Results of Elementary Functions I: Difference between revisions
Jump to navigation
Jump to search
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
||
Line 1: | Line 1: | ||
<div style="width: 100%; height: 75vh; overflow: auto;"> | |||
{| class="wikitable sortable" style="margin: 0;" | |||
|- | |||
! scope="col" style="position: sticky; top: 0;" | DLMF | |||
! scope="col" style="position: sticky; top: 0;" | Formula | |||
! scope="col" style="position: sticky; top: 0;" | Constraints | |||
! scope="col" style="position: sticky; top: 0;" | Maple | |||
! scope="col" style="position: sticky; top: 0;" | Mathematica | |||
! scope="col" style="position: sticky; top: 0;" | Symbolic<br>Maple | |||
! scope="col" style="position: sticky; top: 0;" | Symbolic<br>Mathematica | |||
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Maple | |||
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | |||
|- | |||
| [https://dlmf.nist.gov/4.2.E1 4.2.E1] || [[Item:Q1497|<math>\Ln@@{z} = \int_{1}^{z}\frac{\diff{t}}{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Ln@@{z} = \int_{1}^{z}\frac{\diff{t}}{t}</syntaxhighlight> || <math>z \neq 0</math> || <syntaxhighlight lang=mathematica>ln(z) = int((1)/(t), t = 1..z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[z] == Integrate[Divide[1,t], {t, 1, z}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || Successful [Tested: 7] || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.2.E2 4.2.E2] || [[Item:Q1498|<math>\ln@@{z} = \int_{1}^{z}\frac{\diff{t}}{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@@{z} = \int_{1}^{z}\frac{\diff{t}}{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln(z) = int((1)/(t), t = 1..z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[z] == Integrate[Divide[1,t], {t, 1, z}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || Successful [Tested: 7] || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.2.E3 4.2.E3] || [[Item:Q1499|<math>\ln@@{z} = \ln@@{\abs{z}}+\iunit\phase@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@@{z} = \ln@@{\abs{z}}+\iunit\phase@@{z}</syntaxhighlight> || <math>-\pi < \phase@@{z}, \phase@@{z} < \pi</math> || <syntaxhighlight lang=mathematica>ln(z) = ln(abs(z))+ I*argument(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[z] == Log[Abs[z]]+ I*Arg[z]</syntaxhighlight> || Failure || Successful || Successful [Tested: 7] || Successful [Tested: 7] | |||
|- style="background: #dfe6e9;" | |||
| [https://dlmf.nist.gov/4.2.E4 4.2.E4] || [[Item:Q1500|<math>z = x</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>z = x</syntaxhighlight> || <math>-\infty < x, x < 0</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(x + y*I) = x</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(x + y*I) == x</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | |||
|- | |||
| [https://dlmf.nist.gov/4.2.E5 4.2.E5] || [[Item:Q1501|<math>\ln@@{z} = \ln@@{\abs{z}}+\iunit\phase@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@@{z} = \ln@@{\abs{z}}+\iunit\phase@@{z}</syntaxhighlight> || <math>-\pi < \phase@@{z}, \phase@@{z} \leq \pi</math> || <syntaxhighlight lang=mathematica>ln(z) = ln(abs(z))+ I*argument(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[z] == Log[Abs[z]]+ I*Arg[z]</syntaxhighlight> || Failure || Successful || Successful [Tested: 7] || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.2.E6 4.2.E6] || [[Item:Q1502|<math>\Ln@@{z} = \ln@@{z}+2k\pi\iunit</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Ln@@{z} = \ln@@{z}+2k\pi\iunit</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln(z) = ln(z)+ 2*k*Pi*I</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[z] == Log[z]+ 2*k*Pi*I</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -6.283185308*I | |||
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -12.56637062*I | |||
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -18.84955592*I | |||
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -6.283185308*I | |||
Test Values: {z = -1/2+1/2*I*3^(1/2), k = 1}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.0, -6.283185307179586] | |||
Test Values: {Rule[k, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.0, -12.566370614359172] | |||
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/4.2.E7 4.2.E7] || [[Item:Q1503|<math>\ln@{x+\iunit 0} = \ln@@{|x|}+ i\pi</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@{x+\iunit 0} = \ln@@{|x|}+ i\pi</syntaxhighlight> || <math>-\infty < x, x < 0</math> || <syntaxhighlight lang=mathematica>ln(x + I*0) = ln(abs(x))+ I*Pi</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[x + I*0] == Log[Abs[x]]+ I*Pi</syntaxhighlight> || Failure || Successful || Error || Skip - symbolical successful subtest | |||
|- | |||
| [https://dlmf.nist.gov/4.2.E7 4.2.E7] || [[Item:Q1503|<math>\ln@{x-\iunit 0} = \ln@@{|x|}- i\pi</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@{x-\iunit 0} = \ln@@{|x|}- i\pi</syntaxhighlight> || <math>-\infty < x, x < 0</math> || <syntaxhighlight lang=mathematica>ln(x - I*0) = ln(abs(x))- I*Pi</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[x - I*0] == Log[Abs[x]]- I*Pi</syntaxhighlight> || Failure || Failure || Error || Skip - No test values generated | |||
|- | |||
| [https://dlmf.nist.gov/4.2.E8 4.2.E8] || [[Item:Q1504|<math>\genlog{a}@@{z} = \ifrac{\ln@@{z}}{\ln@@{a}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\genlog{a}@@{z} = \ifrac{\ln@@{z}}{\ln@@{a}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>log[a](z) = (ln(z))/(ln(a))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[a,z] == Divide[Log[z],Log[a]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 42] | |||
|- | |||
| [https://dlmf.nist.gov/4.2.E9 4.2.E9] || [[Item:Q1505|<math>\genlog{a}@@{z} = \frac{\genlog{b}@@{z}}{\genlog{b}@@{a}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\genlog{a}@@{z} = \frac{\genlog{b}@@{z}}{\genlog{b}@@{a}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>log[a](z) = (log[b](z))/(log[b](a))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[a,z] == Divide[Log[b,z],Log[b,a]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 252] | |||
|- | |||
