)=% \frac{2}{\pi}\int_{0}^{\pi/2}J_{2\nu}\left(2(z\zeta)^{\frac{1}{2}}\sin\theta% \right)\cos\left((z-\zeta)\cos\theta\right)\mathrm{d}\theta}}
\BesselJ{\nu}@{z}\BesselJ{\nu}@{\zeta} = \frac{2}{\pi}\int_{0}^{\pi/2}\BesselJ{2\nu}@{2(z\zeta)^{\frac{1}{2}}\sin@@{\theta}}\cos@{(z-\zeta)\cos@@{\theta}}\diff{\theta}
ν > - 1 2 , ( ν + k + 1 ) > 0 , ( ( 2 ν ) + k + 1 ) > 0 formulae-sequence 𝜈 1 2 formulae-sequence 𝜈 𝑘 1 0 2 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re\nu>-\tfrac{1}{2},\Re(\nu+k+1)>0,\Re((2\nu)+k+1% )>0}}
BesselJ(nu, z)*BesselJ(nu, zeta) = (2)/(Pi)*int(BesselJ(2*nu, 2*(z*zeta)^((1)/(2))* sin(theta))*cos((z - zeta)*cos(theta)), theta = 0..Pi/2)
BesselJ[\[Nu], z]*BesselJ[\[Nu], \[Zeta]] == Divide[2,Pi]*Integrate[BesselJ[2*\[Nu], 2*(z*\[Zeta])^(Divide[1,2])* Sin[\[Theta]]]*Cos[(z - \[Zeta])*Cos[\[Theta]]], {\[Theta], 0, Pi/2}, GenerateConditions->None]
Failure Aborted Manual Skip! Skipped - Because timed out
10.9.E28 J ν ( z ) J ν ( ζ ) = 1 2 π i c - i c + i exp ( 1 2 t - z 2 + ζ 2 2 t ) I ν ( z ζ t ) d t t Bessel-J 𝜈 𝑧 Bessel-J 𝜈 𝜁 1 2 𝜋 𝑖 superscript subscript 𝑐 𝑖 𝑐 𝑖 1 2 𝑡 superscript 𝑧 2 superscript 𝜁 2 2 𝑡 modified-Bessel-first-kind 𝜈 𝑧 𝜁 𝑡 𝑡 𝑡 {\displaystyle{\displaystyle J_{\nu}\left(z\right)J_{\nu}\left(\zeta\right)=% \frac{1}{2\pi i}\int_{c-i\infty}^{c+i\infty}\*\exp\left(\frac{1}{2}t-\frac{z^{% 2}+\zeta^{2}}{2t}\right)I_{\nu}\left(\frac{z\zeta}{t}\right)\frac{\mathrm{d}t}% {t}}}
\BesselJ{\nu}@{z}\BesselJ{\nu}@{\zeta} = \frac{1}{2\pi i}\int_{c-i\infty}^{c+i\infty}\*\exp@{\frac{1}{2}t-\frac{z^{2}+\zeta^{2}}{2t}}\modBesselI{\nu}@{\frac{z\zeta}{t}}\frac{\diff{t}}{t}
ν > - 1 , ( ν + k + 1 ) > 0 formulae-sequence 𝜈 1 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re\nu>-1,\Re(\nu+k+1)>0}}
BesselJ(nu, z)*BesselJ(nu, zeta) = (1)/(2*Pi*I)*int(* exp((1)/(2)*t -((z)^(2)+ (zeta)^(2))/(2*t))*BesselI(nu, (z*zeta)/(t))*(1)/(t), t = c - I*infinity..c + I*infinity)
BesselJ[\[Nu], z]*BesselJ[\[Nu], \[Zeta]] == Divide[1,2*Pi*I]*Integrate[* Exp[Divide[1,2]*t -Divide[(z)^(2)+ \[Zeta]^(2),2*t]]*BesselI[\[Nu], Divide[z*\[Zeta],t]]*Divide[1,t], {t, c - I*Infinity, c + I*Infinity}, GenerateConditions->None]
Error Failure - Error
10.9.E29 J μ ( x ) J ν ( x ) = 1 2 π i - i i Γ ( - t ) Γ ( 2 t + μ + ν + 1 ) ( 1 2 x ) μ + ν + 2 t Γ ( t + μ + 1 ) Γ ( t + ν + 1 ) Γ ( t + μ + ν + 1 ) d t Bessel-J 𝜇 𝑥 Bessel-J 𝜈 𝑥 1 2 𝜋 𝑖 superscript subscript 𝑖 𝑖 Euler-Gamma 𝑡 Euler-Gamma 2 𝑡 𝜇 𝜈 1 superscript 1 2 𝑥 𝜇 𝜈 2 𝑡 Euler-Gamma 𝑡 𝜇 1 Euler-Gamma 𝑡 𝜈 1 Euler-Gamma 𝑡 𝜇 𝜈 1 𝑡 {\displaystyle{\displaystyle J_{\mu}\left(x\right)J_{\nu}\left(x\right)=\frac{% 1}{2\pi i}\int_{-i\infty}^{i\infty}\frac{\Gamma\left(-t\right)\Gamma\left(2t+% \mu+\nu+1\right)(\tfrac{1}{2}x)^{\mu+\nu+2t}}{\Gamma\left(t+\mu+1\right)\Gamma% \left(t+\nu+1\right)\Gamma\left(t+\mu+\nu+1\right)}\mathrm{d}t}}
\BesselJ{\mu}@{x}\BesselJ{\nu}@{x} = \frac{1}{2\pi i}\int_{-i\infty}^{i\infty}\frac{\EulerGamma@{-t}\EulerGamma@{2t+\mu+\nu+1}(\tfrac{1}{2}x)^{\mu+\nu+2t}}{\EulerGamma@{t+\mu+1}\EulerGamma@{t+\nu+1}\EulerGamma@{t+\mu+\nu+1}}\diff{t}
x > 0 , ( ( μ ) + k + 1 ) > 0 , ( ν + k + 1 ) > 0 , ( - t ) > 0 , ( 2 t + μ + ν + 1 ) > 0 , ( t + μ + 1 ) > 0 , ( t + ν + 1 ) > 0 , ( t + μ + ν + 1 ) > 0 formulae-sequence 𝑥 0 formulae-sequence 𝜇 𝑘 1 0 formulae-sequence 𝜈 𝑘 1 0 formulae-sequence 𝑡 0 formulae-sequence 2 𝑡 𝜇 𝜈 1 0 formulae-sequence 𝑡 𝜇 1 0 formulae-sequence 𝑡 𝜈 1 0 𝑡 𝜇 𝜈 1 0 {\displaystyle{\displaystyle x>0,\Re((\mu)+k+1)>0,\Re(\nu+k+1)>0,\Re(-t)>0,\Re% (2t+\mu+\nu+1)>0,\Re(t+\mu+1)>0,\Re(t+\nu+1)>0,\Re(t+\mu+\nu+1)>0}}
BesselJ(mu, x)*BesselJ(nu, x) = (1)/(2*Pi*I)*int((GAMMA(- t)*GAMMA(2*t + mu + nu + 1)*((1)/(2)*x)^(mu + nu + 2*t))/(GAMMA(t + mu + 1)*GAMMA(t + nu + 1)*GAMMA(t + mu + nu + 1)), t = - I*infinity..I*infinity)
BesselJ[\[Mu], x]*BesselJ[\[Nu], x] == Divide[1,2*Pi*I]*Integrate[Divide[Gamma[- t]*Gamma[2*t + \[Mu]+ \[Nu]+ 1]*(Divide[1,2]*x)^(\[Mu]+ \[Nu]+ 2*t),Gamma[t + \[Mu]+ 1]*Gamma[t + \[Nu]+ 1]*Gamma[t + \[Mu]+ \[Nu]+ 1]], {t, - I*Infinity, I*Infinity}, GenerateConditions->None]
Error Aborted - Skipped - Because timed out
10.9.E30 J ν 2 ( z ) + Y ν 2 ( z ) = 8 π 2 0 cosh ( 2 ν t ) K 0 ( 2 z sinh t ) d t Bessel-J 𝜈 2 𝑧 Bessel-Y-Weber 𝜈 2 𝑧 8 superscript 𝜋 2 superscript subscript 0 2 𝜈 𝑡 modified-Bessel-second-kind 0 2 𝑧 𝑡 𝑡 {\displaystyle{\displaystyle{J_{\nu}^{2}}\left(z\right)+{Y_{\nu}^{2}}\left(z% \right)=\frac{8}{\pi^{2}}\int_{0}^{\infty}\cosh\left(2\nu t\right)K_{0}\left(2% z\sinh t\right)\mathrm{d}t}}
\BesselJ{\nu}^{2}@{z}+\BesselY{\nu}^{2}@{z} = \frac{8}{\pi^{2}}\int_{0}^{\infty}\cosh@{2\nu t}\modBesselK{0}@{2z\sinh@@{t}}\diff{t}
| ph z | < 1 2 π , ( ν + k + 1 ) > 0 , ( ( - ν ) + k + 1 ) > 0 formulae-sequence phase 𝑧 1 2 𝜋 formulae-sequence 𝜈 𝑘 1 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle|\operatorname{ph}z|<\tfrac{1}{2}\pi,\Re(\nu+k+1)>% 0,\Re((-\nu)+k+1)>0}}
(BesselJ(nu, z))^(2)+ (BesselY(nu, z))^(2) = (8)/((Pi)^(2))*int(cosh(2*nu*t)*BesselK(0, 2*z*sinh(t)), t = 0..infinity)
(BesselJ[\[Nu], z])^(2)+ (BesselY[\[Nu], z])^(2) == Divide[8,(Pi)^(2)]*Integrate[Cosh[2*\[Nu]*t]*BesselK[0, 2*z*Sinh[t]], {t, 0, Infinity}, GenerateConditions->None]
Failure Aborted Skipped - Because timed out Skipped - Because timed out
10.11.E1 J ν ( z e m π i ) = e m ν π i J ν ( z ) Bessel-J 𝜈 𝑧 superscript 𝑒 𝑚 𝜋 𝑖 superscript 𝑒 𝑚 𝜈 𝜋 𝑖 Bessel-J 𝜈 𝑧 {\displaystyle{\displaystyle J_{\nu}\left(ze^{m\pi i}\right)=e^{m\nu\pi i}J_{% \nu}\left(z\right)}}
\BesselJ{\nu}@{ze^{m\pi i}} = e^{m\nu\pi i}\BesselJ{\nu}@{z}
( ν + k + 1 ) > 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0}}
BesselJ(nu, z*exp(m*Pi*I)) = exp(m*nu*Pi*I)*BesselJ(nu, z)
BesselJ[\[Nu], z*Exp[m*Pi*I]] == Exp[m*\[Nu]*Pi*I]*BesselJ[\[Nu], z]
Failure Failure
Failed [132 / 210]
Result: -1.978604450-.5916012221*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 1}

Result: .4256613630-.5580360922e-1*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 2}

... skip entries to safe data
Failed [120 / 210]
Result: Complex[-1.9786044502778974, -0.5916012230349773]
Test Values: {Rule[m, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.42566136315461117, -0.05580360945599949]
Test Values: {Rule[m, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.11.E2 Y ν ( z e m π i ) = e - m ν π i Y ν ( z ) + 2 i sin ( m ν π ) cot ( ν π ) J ν ( z ) Bessel-Y-Weber 𝜈 𝑧 superscript 𝑒 𝑚 𝜋 𝑖 superscript 𝑒 𝑚 𝜈 𝜋 𝑖 Bessel-Y-Weber 𝜈 𝑧 2 𝑖 𝑚 𝜈 𝜋 𝜈 𝜋 Bessel-J 𝜈 𝑧 {\displaystyle{\displaystyle Y_{\nu}\left(ze^{m\pi i}\right)=e^{-m\nu\pi i}Y_{% \nu}\left(z\right)+2i\sin\left(m\nu\pi\right)\cot\left(\nu\pi\right)J_{\nu}% \left(z\right)}}
\BesselY{\nu}@{ze^{m\pi i}} = e^{-m\nu\pi i}\BesselY{\nu}@{z}+2i\sin@{m\nu\pi}\cot@{\nu\pi}\BesselJ{\nu}@{z}
( ν + k + 1 ) > 0 , ( ( - ν ) + k + 1 ) > 0 formulae-sequence 𝜈 𝑘 1 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0,\Re((-\nu)+k+1)>0}}
BesselY(nu, z*exp(m*Pi*I)) = exp(- m*nu*Pi*I)*BesselY(nu, z)+ 2*I*sin(m*nu*Pi)*cot(nu*Pi)*BesselJ(nu, z)
BesselY[\[Nu], z*Exp[m*Pi*I]] == Exp[- m*\[Nu]*Pi*I]*BesselY[\[Nu], z]+ 2*I*Sin[m*\[Nu]*Pi]*Cot[\[Nu]*Pi]*BesselJ[\[Nu], z]
Failure Failure
Failed [170 / 210]
Result: -4.492502702+3.271310776*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 1}

Result: 19.72399963+2.416868418*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 2}

... skip entries to safe data
Failed [162 / 210]
Result: Complex[-4.49250270148862, 3.2713107749000305]
Test Values: {Rule[m, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[19.723999620348792, 2.416868461226219]
Test Values: {Rule[m, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.11.E3 sin ( ν π ) H ν ( 1 ) ( z e m π i ) = - sin ( ( m - 1 ) ν π ) H ν ( 1 ) ( z ) - e - ν π i sin ( m ν π ) H ν ( 2 ) ( z ) 𝜈 𝜋 Hankel-H-1-Bessel-third-kind 𝜈 𝑧 superscript 𝑒 𝑚 𝜋 𝑖 𝑚 1 𝜈 𝜋 Hankel-H-1-Bessel-third-kind 𝜈 𝑧 superscript 𝑒 𝜈 𝜋 𝑖 𝑚 𝜈 𝜋 Hankel-H-2-Bessel-third-kind 𝜈 𝑧 {\displaystyle{\displaystyle\sin\left(\nu\pi\right){H^{(1)}_{\nu}}\left(ze^{m% \pi i}\right)=-\sin\left((m-1)\nu\pi\right){H^{(1)}_{\nu}}\left(z\right)-e^{-% \nu\pi i}\sin\left(m\nu\pi\right){H^{(2)}_{\nu}}\left(z\right)}}
\sin@{\nu\pi}\HankelH{1}{\nu}@{ze^{m\pi i}} = -\sin@{(m-1)\nu\pi}\HankelH{1}{\nu}@{z}-e^{-\nu\pi i}\sin@{m\nu\pi}\HankelH{2}{\nu}@{z}

sin(nu*Pi)*HankelH1(nu, z*exp(m*Pi*I)) = - sin((m - 1)*nu*Pi)*HankelH1(nu, z)- exp(- nu*Pi*I)*sin(m*nu*Pi)*HankelH2(nu, z)
Sin[\[Nu]*Pi]*HankelH1[\[Nu], z*Exp[m*Pi*I]] == - Sin[(m - 1)*\[Nu]*Pi]*HankelH1[\[Nu], z]- Exp[- \[Nu]*Pi*I]*Sin[m*\[Nu]*Pi]*HankelH2[\[Nu], z]
Failure Failure
Failed [132 / 210]
Result: -16.06107638+5.815014709*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 1}

Result: 39.27071892+24.34608468*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 2}

... skip entries to safe data
Failed [120 / 210]
Result: Complex[-16.061076381218605, 5.815014694873561]
Test Values: {Rule[m, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[39.27071883811536, 24.346084784539414]
Test Values: {Rule[m, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.11.E4 sin ( ν π ) H ν ( 2 ) ( z e m π i ) = e ν π i sin ( m ν π ) H ν ( 1 ) ( z ) + sin ( ( m + 1 ) ν π ) H ν ( 2 ) ( z ) 𝜈 𝜋 Hankel-H-2-Bessel-third-kind 𝜈 𝑧 superscript 𝑒 𝑚 𝜋 𝑖 superscript 𝑒 𝜈 𝜋 𝑖 𝑚 𝜈 𝜋 Hankel-H-1-Bessel-third-kind 𝜈 𝑧 𝑚 1 𝜈 𝜋 Hankel-H-2-Bessel-third-kind 𝜈 𝑧 {\displaystyle{\displaystyle\sin\left(\nu\pi\right){H^{(2)}_{\nu}}\left(ze^{m% \pi i}\right)=e^{\nu\pi i}\sin\left(m\nu\pi\right){H^{(1)}_{\nu}}\left(z\right% )+\sin\left((m+1)\nu\pi\right){H^{(2)}_{\nu}}\left(z\right)}}
\sin@{\nu\pi}\HankelH{2}{\nu}@{ze^{m\pi i}} = e^{\nu\pi i}\sin@{m\nu\pi}\HankelH{1}{\nu}@{z}+\sin@{(m+1)\nu\pi}\HankelH{2}{\nu}@{z}

sin(nu*Pi)*HankelH2(nu, z*exp(m*Pi*I)) = exp(nu*Pi*I)*sin(m*nu*Pi)*HankelH1(nu, z)+ sin((m + 1)*nu*Pi)*HankelH2(nu, z)
Sin[\[Nu]*Pi]*HankelH2[\[Nu], z*Exp[m*Pi*I]] == Exp[\[Nu]*Pi*I]*Sin[m*\[Nu]*Pi]*HankelH1[\[Nu], z]+ Sin[(m + 1)*\[Nu]*Pi]*HankelH2[\[Nu], z]
Failure Failure
Failed [132 / 210]
Result: 9.518923666+1.283901315*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 1}

Result: -38.63237633-26.24866521*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 2}

... skip entries to safe data
Failed [120 / 210]
Result: Complex[9.518923662743454, 1.2839013369012835]
Test Values: {Rule[m, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-38.63237622058036, -26.24866530437453]
Test Values: {Rule[m, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.11#Ex1 H ν ( 1 ) ( z e π i ) = - e - ν π i H ν ( 2 ) ( z ) Hankel-H-1-Bessel-third-kind 𝜈 𝑧 superscript 𝑒 𝜋 𝑖 superscript 𝑒 𝜈 𝜋 𝑖 Hankel-H-2-Bessel-third-kind 𝜈 𝑧 {\displaystyle{\displaystyle{H^{(1)}_{\nu}}\left(ze^{\pi i}\right)=-e^{-\nu\pi i% }{H^{(2)}_{\nu}}\left(z\right)}}
\HankelH{1}{\nu}@{ze^{\pi i}} = -e^{-\nu\pi i}\HankelH{2}{\nu}@{z}

HankelH1(nu, z*exp(Pi*I)) = - exp(- nu*Pi*I)*HankelH2(nu, z)
HankelH1[\[Nu], z*Exp[Pi*I]] == - Exp[- \[Nu]*Pi*I]*HankelH2[\[Nu], z]
Failure Failure
Failed [20 / 70]
Result: -5.249915228-5.084103922*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}

Result: -3.129030441-5.176244122*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [20 / 70]
Result: Complex[-5.2499152251779275, -5.084103924523598]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-0.4609763579335797, 35.01102127779514]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.11#Ex2 H ν ( 2 ) ( z e - π i ) = - e ν π i H ν ( 1 ) ( z ) Hankel-H-2-Bessel-third-kind 𝜈 𝑧 superscript 𝑒 𝜋 𝑖 superscript 𝑒 𝜈 𝜋 𝑖 Hankel-H-1-Bessel-third-kind 𝜈 𝑧 {\displaystyle{\displaystyle{H^{(2)}_{\nu}}\left(ze^{-\pi i}\right)=-e^{\nu\pi i% }{H^{(1)}_{\nu}}\left(z\right)}}
\HankelH{2}{\nu}@{ze^{-\pi i}} = -e^{\nu\pi i}\HankelH{1}{\nu}@{z}

HankelH2(nu, z*exp(- Pi*I)) = - exp(nu*Pi*I)*HankelH1(nu, z)
HankelH2[\[Nu], z*Exp[- Pi*I]] == - Exp[\[Nu]*Pi*I]*HankelH1[\[Nu], z]
Failure Failure
Failed [50 / 70]
Result: 1.033334476+.7163604616*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}

Result: 1.427918302+.5187414665*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [50 / 70]
Result: Complex[1.0333344760783634, 0.7163604618419928]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[1.538721989873022, -0.29666827540401164]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.11.E6 Y n ( z e m π i ) = ( - 1 ) m n ( Y n ( z ) + 2 i m J n ( z ) ) Bessel-Y-Weber 𝑛 𝑧 superscript 𝑒 𝑚 𝜋 𝑖 superscript 1 𝑚 𝑛 Bessel-Y-Weber 𝑛 𝑧 2 𝑖 𝑚 Bessel-J 𝑛 𝑧 {\displaystyle{\displaystyle Y_{n}\left(ze^{m\pi i}\right)=(-1)^{mn}(Y_{n}% \left(z\right)+2imJ_{n}\left(z\right))}}
\BesselY{n}@{ze^{m\pi i}} = (-1)^{mn}(\BesselY{n}@{z}+2im\BesselJ{n}@{z})
( n + k + 1 ) > 0 , ( ( - n ) + k + 1 ) > 0 formulae-sequence 𝑛 𝑘 1 0 𝑛 𝑘 1 0 {\displaystyle{\displaystyle\Re(n+k+1)>0,\Re((-n)+k+1)>0}}
BesselY(n, z*exp(m*Pi*I)) = (- 1)^(m*n)*(BesselY(n, z)+ 2*I*m*BesselJ(n, z))
BesselY[n, z*Exp[m*Pi*I]] == (- 1)^(m*n)*(BesselY[n, z]+ 2*I*m*BesselJ[n, z])
Failure Failure
Failed [57 / 63]
Result: -.7553141392+1.723217630*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, m = 1, n = 1}

Result: .3969469092-.2695422112*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, m = 1, n = 2}

... skip entries to safe data
Failed [48 / 63]
Result: Complex[-0.7553141389736522, 1.7232176296930342]
Test Values: {Rule[m, 1], Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.39694690825884216, -0.26954221211204654]
Test Values: {Rule[m, 1], Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.11.E7 H n ( 1 ) ( z e m π i ) = ( - 1 ) m n - 1 ( ( m - 1 ) H n ( 1 ) ( z ) + m H n ( 2 ) ( z ) ) Hankel-H-1-Bessel-third-kind 𝑛 𝑧 superscript 𝑒 𝑚 𝜋 𝑖 superscript 1 𝑚 𝑛 1 𝑚 1 Hankel-H-1-Bessel-third-kind 𝑛 𝑧 𝑚 Hankel-H-2-Bessel-third-kind 𝑛 𝑧 {\displaystyle{\displaystyle{H^{(1)}_{n}}\left(ze^{m\pi i}\right)=(-1)^{mn-1}(% (m-1){H^{(1)}_{n}}\left(z\right)+m{H^{(2)}_{n}}\left(z\right))}}
\HankelH{1}{n}@{ze^{m\pi i}} = (-1)^{mn-1}((m-1)\HankelH{1}{n}@{z}+m\HankelH{2}{n}@{z})

HankelH1(n, z*exp(m*Pi*I)) = (- 1)^(m*n - 1)*((m - 1)*HankelH1(n, z)+ m*HankelH2(n, z))
HankelH1[n, z*Exp[m*Pi*I]] == (- 1)^(m*n - 1)*((m - 1)*HankelH1[n, z]+ m*HankelH2[n, z])
Failure Failure
Failed [57 / 63]
Result: -1.723217630-.7553141394*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, m = 1, n = 1}

Result: .2695422111+.3969469092*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, m = 1, n = 2}

... skip entries to safe data
Failed [48 / 63]
Result: Complex[-1.7232176296930342, -0.7553141389736522]
Test Values: {Rule[m, 1], Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.26954221211204654, 0.39694690825884216]
Test Values: {Rule[m, 1], Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.11.E8 H n ( 2 ) ( z e m π i ) = ( - 1 ) m n ( m H n ( 1 ) ( z ) + ( m + 1 ) H n ( 2 ) ( z ) ) Hankel-H-2-Bessel-third-kind 𝑛 𝑧 superscript 𝑒 𝑚 𝜋 𝑖 superscript 1 𝑚 𝑛 𝑚 Hankel-H-1-Bessel-third-kind 𝑛 𝑧 𝑚 1 Hankel-H-2-Bessel-third-kind 𝑛 𝑧 {\displaystyle{\displaystyle{H^{(2)}_{n}}\left(ze^{m\pi i}\right)=(-1)^{mn}(m{% H^{(1)}_{n}}\left(z\right)+(m+1){H^{(2)}_{n}}\left(z\right))}}
\HankelH{2}{n}@{ze^{m\pi i}} = (-1)^{mn}(m\HankelH{1}{n}@{z}+(m+1)\HankelH{2}{n}@{z})

HankelH2(n, z*exp(m*Pi*I)) = (- 1)^(m*n)*(m*HankelH1(n, z)+(m + 1)*HankelH2(n, z))
HankelH2[n, z*Exp[m*Pi*I]] == (- 1)^(m*n)*(m*HankelH1[n, z]+(m + 1)*HankelH2[n, z])
Failure Failure
Failed [57 / 63]
Result: 1.723217630+.755314139*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, m = 1, n = 1}

Result: -.269542211-.396946909*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, m = 1, n = 2}

... skip entries to safe data
Failed [48 / 63]
Result: Complex[1.7232176296930342, 0.7553141389736524]
Test Values: {Rule[m, 1], Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-0.26954221211204654, -0.39694690825884216]
Test Values: {Rule[m, 1], Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.11#E9X J ν ( z ¯ ) = J ν ( z ) ¯ Bessel-J 𝜈 𝑧 Bessel-J 𝜈 𝑧 {\displaystyle{\displaystyle\displaystyle J_{\nu}\left(\overline{z}\right)=% \overline{J_{\nu}\left(z\right)}}}
\displaystyle\BesselJ{\nu}@{\conj{z}} = \conj{\BesselJ{\nu}@{z}}
( ν + k + 1 ) > 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0}}
BesselJ(nu, conjugate(z)) = conjugate(BesselJ(nu, z))
BesselJ[\[Nu], Conjugate[z]] == Conjugate[BesselJ[\[Nu], z]]
Skipped - no semantic math Skipped - no semantic math - -
10.11#E9X Y ν ( z ¯ ) = Y ν ( z ) ¯ Bessel-Y-Weber 𝜈 𝑧 Bessel-Y-Weber 𝜈 𝑧 {\displaystyle{\displaystyle\displaystyle Y_{\nu}\left(\overline{z}\right)=% \overline{Y_{\nu}\left(z\right)}}}
\displaystyle\BesselY{\nu}@{\conj{z}} = \conj{\BesselY{\nu}@{z}}
( ν + k + 1 ) > 0 , ( ( - ν ) + k + 1 ) > 0 formulae-sequence 𝜈 𝑘 1 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0,\Re((-\nu)+k+1)>0}}
BesselY(nu, conjugate(z)) = conjugate(BesselY(nu, z))
BesselY[\[Nu], Conjugate[z]] == Conjugate[BesselY[\[Nu], z]]
Skipped - no semantic math Skipped - no semantic math - -
10.11#E9Xa H ν ( 1 ) ( z ¯ ) = H ν ( 2 ) ( z ) ¯ Hankel-H-1-Bessel-third-kind 𝜈 𝑧 Hankel-H-2-Bessel-third-kind 𝜈 𝑧 {\displaystyle{\displaystyle\displaystyle{H^{(1)}_{\nu}}\left(\overline{z}% \right)=\overline{{H^{(2)}_{\nu}}\left(z\right)}}}
\displaystyle\HankelH{1}{\nu}@{\conj{z}} = \conj{\HankelH{2}{\nu}@{z}}

HankelH1(nu, conjugate(z)) = conjugate(HankelH2(nu, z))
HankelH1[\[Nu], Conjugate[z]] == Conjugate[HankelH2[\[Nu], z]]
Skipped - no semantic math Skipped - no semantic math - -
10.11#E9Xa H ν ( 2 ) ( z ¯ ) = H ν ( 1 ) ( z ) ¯ Hankel-H-2-Bessel-third-kind 𝜈 𝑧 Hankel-H-1-Bessel-third-kind 𝜈 𝑧 {\displaystyle{\displaystyle\displaystyle{H^{(2)}_{\nu}}\left(\overline{z}% \right)=\overline{{H^{(1)}_{\nu}}\left(z\right)}}}
\displaystyle\HankelH{2}{\nu}@{\conj{z}} = \conj{\HankelH{1}{\nu}@{z}}

