DLMF:15.6.E9 (Q5047): Difference between revisions

From testwiki
Jump to navigation Jump to search
imported>Admin
 
imported>Admin
Property / constraint
 

| ph ( 1 - z ) | < π phase 1 𝑧 {\displaystyle{\displaystyle|\operatorname{ph}\left(1-z\right)|<\pi}}

|\phase@{1-z}|<\cpi
Property / constraint: | ph ( 1 - z ) | < π phase 1 𝑧 {\displaystyle{\displaystyle|\operatorname{ph}\left(1-z\right)|<\pi}} / rank
 
Normal rank

Revision as of 16:55, 30 December 2019

No description defined
Language Label Description Also known as
English
DLMF:15.6.E9
No description defined

    Statements

    𝐅 ( a , b ; c ; z ) = 0 1 t d - 1 ( 1 - t ) c - d - 1 ( 1 - z t ) a + b - λ 𝐅 ( λ - a , λ - b d ; z t ) 𝐅 ( a + b - λ , λ - d c - d ; ( 1 - t ) z 1 - z t ) d t , scaled-hypergeometric-bold-F 𝑎 𝑏 𝑐 𝑧 superscript subscript 0 1 superscript 𝑡 𝑑 1 superscript 1 𝑡 𝑐 𝑑 1 superscript 1 𝑧 𝑡 𝑎 𝑏 𝜆 scaled-hypergeometric-bold-F 𝜆 𝑎 𝜆 𝑏 𝑑 𝑧 𝑡 scaled-hypergeometric-bold-F 𝑎 𝑏 𝜆 𝜆 𝑑 𝑐 𝑑 1 𝑡 𝑧 1 𝑧 𝑡 𝑡 {\displaystyle{\displaystyle\mathbf{F}\left(a,b;c;z\right)=\int_{0}^{1}\frac{t% ^{d-1}(1-t)^{c-d-1}}{(1-zt)^{a+b-\lambda}}\mathbf{F}\left({\lambda-a,\lambda-b% \atop d};zt\right)\mathbf{F}\left({a+b-\lambda,\lambda-d\atop c-d};\frac{(1-t)% z}{1-zt}\right)\mathrm{d}t,}}
    0 references
    0 references
    | ph ( 1 - z ) | < π phase 1 𝑧 {\displaystyle{\displaystyle|\operatorname{ph}\left(1-z\right)|<\pi}}
    0 references