| [https://dlmf.nist.gov/4.2.E10 4.2.E10] || [[Item:Q1506|<math>\genlog{a}@@{b} = \frac{1}{\genlog{b}@@{a}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\genlog{a}@@{b} = \frac{1}{\genlog{b}@@{a}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>log[a](b) = (1)/(log[b](a))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[a,b] == Divide[1,Log[b,a]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 36] | |||
|- | |||
| [https://dlmf.nist.gov/4.2.E11 4.2.E11] || [[Item:Q1507|<math>e = 2.71828\ 18284\ 59045\ 23536\dots</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e = 2.71828\ 18284\ 59045\ 23536\dots</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(1) = 2.71828182845904523536</syntaxhighlight> || <syntaxhighlight lang=mathematica>E == 2.71828182845904523536</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | |||
|- | |||
| [https://dlmf.nist.gov/4.2.E12 4.2.E12] || [[Item:Q1508|<math>\ln@@{e} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@@{e} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln(exp(1)) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[E] == 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | |||
|- | |||
| [https://dlmf.nist.gov/4.2.E13 4.2.E13] || [[Item:Q1509|<math>\int_{1}^{e}\frac{\diff{t}}{t} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{1}^{e}\frac{\diff{t}}{t} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int((1)/(t), t = 1..exp(1)) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[1,t], {t, 1, E}, GenerateConditions->None] == 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | |||
|- | |||
| [https://dlmf.nist.gov/4.2.E14 4.2.E14] || [[Item:Q1510|<math>\genlog{e}@@{z} = \ln@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\genlog{e}@@{z} = \ln@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>log[exp(1)](z) = ln(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[E,z] == Log[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.2.E15 4.2.E15] || [[Item:Q1511|<math>\genlog{10}@@{z} = \ifrac{(\ln@@{z})}{(\ln@@{10})}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\genlog{10}@@{z} = \ifrac{(\ln@@{z})}{(\ln@@{10})}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>log[10](z) = (ln(z))/(ln(10))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[10,z] == Divide[Log[z],Log[10]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.2.E15 4.2.E15] || [[Item:Q1511|<math>\ifrac{(\ln@@{z})}{(\ln@@{10})} = (\genlog{10}@@{e})\ln@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ifrac{(\ln@@{z})}{(\ln@@{10})} = (\genlog{10}@@{e})\ln@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(ln(z))/(ln(10)) = (log[10](exp(1)))*ln(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[Log[z],Log[10]] == (Log[10,E])*Log[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.2.E16 4.2.E16] || [[Item:Q1512|<math>\ln@@{z} = (\ln@@{10})\genlog{10}@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@@{z} = (\ln@@{10})\genlog{10}@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln(z) = (ln(10))*log[10](z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[z] == (Log[10])*Log[10,z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.2.E17 4.2.E17] || [[Item:Q1513|<math>\genlog{10}@@{e} = 0.43429\ 44819\ 03251\ 82765\dots</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\genlog{10}@@{e} = 0.43429\ 44819\ 03251\ 82765\dots</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>log[10](exp(1)) = 0.43429448190325182765</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[10,E] == 0.43429448190325182765</syntaxhighlight> || Failure || Successful || Successful [Tested: 0] || Successful [Tested: 1] | |||
|- | |||
| [https://dlmf.nist.gov/4.2.E18 4.2.E18] || [[Item:Q1514|<math>\ln@@{10} = 2.30258\ 50929\ 94045\ 68401\dots</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@@{10} = 2.30258\ 50929\ 94045\ 68401\dots</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln(10) = 2.30258509299404568401</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[10] == 2.30258509299404568401</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | |||
|- | |||
| [https://dlmf.nist.gov/4.2.E20 4.2.E20] || [[Item:Q1516|<math>\exp@{z+2\pi i} = \exp@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\exp@{z+2\pi i} = \exp@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(z + 2*Pi*I) = exp(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[z + 2*Pi*I] == Exp[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.2.E21 4.2.E21] || [[Item:Q1517|<math>\exp@{-z} = 1/\exp@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\exp@{-z} = 1/\exp@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(- z) = 1/exp(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[- z] == 1/Exp[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.2.E22 4.2.E22] || [[Item:Q1518|<math>|\exp@@{z}| = \exp@{\realpart@@{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\exp@@{z}| = \exp@{\realpart@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs(exp(z)) = exp(Re(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Exp[z]] == Exp[Re[z]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.2.E23 4.2.E23] || [[Item:Q1519|<math>\phase@{\exp@@{z}} = \imagpart@@{z}+2k\pi</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\phase@{\exp@@{z}} = \imagpart@@{z}+2k\pi</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>argument(exp(z)) = Im(z)+ 2*k*Pi</syntaxhighlight> || <syntaxhighlight lang=mathematica>Arg[Exp[z]] == Im[z]+ 2*k*Pi</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -6.283185308 | |||
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1, k = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -12.56637062 | |||
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2, k = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -18.84955592 | |||
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 3, k = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -6.283185308 | |||
Test Values: {z = -1/2+1/2*I*3^(1/2), k = 1, k = 3}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -18.84955592153876 | |||
Test Values: {Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -18.84955592153876 | |||