HankelH2(nu, conjugate(z)) = conjugate(HankelH1(nu, z))
HankelH2[\[Nu], Conjugate[z]] == Conjugate[HankelH1[\[Nu], z]]
Skipped - no semantic math Skipped - no semantic math - -
10.12.E1 e 1 2 z ( t - t - 1 ) = m = - t m J m ( z ) superscript 𝑒 1 2 𝑧 𝑡 superscript 𝑡 1 superscript subscript 𝑚 superscript 𝑡 𝑚 Bessel-J 𝑚 𝑧 {\displaystyle{\displaystyle e^{\frac{1}{2}z(t-t^{-1})}=\sum_{m=-\infty}^{% \infty}t^{m}J_{m}\left(z\right)}}
e^{\frac{1}{2}z(t-t^{-1})} = \sum_{m=-\infty}^{\infty}t^{m}\BesselJ{m}@{z}
( m + k + 1 ) > 0 𝑚 𝑘 1 0 {\displaystyle{\displaystyle\Re(m+k+1)>0}}
exp((1)/(2)*z*(t - (t)^(- 1))) = sum((t)^(m)* BesselJ(m, z), m = - infinity..infinity)
Exp[Divide[1,2]*z*(t - (t)^(- 1))] == Sum[(t)^(m)* BesselJ[m, z], {m, - Infinity, Infinity}, GenerateConditions->None]
Failure Successful Successful [Tested: 42] Successful [Tested: 42]
10.12#Ex1 cos ( z sin θ ) = J 0 ( z ) + 2 k = 1 J 2 k ( z ) cos ( 2 k θ ) 𝑧 𝜃 Bessel-J 0 𝑧 2 superscript subscript 𝑘 1 Bessel-J 2 𝑘 𝑧 2 𝑘 𝜃 {\displaystyle{\displaystyle\cos\left(z\sin\theta\right)=J_{0}\left(z\right)+2% \sum_{k=1}^{\infty}J_{2k}\left(z\right)\cos\left(2k\theta\right)}}
\cos@{z\sin@@{\theta}} = \BesselJ{0}@{z}+2\sum_{k=1}^{\infty}\BesselJ{2k}@{z}\cos@{2k\theta}
( 0 + k + 1 ) > 0 , ( ( 2 k ) + k + 1 ) > 0 formulae-sequence 0 𝑘 1 0 2 𝑘 𝑘 1 0 {\displaystyle{\displaystyle\Re(0+k+1)>0,\Re((2k)+k+1)>0}}
cos(z*sin(theta)) = BesselJ(0, z)+ 2*sum(BesselJ(2*k, z)*cos(2*k*theta), k = 1..infinity)
Cos[z*Sin[\[Theta]]] == BesselJ[0, z]+ 2*Sum[BesselJ[2*k, z]*Cos[2*k*\[Theta]], {k, 1, Infinity}, GenerateConditions->None]
Failure Successful Skipped - Because timed out Successful [Tested: 70]
10.12#Ex2 sin ( z sin θ ) = 2 k = 0 J 2 k + 1 ( z ) sin ( ( 2 k + 1 ) θ ) 𝑧 𝜃 2 superscript subscript 𝑘 0 Bessel-J 2 𝑘 1 𝑧 2 𝑘 1 𝜃 {\displaystyle{\displaystyle\sin\left(z\sin\theta\right)=2\sum_{k=0}^{\infty}J% _{2k+1}\left(z\right)\sin\left((2k+1)\theta\right)}}
\sin@{z\sin@@{\theta}} = 2\sum_{k=0}^{\infty}\BesselJ{2k+1}@{z}\sin@{(2k+1)\theta}
( ( 2 k + 1 ) + k + 1 ) > 0 2 𝑘 1 𝑘 1 0 {\displaystyle{\displaystyle\Re((2k+1)+k+1)>0}}
sin(z*sin(theta)) = 2*sum(BesselJ(2*k + 1, z)*sin((2*k + 1)*theta), k = 0..infinity)
Sin[z*Sin[\[Theta]]] == 2*Sum[BesselJ[2*k + 1, z]*Sin[(2*k + 1)*\[Theta]], {k, 0, Infinity}, GenerateConditions->None]
Aborted Successful Skipped - Because timed out Successful [Tested: 70]
10.12#Ex3 cos ( z cos θ ) = J 0 ( z ) + 2 k = 1 ( - 1 ) k J 2 k ( z ) cos ( 2 k θ ) 𝑧 𝜃 Bessel-J 0 𝑧 2 superscript subscript 𝑘 1 superscript 1 𝑘 Bessel-J 2 𝑘 𝑧 2 𝑘 𝜃 {\displaystyle{\displaystyle\cos\left(z\cos\theta\right)=J_{0}\left(z\right)+2% \sum_{k=1}^{\infty}(-1)^{k}J_{2k}\left(z\right)\cos\left(2k\theta\right)}}
\cos@{z\cos@@{\theta}} = \BesselJ{0}@{z}+2\sum_{k=1}^{\infty}(-1)^{k}\BesselJ{2k}@{z}\cos@{2k\theta}
( 0 + k + 1 ) > 0 , ( ( 2 k ) + k + 1 ) > 0 formulae-sequence 0 𝑘 1 0 2 𝑘 𝑘 1 0 {\displaystyle{\displaystyle\Re(0+k+1)>0,\Re((2k)+k+1)>0}}
cos(z*cos(theta)) = BesselJ(0, z)+ 2*sum((- 1)^(k)* BesselJ(2*k, z)*cos(2*k*theta), k = 1..infinity)
Cos[z*Cos[\[Theta]]] == BesselJ[0, z]+ 2*Sum[(- 1)^(k)* BesselJ[2*k, z]*Cos[2*k*\[Theta]], {k, 1, Infinity}, GenerateConditions->None]
Failure Successful Skipped - Because timed out Successful [Tested: 70]
10.12#Ex4 sin ( z cos θ ) = 2 k = 0 ( - 1 ) k J 2 k + 1 ( z ) cos ( ( 2 k + 1 ) θ ) 𝑧 𝜃 2 superscript subscript 𝑘 0 superscript 1 𝑘 Bessel-J 2 𝑘 1 𝑧 2 𝑘 1 𝜃 {\displaystyle{\displaystyle\sin\left(z\cos\theta\right)=2\sum_{k=0}^{\infty}(% -1)^{k}J_{2k+1}\left(z\right)\cos\left((2k+1)\theta\right)}}
\sin@{z\cos@@{\theta}} = 2\sum_{k=0}^{\infty}(-1)^{k}\BesselJ{2k+1}@{z}\cos@{(2k+1)\theta}
( ( 2 k + 1 ) + k + 1 ) > 0 2 𝑘 1 𝑘 1 0 {\displaystyle{\displaystyle\Re((2k+1)+k+1)>0}}
sin(z*cos(theta)) = 2*sum((- 1)^(k)* BesselJ(2*k + 1, z)*cos((2*k + 1)*theta), k = 0..infinity)
Sin[z*Cos[\[Theta]]] == 2*Sum[(- 1)^(k)* BesselJ[2*k + 1, z]*Cos[(2*k + 1)*\[Theta]], {k, 0, Infinity}, GenerateConditions->None]
Aborted Successful Skipped - Because timed out Successful [Tested: 70]
10.12.E4 1 = J 0 ( z ) + 2 J 2 ( z ) + 2 J 4 ( z ) + 2 J 6 ( z ) + 1 Bessel-J 0 𝑧 2 Bessel-J 2 𝑧 2 Bessel-J 4 𝑧 2 Bessel-J 6 𝑧 {\displaystyle{\displaystyle 1=J_{0}\left(z\right)+2J_{2}\left(z\right)+2J_{4}% \left(z\right)+2J_{6}\left(z\right)+\cdots}}
1 = \BesselJ{0}@{z}+2\BesselJ{2}@{z}+2\BesselJ{4}@{z}+2\BesselJ{6}@{z}+\dotsb
( 0 + k + 1 ) > 0 , ( 2 + k + 1 ) > 0 , ( 4 + k + 1 ) > 0 , ( 6 + k + 1 ) > 0 formulae-sequence 0 𝑘 1 0 formulae-sequence 2 𝑘 1 0 formulae-sequence 4 𝑘 1 0 6 𝑘 1 0 {\displaystyle{\displaystyle\Re(0+k+1)>0,\Re(2+k+1)>0,\Re(4+k+1)>0,\Re(6+k+1)>% 0}}
1 = BesselJ(0, z)+ 2*BesselJ(2, z)+ 2*BesselJ(4, z)+ 2*BesselJ(6, z)+ ..
1 == BesselJ[0, z]+ 2*BesselJ[2, z]+ 2*BesselJ[4, z]+ 2*BesselJ[6, z]+ \[Ellipsis]
Error Failure -
Failed [7 / 7]
Result: Plus[Complex[-9.924736618779559*^-8, -1.6360842739013975*^-7], Times[-1.0, …]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[-9.440290587615918*^-8, -1.7199789187696823*^-7], Times[-1.0, …]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.12#Ex5 cos z = J 0 ( z ) - 2 J 2 ( z ) + 2 J 4 ( z ) - 2 J 6 ( z ) + 𝑧 Bessel-J 0 𝑧 2 Bessel-J 2 𝑧 2 Bessel-J 4 𝑧 2 Bessel-J 6 𝑧 {\displaystyle{\displaystyle\cos z=J_{0}\left(z\right)-2J_{2}\left(z\right)+2J% _{4}\left(z\right)-2J_{6}\left(z\right)+\cdots}}
\cos@@{z} = \BesselJ{0}@{z}-2\BesselJ{2}@{z}+2\BesselJ{4}@{z}-2\BesselJ{6}@{z}+\dotsb
( 0 + k + 1 ) > 0 , ( 2 + k + 1 ) > 0 , ( 4 + k + 1 ) > 0 , ( 6 + k + 1 ) > 0 formulae-sequence 0 𝑘 1 0 formulae-sequence 2 𝑘 1 0 formulae-sequence 4 𝑘 1 0 6 𝑘 1 0 {\displaystyle{\displaystyle\Re(0+k+1)>0,\Re(2+k+1)>0,\Re(4+k+1)>0,\Re(6+k+1)>% 0}}
cos(z) = BesselJ(0, z)- 2*BesselJ(2, z)+ 2*BesselJ(4, z)- 2*BesselJ(6, z)+ ..
Cos[z] == BesselJ[0, z]- 2*BesselJ[2, z]+ 2*BesselJ[4, z]- 2*BesselJ[6, z]+ \[Ellipsis]
Error Failure -
Failed [7 / 7]
Result: Plus[Complex[-9.976125969757277*^-8, -1.6267640928768756*^-7], Times[-1.0, …]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[-9.384008414770051*^-8, -1.7292990711625933*^-7], Times[-1.0, …]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.12#Ex6 sin z = 2 J 1 ( z ) - 2 J 3 ( z ) + 2 J 5 ( z ) - 𝑧 2 Bessel-J 1 𝑧 2 Bessel-J 3 𝑧 2 Bessel-J 5 𝑧 {\displaystyle{\displaystyle\sin z=2J_{1}\left(z\right)-2J_{3}\left(z\right)+2% J_{5}\left(z\right)-\cdots}}
\sin@@{z} = 2\BesselJ{1}@{z}-2\BesselJ{3}@{z}+2\BesselJ{5}@{z}-\dotsb
( 1 + k + 1 ) > 0 , ( 3 + k + 1 ) > 0 , ( 5 + k + 1 ) > 0 formulae-sequence 1 𝑘 1 0 formulae-sequence 3 𝑘 1 0 5 𝑘 1 0 {\displaystyle{\displaystyle\Re(1+k+1)>0,\Re(3+k+1)>0,\Re(5+k+1)>0}}
sin(z) = 2*BesselJ(1, z)- 2*BesselJ(3, z)+ 2*BesselJ(5, z)- ..
Sin[z] == 2*BesselJ[1, z]- 2*BesselJ[3, z]+ 2*BesselJ[5, z]- \[Ellipsis]
Error Failure -
Failed [7 / 7]
Result: Plus[Complex[2.683443869444524*^-6, 1.443280323643048*^-6], …]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[1.6585570595806232*^-6, -2.68341820086615*^-6], …]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.12#Ex7 1 2 z cos z = J 1 ( z ) - 9 J 3 ( z ) + 25 J 5 ( z ) - 49 J 7 ( z ) + 1 2 𝑧 𝑧 Bessel-J 1 𝑧 9 Bessel-J 3 𝑧 25 Bessel-J 5 𝑧 49 Bessel-J 7 𝑧 {\displaystyle{\displaystyle\tfrac{1}{2}z\cos z=J_{1}\left(z\right)-9J_{3}% \left(z\right)+25J_{5}\left(z\right)-49J_{7}\left(z\right)+\cdots}}
\tfrac{1}{2}z\cos@@{z} = \BesselJ{1}@{z}-9\BesselJ{3}@{z}+25\BesselJ{5}@{z}-49\BesselJ{7}@{z}+\dotsb
( 1 + k + 1 ) > 0 , ( 3 + k + 1 ) > 0 , ( 5 + k + 1 ) > 0 , ( 7 + k + 1 ) > 0 formulae-sequence 1 𝑘 1 0 formulae-sequence 3 𝑘 1 0 formulae-sequence 5 𝑘 1 0 7 𝑘 1 0 {\displaystyle{\displaystyle\Re(1+k+1)>0,\Re(3+k+1)>0,\Re(5+k+1)>0,\Re(7+k+1)>% 0}}
(1)/(2)*z*cos(z) = BesselJ(1, z)- 9*BesselJ(3, z)+ 25*BesselJ(5, z)- 49*BesselJ(7, z)+ ..
Divide[1,2]*z*Cos[z] == BesselJ[1, z]- 9*BesselJ[3, z]+ 25*BesselJ[5, z]- 49*BesselJ[7, z]+ \[Ellipsis]
Error Failure -
Failed [7 / 7]
Result: Plus[Complex[-1.0583928733431947*^-8, -4.2969798588234076*^-7], Times[-1.0, …]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[4.4207480831559565*^-7, 1.0857586385526474*^-8], Times[-1.0, …]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.12#Ex8 1 2 z sin z = 4 J 2 ( z ) - 16 J 4 ( z ) + 36 J 6 ( z ) - 1 2 𝑧 𝑧 4 Bessel-J 2 𝑧 16 Bessel-J 4 𝑧 36 Bessel-J 6 𝑧 {\displaystyle{\displaystyle\tfrac{1}{2}z\sin z=4J_{2}\left(z\right)-16J_{4}% \left(z\right)+36J_{6}\left(z\right)-\cdots}}
\tfrac{1}{2}z\sin@@{z} = 4\BesselJ{2}@{z}-16\BesselJ{4}@{z}+36\BesselJ{6}@{z}-\dotsi
( 2 + k + 1 ) > 0 , ( 4 + k + 1 ) > 0 , ( 6 + k + 1 ) > 0 formulae-sequence 2 𝑘 1 0 formulae-sequence 4 𝑘 1 0 6 𝑘 1 0 {\displaystyle{\displaystyle\Re(2+k+1)>0,\Re(4+k+1)>0,\Re(6+k+1)>0}}
(1)/(2)*z*sin(z) = 4*BesselJ(2, z)- 16*BesselJ(4, z)+ 36*BesselJ(6, z)- ..
Divide[1,2]*z*Sin[z] == 4*BesselJ[2, z]- 16*BesselJ[4, z]+ 36*BesselJ[6, z]- \[Ellipsis]
Error Failure -
Failed [7 / 7]
Result: Plus[Complex[3.196945008165919*^-6, 5.1972576656234*^-6], …]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[2.997776089863624*^-6, 5.542144419168338*^-6], …]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.13.E8 w ( 2 n ) = ( - 1 ) n λ 2 n z - n w superscript 𝑤 2 𝑛 superscript 1 𝑛 superscript 𝜆 2 𝑛 superscript 𝑧 𝑛 𝑤 {\displaystyle{\displaystyle w^{(2n)}=(-1)^{n}\lambda^{2n}z^{-n}w}}
w^{(2n)} = (-1)^{n}\lambda^{2n}z^{-n}w
w = z 1 2 n 𝒞 n ( 2 λ e k π i / n z 1 2 ) , k = 0 formulae-sequence 𝑤 superscript 𝑧 1 2 𝑛 cylinder-function 𝑛 2 𝜆 superscript 𝑒 𝑘 𝜋 imaginary-unit 𝑛 superscript 𝑧 1 2 𝑘 0 {\displaystyle{\displaystyle w=z^{\frac{1}{2}n}\mathscr{C}_{n}\left(2\lambda e% ^{k\pi\mathrm{i}/n}z^{\frac{1}{2}}\right),k=0}}
(w)^(2*n) = (- 1)^(n)* (lambda)^(2*n)* (z)^(- n)* w
(w)^(2*n) == (- 1)^(n)* \[Lambda]^(2*n)* (z)^(- n)* w
Skipped - no semantic math Skipped - no semantic math - -
10.13.E11 ( ϑ 4 - 2 ( ν 2 + μ 2 ) ϑ 2 + ( ν 2 - μ 2 ) 2 ) w + 4 z 2 ( ϑ + 1 ) ( ϑ + 2 ) w = 0 superscript italic-ϑ 4 2 superscript 𝜈 2 superscript 𝜇 2 superscript italic-ϑ 2 superscript superscript 𝜈 2 superscript 𝜇 2 2 𝑤 4 superscript 𝑧 2 italic-ϑ 1 italic-ϑ 2 𝑤 0 {\displaystyle{\displaystyle\left(\vartheta^{4}-2(\nu^{2}+\mu^{2})\vartheta^{2% }+(\nu^{2}-\mu^{2})^{2}\right)w+4z^{2}(\vartheta+1)(\vartheta+2)w=0}}
\left(\vartheta^{4}-2(\nu^{2}+\mu^{2})\vartheta^{2}+(\nu^{2}-\mu^{2})^{2}\right)w+4z^{2}(\vartheta+1)(\vartheta+2)w = 0
w = 𝒞 ν ( z ) 𝒟 μ ( z ) . 𝑤 cylinder-function 𝜈 𝑧 subscript 𝒟 𝜇 𝑧 {\displaystyle{\displaystyle w=\mathscr{C}_{\nu}\left(z\right)\mathscr{D}_{\mu% }(z).}}
((vartheta)^(4)- 2*((nu)^(2)+ (mu)^(2))*(vartheta)^(2)+((nu)^(2)- (mu)^(2))^(2))*w + 4*(z)^(2)*(vartheta + 1)*(vartheta + 2)*w = 0
(\[CurlyTheta]^(4)- 2*(\[Nu]^(2)+ \[Mu]^(2))*\[CurlyTheta]^(2)+(\[Nu]^(2)- \[Mu]^(2))^(2))*w + 4*(z)^(2)*(\[CurlyTheta]+ 1)*(\[CurlyTheta]+ 2)*w == 0
Skipped - no semantic math Skipped - no semantic math - -
10.14#Ex1 | J ν ( x ) | 1 Bessel-J 𝜈 𝑥 1 {\displaystyle{\displaystyle|J_{\nu}\left(x\right)|\leq 1}}
|\BesselJ{\nu}@{x}| \leq 1
ν 0 , ( ν + k + 1 ) > 0 formulae-sequence 𝜈 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\nu\geq 0,\Re(\nu+k+1)>0}}
abs(BesselJ(nu, x)) <= 1
Abs[BesselJ[\[Nu], x]] <= 1
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
10.14#Ex2 | J ν ( x ) | 2 - 1 2 Bessel-J 𝜈 𝑥 superscript 2 1 2 {\displaystyle{\displaystyle|J_{\nu}\left(x\right)|\leq 2^{-\frac{1}{2}}}}
|\BesselJ{\nu}@{x}| \leq 2^{-\frac{1}{2}}
ν 1 , ( ν + k + 1 ) > 0 formulae-sequence 𝜈 1 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\nu\geq 1,\Re(\nu+k+1)>0}}
abs(BesselJ(nu, x)) <= (2)^(-(1)/(2))
Abs[BesselJ[\[Nu], x]] <= (2)^(-Divide[1,2])
Failure Failure Successful [Tested: 2] Successful [Tested: 2]
10.14.E2 0 < J ν ( ν ) 0 Bessel-J 𝜈 𝜈 {\displaystyle{\displaystyle 0<J_{\nu}\left(\nu\right)}}
0 < \BesselJ{\nu}@{\nu}
ν > 0 , ( ν + k + 1 ) > 0 formulae-sequence 𝜈 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\nu>0,\Re(\nu+k+1)>0}}
0 < BesselJ(nu, nu)
0 < BesselJ[\[Nu], \[Nu]]
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
10.14.E2 J ν ( ν ) < 2 1 3 3 2 3 Γ ( 2 3 ) ν 1 3 Bessel-J 𝜈 𝜈 superscript 2 1 3 superscript 3 2 3 Euler-Gamma 2 3 superscript 𝜈 1 3 {\displaystyle{\displaystyle J_{\nu}\left(\nu\right)<\frac{2^{\frac{1}{3}}}{3^% {\frac{2}{3}}\Gamma\left(\tfrac{2}{3}\right)\nu^{\frac{1}{3}}}}}
\BesselJ{\nu}@{\nu} < \frac{2^{\frac{1}{3}}}{3^{\frac{2}{3}}\EulerGamma@{\tfrac{2}{3}}\nu^{\frac{1}{3}}}
ν > 0 , ( ν + k + 1 ) > 0 formulae-sequence 𝜈 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\nu>0,\Re(\nu+k+1)>0}}
BesselJ(nu, nu) < ((2)^((1)/(3)))/((3)^((2)/(3))* GAMMA((2)/(3))*(nu)^((1)/(3)))
BesselJ[\[Nu], \[Nu]] < Divide[(2)^(Divide[1,3]),(3)^(Divide[2,3])* Gamma[Divide[2,3]]*\[Nu]^(Divide[1,3])]
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
10.14.E3 | J n ( z ) | e | z | Bessel-J 𝑛 𝑧 superscript 𝑒 𝑧 {\displaystyle{\displaystyle|J_{n}\left(z\right)|\leq e^{|\Im z|}}}
|\BesselJ{n}@{z}| \leq e^{|\imagpart@@{z}|}
( n + k + 1 ) > 0 𝑛 𝑘 1 0 {\displaystyle{\displaystyle\Re(n+k+1)>0}}
abs(BesselJ(n, z)) <= exp(abs(Im(z)))
Abs[BesselJ[n, z]] <= Exp[Abs[Im[z]]]
Failure Failure Successful [Tested: 7] Successful [Tested: 7]
10.14.E4 | J ν ( z ) | | 1 2 z | ν e | z | Γ ( ν + 1 ) Bessel-J 𝜈 𝑧 superscript 1 2 𝑧 𝜈 superscript 𝑒 𝑧 Euler-Gamma 𝜈 1 {\displaystyle{\displaystyle|J_{\nu}\left(z\right)|\leq\frac{|\tfrac{1}{2}z|^{% \nu}e^{|\Im z|}}{\Gamma\left(\nu+1\right)}}}
|\BesselJ{\nu}@{z}| \leq \frac{|\tfrac{1}{2}z|^{\nu}e^{|\imagpart@@{z}|}}{\EulerGamma@{\nu+1}}
( ν + k + 1 ) > 0 , ( ν + 1 ) > 0 formulae-sequence 𝜈 𝑘 1 0 𝜈 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0,\Re(\nu+1)>0}}
abs(BesselJ(nu, z)) <= ((abs((1)/(2)*z))^(nu)* exp(abs(Im(z))))/(GAMMA(nu + 1))
Abs[BesselJ[\[Nu], z]] <= Divide[(Abs[Divide[1,2]*z])^\[Nu]* Exp[Abs[Im[z]]],Gamma[\[Nu]+ 1]]
Failure Failure Successful [Tested: 7] Successful [Tested: 7]
10.14.E5 | J ν ( ν x ) | x ν exp ( ν ( 1 - x 2 ) 1 2 ) ( 1 + ( 1 - x 2 ) 1 2 ) ν Bessel-J 𝜈 𝜈 𝑥 superscript 𝑥 𝜈 𝜈 superscript 1 superscript 𝑥 2 1 2 superscript 1 superscript 1 superscript 𝑥 2 1 2 𝜈 {\displaystyle{\displaystyle|J_{\nu}\left(\nu x\right)|\leq\frac{x^{\nu}\exp% \left(\nu(1-x^{2})^{\frac{1}{2}}\right)}{\left(1+(1-x^{2})^{\frac{1}{2}}\right% )^{\nu}}}}
|\BesselJ{\nu}@{\nu x}| \leq \frac{x^{\nu}\exp@{\nu(1-x^{2})^{\frac{1}{2}}}}{\left(1+(1-x^{2})^{\frac{1}{2}}\right)^{\nu}}
ν 0 , 0 < x , x 1 , ( ν + k + 1 ) > 0 formulae-sequence 𝜈 0 formulae-sequence 0 𝑥 formulae-sequence 𝑥 1 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\nu\geq 0,0<x,x\leq 1,\Re(\nu+k+1)>0}}
abs(BesselJ(nu, nu*x)) <= ((x)^(nu)* exp(nu*(1 - (x)^(2))^((1)/(2))))/((1 +(1 - (x)^(2))^((1)/(2)))^(nu))
Abs[BesselJ[\[Nu], \[Nu]*x]] <= Divide[(x)^\[Nu]* Exp[\[Nu]*(1 - (x)^(2))^(Divide[1,2])],(1 +(1 - (x)^(2))^(Divide[1,2]))^\[Nu]]
Failure Failure Successful [Tested: 3] Skip - No test values generated
10.14.E7 1 J ν ( ν x ) x ν J ν ( ν ) 1 Bessel-J 𝜈 𝜈 𝑥 superscript 𝑥 𝜈 Bessel-J 𝜈 𝜈 {\displaystyle{\displaystyle 1\leq\frac{J_{\nu}\left(\nu x\right)}{x^{\nu}J_{% \nu}\left(\nu\right)}}}
1 \leq \frac{\BesselJ{\nu}@{\nu x}}{x^{\nu}\BesselJ{\nu}@{\nu}}
ν 0 , 0 < x , x 1 , ( ν + k + 1 ) > 0 formulae-sequence 𝜈 0 formulae-sequence 0 𝑥 formulae-sequence 𝑥 1 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\nu\geq 0,0<x,x\leq 1,\Re(\nu+k+1)>0}}
1 <= (BesselJ(nu, nu*x))/((x)^(nu)* BesselJ(nu, nu))
1 <= Divide[BesselJ[\[Nu], \[Nu]*x],(x)^\[Nu]* BesselJ[\[Nu], \[Nu]]]
Failure Failure Successful [Tested: 3] Skip - No test values generated
10.14.E7 J ν ( ν x ) x ν J ν ( ν ) e ν ( 1 - x ) Bessel-J 𝜈 𝜈 𝑥 superscript 𝑥 𝜈 Bessel-J 𝜈 𝜈 superscript 𝑒 𝜈 1 𝑥 {\displaystyle{\displaystyle\frac{J_{\nu}\left(\nu x\right)}{x^{\nu}J_{\nu}% \left(\nu\right)}\leq e^{\nu(1-x)}}}
\frac{\BesselJ{\nu}@{\nu x}}{x^{\nu}\BesselJ{\nu}@{\nu}} \leq e^{\nu(1-x)}
ν 0 , 0 < x , x 1 , ( ν + k + 1 ) > 0 formulae-sequence 𝜈 0 formulae-sequence 0 𝑥 formulae-sequence 𝑥 1 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\nu\geq 0,0<x,x\leq 1,\Re(\nu+k+1)>0}}
(BesselJ(nu, nu*x))/((x)^(nu)* BesselJ(nu, nu)) <= exp(nu*(1 - x))
Divide[BesselJ[\[Nu], \[Nu]*x],(x)^\[Nu]* BesselJ[\[Nu], \[Nu]]] <= Exp[\[Nu]*(1 - x)]
Failure Failure Successful [Tested: 3] Skip - No test values generated
10.14.E8 | J n ( n z ) | | z n exp ( n ( 1 - z 2 ) 1 2 ) | | 1 + ( 1 - z 2 ) 1 2 | n Bessel-J 𝑛 𝑛 𝑧 superscript 𝑧 𝑛 𝑛 superscript 1 superscript 𝑧 2 1 2 superscript 1 superscript 1 superscript 𝑧 2 1 2 𝑛 {\displaystyle{\displaystyle|J_{n}\left(nz\right)|\leq\frac{\left|z^{n}\exp% \left(n(1-z^{2})^{\frac{1}{2}}\right)\right|}{\left|1+(1-z^{2})^{\frac{1}{2}}% \right|^{n}}}}
|\BesselJ{n}@{nz}| \leq \frac{\left|z^{n}\exp@{n(1-z^{2})^{\frac{1}{2}}}\right|}{\left|1+(1-z^{2})^{\frac{1}{2}}\right|^{n}}
( n + k + 1 ) > 0 𝑛 𝑘 1 0 {\displaystyle{\displaystyle\Re(n+k+1)>0}}
abs(BesselJ(n, n*z)) <= (abs((z)^(n)* exp(n*(1 - (z)^(2))^((1)/(2)))))/((abs(1 +(1 - (z)^(2))^((1)/(2))))^(n))
Abs[BesselJ[n, n*z]] <= Divide[Abs[(z)^(n)* Exp[n*(1 - (z)^(2))^(Divide[1,2])]],(Abs[1 +(1 - (z)^(2))^(Divide[1,2])])^(n)]
Failure Failure Successful [Tested: 7] Successful [Tested: 7]
10.14.E9 | J n ( n z ) | 1 Bessel-J 𝑛 𝑛 𝑧 1 {\displaystyle{\displaystyle|J_{n}\left(nz\right)|\leq 1}}
|\BesselJ{n}@{nz}| \leq 1
n = 0 , ( n + k + 1 ) > 0 formulae-sequence 𝑛 0 𝑛 𝑘 1 0 {\displaystyle{\displaystyle n=0,\Re(n+k+1)>0}}
abs(BesselJ(n, n*z)) <= 1
Abs[BesselJ[n, n*z]] <= 1
Failure Failure Error Successful [Tested: 21]
10.15.E1 J + ν ( z ) ν = + J + ν ( z ) ln ( 1 2 z ) - ( 1 2 z ) + ν k = 0 ( - 1 ) k ψ ( k + 1 + ν ) Γ ( k + 1 + ν ) ( 1 4 z 2 ) k k ! partial-derivative Bessel-J 𝜈 𝑧 𝜈 Bessel-J 𝜈 𝑧 1 2 𝑧 superscript 1 2 𝑧 𝜈 superscript subscript 𝑘 0 superscript 1 𝑘 digamma 𝑘 1 𝜈 Euler-Gamma 𝑘 1 𝜈 superscript 1 4 superscript 𝑧 2 𝑘 𝑘 {\displaystyle{\displaystyle\frac{\partial J_{+\nu}\left(z\right)}{\partial\nu% }=+J_{+\nu}\left(z\right)\ln\left(\tfrac{1}{2}z\right)-(\tfrac{1}{2}z)^{+\nu}% \sum_{k=0}^{\infty}(-1)^{k}\frac{\psi\left(k+1+\nu\right)}{\Gamma\left(k+1+\nu% \right)}\frac{(\tfrac{1}{4}z^{2})^{k}}{k!}}}
\pderiv{\BesselJ{+\nu}@{z}}{\nu} = +\BesselJ{+\nu}@{z}\ln@{\tfrac{1}{2}z}-(\tfrac{1}{2}z)^{+\nu}\sum_{k=0}^{\infty}(-1)^{k}\frac{\digamma@{k+1+\nu}}{\EulerGamma@{k+1+\nu}}\frac{(\tfrac{1}{4}z^{2})^{k}}{k!}
( k + 1 + ν ) > 0 𝑘 1 𝜈 0 {\displaystyle{\displaystyle\Re(k+1+\nu)>0}}
diff(BesselJ(+ nu, z), nu) = + BesselJ(+ nu, z)*ln((1)/(2)*z)-((1)/(2)*z)^(+ nu)* sum((- 1)^(k)*(Psi(k + 1 + nu))/(GAMMA(k + 1 + nu))*(((1)/(4)*(z)^(2))^(k))/(factorial(k)), k = 0..infinity)
D[BesselJ[+ \[Nu], z], \[Nu]] == + BesselJ[+ \[Nu], z]*Log[Divide[1,2]*z]-(Divide[1,2]*z)^(+ \[Nu])* Sum[(- 1)^(k)*Divide[PolyGamma[k + 1 + \[Nu]],Gamma[k + 1 + \[Nu]]]*Divide[(Divide[1,4]*(z)^(2))^(k),(k)!], {k, 0, Infinity}, GenerateConditions->None]
Failure Failure Skipped - Because timed out
Failed [7 / 70]
Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]}

Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[ν, -2]}

... skip entries to safe data
10.15.E1 J - ν ( z ) ν = - J - ν ( z ) ln ( 1 2 z ) + ( 1 2 z ) - ν k = 0 ( - 1 ) k ψ ( k + 1 - ν ) Γ ( k + 1 - ν ) ( 1 4 z 2 ) k k ! partial-derivative Bessel-J 𝜈 𝑧 𝜈 Bessel-J 𝜈 𝑧 1 2 𝑧 superscript 1 2 𝑧 𝜈 superscript subscript 𝑘 0 superscript 1 𝑘 digamma 𝑘 1 𝜈 Euler-Gamma 𝑘 1 𝜈 superscript 1 4 superscript 𝑧 2 𝑘 𝑘 {\displaystyle{\displaystyle\frac{\partial J_{-\nu}\left(z\right)}{\partial\nu% }=-J_{-\nu}\left(z\right)\ln\left(\tfrac{1}{2}z\right)+(\tfrac{1}{2}z)^{-\nu}% \sum_{k=0}^{\infty}(-1)^{k}\frac{\psi\left(k+1-\nu\right)}{\Gamma\left(k+1-\nu% \right)}\frac{(\tfrac{1}{4}z^{2})^{k}}{k!}}}
\pderiv{\BesselJ{-\nu}@{z}}{\nu} = -\BesselJ{-\nu}@{z}\ln@{\tfrac{1}{2}z}+(\tfrac{1}{2}z)^{-\nu}\sum_{k=0}^{\infty}(-1)^{k}\frac{\digamma@{k+1-\nu}}{\EulerGamma@{k+1-\nu}}\frac{(\tfrac{1}{4}z^{2})^{k}}{k!}
( k + 1 + ν ) > 0 , ( ( - ν ) + k + 1 ) > 0 , ( k + 1 - ν ) > 0 formulae-sequence 𝑘 1 𝜈 0 formulae-sequence 𝜈 𝑘 1 0 𝑘 1 𝜈 0 {\displaystyle{\displaystyle\Re(k+1+\nu)>0,\Re((-\nu)+k+1)>0,\Re(k+1-\nu)>0}}
diff(BesselJ(- nu, z), nu) = - BesselJ(- nu, z)*ln((1)/(2)*z)+((1)/(2)*z)^(- nu)* sum((- 1)^(k)*(Psi(k + 1 - nu))/(GAMMA(k + 1 - nu))*(((1)/(4)*(z)^(2))^(k))/(factorial(k)), k = 0..infinity)
D[BesselJ[- \[Nu], z], \[Nu]] == - BesselJ[- \[Nu], z]*Log[Divide[1,2]*z]+(Divide[1,2]*z)^(- \[Nu])* Sum[(- 1)^(k)*Divide[PolyGamma[k + 1 - \[Nu]],Gamma[k + 1 - \[Nu]]]*Divide[(Divide[1,4]*(z)^(2))^(k),(k)!], {k, 0, Infinity}, GenerateConditions->None]
Failure Failure Skipped - Because timed out
Failed [7 / 70]
Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]}

Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[ν, 2]}

... skip entries to safe data
10.15.E2 Y ν ( z ) ν = cot ( ν π ) ( J ν ( z ) ν - π Y ν ( z ) ) - csc ( ν π ) J - ν ( z ) ν - π J ν ( z ) partial-derivative Bessel-Y-Weber 𝜈 𝑧 𝜈 𝜈 𝜋 partial-derivative Bessel-J 𝜈 𝑧 𝜈 𝜋 Bessel-Y-Weber 𝜈 𝑧 𝜈 𝜋 partial-derivative Bessel-J 𝜈 𝑧 𝜈 𝜋 Bessel-J 𝜈 𝑧 {\displaystyle{\displaystyle\frac{\partial Y_{\nu}\left(z\right)}{\partial\nu}% =\cot\left(\nu\pi\right)\left(\frac{\partial J_{\nu}\left(z\right)}{\partial% \nu}-\pi Y_{\nu}\left(z\right)\right)-\csc\left(\nu\pi\right)\frac{\partial J_% {-\nu}\left(z\right)}{\partial\nu}-\pi J_{\nu}\left(z\right)}}
\pderiv{\BesselY{\nu}@{z}}{\nu} = \cot@{\nu\pi}\left(\pderiv{\BesselJ{\nu}@{z}}{\nu}-\pi\BesselY{\nu}@{z}\right)-\csc@{\nu\pi}\pderiv{\BesselJ{-\nu}@{z}}{\nu}-\pi\BesselJ{\nu}@{z}
( ν + k + 1 ) > 0 , ( ( - ν ) + k + 1 ) > 0 formulae-sequence 𝜈 𝑘 1 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0,\Re((-\nu)+k+1)>0}}
diff(BesselY(nu, z), nu) = cot(nu*Pi)*(diff(BesselJ(nu, z), nu)- Pi*BesselY(nu, z))- csc(nu*Pi)*diff(BesselJ(- nu, z), nu)- Pi*BesselJ(nu, z)
D[BesselY[\[Nu], z], \[Nu]] == Cot[\[Nu]*Pi]*(D[BesselJ[\[Nu], z], \[Nu]]- Pi*BesselY[\[Nu], z])- Csc[\[Nu]*Pi]*D[BesselJ[- \[Nu], z], \[Nu]]- Pi*BesselJ[\[Nu], z]
Successful Failure -
Failed [14 / 70]
Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]}

Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]}

... skip entries to safe data
10.16#Ex1 J 1 2 ( z ) = Y - 1 2 ( z ) Bessel-J 1 2 𝑧 Bessel-Y-Weber 1 2 𝑧 {\displaystyle{\displaystyle J_{\frac{1}{2}}\left(z\right)=Y_{-\frac{1}{2}}% \left(z\right)}}
\BesselJ{\frac{1}{2}}@{z} = \BesselY{-\frac{1}{2}}@{z}
( ( 1 2 ) + k + 1 ) > 0 , ( ( - 1 2 ) + k + 1 ) > 0 , ( ( - ( - 1 2 ) ) + k + 1 ) > 0 formulae-sequence 1 2 𝑘 1 0 formulae-sequence 1 2 𝑘 1 0 1 2 𝑘 1 0 {\displaystyle{\displaystyle\Re((\frac{1}{2})+k+1)>0,\Re((-\frac{1}{2})+k+1)>0% ,\Re((-(-\frac{1}{2}))+k+1)>0}}
BesselJ((1)/(2), z) = BesselY(-(1)/(2), z)
BesselJ[Divide[1,2], z] == BesselY[-Divide[1,2], z]
Successful Successful Skip - symbolical successful subtest Successful [Tested: 7]
10.16#Ex1 Y - 1 2 ( z ) = ( 2 π z ) 1 2 sin z Bessel-Y-Weber 1 2 𝑧 superscript 2 𝜋 𝑧 1 2 𝑧 {\displaystyle{\displaystyle Y_{-\frac{1}{2}}\left(z\right)=\left(\frac{2}{\pi z% }\right)^{\frac{1}{2}}\sin z}}
\BesselY{-\frac{1}{2}}@{z} = \left(\frac{2}{\pi z}\right)^{\frac{1}{2}}\sin@@{z}
( ( 1 2 ) + k + 1 ) > 0 , ( ( - 1 2 ) + k + 1 ) > 0 , ( ( - ( - 1 2 ) ) + k + 1 ) > 0 formulae-sequence 1 2 𝑘 1 0 formulae-sequence 1 2 𝑘 1 0 1 2 𝑘 1 0 {\displaystyle{\displaystyle\Re((\frac{1}{2})+k+1)>0,\Re((-\frac{1}{2})+k+1)>0% ,\Re((-(-\frac{1}{2}))+k+1)>0}}
BesselY(-(1)/(2), z) = ((2)/(Pi*z))^((1)/(2))* sin(z)
BesselY[-Divide[1,2], z] == (Divide[2,Pi*z])^(Divide[1,2])* Sin[z]
Failure Failure Successful [Tested: 7] Successful [Tested: 7]
10.16#Ex2 J - 1 2 ( z ) = - Y 1 2 ( z ) Bessel-J 1 2 𝑧 Bessel-Y-Weber 1 2 𝑧 {\displaystyle{\displaystyle J_{-\frac{1}{2}}\left(z\right)=-Y_{\frac{1}{2}}% \left(z\right)}}
\BesselJ{-\frac{1}{2}}@{z} = -\BesselY{\frac{1}{2}}@{z}
( ( - 1 2 ) + k + 1 ) > 0 , ( ( 1 2 ) + k + 1 ) > 0 , ( ( - ( 1 2 ) ) + k + 1 ) > 0 formulae-sequence 1 2 𝑘 1 0 formulae-sequence 1 2 𝑘 1 0 1 2 𝑘 1 0 {\displaystyle{\displaystyle\Re((-\frac{1}{2})+k+1)>0,\Re((\frac{1}{2})+k+1)>0% ,\Re((-(\frac{1}{2}))+k+1)>0}}
BesselJ(-(1)/(2), z) = - BesselY((1)/(2), z)
BesselJ[-Divide[1,2], z] == - BesselY[Divide[1,2], z]
Successful Successful Skip - symbolical successful subtest Successful [Tested: 7]
10.16#Ex2 - Y 1 2 ( z ) = ( 2 π z ) 1 2 cos z Bessel-Y-Weber 1 2 𝑧 superscript 2 𝜋 𝑧 1 2 𝑧 {\displaystyle{\displaystyle-Y_{\frac{1}{2}}\left(z\right)=\left(\frac{2}{\pi z% }\right)^{\frac{1}{2}}\cos z}}
-\BesselY{\frac{1}{2}}@{z} = \left(\frac{2}{\pi z}\right)^{\frac{1}{2}}\cos@@{z}
( ( - 1 2 ) + k + 1 ) > 0 , ( ( 1 2 ) + k + 1 ) > 0 , ( ( - ( 1 2 ) ) + k + 1 ) > 0 formulae-sequence 1 2 𝑘 1 0 formulae-sequence 1 2 𝑘 1 0 1 2 𝑘 1 0 {\displaystyle{\displaystyle\Re((-\frac{1}{2})+k+1)>0,\Re((\frac{1}{2})+k+1)>0% ,\Re((-(\frac{1}{2}))+k+1)>0}}
- BesselY((1)/(2), z) = ((2)/(Pi*z))^((1)/(2))* cos(z)
- BesselY[Divide[1,2], z] == (Divide[2,Pi*z])^(Divide[1,2])* Cos[z]
Failure Failure Successful [Tested: 7] Successful [Tested: 7]
10.16#Ex3 H 1 2 ( 1 ) ( z ) = - i H - 1 2 ( 1 ) ( z ) Hankel-H-1-Bessel-third-kind 1 2 𝑧 𝑖 Hankel-H-1-Bessel-third-kind 1 2 𝑧 {\displaystyle{\displaystyle{H^{(1)}_{\frac{1}{2}}}\left(z\right)=-i{H^{(1)}_{% -\frac{1}{2}}}\left(z\right)}}
\HankelH{1}{\frac{1}{2}}@{z} = -i\HankelH{1}{-\frac{1}{2}}@{z}

HankelH1((1)/(2), z) = - I*HankelH1(-(1)/(2), z)
HankelH1[Divide[1,2], z] == - I*HankelH1[-Divide[1,2], z]
Successful Successful Skip - symbolical successful subtest Successful [Tested: 7]
10.16#Ex3 - i H - 1 2 ( 1 ) ( z ) = - i ( 2 π z ) 1 2 e i z 𝑖 Hankel-H-1-Bessel-third-kind 1 2 𝑧 𝑖 superscript 2 𝜋 𝑧 1 2 superscript 𝑒 𝑖 𝑧 {\displaystyle{\displaystyle-i{H^{(1)}_{-\frac{1}{2}}}\left(z\right)=-i\left(% \frac{2}{\pi z}\right)^{\frac{1}{2}}e^{iz}}}
-i\HankelH{1}{-\frac{1}{2}}@{z} = -i\left(\frac{2}{\pi z}\right)^{\frac{1}{2}}e^{iz}

- I*HankelH1(-(1)/(2), z) = - I*((2)/(Pi*z))^((1)/(2))* exp(I*z)
- I*HankelH1[-Divide[1,2], z] == - I*(Divide[2,Pi*z])^(Divide[1,2])* Exp[I*z]
Failure Failure Successful [Tested: 7] Successful [Tested: 7]
10.16#Ex4 H 1 2 ( 2 ) ( z ) = i H - 1 2 ( 2 ) ( z ) Hankel-H-2-Bessel-third-kind 1 2 𝑧 𝑖 Hankel-H-2-Bessel-third-kind 1 2 𝑧 {\displaystyle{\displaystyle{H^{(2)}_{\frac{1}{2}}}\left(z\right)=i{H^{(2)}_{-% \frac{1}{2}}}\left(z\right)}}
\HankelH{2}{\frac{1}{2}}@{z} = i\HankelH{2}{-\frac{1}{2}}@{z}

HankelH2((1)/(2), z) = I*HankelH2(-(1)/(2), z)
HankelH2[Divide[1,2], z] == I*HankelH2[-Divide[1,2], z]
Successful Successful Skip - symbolical successful subtest Successful [Tested: 7]
10.16#Ex4 i H - 1 2 ( 2 ) ( z ) = i ( 2 π z ) 1 2 e - i z 𝑖 Hankel-H-2-Bessel-third-kind 1 2 𝑧 𝑖 superscript 2 𝜋 𝑧 1 2 superscript 𝑒 𝑖 𝑧 {\displaystyle{\displaystyle i{H^{(2)}_{-\frac{1}{2}}}\left(z\right)=i\left(% \frac{2}{\pi z}\right)^{\frac{1}{2}}e^{-iz}}}
i\HankelH{2}{-\frac{1}{2}}@{z} = i\left(\frac{2}{\pi z}\right)^{\frac{1}{2}}e^{-iz}

I*HankelH2(-(1)/(2), z) = I*((2)/(Pi*z))^((1)/(2))* exp(- I*z)
I*HankelH2[-Divide[1,2], z] == I*(Divide[2,Pi*z])^(Divide[1,2])* Exp[- I*z]
Failure Failure Successful [Tested: 7] Successful [Tested: 7]
10.16#Ex5 J 1 4 ( z ) = - 2 - 1 4 π - 1 2 z - 1 4 ( W ( 0 , 2 z 1 2 ) - W ( 0 , - 2 z 1 2 ) ) Bessel-J 1 4 𝑧 superscript 2 1 4 superscript 𝜋 1 2 superscript 𝑧 1 4 parabolic-W 0 2 superscript 𝑧 1 2 parabolic-W 0 2 superscript 𝑧 1 2 {\displaystyle{\displaystyle J_{\frac{1}{4}}\left(z\right)=-2^{-\frac{1}{4}}% \pi^{-\frac{1}{2}}z^{-\frac{1}{4}}\left(W\left(0,2z^{\frac{1}{2}}\right)-W% \left(0,-2z^{\frac{1}{2}}\right)\right)}}
\BesselJ{\frac{1}{4}}@{z} = -2^{-\frac{1}{4}}\pi^{-\frac{1}{2}}z^{-\frac{1}{4}}\left(\paraW@{0}{2z^{\frac{1}{2}}}-\paraW@{0}{-2z^{\frac{1}{2}}}\right)
( ( 1 4 ) + k + 1 ) > 0 1 4 𝑘 1 0 {\displaystyle{\displaystyle\Re((\frac{1}{4})+k+1)>0}}
Error
BesselJ[Divide[1,4], z] == - (2)^(-Divide[1,4])* (Pi)^(-Divide[1,2])* (z)^(-Divide[1,4])*(Sqrt[(Sqrt[1+Exp[2*Pi*(0)]]-Exp[Pi*(0)])/2] * Exp[Divide[Pi*(0),4]] * ( Exp[I*(Pi/8 + Arg[GAMMA[1/2 + I*(0)]]/2)] * ParabolicCylinderD[- 1/2 - I*(0), 2*(z)^(Divide[1,2]) * Exp[-Divide[Pi*I,4]]] + Exp[-I*(Pi/8 + Arg[GAMMA[1/2 + I*(0)]]/2)] * ParabolicCylinderD[- 1/2 + I*(0), 2*(z)^(Divide[1,2]) * Exp[Divide[Pi*I,4]]] )- Sqrt[(Sqrt[1+Exp[2*Pi*(0)]]-Exp[Pi*(0)])/2] * Exp[Divide[Pi*(0),4]] * ( Exp[I*(Pi/8 + Arg[GAMMA[1/2 + I*(0)]]/2)] * ParabolicCylinderD[- 1/2 - I*(0), - 2*(z)^(Divide[1,2]) * Exp[-Divide[Pi*I,4]]] + Exp[-I*(Pi/8 + Arg[GAMMA[1/2 + I*(0)]]/2)] * ParabolicCylinderD[- 1/2 + I*(0), - 2*(z)^(Divide[1,2]) * Exp[Divide[Pi*I,4]]] ))
Missing Macro Error Failure -
Failed [7 / 7]
Result: Plus[Complex[0.8427727646508262, -0.04212015747529019], Times[Complex[0.4703662267003617, -0.06192488852586185], Plus[Times[0.4550898605622274, Plus[Times[Complex[0.3150667711363517, -1.1318933470332309], Power[2.718281828459045, Times[Complex[0.0, -1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]], Times[Complex[0.1941072423227021, 0.35884759380625464], Power[2.718281828459045, Times[Complex[0.0, 1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]]]], Times[-0.4550898605622274, Plus[Times[Complex[1.684848183162187, 0.4798071226199044], Power[2.718281828459045, Times[Complex[0.0, -1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]], Times[Complex[1.8058077119758371, -1.0109338182195815], Power[2.718281828459045, Times[Complex[0.0, 1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]]]]]]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[0.7942814592773979, 0.6544287188687908], Times[Complex[0.41086410074312574, -0.23721249916439713], Plus[Times[0.4550898605622274, Plus[Times[Complex[1.9382359752879499, -0.7976721648462198], Power[2.718281828459045, Times[Complex[0.0, -1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]], Times[Complex[0.22978077998995444, -0.1584303699393873], Power[2.718281828459045, Times[Complex[0.0, 1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]]]], Times[-0.4550898605622274, Plus[Times[Complex[0.8690225748967872, 1.5500248253586082], Power[2.718281828459045, Times[Complex[0.0, -1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]], Times[Complex[2.5774777701947826, 0.910783030451775], Power[2.718281828459045, Times[Complex[0.0, 1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]]]]]]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.16#Ex6 J - 1 4 ( z ) = 2 - 1 4 π - 1 2 z - 1 4 ( W ( 0 , 2 z 1 2 ) + W ( 0 , - 2 z 1 2 ) ) Bessel-J 1 4 𝑧 superscript 2 1 4 superscript 𝜋 1 2 superscript 𝑧 1 4 parabolic-W 0 2 superscript 𝑧 1 2 parabolic-W 0 2 superscript 𝑧 1 2 {\displaystyle{\displaystyle J_{-\frac{1}{4}}\left(z\right)=2^{-\frac{1}{4}}% \pi^{-\frac{1}{2}}z^{-\frac{1}{4}}\left(W\left(0,2z^{\frac{1}{2}}\right)+W% \left(0,-2z^{\frac{1}{2}}\right)\right)}}
\BesselJ{-\frac{1}{4}}@{z} = 2^{-\frac{1}{4}}\pi^{-\frac{1}{2}}z^{-\frac{1}{4}}\left(\paraW@{0}{2z^{\frac{1}{2}}}+\paraW@{0}{-2z^{\frac{1}{2}}}\right)
( ( - 1 4 ) + k + 1 ) > 0 1 4 𝑘 1 0 {\displaystyle{\displaystyle\Re((-\frac{1}{4})+k+1)>0}}
Error
BesselJ[-Divide[1,4], z] == (2)^(-Divide[1,4])* (Pi)^(-Divide[1,2])* (z)^(-Divide[1,4])*(Sqrt[(Sqrt[1+Exp[2*Pi*(0)]]-Exp[Pi*(0)])/2] * Exp[Divide[Pi*(0),4]] * ( Exp[I*(Pi/8 + Arg[GAMMA[1/2 + I*(0)]]/2)] * ParabolicCylinderD[- 1/2 - I*(0), 2*(z)^(Divide[1,2]) * Exp[-Divide[Pi*I,4]]] + Exp[-I*(Pi/8 + Arg[GAMMA[1/2 + I*(0)]]/2)] * ParabolicCylinderD[- 1/2 + I*(0), 2*(z)^(Divide[1,2]) * Exp[Divide[Pi*I,4]]] )+ Sqrt[(Sqrt[1+Exp[2*Pi*(0)]]-Exp[Pi*(0)])/2] * Exp[Divide[Pi*(0),4]] * ( Exp[I*(Pi/8 + Arg[GAMMA[1/2 + I*(0)]]/2)] * ParabolicCylinderD[- 1/2 - I*(0), - 2*(z)^(Divide[1,2]) * Exp[-Divide[Pi*I,4]]] + Exp[-I*(Pi/8 + Arg[GAMMA[1/2 + I*(0)]]/2)] * ParabolicCylinderD[- 1/2 + I*(0), - 2*(z)^(Divide[1,2]) * Exp[Divide[Pi*I,4]]] ))
Missing Macro Error Aborted -
Failed [7 / 7]
Result: Plus[Complex[0.7570692040611657, -0.36205959587261455], Times[Complex[-0.4703662267003617, 0.06192488852586186], Plus[Times[0.4550898605622274, Plus[Times[Complex[0.3150667711363517, -1.1318933470332309], Power[2.718281828459045, Times[Complex[0.0, -1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]], Times[Complex[0.1941072423227021, 0.35884759380625464], Power[2.718281828459045, Times[Complex[0.0, 1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]]]], Times[0.4550898605622274, Plus[Times[Complex[1.684848183162187, 0.4798071226199044], Power[2.718281828459045, Times[Complex[0.0, -1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]], Times[Complex[1.8058077119758371, -1.0109338182195815], Power[2.718281828459045, Times[Complex[0.0, 1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]]]]]]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[1.1199640481676587, -0.30003362129733535], Times[Complex[-0.41086410074312574, 0.2372124991643971], Plus[Times[0.4550898605622274, Plus[Times[Complex[1.9382359752879499, -0.7976721648462198], Power[2.718281828459045, Times[Complex[0.0, -1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]], Times[Complex[0.22978077998995444, -0.1584303699393873], Power[2.718281828459045, Times[Complex[0.0, 1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]]]], Times[0.4550898605622274, Plus[Times[Complex[0.8690225748967872, 1.5500248253586082], Power[2.718281828459045, Times[Complex[0.0, -1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]], Times[Complex[2.5774777701947826, 0.910783030451775], Power[2.718281828459045, Times[Complex[0.0, 1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]]]]]]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.16#Ex7 J 3 4 ( z ) = - 2 - 1 4 π - 1 2 z - 3 4 ( W ( 0 , 2 z 1 2 ) - W ( 0 , - 2 z 1 2 ) ) Bessel-J 3 4 𝑧 superscript 2 1 4 superscript 𝜋 1 2 superscript 𝑧 3 4 diffop parabolic-W 1 0 2 superscript 𝑧 1 2 diffop parabolic-W 1 0 2 superscript 𝑧 1 2 {\displaystyle{\displaystyle J_{\frac{3}{4}}\left(z\right)=-2^{-\frac{1}{4}}% \pi^{-\frac{1}{2}}z^{-\frac{3}{4}}\left(W'\left(0,2z^{\frac{1}{2}}\right)-W'% \left(0,-2z^{\frac{1}{2}}\right)\right)}}
\BesselJ{\frac{3}{4}}@{z} = -2^{-\frac{1}{4}}\pi^{-\frac{1}{2}}z^{-\frac{3}{4}}\left(\paraW'@{0}{2z^{\frac{1}{2}}}-\paraW'@{0}{-2z^{\frac{1}{2}}}\right)
( ( 3 4 ) + k + 1 ) > 0 3 4 𝑘 1 0 {\displaystyle{\displaystyle\Re((\frac{3}{4})+k+1)>0}}
Error
BesselJ[Divide[3,4], z] == - (2)^(-Divide[1,4])* (Pi)^(-Divide[1,2])* (z)^(-Divide[3,4])*((D[Sqrt[(Sqrt[1+Exp[2*Pi*(0)]]-Exp[Pi*(0)])/2] * Exp[Divide[Pi*(0),4]] * ( Exp[I*(Pi/8 + Arg[GAMMA[1/2 + I*(0)]]/2)] * ParabolicCylinderD[- 1/2 - I*(0), temp * Exp[-Divide[Pi*I,4]]] + Exp[-I*(Pi/8 + Arg[GAMMA[1/2 + I*(0)]]/2)] * ParabolicCylinderD[- 1/2 + I*(0), temp * Exp[Divide[Pi*I,4]]] ), {temp, 1}]/.temp-> 2*(z)^(Divide[1,2]))- (D[Sqrt[(Sqrt[1+Exp[2*Pi*(0)]]-Exp[Pi*(0)])/2] * Exp[Divide[Pi*(0),4]] * ( Exp[I*(Pi/8 + Arg[GAMMA[1/2 + I*(0)]]/2)] * ParabolicCylinderD[- 1/2 - I*(0), temp * Exp[-Divide[Pi*I,4]]] + Exp[-I*(Pi/8 + Arg[GAMMA[1/2 + I*(0)]]/2)] * ParabolicCylinderD[- 1/2 + I*(0), temp * Exp[Divide[Pi*I,4]]] ), {temp, 1}]/.temp-> - 2*(z)^(Divide[1,2])))
Missing Macro Error Failure -
Failed [7 / 7]
Result: Plus[Complex[0.5824093961234496, 0.15854248220296385], Times[Complex[0.43831154566767444, -0.18155458676026498], Plus[Times[0.4550898605622274, Plus[Times[Complex[-1.0141669743850696, 0.548925751618472], Power[2.718281828459045, Plus[Complex[0.0, 0.7853981633974483], Times[Complex[0.0, -1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]]], Times[Complex[-0.3595065696883391, -0.29725176260213915], Power[2.718281828459045, Plus[Complex[0.0, -0.7853981633974483], Times[Complex[0.0, 1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]]]]], Times[-0.4550898605622274, Plus[Times[Complex[0.48667094453227255, 0.3574086420945919], Power[2.718281828459045, Plus[Complex[0.0, 0.7853981633974483], Times[Complex[0.0, -1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]]], Times[Complex[-0.16798946016445826, 1.2035861563152026], Power[2.718281828459045, Plus[Complex[0.0, -0.7853981633974483], Times[Complex[0.0, 1.0], Plus[0.39<syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.0836786417162193, 0.6909849218136797], Times[Complex[0.0, -0.4744249983287943], Plus[Times[-0.4550898605622274, Plus[Times[Complex[-1.52733809531001, -0.015580244977093649], Power[2.718281828459045, Plus[Complex[0.0, 0.7853981633974483], Times[Complex[0.0, -1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]]], Times[Complex[-1.3790215645615536, -1.2403191305633965], Power[2.718281828459045, Plus[Complex[0.0, -0.7853981633974483], Times[Complex[0.0, 1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]]]]], Times[0.4550898605622274, Plus[Times[Complex[-0.154282678975249, -1.0920025998149403], Power[2.718281828459045, Plus[Complex[0.0, 0.7853981633974483], Times[Complex[0.0, -1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]]], Times[Complex[-0.302599209723706, 0.13273628577136276], Power[2.718281828459045, Plus[Complex[0.0, -0.7853981633974483], Times[Complex[0.0, 1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]]]]]]]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.16#Ex8 J - 3 4 ( z ) = - 2 - 1 4 π - 1 2 z - 3 4 ( W ( 0 , 2 z 1 2 ) + W ( 0 , - 2 z 1 2 ) ) Bessel-J 3 4 𝑧 superscript 2 1 4 superscript 𝜋 1 2 superscript 𝑧 3 4 diffop parabolic-W 1 0 2 superscript 𝑧 1 2 diffop parabolic-W 1 0 2 superscript 𝑧 1 2 {\displaystyle{\displaystyle J_{-\frac{3}{4}}\left(z\right)=-2^{-\frac{1}{4}}% \pi^{-\frac{1}{2}}z^{-\frac{3}{4}}\left(W'\left(0,2z^{\frac{1}{2}}\right)+W'% \left(0,-2z^{\frac{1}{2}}\right)\right)}}
\BesselJ{-\frac{3}{4}}@{z} = -2^{-\frac{1}{4}}\pi^{-\frac{1}{2}}z^{-\frac{3}{4}}\left(\paraW'@{0}{2z^{\frac{1}{2}}}+\paraW'@{0}{-2z^{\frac{1}{2}}}\right)
( ( - 3 4 ) + k + 1 ) > 0 3 4 𝑘 1 0 {\displaystyle{\displaystyle\Re((-\frac{3}{4})+k+1)>0}}
Error
BesselJ[-Divide[3,4], z] == - (2)^(-Divide[1,4])* (Pi)^(-Divide[1,2])* (z)^(-Divide[3,4])*((D[Sqrt[(Sqrt[1+Exp[2*Pi*(0)]]-Exp[Pi*(0)])/2] * Exp[Divide[Pi*(0),4]] * ( Exp[I*(Pi/8 + Arg[GAMMA[1/2 + I*(0)]]/2)] * ParabolicCylinderD[- 1/2 - I*(0), temp * Exp[-Divide[Pi*I,4]]] + Exp[-I*(Pi/8 + Arg[GAMMA[1/2 + I*(0)]]/2)] * ParabolicCylinderD[- 1/2 + I*(0), temp * Exp[Divide[Pi*I,4]]] ), {temp, 1}]/.temp-> 2*(z)^(Divide[1,2]))+ (D[Sqrt[(Sqrt[1+Exp[2*Pi*(0)]]-Exp[Pi*(0)])/2] * Exp[Divide[Pi*(0),4]] * ( Exp[I*(Pi/8 + Arg[GAMMA[1/2 + I*(0)]]/2)] * ParabolicCylinderD[- 1/2 - I*(0), temp * Exp[-Divide[Pi*I,4]]] + Exp[-I*(Pi/8 + Arg[GAMMA[1/2 + I*(0)]]/2)] * ParabolicCylinderD[- 1/2 + I*(0), temp * Exp[Divide[Pi*I,4]]] ), {temp, 1}]/.temp-> - 2*(z)^(Divide[1,2])))
Missing Macro Error Failure -
Failed [7 / 7]
Result: Plus[Complex[0.05605283808026881, -0.4145839244466886], Times[Complex[0.43831154566767444, -0.18155458676026498], Plus[Times[0.4550898605622274, Plus[Times[Complex[-1.0141669743850696, 0.548925751618472], Power[2.718281828459045, Plus[Complex[0.0, 0.7853981633974483], Times[Complex[0.0, -1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]]], Times[Complex[-0.3595065696883391, -0.29725176260213915], Power[2.718281828459045, Plus[Complex[0.0, -0.7853981633974483], Times[Complex[0.0, 1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]]]]], Times[0.4550898605622274, Plus[Times[Complex[0.48667094453227255, 0.3574086420945919], Power[2.718281828459045, Plus[Complex[0.0, 0.7853981633974483], Times[Complex[0.0, -1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]]], Times[Complex[-0.16798946016445826, 1.2035861563152026], Power[2.718281828459045, Plus[Complex[0.0, -0.7853981633974483], Times[Complex[0.0, 1.0], Plus[0.39<syntaxhighlight lang=mathematica>Result: Plus[Complex[0.44186162583484034, -0.6708696264637843], Times[Complex[0.0, -0.4744249983287943], Plus[Times[0.4550898605622274, Plus[Times[Complex[-1.52733809531001, -0.015580244977093649], Power[2.718281828459045, Plus[Complex[0.0, 0.7853981633974483], Times[Complex[0.0, -1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]]], Times[Complex[-1.3790215645615536, -1.2403191305633965], Power[2.718281828459045, Plus[Complex[0.0, -0.7853981633974483], Times[Complex[0.0, 1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]]]]], Times[0.4550898605622274, Plus[Times[Complex[-0.154282678975249, -1.0920025998149403], Power[2.718281828459045, Plus[Complex[0.0, 0.7853981633974483], Times[Complex[0.0, -1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]]], Times[Complex[-0.302599209723706, 0.13273628577136276], Power[2.718281828459045, Plus[Complex[0.0, -0.7853981633974483], Times[Complex[0.0, 1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]]]]]]]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.16.E5 J ν ( z ) = ( 1 2 z ) ν e - i z Γ ( ν + 1 ) M ( ν + 1 2 , 2 ν + 1 , + 2 i z ) Bessel-J 𝜈 𝑧 superscript 1 2 𝑧 𝜈 superscript 𝑒 𝑖 𝑧 Euler-Gamma 𝜈 1 Kummer-confluent-hypergeometric-M 𝜈 1 2 2 𝜈 1 2 𝑖 𝑧 {\displaystyle{\displaystyle J_{\nu}\left(z\right)=\frac{(\tfrac{1}{2}z)^{\nu}% e^{-iz}}{\Gamma\left(\nu+1\right)}M\left(\nu+\tfrac{1}{2},2\nu+1,+2iz\right)}}
\BesselJ{\nu}@{z} = \frac{(\tfrac{1}{2}z)^{\nu}e^{- iz}}{\EulerGamma@{\nu+1}}\KummerconfhyperM@{\nu+\tfrac{1}{2}}{2\nu+1}{+ 2iz}
( ν + k + 1 ) > 0 , ( ν + 1 ) > 0 formulae-sequence 𝜈 𝑘 1 0 𝜈 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0,\Re(\nu+1)>0}}
BesselJ(nu, z) = (((1)/(2)*z)^(nu)* exp(- I*z))/(GAMMA(nu + 1))*KummerM(nu +(1)/(2), 2*nu + 1, + 2*I*z)
BesselJ[\[Nu], z] == Divide[(Divide[1,2]*z)^\[Nu]* Exp[- I*z],Gamma[\[Nu]+ 1]]*Hypergeometric1F1[\[Nu]+Divide[1,2], 2*\[Nu]+ 1, + 2*I*z]
Failure Successful
Failed [7 / 56]
Result: -.827986137e-1+.7317301038*I
Test Values: {nu = -1/2, z = 1/2*3^(1/2)+1/2*I}

