DLMF:18.9.E18 (Q5614): Difference between revisions
Jump to navigation
Jump to search
imported>Admin Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
imported>Admin Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
||
Property / Symbols used | |||
Property / Symbols used: Q11660 / rank | |||
Normal rank | |||
Property / Symbols used: Q11660 / qualifier | |||
test: Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \JacobipolyP{\NVar{\alpha}}{\NVar{\beta}}{\NVar{n}}@{\NVar{x}}}\JacobipolyP{\NVar{\alpha}}{\NVar{\beta}}{\NVar{n}}@{\NVar{x}} | |||
Property / Symbols used: Q11660 / qualifier | |||
xml-id: C18.S3.T1.t1.r2.m2agdec |
Revision as of 15:24, 2 January 2020
No description defined
Language | Label | Description | Also known as |
---|---|---|---|
English | DLMF:18.9.E18 |
No description defined |
Statements
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (2n+\alpha+\beta+2)(1-x^{2})\deriv{}{x}\JacobipolyP{\alpha}{\beta}{n}@{x}=(n+\alpha+\beta+1)\left(\alpha-\beta+(2n+\alpha+\beta+2)x\right)\JacobipolyP{\alpha}{\beta}{n}@{x}-2(n+1)(n+\alpha+\beta+1)\JacobipolyP{\alpha}{\beta}{n+1}@{x}.}
0 references