Test Values: {Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/4.2.E24 4.2.E24] || [[Item:Q1520|<math>\exp@@{z} = e^{x}\cos@@{y}+ie^{x}\sin@@{y}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\exp@@{z} = e^{x}\cos@@{y}+ie^{x}\sin@@{y}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(x + y*I) = exp(x)*cos(y)+ I*exp(x)*sin(y)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[x + y*I] == Exp[x]*Cos[y]+ I*Exp[x]*Sin[y]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 18] | |||
|- | |||
| [https://dlmf.nist.gov/4.2.E26 4.2.E26] || [[Item:Q1522|<math>z^{a} = \exp@{a\Ln@@{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>z^{a} = \exp@{a\Ln@@{z}}</syntaxhighlight> || <math>z \neq 0</math> || <syntaxhighlight lang=mathematica>(z)^(a) = exp(a*ln(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>(z)^(a) == Exp[a*Log[z]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 42] | |||
|- | |||
| [https://dlmf.nist.gov/4.2.E28 4.2.E28] || [[Item:Q1524|<math>z^{a} = \exp@{a\ln@@{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>z^{a} = \exp@{a\ln@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(z)^(a) = exp(a*ln(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>(z)^(a) == Exp[a*Log[z]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 42] | |||
|- | |||
| [https://dlmf.nist.gov/4.2.E29 4.2.E29] || [[Item:Q1525|<math>|z^{a}| = |z|^{\realpart@@{a}}\exp@{-(\imagpart@@{a})\phase@@{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|z^{a}| = |z|^{\realpart@@{a}}\exp@{-(\imagpart@@{a})\phase@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs((z)^(a)) = (abs(z))^(Re(a))* exp(-(Im(a))*argument(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[(z)^(a)] == (Abs[z])^(Re[a])* Exp[-(Im[a])*Arg[z]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 42] || Successful [Tested: 42] | |||
|- | |||
| [https://dlmf.nist.gov/4.2.E30 4.2.E30] || [[Item:Q1526|<math>\phase@{z^{a}} = (\realpart@@{a})\phase@@{z}+(\imagpart@@{a})\ln@@{|z|}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\phase@{z^{a}} = (\realpart@@{a})\phase@@{z}+(\imagpart@@{a})\ln@@{|z|}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>argument((z)^(a)) = (Re(a))*argument(z)+(Im(a))*ln(abs(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Arg[(z)^(a)] == (Re[a])*Arg[z]+(Im[a])*Log[Abs[z]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -6.283185308 | |||
Test Values: {a = -1.5, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 6.283185308 | |||
Test Values: {a = 1.5, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 6.283185307 | |||
Test Values: {a = -2, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -6.283185309 | |||
Test Values: {a = -2, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -6.283185307179586 | |||
Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 6.283185307179586 | |||
Test Values: {Rule[a, 1.5], Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- style="background: #dfe6e9;" | |||
| [https://dlmf.nist.gov/4.2#Ex1 4.2#Ex1] || [[Item:Q1527|<math>|z^{a}| = |z|^{a}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>|z^{a}| = |z|^{a}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">abs((z)^(a)) = (abs(z))^(a)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Abs[(z)^(a)] == (Abs[z])^(a)</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | |||
|- | |||
| [https://dlmf.nist.gov/4.2#Ex2 4.2#Ex2] || [[Item:Q1528|<math>\phase@{z^{a}} = a\phase@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\phase@{z^{a}} = a\phase@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>argument((z)^(a)) = a*argument(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Arg[(z)^(a)] == a*Arg[z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -6.283185308 | |||
Test Values: {a = -1.5, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 6.283185308 | |||
Test Values: {a = 1.5, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 6.283185307 | |||
Test Values: {a = -2, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -6.283185309 | |||
Test Values: {a = -2, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -6.283185307179586 | |||
Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 6.283185307179586 | |||
Test Values: {Rule[a, 1.5], Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/4.2.E32 4.2.E32] || [[Item:Q1529|<math>e^{z} = \exp@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{z} = \exp@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(z) = exp(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[z] == Exp[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.2.E33 4.2.E33] || [[Item:Q1530|<math>e^{z} = (\exp@@{z})\exp@{2kz\pi\iunit}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{z} = (\exp@@{z})\exp@{2kz\pi\iunit}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(z) = (exp(z))*exp(2*k*z*Pi*I)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[z] == (Exp[z])*Exp[2*k*z*Pi*I]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [16 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.989606315+1.174241786*I | |||
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1, k = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.084725711+1.143917762*I | |||
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2, k = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.086486474+1.139979111*I | |||
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 3, k = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .3946493584+.4640329579*I | |||
Test Values: {z = -1/2+1/2*I*3^(1/2), k = 1, k = 3}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[2.0864864733305994, 1.139979110702337] | |||
Test Values: {Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.3929465878104918, 0.4620308216689905] | |||
Test Values: {Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/4.2.E36 4.2.E36] || [[Item:Q1533|<math>-\pi \leq \imagpart@@{\left(\frac{1}{a}\Ln@@{w}\right)}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>-\pi \leq \imagpart@@{\left(\frac{1}{a}\Ln@@{w}\right)}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>- Pi <= Im((1)/(a)*ln(w))</syntaxhighlight> || <syntaxhighlight lang=mathematica>- Pi <= Im[Divide[1,a]*Log[w]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [5 / 60]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -3.141592654 <= -4.188790204 | |||
