DLMF:18.11.E2 (Q5636): Difference between revisions
Jump to navigation
Jump to search
imported>Admin Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
imported>Admin Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
||
Property / Symbols used | |||
Property / Symbols used: Q10755 / rank | |||
Normal rank | |||
Property / Symbols used: Q10755 / qualifier | |||
test: Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle !}! | |||
Property / Symbols used: Q10755 / qualifier | |||
xml-id: introduction.Sx4.p1.t1.r15.m5adec |
Revision as of 15:29, 2 January 2020
No description defined
Language | Label | Description | Also known as |
---|---|---|---|
English | DLMF:18.11.E2 |
No description defined |
Statements
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \LaguerrepolyL[\alpha]{n}@{x}=\frac{\Pochhammersym{\alpha+1}{n}}{n!}\KummerconfhyperM@{-n}{\alpha+1}{x}=\frac{(-1)^{n}}{n!}\KummerconfhyperU@{-n}{\alpha+1}{x}=\frac{\Pochhammersym{\alpha+1}{n}}{n!}x^{-\frac{1}{2}(\alpha+1)}e^{\frac{1}{2}x}\WhittakerconfhyperM{n+\frac{1}{2}(\alpha+1)}{\frac{1}{2}\alpha}@{x}=\frac{(-1)^{n}}{n!}x^{-\frac{1}{2}(\alpha+1)}e^{\frac{1}{2}x}\WhittakerconfhyperW{n+\frac{1}{2}(\alpha+1)}{\frac{1}{2}\alpha}@{x}.}
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references