Result: -.8060140108+.3257248263*I
Test Values: {nu = -1/2, z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [7 / 56]
Result: Complex[-0.08279861346468581, 0.7317301035002939]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -0.5]}

Result: Complex[-0.8060140105131326, 0.32572482654389856]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[ν, -0.5]}

... skip entries to safe data
10.16.E5 J ν ( z ) = ( 1 2 z ) ν e + i z Γ ( ν + 1 ) M ( ν + 1 2 , 2 ν + 1 , - 2 i z ) Bessel-J 𝜈 𝑧 superscript 1 2 𝑧 𝜈 superscript 𝑒 𝑖 𝑧 Euler-Gamma 𝜈 1 Kummer-confluent-hypergeometric-M 𝜈 1 2 2 𝜈 1 2 𝑖 𝑧 {\displaystyle{\displaystyle J_{\nu}\left(z\right)=\frac{(\tfrac{1}{2}z)^{\nu}% e^{+iz}}{\Gamma\left(\nu+1\right)}M\left(\nu+\tfrac{1}{2},2\nu+1,-2iz\right)}}
\BesselJ{\nu}@{z} = \frac{(\tfrac{1}{2}z)^{\nu}e^{+ iz}}{\EulerGamma@{\nu+1}}\KummerconfhyperM@{\nu+\tfrac{1}{2}}{2\nu+1}{- 2iz}
( ν + k + 1 ) > 0 , ( ν + 1 ) > 0 formulae-sequence 𝜈 𝑘 1 0 𝜈 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0,\Re(\nu+1)>0}}
BesselJ(nu, z) = (((1)/(2)*z)^(nu)* exp(+ I*z))/(GAMMA(nu + 1))*KummerM(nu +(1)/(2), 2*nu + 1, - 2*I*z)
BesselJ[\[Nu], z] == Divide[(Divide[1,2]*z)^\[Nu]* Exp[+ I*z],Gamma[\[Nu]+ 1]]*Hypergeometric1F1[\[Nu]+Divide[1,2], 2*\[Nu]+ 1, - 2*I*z]
Failure Successful
Failed [7 / 56]
Result: .827986132e-1-.7317301035*I
Test Values: {nu = -1/2, z = 1/2*3^(1/2)+1/2*I}

Result: .8060140102-.3257248264*I
Test Values: {nu = -1/2, z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [7 / 56]
Result: Complex[0.08279861346468548, -0.7317301035002935]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -0.5]}

Result: Complex[0.8060140105131325, -0.325724826543898]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[ν, -0.5]}

... skip entries to safe data
10.16.E7 J ν ( z ) = e - ( 2 ν + 1 ) π i / 4 2 2 ν Γ ( ν + 1 ) ( 2 z ) - 1 2 M 0 , ν ( + 2 i z ) Bessel-J 𝜈 𝑧 superscript 𝑒 2 𝜈 1 𝜋 𝑖 4 superscript 2 2 𝜈 Euler-Gamma 𝜈 1 superscript 2 𝑧 1 2 Whittaker-confluent-hypergeometric-M 0 𝜈 2 𝑖 𝑧 {\displaystyle{\displaystyle J_{\nu}\left(z\right)=\frac{e^{-(2\nu+1)\pi i/4}}% {2^{2\nu}\Gamma\left(\nu+1\right)}(2z)^{-\frac{1}{2}}M_{0,\nu}\left(+2iz\right% )}}
\BesselJ{\nu}@{z} = \frac{e^{-(2\nu+1)\pi i/4}}{2^{2\nu}\EulerGamma@{\nu+1}}(2z)^{-\frac{1}{2}}\WhittakerconfhyperM{0}{\nu}@{+ 2iz}
( ν + k + 1 ) > 0 , ( ν + 1 ) > 0 formulae-sequence 𝜈 𝑘 1 0 𝜈 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0,\Re(\nu+1)>0}}
BesselJ(nu, z) = (exp(-(2*nu + 1)*Pi*I/4))/((2)^(2*nu)* GAMMA(nu + 1))*(2*z)^(-(1)/(2))* WhittakerM(0, nu, + 2*I*z)
BesselJ[\[Nu], z] == Divide[Exp[-(2*\[Nu]+ 1)*Pi*I/4],(2)^(2*\[Nu])* Gamma[\[Nu]+ 1]]*(2*z)^(-Divide[1,2])* WhittakerM[0, \[Nu], + 2*I*z]
Failure Failure
Failed [1 / 7]
Result: 1.448710179-.1398527410*I
Test Values: {z = -1/2+1/2*I*3^(1/2), nu = 1/4}

Failed [1 / 7]
Result: Complex[1.448710178146189, -0.13985274040860685]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[ν, Rational[1, 4]]}

10.16.E7 J ν ( z ) = e + ( 2 ν + 1 ) π i / 4 2 2 ν Γ ( ν + 1 ) ( 2 z ) - 1 2 M 0 , ν ( - 2 i z ) Bessel-J 𝜈 𝑧 superscript 𝑒 2 𝜈 1 𝜋 𝑖 4 superscript 2 2 𝜈 Euler-Gamma 𝜈 1 superscript 2 𝑧 1 2 Whittaker-confluent-hypergeometric-M 0 𝜈 2 𝑖 𝑧 {\displaystyle{\displaystyle J_{\nu}\left(z\right)=\frac{e^{+(2\nu+1)\pi i/4}}% {2^{2\nu}\Gamma\left(\nu+1\right)}(2z)^{-\frac{1}{2}}M_{0,\nu}\left(-2iz\right% )}}
\BesselJ{\nu}@{z} = \frac{e^{+(2\nu+1)\pi i/4}}{2^{2\nu}\EulerGamma@{\nu+1}}(2z)^{-\frac{1}{2}}\WhittakerconfhyperM{0}{\nu}@{- 2iz}
( ν + k + 1 ) > 0 , ( ν + 1 ) > 0 formulae-sequence 𝜈 𝑘 1 0 𝜈 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0,\Re(\nu+1)>0}}
BesselJ(nu, z) = (exp(+(2*nu + 1)*Pi*I/4))/((2)^(2*nu)* GAMMA(nu + 1))*(2*z)^(-(1)/(2))* WhittakerM(0, nu, - 2*I*z)
BesselJ[\[Nu], z] == Divide[Exp[+(2*\[Nu]+ 1)*Pi*I/4],(2)^(2*\[Nu])* Gamma[\[Nu]+ 1]]*(2*z)^(-Divide[1,2])* WhittakerM[0, \[Nu], - 2*I*z]
Failure Failure
Failed [1 / 7]
Result: 1.191860674-.595668984e-1*I
Test Values: {z = -1/2*3^(1/2)-1/2*I, nu = 1/4}

Failed [1 / 7]
Result: Complex[1.191860673767867, -0.059566897950845576]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]], Rule[ν, Rational[1, 4]]}

10.16.E9 J ν ( z ) = ( 1 2 z ) ν Γ ( ν + 1 ) F 1 0 ( - ; ν + 1 ; - 1 4 z 2 ) Bessel-J 𝜈 𝑧 superscript 1 2 𝑧 𝜈 Euler-Gamma 𝜈 1 Gauss-hypergeometric-pFq 0 1 𝜈 1 1 4 superscript 𝑧 2 {\displaystyle{\displaystyle J_{\nu}\left(z\right)=\frac{(\tfrac{1}{2}z)^{\nu}% }{\Gamma\left(\nu+1\right)}{{}_{0}F_{1}}\left(-;\nu+1;-\tfrac{1}{4}z^{2}\right% )}}
\BesselJ{\nu}@{z} = \frac{(\tfrac{1}{2}z)^{\nu}}{\EulerGamma@{\nu+1}}\genhyperF{0}{1}@{-}{\nu+1}{-\tfrac{1}{4}z^{2}}
( ν + k + 1 ) > 0 , ( ν + 1 ) > 0 formulae-sequence 𝜈 𝑘 1 0 𝜈 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0,\Re(\nu+1)>0}}
BesselJ(nu, z) = (((1)/(2)*z)^(nu))/(GAMMA(nu + 1))*hypergeom([-], [nu + 1], -(1)/(4)*(z)^(2))
BesselJ[\[Nu], z] == Divide[(Divide[1,2]*z)^\[Nu],Gamma[\[Nu]+ 1]]*HypergeometricPFQ[{-}, {\[Nu]+ 1}, -Divide[1,4]*(z)^(2)]
Error Failure - Error
10.17.E7 z 1 2 = exp ( 1 2 ln | z | + 1 2 i ph z ) superscript 𝑧 1 2 1 2 𝑧 1 2 𝑖 phase 𝑧 {\displaystyle{\displaystyle z^{\frac{1}{2}}=\exp\left(\tfrac{1}{2}\ln|z|+% \tfrac{1}{2}i\operatorname{ph}z\right)}}
z^{\frac{1}{2}} = \exp@{\tfrac{1}{2}\ln@@{|z|}+\tfrac{1}{2}i\phase@@{z}}

(z)^((1)/(2)) = exp((1)/(2)*ln(abs(z))+(1)/(2)*I*argument(z))
(z)^(Divide[1,2]) == Exp[Divide[1,2]*Log[Abs[z]]+Divide[1,2]*I*Arg[z]]
Failure Failure Successful [Tested: 7] Successful [Tested: 7]
10.17.E16 G p ( z ) = e z 2 π Γ ( p ) Γ ( 1 - p , z ) rescaled-terminant-function 𝑝 𝑧 superscript 𝑒 𝑧 2 𝜋 Euler-Gamma 𝑝 incomplete-Gamma 1 𝑝 𝑧 {\displaystyle{\displaystyle G_{p}\left(z\right)=\frac{e^{z}}{2\pi}\Gamma\left% (p\right)\Gamma\left(1-p,z\right)}}
\scterminant{p}@{z} = \frac{e^{z}}{2\pi}\EulerGamma@{p}\incGamma@{1-p}{z}
p > 0 𝑝 0 {\displaystyle{\displaystyle\Re p>0}}
(exp(z)/(2*Pi))*GAMMA(p)*GAMMA(1-p,z) = (exp(z))/(2*Pi)*GAMMA(p)*GAMMA(1 - p, z)
Error
Successful Missing Macro Error - -
10.17.E17 R + ( ν , z ) = ( - 1 ) 2 cos ( ν π ) ( k = 0 m - 1 ( + i ) k a k ( ν ) z k G - k ( - 2 i z ) + R m , + ( ν , z ) ) superscript subscript 𝑅 𝜈 𝑧 superscript 1 2 𝜈 𝜋 superscript subscript 𝑘 0 𝑚 1 superscript 𝑖 𝑘 subscript 𝑎 𝑘 𝜈 superscript 𝑧 𝑘 rescaled-terminant-function 𝑘 2 𝑖 𝑧 superscript subscript 𝑅 𝑚 𝜈 𝑧 {\displaystyle{\displaystyle R_{\ell}^{+}(\nu,z)=(-1)^{\ell}2\cos\left(\nu\pi% \right)\*\left(\sum_{k=0}^{m-1}(+i)^{k}\frac{a_{k}(\nu)}{z^{k}}G_{\ell-k}\left% (-2iz\right)+R_{m,\ell}^{+}(\nu,z)\right)}}
R_{\ell}^{+}(\nu,z) = (-1)^{\ell}2\cos@{\nu\pi}\*\left(\sum_{k=0}^{m-1}(+ i)^{k}\frac{a_{k}(\nu)}{z^{k}}\scterminant{\ell-k}@{- 2iz}+R_{m,\ell}^{+}(\nu,z)\right)
( - k ) > 0 , k 1 formulae-sequence 𝑘 0 𝑘 1 {\displaystyle{\displaystyle\Re(\ell-k)>0,k\geq 1}}
(R[ell])^(+)(nu , z) = (- 1)^(ell)* 2*cos(nu*Pi)*(sum((+ I)^(k)*(((4*(nu)^(2)- (1)^(2))*(4*(nu)^(2)- (3)^(2)) .. (4*(nu)^(2)-(2*k - 1)^(2)))/(factorial(k)*(8)^(k)))/((z)^(k))*(exp(- 2*I*z)/(2*Pi))*GAMMA(ell - k)*GAMMA(1-ell - k,- 2*I*z), k = 0..m - 1)+ (R[m , ell])^(+)(nu , z))
Error
Error Missing Macro Error - -
10.17.E17 R - ( ν , z ) = ( - 1 ) 2 cos ( ν π ) ( k = 0 m - 1 ( - i ) k a k ( ν ) z k G - k ( + 2 i z ) + R m , - ( ν , z ) ) superscript subscript 𝑅 𝜈 𝑧 superscript 1 2 𝜈 𝜋 superscript subscript 𝑘 0 𝑚 1 superscript 𝑖 𝑘 subscript 𝑎 𝑘 𝜈 superscript 𝑧 𝑘 rescaled-terminant-function 𝑘 2 𝑖 𝑧 superscript subscript 𝑅 𝑚 𝜈 𝑧 {\displaystyle{\displaystyle R_{\ell}^{-}(\nu,z)=(-1)^{\ell}2\cos\left(\nu\pi% \right)\*\left(\sum_{k=0}^{m-1}(-i)^{k}\frac{a_{k}(\nu)}{z^{k}}G_{\ell-k}\left% (+2iz\right)+R_{m,\ell}^{-}(\nu,z)\right)}}
R_{\ell}^{-}(\nu,z) = (-1)^{\ell}2\cos@{\nu\pi}\*\left(\sum_{k=0}^{m-1}(- i)^{k}\frac{a_{k}(\nu)}{z^{k}}\scterminant{\ell-k}@{+ 2iz}+R_{m,\ell}^{-}(\nu,z)\right)
( - k ) > 0 , k 1 formulae-sequence 𝑘 0 𝑘 1 {\displaystyle{\displaystyle\Re(\ell-k)>0,k\geq 1}}
(R[ell])^(-)(nu , z) = (- 1)^(ell)* 2*cos(nu*Pi)*(sum((- I)^(k)*(((4*(nu)^(2)- (1)^(2))*(4*(nu)^(2)- (3)^(2)) .. (4*(nu)^(2)-(2*k - 1)^(2)))/(factorial(k)*(8)^(k)))/((z)^(k))*(exp(+ 2*I*z)/(2*Pi))*GAMMA(ell - k)*GAMMA(1-ell - k,+ 2*I*z), k = 0..m - 1)+ (R[m , ell])^(-)(nu , z))
Error
Error Missing Macro Error - -
10.18#Ex7 M ν ( x ) = ( J ν 2 ( x ) + Y ν 2 ( x ) ) 1 2 modulus-Bessel-M 𝜈 𝑥 superscript Bessel-J 𝜈 2 𝑥 Bessel-Y-Weber 𝜈 2 𝑥 1 2 {\displaystyle{\displaystyle M_{\nu}\left(x\right)=\left({J_{\nu}^{2}}\left(x% \right)+{Y_{\nu}^{2}}\left(x\right)\right)^{\frac{1}{2}}}}
\HankelmodM{\nu}@{x} = \left(\BesselJ{\nu}^{2}@{x}+\BesselY{\nu}^{2}@{x}\right)^{\frac{1}{2}}
( ν + k + 1 ) > 0 , ( ( - ν ) + k + 1 ) > 0 formulae-sequence 𝜈 𝑘 1 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0,\Re((-\nu)+k+1)>0}}
Error
Sqrt[KelvinBer[\[Nu], x]^2 + KelvinBei[\[Nu], x]^2] == ((BesselJ[\[Nu], x])^(2)+ (BesselY[\[Nu], x])^(2))^(Divide[1,2])
Missing Macro Error Failure -
Failed [30 / 30]
Result: Complex[0.19554332981034928, -0.3390785475644471]
Test Values: {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.7197518351343698, 1.0182547128018542]
Test Values: {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.18#Ex8 N ν ( x ) = ( J ν 2 ( x ) + Y ν 2 ( x ) ) 1 2 modulus-Bessel-N 𝜈 𝑥 superscript diffop Bessel-J 𝜈 1 2 𝑥 diffop Bessel-Y-Weber 𝜈 1 2 𝑥 1 2 {\displaystyle{\displaystyle N_{\nu}\left(x\right)=\left({J_{\nu}'^{2}}\left(x% \right)+{Y_{\nu}'^{2}}\left(x\right)\right)^{\frac{1}{2}}}}
\HankelmodderivN{\nu}@{x} = \left(\BesselJ{\nu}'^{2}@{x}+\BesselY{\nu}'^{2}@{x}\right)^{\frac{1}{2}}

Error
Sqrt[KelvinKer[\[Nu], x]^2 + KelvinKei[\[Nu], x]^2] == ((D[BesselJ[\[Nu], x], {x, 1}])^(2)+ (D[BesselY[\[Nu], x], {x, 1}])^(2))^(Divide[1,2])
Missing Macro Error Failure -
Failed [30 / 30]
Result: Complex[-0.3065654786420606, 0.09106250304027241]
Test Values: {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-0.41179972752410343, -0.08651542233456301]
Test Values: {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.18.E10 ( x 2 - ν 2 ) M ν ( x ) M ν ( x ) + x 2 N ν ( x ) N ν ( x ) + x N ν 2 ( x ) = 0 superscript 𝑥 2 superscript 𝜈 2 modulus-Bessel-M 𝜈 𝑥 diffop modulus-Bessel-M 𝜈 1 𝑥 superscript 𝑥 2 modulus-Bessel-N 𝜈 𝑥 diffop modulus-Bessel-N 𝜈 1 𝑥 𝑥 modulus-Bessel-N 𝜈 2 𝑥 0 {\displaystyle{\displaystyle(x^{2}-\nu^{2})M_{\nu}\left(x\right)M_{\nu}'\left(% x\right)+x^{2}N_{\nu}\left(x\right)N_{\nu}'\left(x\right)+x{N_{\nu}^{2}}\left(% x\right)=0}}
(x^{2}-\nu^{2})\HankelmodM{\nu}@{x}\HankelmodM{\nu}'@{x}+x^{2}\HankelmodderivN{\nu}@{x}\HankelmodderivN{\nu}'@{x}+x\HankelmodderivN{\nu}^{2}@{x} = 0

Error
((x)^(2)- \[Nu]^(2))*Sqrt[KelvinBer[\[Nu], x]^2 + KelvinBei[\[Nu], x]^2]*D[Sqrt[KelvinBer[\[Nu], x]^2 + KelvinBei[\[Nu], x]^2], {x, 1}]+ (x)^(2)* Sqrt[KelvinKer[\[Nu], x]^2 + KelvinKei[\[Nu], x]^2]*D[Sqrt[KelvinKer[\[Nu], x]^2 + KelvinKei[\[Nu], x]^2], {x, 1}]+ x*(Sqrt[KelvinKer[\[Nu], x]^2 + KelvinKei[\[Nu], x]^2])^(2) == 0
Missing Macro Error Aborted -
Failed [30 / 30]
Result: Complex[0.7620133104065328, -0.7345190431210711]
Test Values: {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-3.2607567755462643, -4.475082123070706]
Test Values: {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.18.E13 x 2 M ν ′′ ( x ) + x M ν ( x ) + ( x 2 - ν 2 ) M ν ( x ) = 4 π 2 M ν 3 ( x ) superscript 𝑥 2 diffop modulus-Bessel-M 𝜈 2 𝑥 𝑥 diffop modulus-Bessel-M 𝜈 1 𝑥 superscript 𝑥 2 superscript 𝜈 2 modulus-Bessel-M 𝜈 𝑥 4 superscript 𝜋 2 modulus-Bessel-M 𝜈 3 𝑥 {\displaystyle{\displaystyle x^{2}M_{\nu}''\left(x\right)+xM_{\nu}'\left(x% \right)+(x^{2}-\nu^{2})M_{\nu}\left(x\right)=\frac{4}{\pi^{2}{{M_{\nu}^{3}}(x)% }}}}
x^{2}\HankelmodM{\nu}''@{x}+x\HankelmodM{\nu}'@{x}+(x^{2}-\nu^{2})\HankelmodM{\nu}@{x} = \frac{4}{\pi^{2}{\HankelmodM{\nu}^{3}(x)}}

Error
(x)^(2)* D[Sqrt[KelvinBer[\[Nu], x]^2 + KelvinBei[\[Nu], x]^2], {x, 2}]+ x*D[Sqrt[KelvinBer[\[Nu], x]^2 + KelvinBei[\[Nu], x]^2], {x, 1}]+((x)^(2)- \[Nu]^(2))*Sqrt[KelvinBer[\[Nu], x]^2 + KelvinBei[\[Nu], x]^2] == Divide[4,(Pi)^(2)*(Sqrt[KelvinBer[\[Nu], x]^2 + KelvinBei[\[Nu], x]^2])^(3)]
Missing Macro Error Translation Error - -
10.20.E1 ( d ζ d z ) 2 = 1 - z 2 ζ z 2 superscript derivative 𝜁 𝑧 2 1 superscript 𝑧 2 𝜁 superscript 𝑧 2 {\displaystyle{\displaystyle\left(\frac{\mathrm{d}\zeta}{\mathrm{d}z}\right)^{% 2}=\frac{1-z^{2}}{\zeta z^{2}}}}
\left(\deriv{\zeta}{z}\right)^{2} = \frac{1-z^{2}}{\zeta z^{2}}

(diff(zeta, z))^(2) = (1 - (z)^(2))/(zeta*(z)^(2))
(D[\[Zeta], z])^(2) == Divide[1 - (z)^(2),\[Zeta]*(z)^(2)]
Failure Failure
Failed [70 / 70]
Result: .8660254030+.4999999994*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, zeta = 1/2*3^(1/2)+1/2*I}