Test Values: {a = -.5, w = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -3.141592654 <= -6.283185308 | |||
Test Values: {a = -.5, w = -1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -3.141592654 <= -6.283185308 | |||
Test Values: {a = -.5, w = -.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -3.141592654 <= -6.283185308 | |||
Test Values: {a = -.5, w = -2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [5 / 60]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: False | |||
Test Values: {Rule[a, -0.5], Rule[w, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: False | |||
Test Values: {Rule[a, -0.5], Rule[w, -1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/4.2.E36 4.2.E36] || [[Item:Q1533|<math>\imagpart@@{\left(\frac{1}{a}\Ln@@{w}\right)} \leq \pi</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\imagpart@@{\left(\frac{1}{a}\Ln@@{w}\right)} \leq \pi</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Im((1)/(a)*ln(w)) <= Pi</syntaxhighlight> || <syntaxhighlight lang=mathematica>Im[Divide[1,a]*Log[w]] <= Pi</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [5 / 60]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 5.235987758 <= 3.141592654 | |||
Test Values: {a = -.5, w = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 4.188790204 <= 3.141592654 | |||
Test Values: {a = .5, w = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 6.283185308 <= 3.141592654 | |||
Test Values: {a = .5, w = -1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 6.283185308 <= 3.141592654 | |||
Test Values: {a = .5, w = -.5}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [5 / 60]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: False | |||
Test Values: {Rule[a, -0.5], Rule[w, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: False | |||
Test Values: {Rule[a, 0.5], Rule[w, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/4.4.E1 4.4.E1] || [[Item:Q1535|<math>\ln@@{1} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@@{1} = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln(1) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[1] == 0</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | |||
|- | |||
| [https://dlmf.nist.gov/4.4.E2 4.4.E2] || [[Item:Q1536|<math>\ln@{-1+\iunit 0} = +\pi\iunit</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@{-1+\iunit 0} = +\pi\iunit</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln(- 1 + I*0) = + Pi*I</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[- 1 + I*0] == + Pi*I</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || Successful [Tested: 1] | |||
|- | |||
| [https://dlmf.nist.gov/4.4.E2 4.4.E2] || [[Item:Q1536|<math>\ln@{-1-\iunit 0} = -\pi\iunit</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@{-1-\iunit 0} = -\pi\iunit</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln(- 1 - I*0) = - Pi*I</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[- 1 - I*0] == - Pi*I</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 1]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 6.283185308*I | |||
Test Values: {}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 1]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.0, 6.283185307179586] | |||
Test Values: {}</syntaxhighlight><br></div></div> | |||
|- | |||
| [https://dlmf.nist.gov/4.4.E3 4.4.E3] || [[Item:Q1537|<math>\ln@{+\iunit} = +\tfrac{1}{2}\pi\iunit</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@{+\iunit} = +\tfrac{1}{2}\pi\iunit</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln(+ I) = +(1)/(2)*Pi*I</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[+ I] == +Divide[1,2]*Pi*I</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | |||
|- | |||
| [https://dlmf.nist.gov/4.4.E3 4.4.E3] || [[Item:Q1537|<math>\ln@{-\iunit} = -\tfrac{1}{2}\pi\iunit</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@{-\iunit} = -\tfrac{1}{2}\pi\iunit</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln(- I) = -(1)/(2)*Pi*I</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[- I] == -Divide[1,2]*Pi*I</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | |||
|- style="background: #dfe6e9;" | |||
| [https://dlmf.nist.gov/4.4.E4 4.4.E4] || [[Item:Q1538|<math>e^{0} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>e^{0} = 1</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">exp(0) = 1</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Exp[0] == 1</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | |||
|- | |||
| [https://dlmf.nist.gov/4.4.E5 4.4.E5] || [[Item:Q1539|<math>e^{+\pi\iunit} = -1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{+\pi\iunit} = -1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(+ Pi*I) = - 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[+ Pi*I] == - 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | |||
|- | |||
| [https://dlmf.nist.gov/4.4.E5 4.4.E5] || [[Item:Q1539|<math>e^{-\pi\iunit} = -1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{-\pi\iunit} = -1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(- Pi*I) = - 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[- Pi*I] == - 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | |||
|- | |||
| [https://dlmf.nist.gov/4.4.E6 4.4.E6] || [[Item:Q1540|<math>e^{+\pi\iunit/2} = +\iunit</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{+\pi\iunit/2} = +\iunit</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(+ Pi*I/2) = + I</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[+ Pi*I/2] == + I</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | |||
|- | |||
| [https://dlmf.nist.gov/4.4.E6 4.4.E6] || [[Item:Q1540|<math>e^{-\pi\iunit/2} = -\iunit</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{-\pi\iunit/2} = -\iunit</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(- Pi*I/2) = - I</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[- Pi*I/2] == - I</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | |||
|- | |||
| [https://dlmf.nist.gov/4.4.E7 4.4.E7] || [[Item:Q1541|<math>e^{2\pi k\iunit} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{2\pi k\iunit} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(2*Pi*k*I) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[2*Pi*k*I] == 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | |||
