DLMF:18.17.E7 (Q5748): Difference between revisions

From testwiki
Jump to navigation Jump to search
imported>Admin
imported>Admin
Property / Symbols used
 
Property / Symbols used: Q11596 / rank
 
Normal rank
Property / Symbols used: Q11596 / qualifier
 
test:

𝖰 ν ( x ) = 𝖰 ν 0 ( x ) shorthand-Ferrers-Legendre-Q-first-kind 𝜈 𝑥 Ferrers-Legendre-Q-first-kind 0 𝜈 𝑥 {\displaystyle{\displaystyle\mathsf{Q}_{\NVar{\nu}}\left(\NVar{x}\right)=% \mathsf{Q}^{0}_{\nu}\left(x\right)}}

\FerrersQ[]{\NVar{\nu}}@{\NVar{x}}=\FerrersQ[0]{\nu}@{x}
Property / Symbols used: Q11596 / qualifier
 
xml-id: C14.S2.SS2.p2.m4adec

Revision as of 14:45, 2 January 2020

No description defined
Language Label Description Also known as
English
DLMF:18.17.E7
No description defined

    Statements

    ( P n ( x ) ) 2 + 4 π - 2 ( 𝖰 n ( x ) ) 2 = 4 π - 2 1 Q n ( x 2 + ( 1 - x 2 ) t ) ( t 2 - 1 ) - 1 2 d t , superscript Legendre-spherical-polynomial 𝑛 𝑥 2 4 superscript 𝜋 2 superscript shorthand-Ferrers-Legendre-Q-first-kind 𝑛 𝑥 2 4 superscript 𝜋 2 superscript subscript 1 shorthand-Legendre-Q-second-kind 𝑛 superscript 𝑥 2 1 superscript 𝑥 2 𝑡 superscript superscript 𝑡 2 1 1 2 𝑡 {\displaystyle{\displaystyle\left(P_{n}\left(x\right)\right)^{2}+4\pi^{-2}% \left(\mathsf{Q}_{n}\left(x\right)\right)^{2}=4\pi^{-2}\*\int_{1}^{\infty}Q_{n% }\left(x^{2}+(1-x^{2})t\right)(t^{2}-1)^{-\frac{1}{2}}\mathrm{d}t,}}
    0 references
    0 references
    - 1 < x < 1 1 𝑥 1 {\displaystyle{\displaystyle-1<x<1}}
    0 references
    P n ( x ) Legendre-spherical-polynomial 𝑛 𝑥 {\displaystyle{\displaystyle P_{\NVar{n}}\left(\NVar{x}\right)}}
    C18.S3.T1.t1.r10.m2aadec
    0 references
    π {\displaystyle{\displaystyle\pi}}
    C3.S12.E1.m2abdec
    0 references
    d x 𝑥 {\displaystyle{\displaystyle\mathrm{d}\NVar{x}}}
    C1.S4.SS4.m1afdec
    0 references
    {\displaystyle{\displaystyle\int}}
    C1.S4.SS4.m3afdec
    0 references
    𝖰 ν ( x ) = 𝖰 ν 0 ( x ) shorthand-Ferrers-Legendre-Q-first-kind 𝜈 𝑥 Ferrers-Legendre-Q-first-kind 0 𝜈 𝑥 {\displaystyle{\displaystyle\mathsf{Q}_{\NVar{\nu}}\left(\NVar{x}\right)=% \mathsf{Q}^{0}_{\nu}\left(x\right)}}
    C14.S2.SS2.p2.m4adec
    0 references