Result: .4999999994-.8660254030*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, zeta = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [70 / 70]
Result: Complex[0.8660254037844386, 0.4999999999999999]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ζ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.4999999999999999, -0.8660254037844386]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ζ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.20.E2 2 3 ζ 3 2 = z 1 1 - t 2 t d t 2 3 superscript 𝜁 3 2 superscript subscript 𝑧 1 1 superscript 𝑡 2 𝑡 𝑡 {\displaystyle{\displaystyle\frac{2}{3}\zeta^{\frac{3}{2}}=\int_{z}^{1}\frac{% \sqrt{1-t^{2}}}{t}\mathrm{d}t}}
\frac{2}{3}\zeta^{\frac{3}{2}} = \int_{z}^{1}\frac{\sqrt{1-t^{2}}}{t}\diff{t}
0 < z , z 1 formulae-sequence 0 𝑧 𝑧 1 {\displaystyle{\displaystyle 0<z,z\leq 1}}
(2)/(3)*(zeta)^((3)/(2)) = int((sqrt(1 - (t)^(2)))/(t), t = z..1)
Divide[2,3]*\[Zeta]^(Divide[3,2]) == Integrate[Divide[Sqrt[1 - (t)^(2)],t], {t, z, 1}, GenerateConditions->None]
Error Aborted - Skipped - Because timed out
10.20.E2 z 1 1 - t 2 t d t = ln ( 1 + 1 - z 2 z ) - 1 - z 2 superscript subscript 𝑧 1 1 superscript 𝑡 2 𝑡 𝑡 1 1 superscript 𝑧 2 𝑧 1 superscript 𝑧 2 {\displaystyle{\displaystyle\int_{z}^{1}\frac{\sqrt{1-t^{2}}}{t}\mathrm{d}t=% \ln\left(\frac{1+\sqrt{1-z^{2}}}{z}\right)-\sqrt{1-z^{2}}}}
\int_{z}^{1}\frac{\sqrt{1-t^{2}}}{t}\diff{t} = \ln@{\frac{1+\sqrt{1-z^{2}}}{z}}-\sqrt{1-z^{2}}
0 < z , z 1 formulae-sequence 0 𝑧 𝑧 1 {\displaystyle{\displaystyle 0<z,z\leq 1}}
int((sqrt(1 - (t)^(2)))/(t), t = z..1) = ln((1 +sqrt(1 - (z)^(2)))/(z))-sqrt(1 - (z)^(2))
Integrate[Divide[Sqrt[1 - (t)^(2)],t], {t, z, 1}, GenerateConditions->None] == Log[Divide[1 +Sqrt[1 - (z)^(2)],z]]-Sqrt[1 - (z)^(2)]
Error Aborted - Skipped - Because timed out
10.20.E3 2 3 ( - ζ ) 3 2 = 1 z t 2 - 1 t d t 2 3 superscript 𝜁 3 2 superscript subscript 1 𝑧 superscript 𝑡 2 1 𝑡 𝑡 {\displaystyle{\displaystyle\frac{2}{3}(-\zeta)^{\frac{3}{2}}=\int_{1}^{z}% \frac{\sqrt{t^{2}-1}}{t}\mathrm{d}t}}
\frac{2}{3}(-\zeta)^{\frac{3}{2}} = \int_{1}^{z}\frac{\sqrt{t^{2}-1}}{t}\diff{t}
1 z , z < formulae-sequence 1 𝑧 𝑧 {\displaystyle{\displaystyle 1\leq z,z<\infty}}
(2)/(3)*(- zeta)^((3)/(2)) = int((sqrt((t)^(2)- 1))/(t), t = 1..z)
Divide[2,3]*(- \[Zeta])^(Divide[3,2]) == Integrate[Divide[Sqrt[(t)^(2)- 1],t], {t, 1, z}, GenerateConditions->None]
Failure Aborted
Failed [20 / 20]
Result: -.7483698391+.4714045210*I
Test Values: {z = 3/2, zeta = 1/2*3^(1/2)+1/2*I}

Result: -.2769653183-.6666666667*I
Test Values: {z = 3/2, zeta = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [20 / 20]
Result: Complex[-0.7483698389729962, 0.4714045207910317]
Test Values: {Rule[z, 1.5], Rule[ζ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-0.27696531818196457, -0.6666666666666666]
Test Values: {Rule[z, 1.5], Rule[ζ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.20.E3 1 z t 2 - 1 t d t = z 2 - 1 - arcsec z superscript subscript 1 𝑧 superscript 𝑡 2 1 𝑡 𝑡 superscript 𝑧 2 1 𝑧 {\displaystyle{\displaystyle\int_{1}^{z}\frac{\sqrt{t^{2}-1}}{t}\mathrm{d}t=% \sqrt{z^{2}-1}-\operatorname{arcsec}z}}
\int_{1}^{z}\frac{\sqrt{t^{2}-1}}{t}\diff{t} = \sqrt{z^{2}-1}-\asec@@{z}
1 z , z < formulae-sequence 1 𝑧 𝑧 {\displaystyle{\displaystyle 1\leq z,z<\infty}}
int((sqrt((t)^(2)- 1))/(t), t = 1..z) = sqrt((z)^(2)- 1)- arcsec(z)
Integrate[Divide[Sqrt[(t)^(2)- 1],t], {t, 1, z}, GenerateConditions->None] == Sqrt[(z)^(2)- 1]- ArcSec[z]
Failure Aborted Successful [Tested: 2] Successful [Tested: 2]
10.20#Ex1 A 0 ( 0 ) = 1 subscript 𝐴 0 0 1 {\displaystyle{\displaystyle A_{0}(0)=1}}
A_{0}(0) = 1

A[0](0) = 1
Subscript[A, 0][0] == 1
Skipped - no semantic math Skipped - no semantic math - -
10.20#Ex2 A 1 ( 0 ) = - 1 225 subscript 𝐴 1 0 1 225 {\displaystyle{\displaystyle A_{1}(0)=-\tfrac{1}{225}}}
A_{1}(0) = -\tfrac{1}{225}

A[1](0) = -(1)/(225)
Subscript[A, 1][0] == -Divide[1,225]
Skipped - no semantic math Skipped - no semantic math - -
10.20#Ex3 A 2 ( 0 ) = 1 51439 2182 95000 subscript 𝐴 2 0 1 51439 2182 95000 {\displaystyle{\displaystyle A_{2}(0)=\tfrac{1\;51439}{2182\;95000}}}
A_{2}(0) = \tfrac{1\;51439}{2182\;95000}

A[2](0) = (151439)/(218295000)
Subscript[A, 2][0] == Divide[151439,218295000]
Skipped - no semantic math Skipped - no semantic math - -
10.20#Ex4 A 3 ( 0 ) = - 8872 78009 250 49351 25000 subscript 𝐴 3 0 8872 78009 250 49351 25000 {\displaystyle{\displaystyle A_{3}(0)=-\tfrac{8872\;78009}{250\;49351\;25000}}}
A_{3}(0) = -\tfrac{8872\;78009}{250\;49351\;25000}

A[3](0) = -(887278009)/(2504935125000)
Subscript[A, 3][0] == -Divide[887278009,2504935125000]
Skipped - no semantic math Skipped - no semantic math - -
10.20#Ex5 B 0 ( 0 ) = 1 70 2 1 3 subscript 𝐵 0 0 1 70 superscript 2 1 3 {\displaystyle{\displaystyle B_{0}(0)=\tfrac{1}{70}2^{\frac{1}{3}}}}
B_{0}(0) = \tfrac{1}{70}2^{\frac{1}{3}}

B[0](0) = (1)/(70)*(2)^((1)/(3))
Subscript[B, 0][0] == Divide[1,70]*(2)^(Divide[1,3])
Skipped - no semantic math Skipped - no semantic math - -
10.20#Ex6 B 1 ( 0 ) = - 1213 10 23750 2 1 3 subscript 𝐵 1 0 1213 10 23750 superscript 2 1 3 {\displaystyle{\displaystyle B_{1}(0)=-\tfrac{1213}{10\;23750}2^{\frac{1}{3}}}}
B_{1}(0) = -\tfrac{1213}{10\;23750}2^{\frac{1}{3}}

B[1](0) = -(1213)/(1023750)*(2)^((1)/(3))
Subscript[B, 1][0] == -Divide[1213,1023750]*(2)^(Divide[1,3])
Skipped - no semantic math Skipped - no semantic math - -
10.20#Ex7 B 2 ( 0 ) = 1 65425 37833 3774 32055 00000 2 1 3 subscript 𝐵 2 0 1 65425 37833 3774 32055 00000 superscript 2 1 3 {\displaystyle{\displaystyle B_{2}(0)=\tfrac{1\;65425\;37833}{3774\;32055\;000% 00}2^{\frac{1}{3}}}}
B_{2}(0) = \tfrac{1\;65425\;37833}{3774\;32055\;00000}2^{\frac{1}{3}}

B[2](0) = (16542537833)/(37743205500000)*(2)^((1)/(3))
Subscript[B, 2][0] == Divide[16542537833,37743205500000]*(2)^(Divide[1,3])
Skipped - no semantic math Skipped - no semantic math - -
10.20#Ex8 B 3 ( 0 ) = - 959 71711 84603 25 47666 37125 00000 2 1 3 subscript 𝐵 3 0 959 71711 84603 25 47666 37125 00000 superscript 2 1 3 {\displaystyle{\displaystyle B_{3}(0)=-\tfrac{959\;71711\;84603}{25\;47666\;37% 125\;00000}2^{\frac{1}{3}}}}
B_{3}(0) = -\tfrac{959\;71711\;84603}{25\;47666\;37125\;00000}2^{\frac{1}{3}}

B[3](0) = -(9597171184603)/(25476663712500000)*(2)^((1)/(3))
Subscript[B, 3][0] == -Divide[9597171184603,25476663712500000]*(2)^(Divide[1,3])
Skipped - no semantic math Skipped - no semantic math - -
10.20.E15 ζ = ( 3 2 ) 2 3 ( τ - i π ) 2 3 𝜁 superscript 3 2 2 3 superscript 𝜏 𝑖 𝜋 2 3 {\displaystyle{\displaystyle\zeta=(\tfrac{3}{2})^{\frac{2}{3}}(\tau-i\pi)^{% \frac{2}{3}}}}
\zeta = (\tfrac{3}{2})^{\frac{2}{3}}(\tau- i\pi)^{\frac{2}{3}}
0 τ , τ < formulae-sequence 0 𝜏 𝜏 {\displaystyle{\displaystyle 0\leq\tau,\tau<\infty}}
zeta = ((3)/(2))^((2)/(3))*(tau - I*Pi)^((2)/(3))
\[Zeta] == (Divide[3,2])^(Divide[2,3])*(\[Tau]- I*Pi)^(Divide[2,3])
Skipped - no semantic math Skipped - no semantic math - -
10.20.E16 ζ = e - i π / 3 τ 𝜁 superscript 𝑒 𝑖 𝜋 3 𝜏 {\displaystyle{\displaystyle\zeta=e^{-i\pi/3}\tau}}
\zeta = e^{- i\pi/3}\tau
0 τ , τ ( 3 2 π ) 2 3 formulae-sequence 0 𝜏 𝜏 superscript 3 2 𝜋 2 3 {\displaystyle{\displaystyle 0\leq\tau,\tau\leq(\tfrac{3}{2}\pi)^{\frac{2}{3}}}}
zeta = exp(- I*Pi/3)*tau
\[Zeta] == Exp[- I*Pi/3]*\[Tau]
Skipped - no semantic math Skipped - no semantic math - -
10.20.E17 z = + ( τ coth τ - τ 2 ) 1 2 + i ( τ 2 - τ tanh τ ) 1 2 𝑧 superscript 𝜏 hyperbolic-cotangent 𝜏 superscript 𝜏 2 1 2 imaginary-unit superscript superscript 𝜏 2 𝜏 𝜏 1 2 {\displaystyle{\displaystyle z=+(\tau\coth\tau-\tau^{2})^{\frac{1}{2}}+\mathrm% {i}(\tau^{2}-\tau\tanh\tau)^{\frac{1}{2}}}}
z = +(\tau\coth@@{\tau}-\tau^{2})^{\frac{1}{2}}+\iunit(\tau^{2}-\tau\tanh@@{\tau})^{\frac{1}{2}}
0 τ , τ τ 0 formulae-sequence 0 𝜏 𝜏 subscript 𝜏 0 {\displaystyle{\displaystyle 0\leq\tau,\tau\leq\tau_{0}}}
z = +(tau*coth(tau)- (tau)^(2))^((1)/(2))+ I*((tau)^(2)- tau*tanh(tau))^((1)/(2))
z == +(\[Tau]*Coth[\[Tau]]- \[Tau]^(2))^(Divide[1,2])+ I*(\[Tau]^(2)- \[Tau]*Tanh[\[Tau]])^(Divide[1,2])
Failure Failure
Failed [21 / 21]
Result: .8660254040-1.214547924*I
Test Values: {tau = 3/2, z = 1/2*3^(1/2)+1/2*I}

Result: -.5000000000-.8485225201*I
Test Values: {tau = 3/2, z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Skip - No test values generated
10.20.E17 z = - ( τ coth τ - τ 2 ) 1 2 - i ( τ 2 - τ tanh τ ) 1 2 𝑧 superscript 𝜏 hyperbolic-cotangent 𝜏 superscript 𝜏 2 1 2 imaginary-unit superscript superscript 𝜏 2 𝜏 𝜏 1 2 {\displaystyle{\displaystyle z=-(\tau\coth\tau-\tau^{2})^{\frac{1}{2}}-\mathrm% {i}(\tau^{2}-\tau\tanh\tau)^{\frac{1}{2}}}}
z = -(\tau\coth@@{\tau}-\tau^{2})^{\frac{1}{2}}-\iunit(\tau^{2}-\tau\tanh@@{\tau})^{\frac{1}{2}}
0 τ , τ τ 0 formulae-sequence 0 𝜏 𝜏 subscript 𝜏 0 {\displaystyle{\displaystyle 0\leq\tau,\tau\leq\tau_{0}}}
z = -(tau*coth(tau)- (tau)^(2))^((1)/(2))- I*((tau)^(2)- tau*tanh(tau))^((1)/(2))
z == -(\[Tau]*Coth[\[Tau]]- \[Tau]^(2))^(Divide[1,2])- I*(\[Tau]^(2)- \[Tau]*Tanh[\[Tau]])^(Divide[1,2])
Failure Failure
Failed [21 / 21]
Result: .8660254040+2.214547924*I
Test Values: {tau = 3/2, z = 1/2*3^(1/2)+1/2*I}

Result: -.5000000000+2.580573328*I
Test Values: {tau = 3/2, z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Skip - No test values generated
10.21#Ex5 ρ ν ( 0 ) = 0 subscript 𝜌 𝜈 0 0 {\displaystyle{\displaystyle\rho_{\nu}(0)=0}}
\rho_{\nu}(0) = 0

rho[nu](0) = 0
Subscript[\[Rho], \[Nu]][0] == 0
Skipped - no semantic math Skipped - no semantic math - -
10.21.E11 2 ρ ν 2 d ρ ν d t d 3 ρ ν d t 3 - 3 ρ ν 2 ( d 2 ρ ν d t 2 ) 2 - 4 π 2 ρ ν 2 ( d ρ ν d t ) 2 + ( 4 ρ ν 2 + 1 - 4 ν 2 ) ( d ρ ν d t ) 4 = 0 2 superscript subscript 𝜌 𝜈 2 derivative subscript 𝜌 𝜈 𝑡 derivative subscript 𝜌 𝜈 𝑡 3 3 superscript subscript 𝜌 𝜈 2 superscript derivative subscript 𝜌 𝜈 𝑡 2 2 4 superscript 𝜋 2 superscript subscript 𝜌 𝜈 2 superscript derivative subscript 𝜌 𝜈 𝑡 2 4 superscript subscript 𝜌 𝜈 2 1 4 superscript 𝜈 2 superscript derivative subscript 𝜌 𝜈 𝑡 4 0 {\displaystyle{\displaystyle 2\rho_{\nu}^{2}\frac{\mathrm{d}\rho_{\nu}}{% \mathrm{d}t}\frac{{\mathrm{d}}^{3}\rho_{\nu}}{{\mathrm{d}t}^{3}}-3\rho_{\nu}^{% 2}\*\left(\frac{{\mathrm{d}}^{2}\rho_{\nu}}{{\mathrm{d}t}^{2}}\right)^{2}-4\pi% ^{2}\rho_{\nu}^{2}\*\left(\frac{\mathrm{d}\rho_{\nu}}{\mathrm{d}t}\right)^{2}+% (4\rho_{\nu}^{2}+1-4\nu^{2})\left(\frac{\mathrm{d}\rho_{\nu}}{\mathrm{d}t}% \right)^{4}=0}}
2\rho_{\nu}^{2}\deriv{\rho_{\nu}}{t}\deriv[3]{\rho_{\nu}}{t}-3\rho_{\nu}^{2}\*\left(\deriv[2]{\rho_{\nu}}{t}\right)^{2}-4\pi^{2}\rho_{\nu}^{2}\*\left(\deriv{\rho_{\nu}}{t}\right)^{2}+(4\rho_{\nu}^{2}+1-4\nu^{2})\left(\deriv{\rho_{\nu}}{t}\right)^{4} = 0

2*(rho[nu])^(2)*diff(rho[nu], t)*diff(rho[nu], [t$(3)])- 3*(rho[nu])^(2)*(diff(rho[nu], [t$(2)]))^(2)- 4*(Pi)^(2)* (rho[nu])^(2)*(diff(rho[nu], t))^(2)+(4*(rho[nu])^(2)+ 1 - 4*(nu)^(2))*(diff(rho[nu], t))^(4) = 0
2*(Subscript[\[Rho], \[Nu]])^(2)*D[Subscript[\[Rho], \[Nu]], t]*D[Subscript[\[Rho], \[Nu]], {t, 3}]- 3*(Subscript[\[Rho], \[Nu]])^(2)*(D[Subscript[\[Rho], \[Nu]], {t, 2}])^(2)- 4*(Pi)^(2)* (Subscript[\[Rho], \[Nu]])^(2)*(D[Subscript[\[Rho], \[Nu]], t])^(2)+(4*(Subscript[\[Rho], \[Nu]])^(2)+ 1 - 4*\[Nu]^(2))*(D[Subscript[\[Rho], \[Nu]], t])^(4) == 0
Successful Successful - Successful [Tested: 300]
10.21.E17 d c d ν = 2 c 0 K 0 ( 2 c sinh t ) e - 2 ν t d t derivative 𝑐 𝜈 2 𝑐 superscript subscript 0 modified-Bessel-second-kind 0 2 𝑐 𝑡 superscript 𝑒 2 𝜈 𝑡 𝑡 {\displaystyle{\displaystyle\frac{\mathrm{d}c}{\mathrm{d}\nu}=2c\int_{0}^{% \infty}K_{0}\left(2c\sinh t\right)e^{-2\nu t}\mathrm{d}t}}
\deriv{c}{\nu} = 2c\int_{0}^{\infty}\modBesselK{0}@{2c\sinh@@{t}}e^{-2\nu t}\diff{t}

diff(c, nu) = 2*c*int(BesselK(0, 2*c*sinh(t))*exp(- 2*nu*t), t = 0..infinity)
D[c, \[Nu]] == 2*c*Integrate[BesselK[0, 2*c*Sinh[t]]*Exp[- 2*\[Nu]*t], {t, 0, Infinity}, GenerateConditions->None]
Failure Aborted Skipped - Because timed out Skipped - Because timed out
10.21#Ex19 α 0 = 1 subscript 𝛼 0 1 {\displaystyle{\displaystyle\alpha_{0}=1}}
\alpha_{0} = 1

alpha[0] = 1
Subscript[\[Alpha], 0] == 1
Skipped - no semantic math Skipped - no semantic math - -
10.21#Ex20 α 1 = α subscript 𝛼 1 𝛼 {\displaystyle{\displaystyle\alpha_{1}=\alpha}}
\alpha_{1} = \alpha

alpha[1] = alpha
Subscript[\[Alpha], 1] == \[Alpha]
Skipped - no semantic math Skipped - no semantic math - -
10.21#Ex21 α 2 = 3 10 α 2 subscript 𝛼 2 3 10 superscript 𝛼 2 {\displaystyle{\displaystyle\alpha_{2}=\tfrac{3}{10}\alpha^{2}}}
\alpha_{2} = \tfrac{3}{10}\alpha^{2}

alpha[2] = (3)/(10)*(alpha)^(2)
Subscript[\[Alpha], 2] == Divide[3,10]*\[Alpha]^(2)
Skipped - no semantic math Skipped - no semantic math - -
10.21#Ex22 α 3 = - 1 350 α 3 + 1 70 subscript 𝛼 3 1 350 superscript 𝛼 3 1 70 {\displaystyle{\displaystyle\alpha_{3}=-\tfrac{1}{350}\alpha^{3}+\tfrac{1}{70}}}
\alpha_{3} = -\tfrac{1}{350}\alpha^{3}+\tfrac{1}{70}

alpha[3] = -(1)/(350)*(alpha)^(3)+(1)/(70)
Subscript[\[Alpha], 3] == -Divide[1,350]*\[Alpha]^(3)+Divide[1,70]
Skipped - no semantic math Skipped - no semantic math - -
10.21#Ex23 α 4 = - 479 63000 α 4 - 1 3150 α subscript 𝛼 4 479 63000 superscript 𝛼 4 1 3150 𝛼 {\displaystyle{\displaystyle\alpha_{4}=-\tfrac{479}{63000}\alpha^{4}-\tfrac{1}% {3150}\alpha}}
\alpha_{4} = -\tfrac{479}{63000}\alpha^{4}-\tfrac{1}{3150}\alpha

alpha[4] = -(479)/(63000)*(alpha)^(4)-(1)/(3150)*alpha
Subscript[\[Alpha], 4] == -Divide[479,63000]*\[Alpha]^(4)-Divide[1,3150]*\[Alpha]
Skipped - no semantic math Skipped - no semantic math - -
10.21#Ex24 α 5 = 20231 80 85000 α 5 - 551 1 61700 α 2 subscript 𝛼 5 20231 80 85000 superscript 𝛼 5 551 1 61700 superscript 𝛼 2 {\displaystyle{\displaystyle\alpha_{5}=\tfrac{20231}{80\;85000}\alpha^{5}-% \tfrac{551}{1\;61700}\alpha^{2}}}
\alpha_{5} = \tfrac{20231}{80\;85000}\alpha^{5}-\tfrac{551}{1\;61700}\alpha^{2}

alpha[5] = (20231)/(8085000)*(alpha)^(5)-(551)/(161700)*(alpha)^(2)
Subscript[\[Alpha], 5] == Divide[20231,8085000]*\[Alpha]^(5)-Divide[551,161700]*\[Alpha]^(2)
Skipped - no semantic math Skipped - no semantic math - -
10.21.E46 a = 1 2 ln 3 𝑎 1 2 3 {\displaystyle{\displaystyle a=\tfrac{1}{2}\ln 3}}
a = \tfrac{1}{2}\ln@@{3}

a = (1)/(2)*ln(3)
a == Divide[1,2]*Log[3]
Failure Failure
Failed [6 / 6]
Result: -2.049306144
Test Values: {a = -3/2}

Result: .9506938555
Test Values: {a = 3/2}

... skip entries to safe data
Failed [6 / 6]
Result: -2.049306144334055
Test Values: {Rule[a, -1.5]}

Result: 0.9506938556659451
Test Values: {Rule[a, 1.5]}

... skip entries to safe data
10.21.E46 1 2 ln 3 = 0.54931 1 2 3 0.54931 {\displaystyle{\displaystyle\tfrac{1}{2}\ln 3=0.54931\ldots}}
\tfrac{1}{2}\ln@@{3} = 0.54931\dotsc

(1)/(2)*ln(3) = 0.54931 ..
Divide[1,2]*Log[3] == 0.54931 \[Ellipsis]
Error Failure Skip - symbolical successful subtest
Failed [1 / 1]
Result: Plus[0.5493061443340549, Times[-0.54931, …]]
Test Values: {}

10.21#Ex51 α = ( m - 1 ) π λ - 1 𝛼 𝑚 1 𝜋 𝜆 1 {\displaystyle{\displaystyle\alpha=\frac{(m-1)\pi}{\lambda-1}}}
\alpha = \frac{(m-1)\pi}{\lambda-1}

alpha = ((m - 1)*Pi)/(lambda - 1)
\[Alpha] == Divide[(m - 1)*Pi,\[Lambda]- 1]
Skipped - no semantic math Skipped - no semantic math - -
10.21#Ex52 p = μ + 3 8 λ 𝑝 𝜇 3 8 𝜆 {\displaystyle{\displaystyle p=\frac{\mu+3}{8\lambda}}}
p = \frac{\mu+3}{8\lambda}

p = (mu + 3)/(8*lambda)
p == Divide[\[Mu]+ 3,8*\[Lambda]]
Skipped - no semantic math Skipped - no semantic math - -
10.21#Ex53 q = ( μ 2 + 46 μ - 63 ) ( λ 3 - 1 ) 6 ( 4 λ ) 3 ( λ - 1 ) 𝑞 superscript 𝜇 2 46 𝜇 63 superscript 𝜆 3 1 6 superscript 4 𝜆 3 𝜆 1 {\displaystyle{\displaystyle q=\frac{(\mu^{2}+46\mu-63)(\lambda^{3}-1)}{6(4% \lambda)^{3}(\lambda-1)}}}
q = \frac{(\mu^{2}+46\mu-63)(\lambda^{3}-1)}{6(4\lambda)^{3}(\lambda-1)}

q = (((mu)^(2)+ 46*mu - 63)*((lambda)^(3)- 1))/(6*(4*lambda)^(3)*(lambda - 1))
q == Divide[(\[Mu]^(2)+ 46*\[Mu]- 63)*(\[Lambda]^(3)- 1),6*(4*\[Lambda])^(3)*(\[Lambda]- 1)]
Skipped - no semantic math Skipped - no semantic math - -
10.21#Ex54 r = ( μ 3 + 185 μ 2 - 2053 μ + 1899 ) ( λ 5 - 1 ) 5 ( 4 λ ) 5 ( λ - 1 ) 𝑟 superscript 𝜇 3 185 superscript 𝜇 2 2053 𝜇 1899 superscript 𝜆 5 1 5 superscript 4 𝜆 5 𝜆 1 {\displaystyle{\displaystyle r=\frac{(\mu^{3}+185\mu^{2}-2053\mu+1899)(\lambda% ^{5}-1)}{5(4\lambda)^{5}(\lambda-1)}}}
r = \frac{(\mu^{3}+185\mu^{2}-2053\mu+1899)(\lambda^{5}-1)}{5(4\lambda)^{5}(\lambda-1)}

(((mu - 1)*((mu)^(2)- 114*mu + 1073)*((lambda)^(5)- 1))/(5*(4*lambda)^(5)*(lambda - 1))) = (((mu)^(3)+ 185*(mu)^(2)- 2053*mu + 1899)*((lambda)^(5)- 1))/(5*(4*lambda)^(5)*(lambda - 1))
(Divide[(\[Mu]- 1)*(\[Mu]^(2)- 114*\[Mu]+ 1073)*(\[Lambda]^(5)- 1),5*(4*\[Lambda])^(5)*(\[Lambda]- 1)]) == Divide[(\[Mu]^(3)+ 185*\[Mu]^(2)- 2053*\[Mu]+ 1899)*(\[Lambda]^(5)- 1),5*(4*\[Lambda])^(5)*(\[Lambda]- 1)]
Skipped - no semantic math Skipped - no semantic math - -
10.21#Ex55 α = ( m - 1 2 ) π λ - 1 𝛼 𝑚 1 2 𝜋 𝜆 1 {\displaystyle{\displaystyle\alpha=\frac{(m-\tfrac{1}{2})\pi}{\lambda-1}}}
\alpha = \frac{(m-\tfrac{1}{2})\pi}{\lambda-1}

alpha = ((m -(1)/(2))*Pi)/(lambda - 1)
\[Alpha] == Divide[(m -Divide[1,2])*Pi,\[Lambda]- 1]
Skipped - no semantic math Skipped - no semantic math - -
10.21#Ex56 p = ( μ + 3 ) λ - ( μ - 1 ) 8 λ ( λ - 1 ) 𝑝 𝜇 3 𝜆 𝜇 1 8 𝜆 𝜆 1 {\displaystyle{\displaystyle p=\frac{(\mu+3)\lambda-(\mu-1)}{8\lambda(\lambda-% 1)}}}
p = \frac{(\mu+3)\lambda-(\mu-1)}{8\lambda(\lambda-1)}

p = ((mu + 3)*lambda -(mu - 1))/(8*lambda*(lambda - 1))
p == Divide[(\[Mu]+ 3)*\[Lambda]-(\[Mu]- 1),8*\[Lambda]*(\[Lambda]- 1)]
Skipped - no semantic math Skipped - no semantic math - -
10.21#Ex57 q = ( μ 2 + 46 μ - 63 ) λ 3 - ( μ - 1 ) ( μ - 25 ) 6 ( 4 λ ) 3 ( λ - 1 ) 𝑞 superscript 𝜇 2 46 𝜇 63 superscript 𝜆 3 𝜇 1 𝜇 25 6 superscript 4 𝜆 3 𝜆 1 {\displaystyle{\displaystyle q=\frac{(\mu^{2}+46\mu-63)\lambda^{3}-(\mu-1)(\mu% -25)}{6(4\lambda)^{3}(\lambda-1)}}}
q = \frac{(\mu^{2}+46\mu-63)\lambda^{3}-(\mu-1)(\mu-25)}{6(4\lambda)^{3}(\lambda-1)}

q = (((mu)^(2)+ 46*mu - 63)*(lambda)^(3)-(mu - 1)*(mu - 25))/(6*(4*lambda)^(3)*(lambda - 1))
q == Divide[(\[Mu]^(2)+ 46*\[Mu]- 63)*\[Lambda]^(3)-(\[Mu]- 1)*(\[Mu]- 25),6*(4*\[Lambda])^(3)*(\[Lambda]- 1)]
Skipped - no semantic math Skipped - no semantic math - -
10.21#Ex58 r = ( μ 3 + 185 μ 2 - 2053 μ + 1899 ) λ 5 - ( μ - 1 ) ( μ 2 - 114 μ + 1073 ) 5 ( 4 λ ) 5 ( λ - 1 ) 𝑟 superscript 𝜇 3 185 superscript 𝜇 2 2053 𝜇 1899 superscript 𝜆 5 𝜇 1 superscript 𝜇 2 114 𝜇 1073 5 superscript 4 𝜆 5 𝜆 1 {\displaystyle{\displaystyle r=\frac{(\mu^{3}+185\mu^{2}-2053\mu+1899)\lambda^% {5}-(\mu-1)(\mu^{2}-114\mu+1073)}{5(4\lambda)^{5}(\lambda-1)}}}
r = \frac{(\mu^{3}+185\mu^{2}-2053\mu+1899)\lambda^{5}-(\mu-1)(\mu^{2}-114\mu+1073)}{5(4\lambda)^{5}(\lambda-1)}