|- | |||
| [https://dlmf.nist.gov/4.4.E8 4.4.E8] || [[Item:Q1542|<math>e^{+\pi\iunit/3} = \frac{1}{2}+\iunit\frac{\sqrt{3}}{2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{+\pi\iunit/3} = \frac{1}{2}+\iunit\frac{\sqrt{3}}{2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(+ Pi*I/3) = (1)/(2)+ I*(sqrt(3))/(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[+ Pi*I/3] == Divide[1,2]+ I*Divide[Sqrt[3],2]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | |||
|- | |||
| [https://dlmf.nist.gov/4.4.E8 4.4.E8] || [[Item:Q1542|<math>e^{-\pi\iunit/3} = \frac{1}{2}-\iunit\frac{\sqrt{3}}{2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{-\pi\iunit/3} = \frac{1}{2}-\iunit\frac{\sqrt{3}}{2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(- Pi*I/3) = (1)/(2)- I*(sqrt(3))/(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[- Pi*I/3] == Divide[1,2]- I*Divide[Sqrt[3],2]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | |||
|- | |||
| [https://dlmf.nist.gov/4.4.E9 4.4.E9] || [[Item:Q1543|<math>e^{+ 2\pi\iunit/3} = -\frac{1}{2}+\iunit\frac{\sqrt{3}}{2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{+ 2\pi\iunit/3} = -\frac{1}{2}+\iunit\frac{\sqrt{3}}{2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(+ 2*Pi*I/3) = -(1)/(2)+ I*(sqrt(3))/(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[+ 2*Pi*I/3] == -Divide[1,2]+ I*Divide[Sqrt[3],2]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | |||
|- | |||
| [https://dlmf.nist.gov/4.4.E9 4.4.E9] || [[Item:Q1543|<math>e^{- 2\pi\iunit/3} = -\frac{1}{2}-\iunit\frac{\sqrt{3}}{2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{- 2\pi\iunit/3} = -\frac{1}{2}-\iunit\frac{\sqrt{3}}{2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(- 2*Pi*I/3) = -(1)/(2)- I*(sqrt(3))/(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[- 2*Pi*I/3] == -Divide[1,2]- I*Divide[Sqrt[3],2]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | |||
|- | |||
| [https://dlmf.nist.gov/4.4.E10 4.4.E10] || [[Item:Q1544|<math>e^{+\pi\iunit/4} = \frac{1}{\sqrt{2}}+\iunit\frac{1}{\sqrt{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{+\pi\iunit/4} = \frac{1}{\sqrt{2}}+\iunit\frac{1}{\sqrt{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(+ Pi*I/4) = (1)/(sqrt(2))+ I*(1)/(sqrt(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[+ Pi*I/4] == Divide[1,Sqrt[2]]+ I*Divide[1,Sqrt[2]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | |||
|- | |||
| [https://dlmf.nist.gov/4.4.E10 4.4.E10] || [[Item:Q1544|<math>e^{-\pi\iunit/4} = \frac{1}{\sqrt{2}}-\iunit\frac{1}{\sqrt{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{-\pi\iunit/4} = \frac{1}{\sqrt{2}}-\iunit\frac{1}{\sqrt{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(- Pi*I/4) = (1)/(sqrt(2))- I*(1)/(sqrt(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[- Pi*I/4] == Divide[1,Sqrt[2]]- I*Divide[1,Sqrt[2]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | |||
|- | |||
| [https://dlmf.nist.gov/4.4.E11 4.4.E11] || [[Item:Q1545|<math>e^{+ 3\pi\iunit/4} = -\frac{1}{\sqrt{2}}+\iunit\frac{1}{\sqrt{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{+ 3\pi\iunit/4} = -\frac{1}{\sqrt{2}}+\iunit\frac{1}{\sqrt{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(+ 3*Pi*I/4) = -(1)/(sqrt(2))+ I*(1)/(sqrt(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[+ 3*Pi*I/4] == -Divide[1,Sqrt[2]]+ I*Divide[1,Sqrt[2]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | |||
|- | |||
| [https://dlmf.nist.gov/4.4.E11 4.4.E11] || [[Item:Q1545|<math>e^{- 3\pi\iunit/4} = -\frac{1}{\sqrt{2}}-\iunit\frac{1}{\sqrt{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{- 3\pi\iunit/4} = -\frac{1}{\sqrt{2}}-\iunit\frac{1}{\sqrt{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(- 3*Pi*I/4) = -(1)/(sqrt(2))- I*(1)/(sqrt(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[- 3*Pi*I/4] == -Divide[1,Sqrt[2]]- I*Divide[1,Sqrt[2]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | |||
|- | |||
| [https://dlmf.nist.gov/4.4.E12 4.4.E12] || [[Item:Q1546|<math>\iunit^{+\iunit} = e^{-\pi/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\iunit^{+\iunit} = e^{-\pi/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(I)^(+ I) = exp(- Pi/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(I)^(+ I) == Exp[- Pi/2]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | |||
|- | |||
| [https://dlmf.nist.gov/4.4.E12 4.4.E12] || [[Item:Q1546|<math>\iunit^{-\iunit} = e^{+\pi/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\iunit^{-\iunit} = e^{+\pi/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(I)^(- I) = exp(+ Pi/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(I)^(- I) == Exp[+ Pi/2]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | |||
|- | |||
| [https://dlmf.nist.gov/4.4.E13 4.4.E13] || [[Item:Q1547|<math>\lim_{x\to\infty}x^{-a}\ln@@{x} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\lim_{x\to\infty}x^{-a}\ln@@{x} = 0</syntaxhighlight> || <math>\realpart@@{a} > 0</math> || <syntaxhighlight lang=mathematica>limit((x)^(- a)* ln(x), x = infinity) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>Limit[(x)^(- a)* Log[x], x -> Infinity, GenerateConditions->None] == 0</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 3] | |||
|- | |||
| [https://dlmf.nist.gov/4.4.E14 4.4.E14] || [[Item:Q1548|<math>\lim_{x\to 0}x^{a}\ln@@{x} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\lim_{x\to 0}x^{a}\ln@@{x} = 0</syntaxhighlight> || <math>\realpart@@{a} > 0</math> || <syntaxhighlight lang=mathematica>limit((x)^(a)* ln(x), x = 0) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>Limit[(x)^(a)* Log[x], x -> 0, GenerateConditions->None] == 0</syntaxhighlight> || Failure || Successful || Successful [Tested: 3] || Successful [Tested: 3] | |||
|- style="background: #dfe6e9;" | |||
| [https://dlmf.nist.gov/4.4.E15 4.4.E15] || [[Item:Q1549|<math>\lim_{x\to\infty}x^{a}e^{-x} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\lim_{x\to\infty}x^{a}e^{-x} = 0</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">limit((x)^(a)* exp(- x), x = infinity) = 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Limit[(x)^(a)* Exp[- x], x -> Infinity, GenerateConditions->None] == 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | |||
