DLMF:16.5.E2 (Q5213): Difference between revisions

From testwiki
Jump to navigation Jump to search
imported>Admin
imported>Admin
Property / Symbols used
 
Property / Symbols used: Q10770 / rank
 
Normal rank
Property / Symbols used: Q10770 / qualifier
 
test:

d x 𝑥 {\displaystyle{\displaystyle\mathrm{d}\NVar{x}}}

\diff{\NVar{x}}
Property / Symbols used: Q10770 / qualifier
 
xml-id: C1.S4.SS4.m1aadec

Revision as of 13:33, 2 January 2020

No description defined
Language Label Description Also known as
English
DLMF:16.5.E2
No description defined

    Statements

    F q + 1 p + 1 ( a 0 , , a p b 0 , , b q ; z ) = Γ ( b 0 ) Γ ( a 0 ) Γ ( b 0 - a 0 ) 0 1 t a 0 - 1 ( 1 - t ) b 0 - a 0 - 1 F q p ( a 1 , , a p b 1 , , b q ; z t ) d t , Gauss-hypergeometric-pFq 𝑝 1 𝑞 1 subscript 𝑎 0 subscript 𝑎 𝑝 subscript 𝑏 0 subscript 𝑏 𝑞 𝑧 Euler-Gamma subscript 𝑏 0 Euler-Gamma subscript 𝑎 0 Euler-Gamma subscript 𝑏 0 subscript 𝑎 0 superscript subscript 0 1 superscript 𝑡 subscript 𝑎 0 1 superscript 1 𝑡 subscript 𝑏 0 subscript 𝑎 0 1 Gauss-hypergeometric-pFq 𝑝 𝑞 subscript 𝑎 1 subscript 𝑎 𝑝 subscript 𝑏 1 subscript 𝑏 𝑞 𝑧 𝑡 𝑡 {\displaystyle{\displaystyle{{}_{p+1}F_{q+1}}\left({a_{0},\dots,a_{p}\atop b_{% 0},\dots,b_{q}};z\right)=\frac{\Gamma\left(b_{0}\right)}{\Gamma\left(a_{0}% \right)\Gamma\left(b_{0}-a_{0}\right)}\int_{0}^{1}t^{a_{0}-1}(1-t)^{b_{0}-a_{0% }-1}{{}_{p}F_{q}}\left({a_{1},\dots,a_{p}\atop b_{1},\dots,b_{q}};zt\right)% \mathrm{d}t,}}
    0 references
    0 references
    b 0 > a 0 > 0 subscript 𝑏 0 subscript 𝑎 0 0 {\displaystyle{\displaystyle\Re b_{0}>\Re a_{0}>0}}
    0 references
    Γ ( z ) Euler-Gamma 𝑧 {\displaystyle{\displaystyle\Gamma\left(\NVar{z}\right)}}
    C5.S2.E1.m2aadec
    0 references
    F q p ( a 1 , , a p ; b 1 , , b q ; z ) Gauss-hypergeometric-pFq 𝑝 𝑞 subscript 𝑎 1 subscript 𝑎 𝑝 subscript 𝑏 1 subscript 𝑏 𝑞 𝑧 {\displaystyle{\displaystyle{{}_{\NVar{p}}F_{\NVar{q}}}\left(\NVar{a_{1},\dots% ,a_{p}};\NVar{b_{1},\dots,b_{q}};\NVar{z}\right)}}
    C16.S2.m1aadec
    0 references
    d x 𝑥 {\displaystyle{\displaystyle\mathrm{d}\NVar{x}}}
    C1.S4.SS4.m1aadec
    0 references