(((mu - 1)*((mu)^(2)- 114*mu + 1073)*((lambda)^(5)- 1))/(5*(4*lambda)^(5)*(lambda - 1))) = (((mu)^(3)+ 185*(mu)^(2)- 2053*mu + 1899)*(lambda)^(5)-(mu - 1)*((mu)^(2)- 114*mu + 1073))/(5*(4*lambda)^(5)*(lambda - 1))
(Divide[(\[Mu]- 1)*(\[Mu]^(2)- 114*\[Mu]+ 1073)*(\[Lambda]^(5)- 1),5*(4*\[Lambda])^(5)*(\[Lambda]- 1)]) == Divide[(\[Mu]^(3)+ 185*\[Mu]^(2)- 2053*\[Mu]+ 1899)*\[Lambda]^(5)-(\[Mu]- 1)*(\[Mu]^(2)- 114*\[Mu]+ 1073),5*(4*\[Lambda])^(5)*(\[Lambda]- 1)]
Skipped - no semantic math Skipped - no semantic math - -
10.22.E8 0 x J ν ( t ) d t = 2 k = 0 J ν + 2 k + 1 ( x ) superscript subscript 0 𝑥 Bessel-J 𝜈 𝑡 𝑡 2 superscript subscript 𝑘 0 Bessel-J 𝜈 2 𝑘 1 𝑥 {\displaystyle{\displaystyle\int_{0}^{x}J_{\nu}\left(t\right)\mathrm{d}t=2\sum% _{k=0}^{\infty}J_{\nu+2k+1}\left(x\right)}}
\int_{0}^{x}\BesselJ{\nu}@{t}\diff{t} = 2\sum_{k=0}^{\infty}\BesselJ{\nu+2k+1}@{x}
ν > - 1 , ( ν + k + 1 ) > 0 , ( ( ν + 2 k + 1 ) + k + 1 ) > 0 formulae-sequence 𝜈 1 formulae-sequence 𝜈 𝑘 1 0 𝜈 2 𝑘 1 𝑘 1 0 {\displaystyle{\displaystyle\Re\nu>-1,\Re(\nu+k+1)>0,\Re((\nu+2k+1)+k+1)>0}}
int(BesselJ(nu, t), t = 0..x) = 2*sum(BesselJ(nu + 2*k + 1, x), k = 0..infinity)
Integrate[BesselJ[\[Nu], t], {t, 0, x}, GenerateConditions->None] == 2*Sum[BesselJ[\[Nu]+ 2*k + 1, x], {k, 0, Infinity}, GenerateConditions->None]
Failure Failure
Failed [2 / 24]
Result: -.277492396
Test Values: {nu = -1/2, x = 3/2}

Result: -.1653166018
Test Values: {nu = 1/2, x = 3/2}

Skipped - Because timed out
10.22.E9 0 x J 2 n ( t ) d t = 0 x J 0 ( t ) d t - 2 k = 0 n - 1 J 2 k + 1 ( x ) , 0 x J 2 n + 1 ( t ) d t superscript subscript 0 𝑥 Bessel-J 2 𝑛 𝑡 𝑡 superscript subscript 0 𝑥 Bessel-J 0 𝑡 𝑡 2 superscript subscript 𝑘 0 𝑛 1 Bessel-J 2 𝑘 1 𝑥 superscript subscript 0 𝑥 Bessel-J 2 𝑛 1 𝑡 𝑡 {\displaystyle{\displaystyle\int_{0}^{x}J_{2n}\left(t\right)\mathrm{d}t=\int_{% 0}^{x}J_{0}\left(t\right)\mathrm{d}t-2\sum_{k=0}^{n-1}J_{2k+1}\left(x\right),% \quad\int_{0}^{x}J_{2n+1}\left(t\right)\mathrm{d}t}}
\int_{0}^{x}\BesselJ{2n}@{t}\diff{t} = \int_{0}^{x}\BesselJ{0}@{t}\diff{t}-2\sum_{k=0}^{n-1}\BesselJ{2k+1}@{x},\quad\int_{0}^{x}\BesselJ{2n+1}@{t}\diff{t}
( ( 2 n ) + k + 1 ) > 0 , ( 0 + k + 1 ) > 0 , ( ( 2 k + 1 ) + k + 1 ) > 0 , ( ( 2 n + 1 ) + k + 1 ) > 0 formulae-sequence 2 𝑛 𝑘 1 0 formulae-sequence 0 𝑘 1 0 formulae-sequence 2 𝑘 1 𝑘 1 0 2 𝑛 1 𝑘 1 0 {\displaystyle{\displaystyle\Re((2n)+k+1)>0,\Re(0+k+1)>0,\Re((2k+1)+k+1)>0,\Re% ((2n+1)+k+1)>0}}
int(BesselJ(2*n, t), t = 0..x) = int(BesselJ(0, t), t = 0..x)- 2*sum(BesselJ(2*k + 1, x), k = 0..n - 1)
Integrate[BesselJ[2*n, t], {t, 0, x}, GenerateConditions->None] == Integrate[BesselJ[0, t], {t, 0, x}, GenerateConditions->None]- 2*Sum[BesselJ[2*k + 1, x], {k, 0, n - 1}, GenerateConditions->None]
Failure Failure Error Error
10.22.E9 0 x J 0 ( t ) d t - 2 k = 0 n - 1 J 2 k + 1 ( x ) , 0 x J 2 n + 1 ( t ) d t = 1 - J 0 ( x ) - 2 k = 1 n J 2 k ( x ) superscript subscript 0 𝑥 Bessel-J 0 𝑡 𝑡 2 superscript subscript 𝑘 0 𝑛 1 Bessel-J 2 𝑘 1 𝑥 superscript subscript 0 𝑥 Bessel-J 2 𝑛 1 𝑡 𝑡 1 Bessel-J 0 𝑥 2 superscript subscript 𝑘 1 𝑛 Bessel-J 2 𝑘 𝑥 {\displaystyle{\displaystyle\int_{0}^{x}J_{0}\left(t\right)\mathrm{d}t-2\sum_{% k=0}^{n-1}J_{2k+1}\left(x\right),\quad\int_{0}^{x}J_{2n+1}\left(t\right)% \mathrm{d}t=1-J_{0}\left(x\right)-2\sum_{k=1}^{n}J_{2k}\left(x\right)}}
\int_{0}^{x}\BesselJ{0}@{t}\diff{t}-2\sum_{k=0}^{n-1}\BesselJ{2k+1}@{x},\quad\int_{0}^{x}\BesselJ{2n+1}@{t}\diff{t} = 1-\BesselJ{0}@{x}-2\sum_{k=1}^{n}\BesselJ{2k}@{x}
( ( 2 n ) + k + 1 ) > 0 , ( 0 + k + 1 ) > 0 , ( ( 2 k + 1 ) + k + 1 ) > 0 , ( ( 2 n + 1 ) + k + 1 ) > 0 , ( ( 2 k ) + k + 1 ) > 0 formulae-sequence 2 𝑛 𝑘 1 0 formulae-sequence 0 𝑘 1 0 formulae-sequence 2 𝑘 1 𝑘 1 0 formulae-sequence 2 𝑛 1 𝑘 1 0 2 𝑘 𝑘 1 0 {\displaystyle{\displaystyle\Re((2n)+k+1)>0,\Re(0+k+1)>0,\Re((2k+1)+k+1)>0,\Re% ((2n+1)+k+1)>0,\Re((2k)+k+1)>0}}
int(BesselJ(0, t), t = 0..x)- 2*sum(BesselJ(2*k + 1, x), k = 0..n - 1)
Integrate[BesselJ[0, t], {t, 0, x}, GenerateConditions->None]- 2*Sum[BesselJ[2*k + 1, x], {k, 0, n - 1}, GenerateConditions->None]
Failure Failure Error Error
10.22.E10 0 x t μ J ν ( t ) d t = x μ Γ ( 1 2 ν + 1 2 μ + 1 2 ) Γ ( 1 2 ν - 1 2 μ + 1 2 ) k = 0 ( ν + 2 k + 1 ) Γ ( 1 2 ν - 1 2 μ + 1 2 + k ) Γ ( 1 2 ν + 1 2 μ + 3 2 + k ) J ν + 2 k + 1 ( x ) superscript subscript 0 𝑥 superscript 𝑡 𝜇 Bessel-J 𝜈 𝑡 𝑡 superscript 𝑥 𝜇 Euler-Gamma 1 2 𝜈 1 2 𝜇 1 2 Euler-Gamma 1 2 𝜈 1 2 𝜇 1 2 superscript subscript 𝑘 0 𝜈 2 𝑘 1 Euler-Gamma 1 2 𝜈 1 2 𝜇 1 2 𝑘 Euler-Gamma 1 2 𝜈 1 2 𝜇 3 2 𝑘 Bessel-J 𝜈 2 𝑘 1 𝑥 {\displaystyle{\displaystyle\int_{0}^{x}t^{\mu}J_{\nu}\left(t\right)\mathrm{d}% t=x^{\mu}\frac{\Gamma\left(\frac{1}{2}\nu+\frac{1}{2}\mu+\frac{1}{2}\right)}{% \Gamma\left(\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2}\right)}\*\sum_{k=0}^{% \infty}\frac{(\nu+2k+1)\Gamma\left(\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2}+k% \right)}{\Gamma\left(\frac{1}{2}\nu+\frac{1}{2}\mu+\frac{3}{2}+k\right)}J_{\nu% +2k+1}\left(x\right)}}
\int_{0}^{x}t^{\mu}\BesselJ{\nu}@{t}\diff{t} = x^{\mu}\frac{\EulerGamma@{\frac{1}{2}\nu+\frac{1}{2}\mu+\frac{1}{2}}}{\EulerGamma@{\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2}}}\*\sum_{k=0}^{\infty}\frac{(\nu+2k+1)\EulerGamma@{\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2}+k}}{\EulerGamma@{\frac{1}{2}\nu+\frac{1}{2}\mu+\frac{3}{2}+k}}\BesselJ{\nu+2k+1}@{x}
( μ + ν + 1 ) > 0 , ( ν + k + 1 ) > 0 , ( ( ν + 2 k + 1 ) + k + 1 ) > 0 , ( 1 2 ν + 1 2 μ + 1 2 ) > 0 , ( 1 2 ν - 1 2 μ + 1 2 ) > 0 , ( 1 2 ν - 1 2 μ + 1 2 + k ) > 0 , ( 1 2 ν + 1 2 μ + 3 2 + k ) > 0 formulae-sequence 𝜇 𝜈 1 0 formulae-sequence 𝜈 𝑘 1 0 formulae-sequence 𝜈 2 𝑘 1 𝑘 1 0 formulae-sequence 1 2 𝜈 1 2 𝜇 1 2 0 formulae-sequence 1 2 𝜈 1 2 𝜇 1 2 0 formulae-sequence 1 2 𝜈 1 2 𝜇 1 2 𝑘 0 1 2 𝜈 1 2 𝜇 3 2 𝑘 0 {\displaystyle{\displaystyle\Re\left(\mu+\nu+1\right)>0,\Re(\nu+k+1)>0,\Re((% \nu+2k+1)+k+1)>0,\Re(\frac{1}{2}\nu+\frac{1}{2}\mu+\frac{1}{2})>0,\Re(\frac{1}% {2}\nu-\frac{1}{2}\mu+\frac{1}{2})>0,\Re(\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1% }{2}+k)>0,\Re(\frac{1}{2}\nu+\frac{1}{2}\mu+\frac{3}{2}+k)>0}}
int((t)^(mu)* BesselJ(nu, t), t = 0..x) = (x)^(mu)*(GAMMA((1)/(2)*nu +(1)/(2)*mu +(1)/(2)))/(GAMMA((1)/(2)*nu -(1)/(2)*mu +(1)/(2)))* sum(((nu + 2*k + 1)*GAMMA((1)/(2)*nu -(1)/(2)*mu +(1)/(2)+ k))/(GAMMA((1)/(2)*nu +(1)/(2)*mu +(3)/(2)+ k))*BesselJ(nu + 2*k + 1, x), k = 0..infinity)
Integrate[(t)^\[Mu]* BesselJ[\[Nu], t], {t, 0, x}, GenerateConditions->None] == (x)^\[Mu]*Divide[Gamma[Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]+Divide[1,2]],Gamma[Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]+Divide[1,2]]]* Sum[Divide[(\[Nu]+ 2*k + 1)*Gamma[Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]+Divide[1,2]+ k],Gamma[Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]+Divide[3,2]+ k]]*BesselJ[\[Nu]+ 2*k + 1, x], {k, 0, Infinity}, GenerateConditions->None]
Error Failure - Skipped - Because timed out
10.22.E11 0 x 1 - J 0 ( t ) t d t = 1 2 k = 1 ψ ( k + 1 ) - ψ ( 1 ) k ! ( 1 2 x ) k J k ( x ) superscript subscript 0 𝑥 1 Bessel-J 0 𝑡 𝑡 𝑡 1 2 superscript subscript 𝑘 1 digamma 𝑘 1 digamma 1 𝑘 superscript 1 2 𝑥 𝑘 Bessel-J 𝑘 𝑥 {\displaystyle{\displaystyle\int_{0}^{x}\frac{1-J_{0}\left(t\right)}{t}\mathrm% {d}t=\frac{1}{2}\sum_{k=1}^{\infty}\frac{\psi\left(k+1\right)-\psi\left(1% \right)}{k!}(\tfrac{1}{2}x)^{k}J_{k}\left(x\right)}}
\int_{0}^{x}\frac{1-\BesselJ{0}@{t}}{t}\diff{t} = \frac{1}{2}\sum_{k=1}^{\infty}\frac{\digamma@{k+1}-\digamma@{1}}{k!}(\tfrac{1}{2}x)^{k}\BesselJ{k}@{x}
( 0 + k + 1 ) > 0 , ( k + k + 1 ) > 0 formulae-sequence 0 𝑘 1 0 𝑘 𝑘 1 0 {\displaystyle{\displaystyle\Re(0+k+1)>0,\Re(k+k+1)>0}}
int((1 - BesselJ(0, t))/(t), t = 0..x) = (1)/(2)*sum((Psi(k + 1)- Psi(1))/(factorial(k))*((1)/(2)*x)^(k)* BesselJ(k, x), k = 1..infinity)
Integrate[Divide[1 - BesselJ[0, t],t], {t, 0, x}, GenerateConditions->None] == Divide[1,2]*Sum[Divide[PolyGamma[k + 1]- PolyGamma[1],(k)!]*(Divide[1,2]*x)^(k)* BesselJ[k, x], {k, 1, Infinity}, GenerateConditions->None]
Aborted Failure Successful [Tested: 3]
Failed [3 / 3]
Result: Plus[0.2622772441151432, Times[-0.5, NSum[Times[Power[0.75, k], BesselJ[k, 1.5], Power[Factorial[k], -1], Plus[EulerGamma, PolyGamma[0, Plus[1, k]]]]
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[x, 1.5]}

Result: Plus[0.03100698635091531, Times[-0.5, NSum[Times[Power[0.25, k], BesselJ[k, 0.5], Power[Factorial[k], -1], Plus[EulerGamma, PolyGamma[0, Plus[1, k]]]]
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[x, 0.5]}