|- style="background: #dfe6e9;" | |||
| [https://dlmf.nist.gov/4.4.E16 4.4.E16] || [[Item:Q1550|<math>\lim_{z\to\infty}z^{a}e^{-z} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\lim_{z\to\infty}z^{a}e^{-z} = 0</syntaxhighlight> || <math>|\phase@@{z}| \leq \tfrac{1}{2}\pi-\delta, \tfrac{1}{2}\pi-\delta < \tfrac{1}{2}\pi</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">limit((z)^(a)* exp(- z), z = infinity) = 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Limit[(z)^(a)* Exp[- z], z -> Infinity, GenerateConditions->None] == 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | |||
|- style="background: #dfe6e9;" | |||
| [https://dlmf.nist.gov/4.4.E17 4.4.E17] || [[Item:Q1551|<math>\lim_{n\to\infty}\left(1+\frac{z}{n}\right)^{n} = e^{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\lim_{n\to\infty}\left(1+\frac{z}{n}\right)^{n} = e^{z}</syntaxhighlight> || <math>z = </math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">limit((1 +(z)/(n))^(n), n = infinity) = exp(z)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Limit[(1 +Divide[z,n])^(n), n -> Infinity, GenerateConditions->None] == Exp[z]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | |||
|- style="background: #dfe6e9;" | |||
| [https://dlmf.nist.gov/4.4.E18 4.4.E18] || [[Item:Q1552|<math>\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^{n} = e</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^{n} = e</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">limit((1 +(1)/(n))^(n), n = infinity) = exp(1)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Limit[(1 +Divide[1,n])^(n), n -> Infinity, GenerateConditions->None] == E</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | |||
|- | |||
| [https://dlmf.nist.gov/4.4.E19 4.4.E19] || [[Item:Q1553|<math>\lim_{n\to\infty}\left(\left(\sum^{n}_{k=1}\frac{1}{k}\right)-\ln@@{n}\right) = \EulerConstant</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\lim_{n\to\infty}\left(\left(\sum^{n}_{k=1}\frac{1}{k}\right)-\ln@@{n}\right) = \EulerConstant</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>limit((sum((1)/(k), k = 1..n))- ln(n), n = infinity) = gamma</syntaxhighlight> || <syntaxhighlight lang=mathematica>Limit[(Sum[Divide[1,k], {k, 1, n}, GenerateConditions->None])- Log[n], n -> Infinity, GenerateConditions->None] == EulerGamma</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | |||
|- | |||
| [https://dlmf.nist.gov/4.4.E19 4.4.E19] || [[Item:Q1553|<math>\EulerConstant = 0.57721\ 56649\ 01532\ 86060\dots</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\EulerConstant = 0.57721\ 56649\ 01532\ 86060\dots</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>gamma = 0.57721566490153286060</syntaxhighlight> || <syntaxhighlight lang=mathematica>EulerGamma == 0.57721566490153286060</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | |||
|- | |||
| [https://dlmf.nist.gov/4.5.E1 4.5.E1] || [[Item:Q1554|<math>\frac{x}{1+x} < \ln@{1+x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{x}{1+x} < \ln@{1+x}</syntaxhighlight> || <math>x > -1, x \neq 0</math> || <syntaxhighlight lang=mathematica>(x)/(1 + x) < ln(1 + x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[x,1 + x] < Log[1 + x]</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3] | |||
|- | |||
| [https://dlmf.nist.gov/4.5.E1 4.5.E1] || [[Item:Q1554|<math>\ln@{1+x} < x</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@{1+x} < x</syntaxhighlight> || <math>x > -1, x \neq 0</math> || <syntaxhighlight lang=mathematica>ln(1 + x) < x</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[1 + x] < x</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3] | |||
|- | |||
| [https://dlmf.nist.gov/4.5.E2 4.5.E2] || [[Item:Q1555|<math>x < -\ln@{1-x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>x < -\ln@{1-x}</syntaxhighlight> || <math>x < 1, x \neq 0</math> || <syntaxhighlight lang=mathematica>x < - ln(1 - x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>x < - Log[1 - x]</syntaxhighlight> || Failure || Failure || Successful [Tested: 1] || Successful [Tested: 1] | |||
|- | |||
| [https://dlmf.nist.gov/4.5.E2 4.5.E2] || [[Item:Q1555|<math>-\ln@{1-x} < \frac{x}{1-x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>-\ln@{1-x} < \frac{x}{1-x}</syntaxhighlight> || <math>x < 1, x \neq 0</math> || <syntaxhighlight lang=mathematica>- ln(1 - x) < (x)/(1 - x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>- Log[1 - x] < Divide[x,1 - x]</syntaxhighlight> || Failure || Failure || Successful [Tested: 1] || Successful [Tested: 1] | |||
|- | |||
| [https://dlmf.nist.gov/4.5.E3 4.5.E3] || [[Item:Q1556|<math>|\ln@{1-x}| < \tfrac{3}{2}x</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\ln@{1-x}| < \tfrac{3}{2}x</syntaxhighlight> || <math>0 < x, x \leq 0.5828\dots</math> || <syntaxhighlight lang=mathematica>abs(ln(1 - x)) < (3)/(2)*x</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Log[1 - x]] < Divide[3,2]*x</syntaxhighlight> || Failure || Failure || Successful [Tested: 1] || Successful [Tested: 1] | |||
|- | |||
| [https://dlmf.nist.gov/4.5.E4 4.5.E4] || [[Item:Q1557|<math>\ln@@{x} \leq x-1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@@{x} \leq x-1</syntaxhighlight> || <math>x > 0</math> || <syntaxhighlight lang=mathematica>ln(x) <= x - 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[x] <= x - 1</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3] | |||
|- | |||
| [https://dlmf.nist.gov/4.5.E5 4.5.E5] || [[Item:Q1558|<math>\ln@@{x} \leq a(x^{1/a}-1)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@@{x} \leq a(x^{1/a}-1)</syntaxhighlight> || <math>a > 0, x > 0</math> || <syntaxhighlight lang=mathematica>ln(x) <= a*((x)^(1/a)- 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[x] <= a*((x)^(1/a)- 1)</syntaxhighlight> || Error || Failure || - || Successful [Tested: 9] | |||
|- | |||
