DLMF:18.11.E2 (Q5636): Difference between revisions
		
		
		
		Jump to navigation
		Jump to search
		
imported>Admin  Admin moved page Main Page to Verifying DLMF with Maple and Mathematica  | 
				imported>Admin  Admin moved page Main Page to Verifying DLMF with Maple and Mathematica  | 
				||
| Property / Symbols used | |||
| Property / Symbols used: Whittaker confluent hypergeometric function / rank | |||
Normal rank  | |||
| Property / Symbols used: Whittaker confluent hypergeometric function / qualifier | |||
test:  Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerconfhyperM{\NVar{\kappa}}{\NVar{\mu}}@{\NVar{z}}}\WhittakerconfhyperM{\NVar{\kappa}}{\NVar{\mu}}@{\NVar{z}} | |||
| Property / Symbols used: Whittaker confluent hypergeometric function / qualifier | |||
xml-id: C13.S14.E2.m2adec  | |||
Revision as of 14:29, 2 January 2020
No description defined
| Language | Label | Description | Also known as | 
|---|---|---|---|
| English | DLMF:18.11.E2  | 
No description defined  | 
Statements
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \LaguerrepolyL[\alpha]{n}@{x}=\frac{\Pochhammersym{\alpha+1}{n}}{n!}\KummerconfhyperM@{-n}{\alpha+1}{x}=\frac{(-1)^{n}}{n!}\KummerconfhyperU@{-n}{\alpha+1}{x}=\frac{\Pochhammersym{\alpha+1}{n}}{n!}x^{-\frac{1}{2}(\alpha+1)}e^{\frac{1}{2}x}\WhittakerconfhyperM{n+\frac{1}{2}(\alpha+1)}{\frac{1}{2}\alpha}@{x}=\frac{(-1)^{n}}{n!}x^{-\frac{1}{2}(\alpha+1)}e^{\frac{1}{2}x}\WhittakerconfhyperW{n+\frac{1}{2}(\alpha+1)}{\frac{1}{2}\alpha}@{x}.}
0 references
0 references
0 references
0 references
0 references
0 references