... skip entries to safe data
10.22.E12 x 0 x 1 - J 0 ( t ) t d t = 2 k = 0 ( 2 k + 3 ) ( ψ ( k + 2 ) - ψ ( 1 ) ) J 2 k + 3 ( x ) 𝑥 superscript subscript 0 𝑥 1 Bessel-J 0 𝑡 𝑡 𝑡 2 superscript subscript 𝑘 0 2 𝑘 3 digamma 𝑘 2 digamma 1 Bessel-J 2 𝑘 3 𝑥 {\displaystyle{\displaystyle x\int_{0}^{x}\frac{1-J_{0}\left(t\right)}{t}% \mathrm{d}t=2\sum_{k=0}^{\infty}(2k+3)(\psi\left(k+2\right)-\psi\left(1\right)% )J_{2k+3}\left(x\right)}}
x\int_{0}^{x}\frac{1-\BesselJ{0}@{t}}{t}\diff{t} = 2\sum_{k=0}^{\infty}(2k+3)(\digamma@{k+2}-\digamma@{1})\BesselJ{2k+3}@{x}
( 0 + k + 1 ) > 0 , ( ( 2 k + 3 ) + k + 1 ) > 0 formulae-sequence 0 𝑘 1 0 2 𝑘 3 𝑘 1 0 {\displaystyle{\displaystyle\Re(0+k+1)>0,\Re((2k+3)+k+1)>0}}
x*int((1 - BesselJ(0, t))/(t), t = 0..x) = 2*sum((2*k + 3)*(Psi(k + 2)- Psi(1))*BesselJ(2*k + 3, x), k = 0..infinity)
x*Integrate[Divide[1 - BesselJ[0, t],t], {t, 0, x}, GenerateConditions->None] == 2*Sum[(2*k + 3)*(PolyGamma[k + 2]- PolyGamma[1])*BesselJ[2*k + 3, x], {k, 0, Infinity}, GenerateConditions->None]
Failure Aborted Successful [Tested: 3] Skipped - Because timed out
10.22.E12 2 k = 0 ( 2 k + 3 ) ( ψ ( k + 2 ) - ψ ( 1 ) ) J 2 k + 3 ( x ) = x - 2 J 1 ( x ) + 2 k = 0 ( 2 k + 5 ) ( ψ ( k + 3 ) - ψ ( 1 ) - 1 ) J 2 k + 5 ( x ) 2 superscript subscript 𝑘 0 2 𝑘 3 digamma 𝑘 2 digamma 1 Bessel-J 2 𝑘 3 𝑥 𝑥 2 Bessel-J 1 𝑥 2 superscript subscript 𝑘 0 2 𝑘 5 digamma 𝑘 3 digamma 1 1 Bessel-J 2 𝑘 5 𝑥 {\displaystyle{\displaystyle 2\sum_{k=0}^{\infty}(2k+3)(\psi\left(k+2\right)-% \psi\left(1\right))J_{2k+3}\left(x\right)=x-2J_{1}\left(x\right)+2\sum_{k=0}^{% \infty}(2k+5)\*(\psi\left(k+3\right)-\psi\left(1\right)-1)J_{2k+5}\left(x% \right)}}
2\sum_{k=0}^{\infty}(2k+3)(\digamma@{k+2}-\digamma@{1})\BesselJ{2k+3}@{x} = x-2\BesselJ{1}@{x}+2\sum_{k=0}^{\infty}(2k+5)\*(\digamma@{k+3}-\digamma@{1}-1)\BesselJ{2k+5}@{x}
( 0 + k + 1 ) > 0 , ( ( 2 k + 3 ) + k + 1 ) > 0 , ( 1 + k + 1 ) > 0 , ( ( 2 k + 5 ) + k + 1 ) > 0 formulae-sequence 0 𝑘 1 0 formulae-sequence 2 𝑘 3 𝑘 1 0 formulae-sequence 1 𝑘 1 0 2 𝑘 5 𝑘 1 0 {\displaystyle{\displaystyle\Re(0+k+1)>0,\Re((2k+3)+k+1)>0,\Re(1+k+1)>0,\Re((2% k+5)+k+1)>0}}
2*sum((2*k + 3)*(Psi(k + 2)- Psi(1))*BesselJ(2*k + 3, x), k = 0..infinity) = x - 2*BesselJ(1, x)+ 2*sum((2*k + 5)*(Psi(k + 3)- Psi(1)- 1)*BesselJ(2*k + 5, x), k = 0..infinity)
2*Sum[(2*k + 3)*(PolyGamma[k + 2]- PolyGamma[1])*BesselJ[2*k + 3, x], {k, 0, Infinity}, GenerateConditions->None] == x - 2*BesselJ[1, x]+ 2*Sum[(2*k + 5)*(PolyGamma[k + 3]- PolyGamma[1]- 1)*BesselJ[2*k + 5, x], {k, 0, Infinity}, GenerateConditions->None]
Aborted Aborted Successful [Tested: 3] Skipped - Because timed out
10.22.E13 0 1 2 π J 2 ν ( 2 z cos θ ) cos ( 2 μ θ ) d θ = 1 2 π J ν + μ ( z ) J ν - μ ( z ) superscript subscript 0 1 2 𝜋 Bessel-J 2 𝜈 2 𝑧 𝜃 2 𝜇 𝜃 𝜃 1 2 𝜋 Bessel-J 𝜈 𝜇 𝑧 Bessel-J 𝜈 𝜇 𝑧 {\displaystyle{\displaystyle\int_{0}^{\frac{1}{2}\pi}J_{2\nu}\left(2z\cos% \theta\right)\cos\left(2\mu\theta\right)\mathrm{d}\theta=\tfrac{1}{2}\pi J_{% \nu+\mu}\left(z\right)J_{\nu-\mu}\left(z\right)}}
\int_{0}^{\frac{1}{2}\pi}\BesselJ{2\nu}@{2z\cos@@{\theta}}\cos@{2\mu\theta}\diff{\theta} = \tfrac{1}{2}\pi\BesselJ{\nu+\mu}@{z}\BesselJ{\nu-\mu}@{z}
ν > - 1 2 , ( ( 2 ν ) + k + 1 ) > 0 , ( ( ν + μ ) + k + 1 ) > 0 , ( ( ν - μ ) + k + 1 ) > 0 formulae-sequence 𝜈 1 2 formulae-sequence 2 𝜈 𝑘 1 0 formulae-sequence 𝜈 𝜇 𝑘 1 0 𝜈 𝜇 𝑘 1 0 {\displaystyle{\displaystyle\Re\nu>-\tfrac{1}{2},\Re((2\nu)+k+1)>0,\Re((\nu+% \mu)+k+1)>0,\Re((\nu-\mu)+k+1)>0}}
int(BesselJ(2*nu, 2*z*cos(theta))*cos(2*mu*theta), theta = 0..(1)/(2)*Pi) = (1)/(2)*Pi*BesselJ(nu + mu, z)*BesselJ(nu - mu, z)
Integrate[BesselJ[2*\[Nu], 2*z*Cos[\[Theta]]]*Cos[2*\[Mu]*\[Theta]], {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == Divide[1,2]*Pi*BesselJ[\[Nu]+ \[Mu], z]*BesselJ[\[Nu]- \[Mu], z]
Failure Failure Manual Skip! Skipped - Because timed out
10.22.E14 0 π J 2 ν ( 2 z sin θ ) cos ( 2 μ θ ) d θ = π cos ( μ π ) J ν + μ ( z ) J ν - μ ( z ) superscript subscript 0 𝜋 Bessel-J 2 𝜈 2 𝑧 𝜃 2 𝜇 𝜃 𝜃 𝜋 𝜇 𝜋 Bessel-J 𝜈 𝜇 𝑧 Bessel-J 𝜈 𝜇 𝑧 {\displaystyle{\displaystyle\int_{0}^{\pi}J_{2\nu}\left(2z\sin\theta\right)% \cos\left(2\mu\theta\right)\mathrm{d}\theta=\pi\cos\left(\mu\pi\right)J_{\nu+% \mu}\left(z\right)J_{\nu-\mu}\left(z\right)}}
\int_{0}^{\pi}\BesselJ{2\nu}@{2z\sin@@{\theta}}\cos@{2\mu\theta}\diff{\theta} = \pi\cos@{\mu\pi}\BesselJ{\nu+\mu}@{z}\BesselJ{\nu-\mu}@{z}
ν > - 1 2 , ( ( 2 ν ) + k + 1 ) > 0 , ( ( ν + μ ) + k + 1 ) > 0 , ( ( ν - μ ) + k + 1 ) > 0 formulae-sequence 𝜈 1 2 formulae-sequence 2 𝜈 𝑘 1 0 formulae-sequence 𝜈 𝜇 𝑘 1 0 𝜈 𝜇 𝑘 1 0 {\displaystyle{\displaystyle\Re\nu>-\tfrac{1}{2},\Re((2\nu)+k+1)>0,\Re((\nu+% \mu)+k+1)>0,\Re((\nu-\mu)+k+1)>0}}
int(BesselJ(2*nu, 2*z*sin(theta))*cos(2*mu*theta), theta = 0..Pi) = Pi*cos(mu*Pi)*BesselJ(nu + mu, z)*BesselJ(nu - mu, z)
Integrate[BesselJ[2*\[Nu], 2*z*Sin[\[Theta]]]*Cos[2*\[Mu]*\[Theta]], {\[Theta], 0, Pi}, GenerateConditions->None] == Pi*Cos[\[Mu]*Pi]*BesselJ[\[Nu]+ \[Mu], z]*BesselJ[\[Nu]- \[Mu], z]
Failure Failure Manual Skip! Skipped - Because timed out
10.22.E15 0 π J 2 ν ( 2 z sin θ ) sin ( 2 μ θ ) d θ = π sin ( μ π ) J ν + μ ( z ) J ν - μ ( z ) superscript subscript 0 𝜋 Bessel-J 2 𝜈 2 𝑧 𝜃 2 𝜇 𝜃 𝜃 𝜋 𝜇 𝜋 Bessel-J 𝜈 𝜇 𝑧 Bessel-J 𝜈 𝜇 𝑧 {\displaystyle{\displaystyle\int_{0}^{\pi}J_{2\nu}\left(2z\sin\theta\right)% \sin\left(2\mu\theta\right)\mathrm{d}\theta=\pi\sin\left(\mu\pi\right)J_{\nu+% \mu}\left(z\right)J_{\nu-\mu}\left(z\right)}}
\int_{0}^{\pi}\BesselJ{2\nu}@{2z\sin@@{\theta}}\sin@{2\mu\theta}\diff{\theta} = \pi\sin@{\mu\pi}\BesselJ{\nu+\mu}@{z}\BesselJ{\nu-\mu}@{z}
ν > - 1 , ( ( 2 ν ) + k + 1 ) > 0 , ( ( ν + μ ) + k + 1 ) > 0 , ( ( ν - μ ) + k + 1 ) > 0 formulae-sequence 𝜈 1 formulae-sequence 2 𝜈 𝑘 1 0 formulae-sequence 𝜈 𝜇 𝑘 1 0 𝜈 𝜇 𝑘 1 0 {\displaystyle{\displaystyle\Re\nu>-1,\Re((2\nu)+k+1)>0,\Re((\nu+\mu)+k+1)>0,% \Re((\nu-\mu)+k+1)>0}}
int(BesselJ(2*nu, 2*z*sin(theta))*sin(2*mu*theta), theta = 0..Pi) = Pi*sin(mu*Pi)*BesselJ(nu + mu, z)*BesselJ(nu - mu, z)
Integrate[BesselJ[2*\[Nu], 2*z*Sin[\[Theta]]]*Sin[2*\[Mu]*\[Theta]], {\[Theta], 0, Pi}, GenerateConditions->None] == Pi*Sin[\[Mu]*Pi]*BesselJ[\[Nu]+ \[Mu], z]*BesselJ[\[Nu]- \[Mu], z]
Failure Failure Manual Skip! Skipped - Because timed out
10.22.E16 0 1 2 π J 0 ( 2 z sin θ ) cos ( 2 n θ ) d θ = 1 2 π J n 2 ( z ) superscript subscript 0 1 2 𝜋 Bessel-J 0 2 𝑧 𝜃 2 𝑛 𝜃 𝜃 1 2 𝜋 Bessel-J 𝑛 2 𝑧 {\displaystyle{\displaystyle\int_{0}^{\frac{1}{2}\pi}J_{0}\left(2z\sin\theta% \right)\cos\left(2n\theta\right)\mathrm{d}\theta=\tfrac{1}{2}\pi{J_{n}^{2}}% \left(z\right)}}
\int_{0}^{\frac{1}{2}\pi}\BesselJ{0}@{2z\sin@@{\theta}}\cos@{2n\theta}\diff{\theta} = \tfrac{1}{2}\pi\BesselJ{n}^{2}@{z}
( 0 + k + 1 ) > 0 , ( n + k + 1 ) > 0 formulae-sequence 0 𝑘 1 0 𝑛 𝑘 1 0 {\displaystyle{\displaystyle\Re(0+k+1)>0,\Re(n+k+1)>0}}
int(BesselJ(0, 2*z*sin(theta))*cos(2*n*theta), theta = 0..(1)/(2)*Pi) = (1)/(2)*Pi*(BesselJ(n, z))^(2)
Integrate[BesselJ[0, 2*z*Sin[\[Theta]]]*Cos[2*n*\[Theta]], {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == Divide[1,2]*Pi*(BesselJ[n, z])^(2)
Failure Failure Successful [Tested: 7] Successful [Tested: 7]
10.22.E17 0 1 2 π Y 2 ν ( 2 z cos θ ) cos ( 2 μ θ ) d θ = 1 2 π cot ( 2 ν π ) J ν + μ ( z ) J ν - μ ( z ) - 1 2 π csc ( 2 ν π ) J μ - ν ( z ) J - μ - ν ( z ) superscript subscript 0 1 2 𝜋 Bessel-Y-Weber 2 𝜈 2 𝑧 𝜃 2 𝜇 𝜃 𝜃 1 2 𝜋 2 𝜈 𝜋 Bessel-J 𝜈 𝜇 𝑧 Bessel-J 𝜈 𝜇 𝑧 1 2 𝜋 2 𝜈 𝜋 Bessel-J 𝜇 𝜈 𝑧 Bessel-J 𝜇 𝜈 𝑧 {\displaystyle{\displaystyle\int_{0}^{\frac{1}{2}\pi}Y_{2\nu}\left(2z\cos% \theta\right)\cos\left(2\mu\theta\right)\mathrm{d}\theta=\tfrac{1}{2}\pi\cot% \left(2\nu\pi\right)J_{\nu+\mu}\left(z\right)J_{\nu-\mu}\left(z\right)-\tfrac{% 1}{2}\pi\csc\left(2\nu\pi\right)J_{\mu-\nu}\left(z\right)J_{-\mu-\nu}\left(z% \right)}}
\int_{0}^{\frac{1}{2}\pi}\BesselY{2\nu}@{2z\cos@@{\theta}}\cos@{2\mu\theta}\diff{\theta} = \tfrac{1}{2}\pi\cot@{2\nu\pi}\BesselJ{\nu+\mu}@{z}\BesselJ{\nu-\mu}@{z}-\tfrac{1}{2}\pi\csc@{2\nu\pi}\BesselJ{\mu-\nu}@{z}\BesselJ{-\mu-\nu}@{z}
- 1 2 < ν , ν < 1 2 , ( ( ν + μ ) + k + 1 ) > 0 , ( ( ν - μ ) + k + 1 ) > 0 , ( ( μ - ν ) + k + 1 ) > 0 , ( ( - μ - ν ) + k + 1 ) > 0 , ( ( 2 ν ) + k + 1 ) > 0 , ( ( - ( 2 ν ) ) + k + 1 ) > 0 formulae-sequence 1 2 𝜈 formulae-sequence 𝜈 1 2 formulae-sequence 𝜈 𝜇 𝑘 1 0 formulae-sequence 𝜈 𝜇 𝑘 1 0 formulae-sequence 𝜇 𝜈 𝑘 1 0 formulae-sequence 𝜇 𝜈 𝑘 1 0 formulae-sequence 2 𝜈 𝑘 1 0 2 𝜈 𝑘 1 0 {\displaystyle{\displaystyle-\tfrac{1}{2}<\Re\nu,\Re\nu<\tfrac{1}{2},\Re((\nu+% \mu)+k+1)>0,\Re((\nu-\mu)+k+1)>0,\Re((\mu-\nu)+k+1)>0,\Re((-\mu-\nu)+k+1)>0,% \Re((2\nu)+k+1)>0,\Re((-(2\nu))+k+1)>0}}
int(BesselY(2*nu, 2*z*cos(theta))*cos(2*mu*theta), theta = 0..(1)/(2)*Pi) = (1)/(2)*Pi*cot(2*nu*Pi)*BesselJ(nu + mu, z)*BesselJ(nu - mu, z)-(1)/(2)*Pi*csc(2*nu*Pi)*BesselJ(mu - nu, z)*BesselJ(- mu - nu, z)
Integrate[BesselY[2*\[Nu], 2*z*Cos[\[Theta]]]*Cos[2*\[Mu]*\[Theta]], {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == Divide[1,2]*Pi*Cot[2*\[Nu]*Pi]*BesselJ[\[Nu]+ \[Mu], z]*BesselJ[\[Nu]- \[Mu], z]-Divide[1,2]*Pi*Csc[2*\[Nu]*Pi]*BesselJ[\[Mu]- \[Nu], z]*BesselJ[- \[Mu]- \[Nu], z]
Failure Failure Error Skip - No test values generated
10.22.E18 0 1 2 π Y 0 ( 2 z sin θ ) cos ( 2 n θ ) d θ = 1 2 π J n ( z ) Y n ( z ) superscript subscript 0 1 2 𝜋 Bessel-Y-Weber 0 2 𝑧 𝜃 2 𝑛 𝜃 𝜃 1 2 𝜋 Bessel-J 𝑛 𝑧 Bessel-Y-Weber 𝑛 𝑧 {\displaystyle{\displaystyle\int_{0}^{\frac{1}{2}\pi}Y_{0}\left(2z\sin\theta% \right)\cos\left(2n\theta\right)\mathrm{d}\theta=\tfrac{1}{2}\pi J_{n}\left(z% \right)Y_{n}\left(z\right)}}
\int_{0}^{\frac{1}{2}\pi}\BesselY{0}@{2z\sin@@{\theta}}\cos@{2n\theta}\diff{\theta} = \tfrac{1}{2}\pi\BesselJ{n}@{z}\BesselY{n}@{z}
( n + k + 1 ) > 0 , ( 0 + k + 1 ) > 0 , ( ( - 0 ) + k + 1 ) > 0 , ( ( - n ) + k + 1 ) > 0 formulae-sequence 𝑛 𝑘 1 0 formulae-sequence 0 𝑘 1 0 formulae-sequence 0 𝑘 1 0 𝑛 𝑘 1 0 {\displaystyle{\displaystyle\Re(n+k+1)>0,\Re(0+k+1)>0,\Re((-0)+k+1)>0,\Re((-n)% +k+1)>0}}
int(BesselY(0, 2*z*sin(theta))*cos(2*n*theta), theta = 0..(1)/(2)*Pi) = (1)/(2)*Pi*BesselJ(n, z)*BesselY(n, z)
Integrate[BesselY[0, 2*z*Sin[\[Theta]]]*Cos[2*n*\[Theta]], {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == Divide[1,2]*Pi*BesselJ[n, z]*BesselY[n, z]
Failure Failure Successful [Tested: 7] Skipped - Because timed out
10.22.E19 0 1 2 π J μ ( z sin θ ) ( sin θ ) μ + 1 ( cos θ ) 2 ν + 1 d θ = 2 ν Γ ( ν + 1 ) z - ν - 1 J μ + ν + 1 ( z ) superscript subscript 0 1 2 𝜋 Bessel-J 𝜇 𝑧 𝜃 superscript 𝜃 𝜇 1 superscript 𝜃 2 𝜈 1 𝜃 superscript 2 𝜈 Euler-Gamma 𝜈 1 superscript 𝑧 𝜈 1 Bessel-J 𝜇 𝜈 1 𝑧 {\displaystyle{\displaystyle\int_{0}^{\frac{1}{2}\pi}J_{\mu}\left(z\sin\theta% \right)(\sin\theta)^{\mu+1}(\cos\theta)^{2\nu+1}\mathrm{d}\theta=2^{\nu}\Gamma% \left(\nu+1\right)z^{-\nu-1}J_{\mu+\nu+1}\left(z\right)}}
\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin@@{\theta}}(\sin@@{\theta})^{\mu+1}(\cos@@{\theta})^{2\nu+1}\diff{\theta} = 2^{\nu}\EulerGamma@{\nu+1}z^{-\nu-1}\BesselJ{\mu+\nu+1}@{z}
μ > - 1 , ν > - 1 , ( ( μ ) + k + 1 ) > 0 , ( ( μ + ν + 1 ) + k + 1 ) > 0 , ( ν + 1 ) > 0 formulae-sequence 𝜇 1 formulae-sequence 𝜈 1 formulae-sequence 𝜇 𝑘 1 0 formulae-sequence 𝜇 𝜈 1 𝑘 1 0 𝜈 1 0 {\displaystyle{\displaystyle\Re\mu>-1,\Re\nu>-1,\Re((\mu)+k+1)>0,\Re((\mu+\nu+% 1)+k+1)>0,\Re(\nu+1)>0}}
int(BesselJ(mu, z*sin(theta))*(sin(theta))^(mu + 1)*(cos(theta))^(2*nu + 1), theta = 0..(1)/(2)*Pi) = (2)^(nu)* GAMMA(nu + 1)*(z)^(- nu - 1)* BesselJ(mu + nu + 1, z)
Integrate[BesselJ[\[Mu], z*Sin[\[Theta]]]*(Sin[\[Theta]])^(\[Mu]+ 1)*(Cos[\[Theta]])^(2*\[Nu]+ 1), {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == (2)^\[Nu]* Gamma[\[Nu]+ 1]*(z)^(- \[Nu]- 1)* BesselJ[\[Mu]+ \[Nu]+ 1, z]
Successful Aborted - Successful [Tested: 300]
10.22.E20 0 1 2 π J μ ( z sin θ ) ( sin θ ) μ ( cos θ ) 2 μ d θ = π 1 2 2 μ - 1 z - μ Γ ( μ + 1 2 ) J μ 2 ( 1 2 z ) superscript subscript 0 1 2 𝜋 Bessel-J 𝜇 𝑧 𝜃 superscript 𝜃 𝜇 superscript 𝜃 2 𝜇 𝜃 superscript 𝜋 1 2 superscript 2 𝜇 1 superscript 𝑧 𝜇 Euler-Gamma 𝜇 1 2 Bessel-J 𝜇 2 1 2 𝑧 {\displaystyle{\displaystyle\int_{0}^{\frac{1}{2}\pi}J_{\mu}\left(z\sin\theta% \right)(\sin\theta)^{\mu}(\cos\theta)^{2\mu}\mathrm{d}\theta=\pi^{\frac{1}{2}}% 2^{\mu-1}z^{-\mu}\*\Gamma\left(\mu+\tfrac{1}{2}\right){J_{\mu}^{2}}\left(% \tfrac{1}{2}z\right)}}
\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin@@{\theta}}(\sin@@{\theta})^{\mu}(\cos@@{\theta})^{2\mu}\diff{\theta} = \pi^{\frac{1}{2}}2^{\mu-1}z^{-\mu}\*\EulerGamma@{\mu+\tfrac{1}{2}}\BesselJ{\mu}^{2}@{\tfrac{1}{2}z}
μ > - 1 2 , ( ( μ ) + k + 1 ) > 0 , ( μ + 1 2 ) > 0 formulae-sequence 𝜇 1 2 formulae-sequence 𝜇 𝑘 1 0 𝜇 1 2 0 {\displaystyle{\displaystyle\Re\mu>-\tfrac{1}{2},\Re((\mu)+k+1)>0,\Re(\mu+% \tfrac{1}{2})>0}}
int(BesselJ(mu, z*sin(theta))*(sin(theta))^(mu)*(cos(theta))^(2*mu), theta = 0..(1)/(2)*Pi) = (Pi)^((1)/(2))* (2)^(mu - 1)* (z)^(- mu)* GAMMA(mu +(1)/(2))*(BesselJ(mu, (1)/(2)*z))^(2)
Integrate[BesselJ[\[Mu], z*Sin[\[Theta]]]*(Sin[\[Theta]])^\[Mu]*(Cos[\[Theta]])^(2*\[Mu]), {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == (Pi)^(Divide[1,2])* (2)^(\[Mu]- 1)* (z)^(- \[Mu])* Gamma[\[Mu]+Divide[1,2]]*(BesselJ[\[Mu], Divide[1,2]*z])^(2)
Successful Aborted - Successful [Tested: 35]
10.22.E21 0 1 2 π Y μ ( z sin θ ) ( sin θ ) μ ( cos θ ) 2 μ d θ = π 1 2 2 μ - 1 z - μ Γ ( μ + 1 2 ) J μ ( 1 2 z ) Y μ ( 1 2 z ) superscript subscript 0 1 2 𝜋 Bessel-Y-Weber 𝜇 𝑧 𝜃 superscript 𝜃 𝜇 superscript 𝜃 2 𝜇 𝜃 superscript 𝜋 1 2 superscript 2 𝜇 1 superscript 𝑧 𝜇 Euler-Gamma 𝜇 1 2 Bessel-J 𝜇 1 2 𝑧 Bessel-Y-Weber 𝜇 1 2 𝑧 {\displaystyle{\displaystyle\int_{0}^{\frac{1}{2}\pi}Y_{\mu}\left(z\sin\theta% \right)(\sin\theta)^{\mu}(\cos\theta)^{2\mu}\mathrm{d}\theta=\pi^{\frac{1}{2}}% 2^{\mu-1}z^{-\mu}\*\Gamma\left(\mu+\tfrac{1}{2}\right)J_{\mu}\left(\tfrac{1}{2% }z\right)Y_{\mu}\left(\tfrac{1}{2}z\right)}}
\int_{0}^{\frac{1}{2}\pi}\BesselY{\mu}@{z\sin@@{\theta}}(\sin@@{\theta})^{\mu}(\cos@@{\theta})^{2\mu}\diff{\theta} = \pi^{\frac{1}{2}}2^{\mu-1}z^{-\mu}\*\EulerGamma@{\mu+\tfrac{1}{2}}\BesselJ{\mu}@{\tfrac{1}{2}z}\BesselY{\mu}@{\tfrac{1}{2}z}
μ > - 1 2 , ( ( μ ) + k + 1 ) > 0 , ( μ + 1 2 ) > 0 , ( ( - ( μ ) ) + k + 1 ) > 0 formulae-sequence 𝜇 1 2 formulae-sequence 𝜇 𝑘 1 0 formulae-sequence 𝜇 1 2 0 𝜇 𝑘 1 0 {\displaystyle{\displaystyle\Re\mu>-\tfrac{1}{2},\Re((\mu)+k+1)>0,\Re(\mu+% \tfrac{1}{2})>0,\Re((-(\mu))+k+1)>0}}
int(BesselY(mu, z*sin(theta))*(sin(theta))^(mu)*(cos(theta))^(2*mu), theta = 0..(1)/(2)*Pi) = (Pi)^((1)/(2))* (2)^(mu - 1)* (z)^(- mu)* GAMMA(mu +(1)/(2))*BesselJ(mu, (1)/(2)*z)*BesselY(mu, (1)/(2)*z)
Integrate[BesselY[\[Mu], z*Sin[\[Theta]]]*(Sin[\[Theta]])^\[Mu]*(Cos[\[Theta]])^(2*\[Mu]), {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == (Pi)^(Divide[1,2])* (2)^(\[Mu]- 1)* (z)^(- \[Mu])* Gamma[\[Mu]+Divide[1,2]]*BesselJ[\[Mu], Divide[1,2]*z]*BesselY[\[Mu], Divide[1,2]*z]
Successful Aborted - Skipped - Because timed out
10.22.E22 0 1 2 π J μ ( z sin 2 θ ) J ν ( z cos 2 θ ) ( sin θ ) 2 μ + 1 ( cos θ ) 2 ν + 1 d θ = Γ ( μ + 1 2 ) Γ ( ν + 1 2 ) J μ + ν + 1 2 ( z ) ( 8 π z ) 1 2 Γ ( μ + ν + 1 ) superscript subscript 0 1 2 𝜋 Bessel-J 𝜇 𝑧 2 𝜃 Bessel-J 𝜈 𝑧 2 𝜃 superscript 𝜃 2 𝜇 1 superscript 𝜃 2 𝜈 1 𝜃 Euler-Gamma 𝜇 1 2 Euler-Gamma 𝜈 1 2 Bessel-J 𝜇 𝜈 1 2 𝑧 superscript 8 𝜋 𝑧 1 2 Euler-Gamma 𝜇 𝜈 1 {\displaystyle{\displaystyle\int_{0}^{\frac{1}{2}\pi}J_{\mu}\left(z{\sin^{2}}% \theta\right)J_{\nu}\left(z{\cos^{2}}\theta\right)(\sin\theta)^{2\mu+1}(\cos% \theta)^{2\nu+1}\mathrm{d}\theta=\frac{\Gamma\left(\mu+\tfrac{1}{2}\right)% \Gamma\left(\nu+\tfrac{1}{2}\right)J_{\mu+\nu+\frac{1}{2}}\left(z\right)}{(8% \pi z)^{\frac{1}{2}}\Gamma\left(\mu+\nu+1\right)}}}
\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin^{2}@@{\theta}}\BesselJ{\nu}@{z\cos^{2}@@{\theta}}(\sin@@{\theta})^{2\mu+1}(\cos@@{\theta})^{2\nu+1}\diff{\theta} = \frac{\EulerGamma@{\mu+\tfrac{1}{2}}\EulerGamma@{\nu+\tfrac{1}{2}}\BesselJ{\mu+\nu+\frac{1}{2}}@{z}}{(8\pi z)^{\frac{1}{2}}\EulerGamma@{\mu+\nu+1}}
μ > - 1 2 , ν > - 1 2 , ( ( μ ) + k + 1 ) > 0 , ( ν + k + 1 ) > 0 , ( ( μ + ν + 1 2 ) + k + 1 ) > 0 , ( μ + 1 2 ) > 0 , ( ν + 1 2 ) > 0 , ( μ + ν + 1 ) > 0 formulae-sequence 𝜇 1 2 formulae-sequence 𝜈 1 2 formulae-sequence 𝜇 𝑘 1 0 formulae-sequence 𝜈 𝑘 1 0 formulae-sequence 𝜇 𝜈 1 2 𝑘 1 0 formulae-sequence 𝜇 1 2 0 formulae-sequence 𝜈 1 2 0 𝜇 𝜈 1 0 {\displaystyle{\displaystyle\Re\mu>-\tfrac{1}{2},\Re\nu>-\tfrac{1}{2},\Re((\mu% )+k+1)>0,\Re(\nu+k+1)>0,\Re((\mu+\nu+\frac{1}{2})+k+1)>0,\Re(\mu+\tfrac{1}{2})% >0,\Re(\nu+\tfrac{1}{2})>0,\Re(\mu+\nu+1)>0}}
int(BesselJ(mu, z*(sin(theta))^(2))*BesselJ(nu, z*(cos(theta))^(2))*(sin(theta))^(2*mu + 1)*(cos(theta))^(2*nu + 1), theta = 0..(1)/(2)*Pi) = (GAMMA(mu +(1)/(2))*GAMMA(nu +(1)/(2))*BesselJ(mu + nu +(1)/(2), z))/((8*Pi*z)^((1)/(2))* GAMMA(mu + nu + 1))
Integrate[BesselJ[\[Mu], z*(Sin[\[Theta]])^(2)]*BesselJ[\[Nu], z*(Cos[\[Theta]])^(2)]*(Sin[\[Theta]])^(2*\[Mu]+ 1)*(Cos[\[Theta]])^(2*\[Nu]+ 1), {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == Divide[Gamma[\[Mu]+Divide[1,2]]*Gamma[\[Nu]+Divide[1,2]]*BesselJ[\[Mu]+ \[Nu]+Divide[1,2], z],(8*Pi*z)^(Divide[1,2])* Gamma[\[Mu]+ \[Nu]+ 1]]
Error Aborted - Skipped - Because timed out
10.22.E23 0 1 2 π J μ ( z sin 2 θ ) J ν ( z cos 2 θ ) ( sin θ ) 2 α - 1 sec θ d θ = ( μ + ν + α ) Γ ( μ + α ) 2 α - 1 ν Γ ( μ + 1 ) z α J μ + ν + α ( z ) superscript subscript 0 1 2 𝜋 Bessel-J 𝜇 𝑧 2 𝜃 Bessel-J 𝜈 𝑧 2 𝜃 superscript 𝜃 2 𝛼 1 𝜃 𝜃 𝜇 𝜈 𝛼 Euler-Gamma 𝜇 𝛼 superscript 2 𝛼 1 𝜈 Euler-Gamma 𝜇 1 superscript 𝑧 𝛼 Bessel-J 𝜇 𝜈 𝛼 𝑧 {\displaystyle{\displaystyle\int_{0}^{\frac{1}{2}\pi}J_{\mu}\left(z{\sin^{2}}% \theta\right)J_{\nu}\left(z{\cos^{2}}\theta\right)(\sin\theta)^{2\alpha-1}\sec% \theta\mathrm{d}\theta=\frac{(\mu+\nu+\alpha)\Gamma\left(\mu+\alpha\right)2^{% \alpha-1}}{\nu\Gamma\left(\mu+1\right)z^{\alpha}}J_{\mu+\nu+\alpha}\left(z% \right)}}
\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin^{2}@@{\theta}}\BesselJ{\nu}@{z\cos^{2}@@{\theta}}(\sin@@{\theta})^{2\alpha-1}\sec@@{\theta}\diff{\theta} = \frac{(\mu+\nu+\alpha)\EulerGamma@{\mu+\alpha}2^{\alpha-1}}{\nu\EulerGamma@{\mu+1}z^{\alpha}}\BesselJ{\mu+\nu+\alpha}@{z}
( μ + α ) > 0 , ν > 0 , ( ( μ ) + k + 1 ) > 0 , ( ν + k + 1 ) > 0 , ( ( μ + ν + α ) + k + 1 ) > 0 , ( μ + α ) > 0 , ( μ + 1 ) > 0 formulae-sequence 𝜇 𝛼 0 formulae-sequence 𝜈 0 formulae-sequence 𝜇 𝑘 1 0 formulae-sequence 𝜈 𝑘 1 0 formulae-sequence 𝜇 𝜈 𝛼 𝑘 1 0 formulae-sequence 𝜇 𝛼 0 𝜇 1 0 {\displaystyle{\displaystyle\Re\left(\mu+\alpha\right)>0,\Re\nu>0,\Re((\mu)+k+% 1)>0,\Re(\nu+k+1)>0,\Re((\mu+\nu+\alpha)+k+1)>0,\Re(\mu+\alpha)>0,\Re(\mu+1)>0}}
int(BesselJ(mu, z*(sin(theta))^(2))*BesselJ(nu, z*(cos(theta))^(2))*(sin(theta))^(2*alpha - 1)* sec(theta), theta = 0..(1)/(2)*Pi) = ((mu + nu + alpha)*GAMMA(mu + alpha)*(2)^(alpha - 1))/(nu*GAMMA(mu + 1)*(z)^(alpha))*BesselJ(mu + nu + alpha, z)
Integrate[BesselJ[\[Mu], z*(Sin[\[Theta]])^(2)]*BesselJ[\[Nu], z*(Cos[\[Theta]])^(2)]*(Sin[\[Theta]])^(2*\[Alpha]- 1)* Sec[\[Theta]], {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == Divide[(\[Mu]+ \[Nu]+ \[Alpha])*Gamma[\[Mu]+ \[Alpha]]*(2)^(\[Alpha]- 1),\[Nu]*Gamma[\[Mu]+ 1]*(z)^\[Alpha]]*BesselJ[\[Mu]+ \[Nu]+ \[Alpha], z]
Failure Aborted Skipped - Because timed out Skipped - Because timed out
10.22.E24 0 1 2 π J μ ( z sin 2 θ ) J ν ( z cos 2 θ ) cot θ d θ = 1 2 μ - 1 J μ + ν ( z ) superscript subscript 0 1 2 𝜋 Bessel-J 𝜇 𝑧 2 𝜃 Bessel-J 𝜈 𝑧 2 𝜃 𝜃 𝜃 1 2 superscript 𝜇 1 Bessel-J 𝜇 𝜈 𝑧 {\displaystyle{\displaystyle\int_{0}^{\frac{1}{2}\pi}J_{\mu}\left(z{\sin^{2}}% \theta\right)J_{\nu}\left(z{\cos^{2}}\theta\right)\cot\theta\mathrm{d}\theta=% \tfrac{1}{2}\mu^{-1}J_{\mu+\nu}\left(z\right)}}
\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin^{2}@@{\theta}}\BesselJ{\nu}@{z\cos^{2}@@{\theta}}\cot@@{\theta}\diff{\theta} = \tfrac{1}{2}\mu^{-1}\BesselJ{\mu+\nu}@{z}
μ > 0 , ν > - 1 , ( ( μ ) + k + 1 ) > 0 , ( ν + k + 1 ) > 0 , ( ( μ + ν ) + k + 1 ) > 0 formulae-sequence 𝜇 0 formulae-sequence 𝜈 1 formulae-sequence 𝜇 𝑘 1 0 formulae-sequence 𝜈 𝑘 1 0 𝜇 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re\mu>0,\Re\nu>-1,\Re((\mu)+k+1)>0,\Re(\nu+k+1)>0% ,\Re((\mu+\nu)+k+1)>0}}
int(BesselJ(mu, z*(sin(theta))^(2))*BesselJ(nu, z*(cos(theta))^(2))*cot(theta), theta = 0..(1)/(2)*Pi) = (1)/(2)*(mu)^(- 1)* BesselJ(mu + nu, z)
Integrate[BesselJ[\[Mu], z*(Sin[\[Theta]])^(2)]*BesselJ[\[Nu], z*(Cos[\[Theta]])^(2)]*Cot[\[Theta]], {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == Divide[1,2]*\[Mu]^(- 1)* BesselJ[\[Mu]+ \[Nu], z]
Failure Aborted Skipped - Because timed out Skip - No test values generated
10.22.E25 0 1 2 π J μ ( z sin θ ) I ν ( z cos θ ) ( tan θ ) μ + 1 d θ = Γ ( 1 2 ν - 1 2 μ ) ( 1 2 z ) μ 2 Γ ( 1 2 ν + 1 2 μ + 1 ) J ν ( z ) superscript subscript 0 1 2 𝜋 Bessel-J 𝜇 𝑧 𝜃 modified-Bessel-first-kind 𝜈 𝑧 𝜃 superscript 𝜃 𝜇 1 𝜃 Euler-Gamma 1 2 𝜈 1 2 𝜇 superscript 1 2 𝑧 𝜇 2 Euler-Gamma 1 2 𝜈 1 2 𝜇 1 Bessel-J 𝜈 𝑧 {\displaystyle{\displaystyle\int_{0}^{\frac{1}{2}\pi}J_{\mu}\left(z\sin\theta% \right)I_{\nu}\left(z\cos\theta\right)(\tan\theta)^{\mu+1}\mathrm{d}\theta=% \frac{\Gamma\left(\tfrac{1}{2}\nu-\tfrac{1}{2}\mu\right)(\tfrac{1}{2}z)^{\mu}}% {2\Gamma\left(\tfrac{1}{2}\nu+\tfrac{1}{2}\mu+1\right)}J_{\nu}\left(z\right)}}
\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin@@{\theta}}\modBesselI{\nu}@{z\cos@@{\theta}}(\tan@@{\theta})^{\mu+1}\diff{\theta} = \frac{\EulerGamma@{\tfrac{1}{2}\nu-\tfrac{1}{2}\mu}(\tfrac{1}{2}z)^{\mu}}{2\EulerGamma@{\tfrac{1}{2}\nu+\tfrac{1}{2}\mu+1}}\BesselJ{\nu}@{z}
ν > μ , μ > - 1 , ( ( μ ) + k + 1 ) > 0 , ( ν + k + 1 ) > 0 , ( 1 2 ν - 1 2 μ ) > 0 , ( 1 2 ν + 1 2 μ + 1 ) > 0 formulae-sequence 𝜈 𝜇 formulae-sequence 𝜇 1 formulae-sequence 𝜇 𝑘 1 0 formulae-sequence 𝜈 𝑘 1 0 formulae-sequence 1 2 𝜈 1 2 𝜇 0 1 2 𝜈 1 2 𝜇 1 0 {\displaystyle{\displaystyle\Re\nu>\Re\mu,\Re\mu>-1,\Re((\mu)+k+1)>0,\Re(\nu+k% +1)>0,\Re(\tfrac{1}{2}\nu-\tfrac{1}{2}\mu)>0,\Re(\tfrac{1}{2}\nu+\tfrac{1}{2}% \mu+1)>0}}
int(BesselJ(mu, z*sin(theta))*BesselI(nu, z*cos(theta))*(tan(theta))^(mu + 1), theta = 0..(1)/(2)*Pi) = (GAMMA((1)/(2)*nu -(1)/(2)*mu)*((1)/(2)*z)^(mu))/(2*GAMMA((1)/(2)*nu +(1)/(2)*mu + 1))*BesselJ(nu, z)
Integrate[BesselJ[\[Mu], z*Sin[\[Theta]]]*BesselI[\[Nu], z*Cos[\[Theta]]]*(Tan[\[Theta]])^(\[Mu]+ 1), {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == Divide[Gamma[Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]]*(Divide[1,2]*z)^\[Mu],2*Gamma[Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]+ 1]]*BesselJ[\[Nu], z]
Failure Aborted Skipped - Because timed out Skipped - Because timed out
10.22.E26 0 1 2 π J μ ( z sin θ ) J ν ( ζ cos θ ) ( sin θ ) μ + 1 ( cos θ ) ν + 1 d θ = z μ ζ ν J μ + ν + 1 ( ζ 2 + z 2 ) ( ζ 2 + z 2 ) 1 2 ( μ + ν + 1 ) superscript subscript 0 1 2 𝜋 Bessel-J 𝜇 𝑧 𝜃 Bessel-J 𝜈 𝜁 𝜃 superscript 𝜃 𝜇 1 superscript 𝜃 𝜈 1 𝜃 superscript 𝑧 𝜇 superscript 𝜁 𝜈 Bessel-J 𝜇 𝜈 1 superscript 𝜁 2 superscript 𝑧 2 superscript superscript 𝜁 2 superscript 𝑧 2 1 2 𝜇 𝜈 1 {\displaystyle{\displaystyle\int_{0}^{\frac{1}{2}\pi}J_{\mu}\left(z\sin\theta% \right)J_{\nu}\left(\zeta\cos\theta\right)(\sin\theta)^{\mu+1}(\cos\theta)^{% \nu+1}\mathrm{d}\theta=\frac{z^{\mu}\zeta^{\nu}J_{\mu+\nu+1}\left(\sqrt{\zeta^% {2}+z^{2}}\right)}{(\zeta^{2}+z^{2})^{\frac{1}{2}(\mu+\nu+1)}}}}
\int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin@@{\theta}}\BesselJ{\nu}@{\zeta\cos@@{\theta}}(\sin@@{\theta})^{\mu+1}(\cos@@{\theta})^{\nu+1}\diff{\theta} = \frac{z^{\mu}\zeta^{\nu}\BesselJ{\mu+\nu+1}@{\sqrt{\zeta^{2}+z^{2}}}}{(\zeta^{2}+z^{2})^{\frac{1}{2}(\mu+\nu+1)}}
μ > - 1 , ν > - 1 , ( ( μ ) + k + 1 ) > 0 , ( ν + k + 1 ) > 0 , ( ( μ + ν + 1 ) + k + 1 ) > 0 formulae-sequence 𝜇 1 formulae-sequence 𝜈 1 formulae-sequence 𝜇 𝑘 1 0 formulae-sequence 𝜈 𝑘 1 0 𝜇 𝜈 1 𝑘 1 0 {\displaystyle{\displaystyle\Re\mu>-1,\Re\nu>-1,\Re((\mu)+k+1)>0,\Re(\nu+k+1)>% 0,\Re((\mu+\nu+1)+k+1)>0}}
int(BesselJ(mu, z*sin(theta))*BesselJ(nu, zeta*cos(theta))*(sin(theta))^(mu + 1)*(cos(theta))^(nu + 1), theta = 0..(1)/(2)*Pi) = ((z)^(mu)* (zeta)^(nu)* BesselJ(mu + nu + 1, sqrt((zeta)^(2)+ (z)^(2))))/(((zeta)^(2)+ (z)^(2))^((1)/(2)*(mu + nu + 1)))
Integrate[BesselJ[\[Mu], z*Sin[\[Theta]]]*BesselJ[\[Nu], \[Zeta]*Cos[\[Theta]]]*(Sin[\[Theta]])^(\[Mu]+ 1)*(Cos[\[Theta]])^(\[Nu]+ 1), {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == Divide[(z)^\[Mu]* \[Zeta]^\[Nu]* BesselJ[\[Mu]+ \[Nu]+ 1, Sqrt[\[Zeta]^(2)+ (z)^(2)]],(\[Zeta]^(2)+ (z)^(2))^(Divide[1,2]*(\[Mu]+ \[Nu]+ 1))]
Error Aborted - Skipped - Because timed out
10.22.E27 0 x t J ν - 1 2 ( t ) d t = 2 k = 0 ( ν + 2 k ) J ν + 2 k 2 ( x ) superscript subscript 0 𝑥 𝑡 Bessel-J 𝜈 1 2 𝑡 𝑡 2 superscript subscript 𝑘 0 𝜈 2 𝑘 Bessel-J 𝜈 2 𝑘 2 𝑥 {\displaystyle{\displaystyle\int_{0}^{x}t{J_{\nu-1}^{2}}\left(t\right)\mathrm{% d}t=2\sum_{k=0}^{\infty}(\nu+2k){J_{\nu+2k}^{2}}\left(x\right)}}
\int_{0}^{x}t\BesselJ{\nu-1}^{2}@{t}\diff{t} = 2\sum_{k=0}^{\infty}(\nu+2k)\BesselJ{\nu+2k}^{2}@{x}
ν > 0 , ( ( ν - 1 ) + k + 1 ) > 0 , ( ( ν + 2 k ) + k + 1 ) > 0 formulae-sequence 𝜈 0 formulae-sequence 𝜈 1 𝑘 1 0 𝜈 2 𝑘 𝑘 1 0 {\displaystyle{\displaystyle\Re\nu>0,\Re((\nu-1)+k+1)>0,\Re((\nu+2k)+k+1)>0}}
int(t*(BesselJ(nu - 1, t))^(2), t = 0..x) = 2*sum((nu + 2*k)*(BesselJ(nu + 2*k, x))^(2), k = 0..infinity)
Integrate[t*(BesselJ[\[Nu]- 1, t])^(2), {t, 0, x}, GenerateConditions->None] == 2*Sum[(\[Nu]+ 2*k)*(BesselJ[\[Nu]+ 2*k, x])^(2), {k, 0, Infinity}, GenerateConditions->None]
Failure Successful Successful [Tested: 15] Successful [Tested: 15]
10.22.E28 0 x t ( J ν - 1 2 ( t ) - J ν + 1 2 ( t ) ) d t = 2 ν J ν 2 ( x ) superscript subscript 0 𝑥 𝑡 Bessel-J 𝜈 1 2 𝑡 Bessel-J 𝜈 1 2 𝑡 𝑡 2 𝜈 Bessel-J 𝜈 2 𝑥 {\displaystyle{\displaystyle\int_{0}^{x}t\left({J_{\nu-1}^{2}}\left(t\right)-{% J_{\nu+1}^{2}}\left(t\right)\right)\mathrm{d}t=2\nu{J_{\nu}^{2}}\left(x\right)}}
\int_{0}^{x}t\left(\BesselJ{\nu-1}^{2}@{t}-\BesselJ{\nu+1}^{2}@{t}\right)\diff{t} = 2\nu\BesselJ{\nu}^{2}@{x}
ν > 0 , ( ( ν - 1 ) + k + 1 ) > 0 , ( ( ν + 1 ) + k + 1 ) > 0 , ( ν + k + 1 ) > 0 formulae-sequence 𝜈 0 formulae-sequence 𝜈 1 𝑘 1 0 formulae-sequence 𝜈 1 𝑘 1 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re\nu>0,\Re((\nu-1)+k+1)>0,\Re((\nu+1)+k+1)>0,\Re% (\nu+k+1)>0}}
int(t*((BesselJ(nu - 1, t))^(2)- (BesselJ(nu + 1, t))^(2)), t = 0..x) = 2*nu*(BesselJ(nu, x))^(2)
Integrate[t*((BesselJ[\[Nu]- 1, t])^(2)- (BesselJ[\[Nu]+ 1, t])^(2)), {t, 0, x}, GenerateConditions->None] == 2*\[Nu]*(BesselJ[\[Nu], x])^(2)
Successful Successful - Successful [Tested: 15]
10.22.E29 0 x t J 0 2 ( t ) d t = 1 2 x 2 ( J 0 2 ( x ) + J 1 2 ( x ) ) superscript subscript 0 𝑥 𝑡 Bessel-J 0 2 𝑡 𝑡 1 2 superscript 𝑥 2 Bessel-J 0 2 𝑥 Bessel-J 1 2 𝑥 {\displaystyle{\displaystyle\int_{0}^{x}t{J_{0}^{2}}\left(t\right)\mathrm{d}t=% \tfrac{1}{2}x^{2}\left({J_{0}^{2}}\left(x\right)+{J_{1}^{2}}\left(x\right)% \right)}}
\int_{0}^{x}t\BesselJ{0}^{2}@{t}\diff{t} = \tfrac{1}{2}x^{2}\left(\BesselJ{0}^{2}@{x}+\BesselJ{1}^{2}@{x}\right)
( 0 + k + 1 ) > 0 , ( 1 + k + 1 ) > 0 formulae-sequence 0 𝑘 1 0 1 𝑘 1 0 {\displaystyle{\displaystyle\Re(0+k+1)>0,\Re(1+k+1)>0}}
int(t*(BesselJ(0, t))^(2), t = 0..x) = (1)/(2)*(x)^(2)*((BesselJ(0, x))^(2)+ (BesselJ(1, x))^(2))
Integrate[t*(BesselJ[0, t])^(2), {t, 0, x}, GenerateConditions->None] == Divide[1,2]*(x)^(2)*((BesselJ[0, x])^(2)+ (BesselJ[1, x])^(2))
Successful Successful - Successful [Tested: 3]
10.22.E30 0 x J n ( t ) J n + 1 ( t ) d t = 1 2 ( 1 - J 0 2 ( x ) ) - k = 1 n J k 2 ( x ) superscript subscript 0 𝑥 Bessel-J 𝑛 𝑡 Bessel-J 𝑛 1 𝑡 𝑡 1 2 1 Bessel-J 0 2 𝑥 superscript subscript 𝑘 1 𝑛 Bessel-J 𝑘 2 𝑥 {\displaystyle{\displaystyle\int_{0}^{x}J_{n}\left(t\right)J_{n+1}\left(t% \right)\mathrm{d}t=\tfrac{1}{2}\left(1-{J_{0}^{2}}\left(x\right)\right)-\sum_{% k=1}^{n}{J_{k}^{2}}\left(x\right)}}
\int_{0}^{x}\BesselJ{n}@{t}\BesselJ{n+1}@{t}\diff{t} = \tfrac{1}{2}\left(1-\BesselJ{0}^{2}@{x}\right)-\sum_{k=1}^{n}\BesselJ{k}^{2}@{x}
( n + k + 1 ) > 0 , ( ( n + 1 ) + k + 1 ) > 0 , ( 0 + k + 1 ) > 0 , ( k + k + 1 ) > 0 formulae-sequence 𝑛 𝑘 1 0 formulae-sequence 𝑛 1 𝑘 1 0 formulae-sequence 0 𝑘 1 0 𝑘 𝑘 1 0 {\displaystyle{\displaystyle\Re(n+k+1)>0,\Re((n+1)+k+1)>0,\Re(0+k+1)>0,\Re(k+k% +1)>0}}
int(BesselJ(n, t)*BesselJ(n + 1, t), t = 0..x) = (1)/(2)*(1 - (BesselJ(0, x))^(2))- sum((BesselJ(k, x))^(2), k = 1..n)
Integrate[BesselJ[n, t]*BesselJ[n + 1, t], {t, 0, x}, GenerateConditions->None] == Divide[1,2]*(1 - (BesselJ[0, x])^(2))- Sum[(BesselJ[k, x])^(2), {k, 1, n}, GenerateConditions->None]
Failure Aborted Successful [Tested: 3]
Failed [2 / 3]
Result: Plus[-0.6308420033135872, DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[Plus[2, ], Power[1.5, 2], []], Times[Plus[-8, Times[-20, ], Times[-16, Power[, 2]], Times[-4, Power[, 3]], Times[-1, Power[1.5, 2]]], [Plus[1, ]]], Times[Plus[3, Times[2, ]], Plus[8, Times[12, ], Times[4, Power[, 2]], Times[-1, Power[1.5, 2]]], [Plus[2, ]]], Times[Plus[-16, Times[-32, ], Times[-20, Power[, 2]], Times[-4, Power[, 3]], Power[1.5, 2]], [Plus[3, ]]], Times[Plus[1, ], Power[1.5, 2], [Plus[4, ]]]], 0], Equal[[0], 0], Equal[[1], Power[BesselJ[0, 1.5], 2]], Equal[[2], Plus[Power[BesselJ[0, 1.5], 2], Power[BesselJ[1, 1.5], 2]]], Equal[[3], Plus[Power[BesselJ[0, 1.5], 2], Power[BesselJ[1, 1.5], 2], Times[Power[1.5, -2], Power[Plus[Times[-1, 1.5, BesselJ[0, 1.5]], Times[2, BesselJ[1, 1.5]]], 2]]]]}]][4.0]], {Rule[n, 3], Rule[x, 1.5]}