| [https://dlmf.nist.gov/4.5.E6 4.5.E6] || [[Item:Q1559|<math>|\ln@{1+z}| \leq -\ln@{1-|z|}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\ln@{1+z}| \leq -\ln@{1-|z|}</syntaxhighlight> || <math>|z| < 1</math> || <syntaxhighlight lang=mathematica>abs(ln(1 + z)) <= - ln(1 -abs(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Log[1 + z]] <= - Log[1 -Abs[z]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 1] || Successful [Tested: 1] | |||
|- | |||
| [https://dlmf.nist.gov/4.5.E7 4.5.E7] || [[Item:Q1560|<math>e^{-x/(1-x)} < 1-x</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{-x/(1-x)} < 1-x</syntaxhighlight> || <math>x < 1</math> || <syntaxhighlight lang=mathematica>exp(- x/(1 - x)) < 1 - x</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[- x/(1 - x)] < 1 - x</syntaxhighlight> || Skipped - no semantic math || Failure || - || Successful [Tested: 1] | |||
|- | |||
| [https://dlmf.nist.gov/4.5.E7 4.5.E7] || [[Item:Q1560|<math>1-x < e^{-x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>1-x < e^{-x}</syntaxhighlight> || <math>x < 1</math> || <syntaxhighlight lang=mathematica>1 - x < exp(- x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>1 - x < Exp[- x]</syntaxhighlight> || Error || Failure || - || Successful [Tested: 1] | |||
|- | |||
| [https://dlmf.nist.gov/4.5.E8 4.5.E8] || [[Item:Q1561|<math>1+x < e^{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>1+x < e^{x}</syntaxhighlight> || <math>-\infty < x, x < \infty</math> || <syntaxhighlight lang=mathematica>1 + x < exp(x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>1 + x < Exp[x]</syntaxhighlight> || Skipped - no semantic math || Failure || - || Successful [Tested: 3] | |||
|- | |||
| [https://dlmf.nist.gov/4.5.E9 4.5.E9] || [[Item:Q1562|<math>e^{x} < \frac{1}{1-x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{x} < \frac{1}{1-x}</syntaxhighlight> || <math>x < 1</math> || <syntaxhighlight lang=mathematica>exp(x) < (1)/(1 - x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[x] < Divide[1,1 - x]</syntaxhighlight> || Skipped - no semantic math || Failure || - || Successful [Tested: 1] | |||
|- | |||
| [https://dlmf.nist.gov/4.5.E10 4.5.E10] || [[Item:Q1563|<math>\frac{x}{1+x} < 1-e^{-x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{x}{1+x} < 1-e^{-x}</syntaxhighlight> || <math>x > -1</math> || <syntaxhighlight lang=mathematica>(x)/(1 + x) < 1 - exp(- x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[x,1 + x] < 1 - Exp[- x]</syntaxhighlight> || Skipped - no semantic math || Failure || - || Successful [Tested: 3] | |||
|- | |||
| [https://dlmf.nist.gov/4.5.E10 4.5.E10] || [[Item:Q1563|<math>1-e^{-x} < x</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>1-e^{-x} < x</syntaxhighlight> || <math>x > -1</math> || <syntaxhighlight lang=mathematica>1 - exp(- x) < x</syntaxhighlight> || <syntaxhighlight lang=mathematica>1 - Exp[- x] < x</syntaxhighlight> || Error || Failure || - || Successful [Tested: 3] | |||
|- | |||
| [https://dlmf.nist.gov/4.5.E11 4.5.E11] || [[Item:Q1564|<math>x < e^{x}-1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>x < e^{x}-1</syntaxhighlight> || <math>x < 1</math> || <syntaxhighlight lang=mathematica>x < exp(x)- 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>x < Exp[x]- 1</syntaxhighlight> || Skipped - no semantic math || Failure || - || Successful [Tested: 1] | |||
|- | |||
| [https://dlmf.nist.gov/4.5.E11 4.5.E11] || [[Item:Q1564|<math>e^{x}-1 < \frac{x}{1-x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{x}-1 < \frac{x}{1-x}</syntaxhighlight> || <math>x < 1</math> || <syntaxhighlight lang=mathematica>exp(x)- 1 < (x)/(1 - x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[x]- 1 < Divide[x,1 - x]</syntaxhighlight> || Error || Failure || - || Successful [Tested: 1] | |||
|- | |||
| [https://dlmf.nist.gov/4.5.E12 4.5.E12] || [[Item:Q1565|<math>e^{x/(1+x)} < 1+x</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{x/(1+x)} < 1+x</syntaxhighlight> || <math>x > -1</math> || <syntaxhighlight lang=mathematica>exp(x/(1 + x)) < 1 + x</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[x/(1 + x)] < 1 + x</syntaxhighlight> || Skipped - no semantic math || Failure || - || Successful [Tested: 3] | |||
|- | |||
| [https://dlmf.nist.gov/4.5.E13 4.5.E13] || [[Item:Q1566|<math>e^{xy/(x+y)} < \left(1+\frac{x}{y}\right)^{y}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{xy/(x+y)} < \left(1+\frac{x}{y}\right)^{y}</syntaxhighlight> || <math>x > 0, y > 0</math> || <syntaxhighlight lang=mathematica>exp(x*y/(x + y)) < (1 +(x)/(y))^(y)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[x*y/(x + y)] < (1 +Divide[x,y])^(y)</syntaxhighlight> || Skipped - no semantic math || Failure || - || Successful [Tested: 9] | |||
|- | |||
| [https://dlmf.nist.gov/4.5.E13 4.5.E13] || [[Item:Q1566|<math>\left(1+\frac{x}{y}\right)^{y} < e^{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\left(1+\frac{x}{y}\right)^{y} < e^{x}</syntaxhighlight> || <math>x > 0, y > 0</math> || <syntaxhighlight lang=mathematica>(1 +(x)/(y))^(y) < exp(x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(1 +Divide[x,y])^(y) < Exp[x]</syntaxhighlight> || Error || Failure || - || Successful [Tested: 9] | |||
|- | |||
| [https://dlmf.nist.gov/4.5.E14 4.5.E14] || [[Item:Q1567|<math>e^{-x} < 1-\tfrac{1}{2}x</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{-x} < 1-\tfrac{1}{2}x</syntaxhighlight> || <math>0 < x, x \leq 1.5936\dots</math> || <syntaxhighlight lang=mathematica>exp(- x) < 1 -(1)/(2)*x</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[- x] < 1 -Divide[1,2]*x</syntaxhighlight> || Skipped - no semantic math || Failure || - || Successful [Tested: 2] | |||
|- | |||
| [https://dlmf.nist.gov/4.5.E15 4.5.E15] || [[Item:Q1568|<math>\tfrac{1}{4}|z| < |e^{z}-1|</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tfrac{1}{4}|z| < |e^{z}-1|</syntaxhighlight> || <math>0 < |z|, |z| < 1</math> || <syntaxhighlight lang=mathematica>(1)/(4)*abs(z) < abs(exp(z)- 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,4]*Abs[z] < Abs[Exp[z]- 1]</syntaxhighlight> || Skipped - no semantic math || Failure || - || Successful [Tested: 1] | |||
|- | |||