Result: Plus[-0.9403627636501156, DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[Plus[2, ], Power[0.5, 2], []], Times[Plus[-8, Times[-20, ], Times[-16, Power[, 2]], Times[-4, Power[, 3]], Times[-1, Power[0.5, 2]]], [Plus[1, ]]], Times[Plus[3, Times[2, ]], Plus[8, Times[12, ], Times[4, Power[, 2]], Times[-1, Power[0.5, 2]]], [Plus[2, ]]], Times[Plus[-16, Times[-32, ], Times[-20, Power[, 2]], Times[-4, Power[, 3]], Power[0.5, 2]], [Plus[3, ]]], Times[Plus[1, ], Power[0.5, 2], [Plus[4, ]]]], 0], Equal[[0], 0], Equal[[1], Power[BesselJ[0, 0.5], 2]], Equal[[2], Plus[Power[BesselJ[0, 0.5], 2], Power[BesselJ[1, 0.5], 2]]], Equal[[3], Plus[Power[BesselJ[0, 0.5], 2], Power[BesselJ[1, 0.5], 2], Times[Power[0.5, -2], Power[Plus[Times[-1, 0.5, BesselJ[0, 0.5]], Times[2, BesselJ[1, 0.5]]], 2]]]]}]][4.0]], {Rule[n, 3], Rule[x, 0.5]}

10.22.E30 1 2 ( 1 - J 0 2 ( x ) ) - k = 1 n J k 2 ( x ) = k = n + 1 J k 2 ( x ) 1 2 1 Bessel-J 0 2 𝑥 superscript subscript 𝑘 1 𝑛 Bessel-J 𝑘 2 𝑥 superscript subscript 𝑘 𝑛 1 Bessel-J 𝑘 2 𝑥 {\displaystyle{\displaystyle\tfrac{1}{2}\left(1-{J_{0}^{2}}\left(x\right)% \right)-\sum_{k=1}^{n}{J_{k}^{2}}\left(x\right)=\sum_{k=n+1}^{\infty}{J_{k}^{2% }}\left(x\right)}}
\tfrac{1}{2}\left(1-\BesselJ{0}^{2}@{x}\right)-\sum_{k=1}^{n}\BesselJ{k}^{2}@{x} = \sum_{k=n+1}^{\infty}\BesselJ{k}^{2}@{x}
( n + k + 1 ) > 0 , ( ( n + 1 ) + k + 1 ) > 0 , ( 0 + k + 1 ) > 0 , ( k + k + 1 ) > 0 formulae-sequence 𝑛 𝑘 1 0 formulae-sequence 𝑛 1 𝑘 1 0 formulae-sequence 0 𝑘 1 0 𝑘 𝑘 1 0 {\displaystyle{\displaystyle\Re(n+k+1)>0,\Re((n+1)+k+1)>0,\Re(0+k+1)>0,\Re(k+k% +1)>0}}
(1)/(2)*(1 - (BesselJ(0, x))^(2))- sum((BesselJ(k, x))^(2), k = 1..n) = sum((BesselJ(k, x))^(2), k = n + 1..infinity)
Divide[1,2]*(1 - (BesselJ[0, x])^(2))- Sum[(BesselJ[k, x])^(2), {k, 1, n}, GenerateConditions->None] == Sum[(BesselJ[k, x])^(2), {k, n + 1, Infinity}, GenerateConditions->None]
Failure Failure Successful [Tested: 3]
Failed [3 / 3]
Result: Plus[0.6309837827773054, Times[-1.0, NSum[Power[BesselJ[k, 1.5], 2]
Test Values: {k, 4, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], Times[-1.0, DifferenceRoot[Function[{, }, {Equal[Plus[Times[Plus[2, ], Power[1.5, 2], []], Times[Plus[-8, Times[-20, ], Times[-16, Power[, 2]], Times[-4, Power[, 3]], Times[-1, Power[1.5, 2]]], [Plus[1, ]]], Times[Plus[3, Times[2, ]], Plus[8, Times[12, ], Times[4, Power[, 2]], Times[-1, Power[1.5, 2]]], [Plus[2, ]]], Times[Plus[-16, Times[-32, ], Times[-20, Power[, 2]], Times[-4, Power[, 3]], Power[1.5, 2]], [Plus[3, ]]], Times[Plus[1, ], Power[1.5, 2], [Plus[4, ]]]], 0], Equal[[0], 0], Equal[[1], Power[BesselJ[0, 1.5], 2]], Equal[[2], Plus[Power[BesselJ[0, 1.5], 2], Power[BesselJ[1, 1.5], 2]]], Equal[[3], Plus[Power[BesselJ[0, 1.5], 2], Power[BesselJ[1, 1.5], 2], Times[Power[1.5, -2], Power[Plus[Times[-1, 1.5, BesselJ[0, 1.5]], Times[2, BesselJ[1, 1.5]]], 2]]]]}]][4.0]]], {Ru<syntaxhighlight lang=mathematica>Result: Plus[0.9403627895513045, Times[-1.0, NSum[Power[BesselJ[k, 0.5], 2]
Test Values: {k, 4, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], Times[-1.0, DifferenceRoot[Function[{, }, {Equal[Plus[Times[Plus[2, ], Power[0.5, 2], []], Times[Plus[-8, Times[-20, ], Times[-16, Power[, 2]], Times[-4, Power[, 3]], Times[-1, Power[0.5, 2]]], [Plus[1, ]]], Times[Plus[3, Times[2, ]], Plus[8, Times[12, ], Times[4, Power[, 2]], Times[-1, Power[0.5, 2]]], [Plus[2, ]]], Times[Plus[-16, Times[-32, ], Times[-20, Power[, 2]], Times[-4, Power[, 3]], Power[0.5, 2]], [Plus[3, ]]], Times[Plus[1, ], Power[0.5, 2], [Plus[4, ]]]], 0], Equal[[0], 0], Equal[[1], Power[BesselJ[0, 0.5], 2]], Equal[[2], Plus[Power[BesselJ[0, 0.5], 2], Power[BesselJ[1, 0.5], 2]]], Equal[[3], Plus[Power[BesselJ[0, 0.5], 2], Power[BesselJ[1, 0.5], 2], Times[Power[0.5, -2], Power[Plus[Times[-1, 0.5, BesselJ[0, 0.5]], Times[2, BesselJ[1, 0.5]]], 2]]]]}]][4.0]]], {Rule[n, 3], Rule[x, 0.5]}

... skip entries to safe data
10.22.E31 0 x J μ ( t ) J ν ( x - t ) d t = 2 k = 0 ( - 1 ) k J μ + ν + 2 k + 1 ( x ) superscript subscript 0 𝑥 Bessel-J 𝜇 𝑡 Bessel-J 𝜈 𝑥 𝑡 𝑡 2 superscript subscript 𝑘 0 superscript 1 𝑘 Bessel-J 𝜇 𝜈 2 𝑘 1 𝑥 {\displaystyle{\displaystyle\int_{0}^{x}J_{\mu}\left(t\right)J_{\nu}\left(x-t% \right)\mathrm{d}t=2\sum_{k=0}^{\infty}(-1)^{k}J_{\mu+\nu+2k+1}\left(x\right)}}
\int_{0}^{x}\BesselJ{\mu}@{t}\BesselJ{\nu}@{x-t}\diff{t} = 2\sum_{k=0}^{\infty}(-1)^{k}\BesselJ{\mu+\nu+2k+1}@{x}
μ > - 1 , ν > - 1 , ( ( μ ) + k + 1 ) > 0 , ( ν + k + 1 ) > 0 , ( ( μ + ν + 2 k + 1 ) + k + 1 ) > 0 formulae-sequence 𝜇 1 formulae-sequence 𝜈 1 formulae-sequence 𝜇 𝑘 1 0 formulae-sequence 𝜈 𝑘 1 0 𝜇 𝜈 2 𝑘 1 𝑘 1 0 {\displaystyle{\displaystyle\Re\mu>-1,\Re\nu>-1,\Re((\mu)+k+1)>0,\Re(\nu+k+1)>% 0,\Re((\mu+\nu+2k+1)+k+1)>0}}
int(BesselJ(mu, t)*BesselJ(nu, x - t), t = 0..x) = 2*sum((- 1)^(k)* BesselJ(mu + nu + 2*k + 1, x), k = 0..infinity)
Integrate[BesselJ[\[Mu], t]*BesselJ[\[Nu], x - t], {t, 0, x}, GenerateConditions->None] == 2*Sum[(- 1)^(k)* BesselJ[\[Mu]+ \[Nu]+ 2*k + 1, x], {k, 0, Infinity}, GenerateConditions->None]
Error Failure - Skip - No test values generated
10.22.E32 0 x J ν ( t ) J 1 - ν ( x - t ) d t = J 0 ( x ) - cos x superscript subscript 0 𝑥 Bessel-J 𝜈 𝑡 Bessel-J 1 𝜈 𝑥 𝑡 𝑡 Bessel-J 0 𝑥 𝑥 {\displaystyle{\displaystyle\int_{0}^{x}J_{\nu}\left(t\right)J_{1-\nu}\left(x-% t\right)\mathrm{d}t=J_{0}\left(x\right)-\cos x}}
\int_{0}^{x}\BesselJ{\nu}@{t}\BesselJ{1-\nu}@{x-t}\diff{t} = \BesselJ{0}@{x}-\cos@@{x}
- 1 < ν , ν < 2 , ( ν + k + 1 ) > 0 , ( ( 1 - ν ) + k + 1 ) > 0 , ( 0 + k + 1 ) > 0 formulae-sequence 1 𝜈 formulae-sequence 𝜈 2 formulae-sequence 𝜈 𝑘 1 0 formulae-sequence 1 𝜈 𝑘 1 0 0 𝑘 1 0 {\displaystyle{\displaystyle-1<\Re\nu,\Re\nu<2,\Re(\nu+k+1)>0,\Re((1-\nu)+k+1)% >0,\Re(0+k+1)>0}}
int(BesselJ(nu, t)*BesselJ(1 - nu, x - t), t = 0..x) = BesselJ(0, x)- cos(x)
Integrate[BesselJ[\[Nu], t]*BesselJ[1 - \[Nu], x - t], {t, 0, x}, GenerateConditions->None] == BesselJ[0, x]- Cos[x]
Failure Failure Manual Skip! Skipped - Because timed out
10.22.E33 0 x J ν ( t ) J - ν ( x - t ) d t = sin x superscript subscript 0 𝑥 Bessel-J 𝜈 𝑡 Bessel-J 𝜈 𝑥 𝑡 𝑡 𝑥 {\displaystyle{\displaystyle\int_{0}^{x}J_{\nu}\left(t\right)J_{-\nu}\left(x-t% \right)\mathrm{d}t=\sin x}}
\int_{0}^{x}\BesselJ{\nu}@{t}\BesselJ{-\nu}@{x-t}\diff{t} = \sin@@{x}
| ν | < 1 , ( ν + k + 1 ) > 0 , ( ( - ν ) + k + 1 ) > 0 formulae-sequence 𝜈 1 formulae-sequence 𝜈 𝑘 1 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle|\Re\nu|<1,\Re(\nu+k+1)>0,\Re((-\nu)+k+1)>0}}
int(BesselJ(nu, t)*BesselJ(- nu, x - t), t = 0..x) = sin(x)
Integrate[BesselJ[\[Nu], t]*BesselJ[- \[Nu], x - t], {t, 0, x}, GenerateConditions->None] == Sin[x]
Failure Failure Manual Skip! Skipped - Because timed out
10.22.E34 0 x t - 1 J μ ( t ) J ν ( x - t ) d t = J μ + ν ( x ) μ superscript subscript 0 𝑥 superscript 𝑡 1 Bessel-J 𝜇 𝑡 Bessel-J 𝜈 𝑥 𝑡 𝑡 Bessel-J 𝜇 𝜈 𝑥 𝜇 {\displaystyle{\displaystyle\int_{0}^{x}t^{-1}J_{\mu}\left(t\right)J_{\nu}% \left(x-t\right)\mathrm{d}t=\frac{J_{\mu+\nu}\left(x\right)}{\mu}}}
\int_{0}^{x}t^{-1}\BesselJ{\mu}@{t}\BesselJ{\nu}@{x-t}\diff{t} = \frac{\BesselJ{\mu+\nu}@{x}}{\mu}
μ > 0 , ν > - 1 , ( ( μ ) + k + 1 ) > 0 , ( ν + k + 1 ) > 0 , ( ( μ + ν ) + k + 1 ) > 0 formulae-sequence 𝜇 0 formulae-sequence 𝜈 1 formulae-sequence 𝜇 𝑘 1 0 formulae-sequence 𝜈 𝑘 1 0 𝜇 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re\mu>0,\Re\nu>-1,\Re((\mu)+k+1)>0,\Re(\nu+k+1)>0% ,\Re((\mu+\nu)+k+1)>0}}
int((t)^(- 1)* BesselJ(mu, t)*BesselJ(nu, x - t), t = 0..x) = (BesselJ(mu + nu, x))/(mu)
Integrate[(t)^(- 1)* BesselJ[\[Mu], t]*BesselJ[\[Nu], x - t], {t, 0, x}, GenerateConditions->None] == Divide[BesselJ[\[Mu]+ \[Nu], x],\[Mu]]
Failure Failure Manual Skip! Skip - No test values generated
10.22.E35 0 x J μ ( t ) J ν ( x - t ) d t t ( x - t ) = ( μ + ν ) J μ + ν ( x ) μ ν x superscript subscript 0 𝑥 Bessel-J 𝜇 𝑡 Bessel-J 𝜈 𝑥 𝑡 𝑡 𝑡 𝑥 𝑡 𝜇 𝜈 Bessel-J 𝜇 𝜈 𝑥 𝜇 𝜈 𝑥 {\displaystyle{\displaystyle\int_{0}^{x}\frac{J_{\mu}\left(t\right)J_{\nu}% \left(x-t\right)\mathrm{d}t}{t(x-t)}=\frac{(\mu+\nu)J_{\mu+\nu}\left(x\right)}% {\mu\nu x}}}
\int_{0}^{x}\frac{\BesselJ{\mu}@{t}\BesselJ{\nu}@{x-t}\diff{t}}{t(x-t)} = \frac{(\mu+\nu)\BesselJ{\mu+\nu}@{x}}{\mu\nu x}
μ > 0 , ν > 0 , ( ( μ ) + k + 1 ) > 0 , ( ν + k + 1 ) > 0 , ( ( μ + ν ) + k + 1 ) > 0 formulae-sequence 𝜇 0 formulae-sequence 𝜈 0 formulae-sequence 𝜇 𝑘 1 0 formulae-sequence 𝜈 𝑘 1 0 𝜇 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re\mu>0,\Re\nu>0,\Re((\mu)+k+1)>0,\Re(\nu+k+1)>0,% \Re((\mu+\nu)+k+1)>0}}
int((BesselJ(mu, t)*BesselJ(nu, x - t))/(t*(x - t)), t = 0..x) = ((mu + nu)*BesselJ(mu + nu, x))/(mu*nu*x)
Integrate[Divide[BesselJ[\[Mu], t]*BesselJ[\[Nu], x - t],t*(x - t)], {t, 0, x}, GenerateConditions->None] == Divide[(\[Mu]+ \[Nu])*BesselJ[\[Mu]+ \[Nu], x],\[Mu]*\[Nu]*x]
Error Failure - Skip - No test values generated
10.22.E36 1 Γ ( α ) 0 x ( x - t ) α - 1 J ν ( t ) d t = 2 α k = 0 ( α ) k k ! J ν + α + 2 k ( x ) 1 Euler-Gamma 𝛼 superscript subscript 0 𝑥 superscript 𝑥 𝑡 𝛼 1 Bessel-J 𝜈 𝑡 𝑡 superscript 2 𝛼 superscript subscript 𝑘 0 subscript 𝛼 𝑘 𝑘 Bessel-J 𝜈 𝛼 2 𝑘 𝑥 {\displaystyle{\displaystyle\frac{1}{\Gamma\left(\alpha\right)}\int_{0}^{x}(x-% t)^{\alpha-1}J_{\nu}\left(t\right)\mathrm{d}t=2^{\alpha}\sum_{k=0}^{\infty}% \frac{(\alpha)_{k}}{k!}J_{\nu+\alpha+2k}\left(x\right)}}
\frac{1}{\EulerGamma@{\alpha}}\int_{0}^{x}(x-t)^{\alpha-1}\BesselJ{\nu}@{t}\diff{t} = 2^{\alpha}\sum_{k=0}^{\infty}\frac{(\alpha)_{k}}{k!}\BesselJ{\nu+\alpha+2k}@{x}
α > 0 , ν 0 , ( ν + k + 1 ) > 0 , ( ( ν + α + 2 k ) + k + 1 ) > 0 , ( α ) > 0 formulae-sequence 𝛼 0 formulae-sequence 𝜈 0 formulae-sequence 𝜈 𝑘 1 0 formulae-sequence 𝜈 𝛼 2 𝑘 𝑘 1 0 𝛼 0 {\displaystyle{\displaystyle\Re\alpha>0,\Re\nu\geq 0,\Re(\nu+k+1)>0,\Re((\nu+% \alpha+2k)+k+1)>0,\Re(\alpha)>0}}
(1)/(GAMMA(alpha))*int((x - t)^(alpha - 1)* BesselJ(nu, t), t = 0..x) = (2)^(alpha)* sum((alpha[k])/(factorial(k))*BesselJ(nu + alpha + 2*k, x), k = 0..infinity)
Divide[1,Gamma[\[Alpha]]]*Integrate[(x - t)^(\[Alpha]- 1)* BesselJ[\[Nu], t], {t, 0, x}, GenerateConditions->None] == (2)^\[Alpha]* Sum[Divide[Subscript[\[Alpha], k],(k)!]*BesselJ[\[Nu]+ \[Alpha]+ 2*k, x], {k, 0, Infinity}, GenerateConditions->None]
Error Failure - Skip - No test values generated
10.22.E37 0 1 t J ν ( j ν , t ) J ν ( j ν , m t ) d t = 1 2 ( J ν ( j ν , ) ) 2 δ , m superscript subscript 0 1 𝑡 Bessel-J 𝜈 subscript 𝑗 𝜈 𝑡 Bessel-J 𝜈 subscript 𝑗 𝜈 𝑚 𝑡 𝑡 1 2 superscript diffop Bessel-J 𝜈 1 subscript 𝑗 𝜈 2 Kronecker 𝑚 {\displaystyle{\displaystyle\int_{0}^{1}tJ_{\nu}\left(j_{\nu,\ell}t\right)J_{% \nu}\left(j_{\nu,m}t\right)\mathrm{d}t=\tfrac{1}{2}\left(J_{\nu}'\left(j_{\nu,% \ell}\right)\right)^{2}\delta_{\ell,m}}}
\int_{0}^{1}t\BesselJ{\nu}@{j_{\nu,\ell}t}\BesselJ{\nu}@{j_{\nu,m}t}\diff{t} = \tfrac{1}{2}\left(\BesselJ{\nu}'@{j_{\nu,\ell}}\right)^{2}\Kroneckerdelta{\ell}{m}
( ν + k + 1 ) > 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0}}
int(t*BesselJ(nu, j[nu , ell]*t)*BesselJ(nu, j[nu , m]*t), t = 0..1) = (1)/(2)*(diff( BesselJ(nu, j[nu , ell]), j[nu , ell]$(1) ))^(2)* KroneckerDelta[ell, m]
Integrate[t*BesselJ[\[Nu], Subscript[j, \[Nu], \[ScriptL]]*t]*BesselJ[\[Nu], Subscript[j, \[Nu], m]*t], {t, 0, 1}, GenerateConditions->None] == Divide[1,2]*(D[BesselJ[\[Nu], Subscript[j, \[Nu], \[ScriptL]]], {Subscript[j, \[Nu], \[ScriptL]], 1}])^(2)* KroneckerDelta[\[ScriptL], m]
Failure Failure Error
Failed [300 / 300]
Result: Indeterminate
Test Values: {Rule[m, 1], Rule[ℓ, 1], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[j, ν, m], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[j, ν, ℓ], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Indeterminate
Test Values: {Rule[m, 1], Rule[ℓ, 2], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[j, ν, m], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[j, ν, ℓ], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data