| [https://dlmf.nist.gov/4.5.E15 4.5.E15] || [[Item:Q1568|<math>|e^{z}-1| < \tfrac{7}{4}|z|</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|e^{z}-1| < \tfrac{7}{4}|z|</syntaxhighlight> || <math>0 < |z|, |z| < 1</math> || <syntaxhighlight lang=mathematica>abs(exp(z)- 1) < (7)/(4)*abs(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Exp[z]- 1] < Divide[7,4]*Abs[z]</syntaxhighlight> || Error || Failure || - || Successful [Tested: 1] | |||
|- | |||
| [https://dlmf.nist.gov/4.5.E16 4.5.E16] || [[Item:Q1569|<math>|e^{z}-1| \leq e^{|z|}-1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|e^{z}-1| \leq e^{|z|}-1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs(exp(z)- 1) <= exp(abs(z))- 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Exp[z]- 1] <= Exp[Abs[z]]- 1</syntaxhighlight> || Skipped - no semantic math || Failure || - || Successful [Tested: 1] | |||
|- | |||
| [https://dlmf.nist.gov/4.5.E16 4.5.E16] || [[Item:Q1569|<math>e^{|z|}-1 \leq |z|e^{|z|}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{|z|}-1 \leq |z|e^{|z|}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(abs(z))- 1 <= abs(z)*exp(abs(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[Abs[z]]- 1 <= Abs[z]*Exp[Abs[z]]</syntaxhighlight> || Error || Failure || - || Successful [Tested: 1] | |||
|- | |||
| [https://dlmf.nist.gov/4.7.E1 4.7.E1] || [[Item:Q1577|<math>\deriv{}{z}\ln@@{z} = \frac{1}{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{}{z}\ln@@{z} = \frac{1}{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(ln(z), z) = (1)/(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[Log[z], z] == Divide[1,z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.7.E2 4.7.E2] || [[Item:Q1578|<math>\deriv{}{z}\Ln@@{z} = \frac{1}{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{}{z}\Ln@@{z} = \frac{1}{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(ln(z), z) = (1)/(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[Log[z], z] == Divide[1,z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.7.E3 4.7.E3] || [[Item:Q1579|<math>\deriv[n]{}{z}\ln@@{z} = (-1)^{n-1}(n-1)!z^{-n}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[n]{}{z}\ln@@{z} = (-1)^{n-1}(n-1)!z^{-n}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(ln(z), [z$(n)]) = (- 1)^(n - 1)*factorial(n - 1)*(z)^(- n)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[Log[z], {z, n}] == (- 1)^(n - 1)*(n - 1)!*(z)^(- n)</syntaxhighlight> || Failure || Failure || Successful [Tested: 21] || Successful [Tested: 21] | |||
|- | |||
| [https://dlmf.nist.gov/4.7.E4 4.7.E4] || [[Item:Q1580|<math>\deriv[n]{}{z}\Ln@@{z} = (-1)^{n-1}(n-1)!z^{-n}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[n]{}{z}\Ln@@{z} = (-1)^{n-1}(n-1)!z^{-n}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(ln(z), [z$(n)]) = (- 1)^(n - 1)*factorial(n - 1)*(z)^(- n)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[Log[z], {z, n}] == (- 1)^(n - 1)*(n - 1)!*(z)^(- n)</syntaxhighlight> || Failure || Failure || Successful [Tested: 21] || Successful [Tested: 21] | |||
|- | |||
| [https://dlmf.nist.gov/4.7.E7 4.7.E7] || [[Item:Q1583|<math>\deriv{}{z}e^{z} = e^{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{}{z}e^{z} = e^{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(exp(z), z) = exp(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[Exp[z], z] == Exp[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.7.E8 4.7.E8] || [[Item:Q1584|<math>\deriv{}{z}e^{az} = ae^{az}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{}{z}e^{az} = ae^{az}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(exp(a*z), z) = a*exp(a*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[Exp[a*z], z] == a*Exp[a*z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 42] | |||
|- | |||
| [https://dlmf.nist.gov/4.7.E9 4.7.E9] || [[Item:Q1585|<math>\deriv{}{z}a^{z} = a^{z}\ln@@{a}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{}{z}a^{z} = a^{z}\ln@@{a}</syntaxhighlight> || <math>a \neq 0</math> || <syntaxhighlight lang=mathematica>diff((a)^(z), z) = (a)^(z)* ln(a)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[(a)^(z), z] == (a)^(z)* Log[a]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 42] | |||
|- | |||
| [https://dlmf.nist.gov/4.7.E10 4.7.E10] || [[Item:Q1586|<math>\deriv{}{z}z^{a} = az^{a-1}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{}{z}z^{a} = az^{a-1}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff((z)^(a), z) = a*(z)^(a - 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[(z)^(a), z] == a*(z)^(a - 1)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 42] | |||
|- | |||
| [https://dlmf.nist.gov/4.7.E14 4.7.E14] || [[Item:Q1590|<math>\deriv[2]{w}{z} = aw</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[2]{w}{z} = aw</syntaxhighlight> || <math>a \neq 0</math> || <syntaxhighlight lang=mathematica>diff(w, [z$(2)]) = a*w</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[w, {z, 2}] == a*w</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.299038106+.7500000000*I | |||
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.299038106+.7500000000*I | |||
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.299038106+.7500000000*I | |||
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.299038106+.7500000000*I | |||
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.299038105676658, 0.7499999999999999] | |||
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.299038105676658, 0.7499999999999999] | |||
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- style="background: #dfe6e9;" | |||
| [https://dlmf.nist.gov/4.7.E15 4.7.E15] || [[Item:Q1591|<math>w = Ae^{\sqrt{a}z}+Be^{-\sqrt{a}z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>w = Ae^{\sqrt{a}z}+Be^{-\sqrt{a}z}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">w = A*exp(sqrt(a)*z)+ B*exp(-sqrt(a)*z)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">w == A*Exp[Sqrt[a]*z]+ B*Exp[-Sqrt[a]*z]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | |||
|- | |||
| [https://dlmf.nist.gov/4.8.E1 4.8.E1] || [[Item:Q1592|<math>\Ln@{z_{1}z_{2}} = \Ln@@{z_{1}}+\Ln@@{z_{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Ln@{z_{1}z_{2}} = \Ln@@{z_{1}}+\Ln@@{z_{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln(z[1]*z[2]) = ln(z[1])+ ln(z[2])</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[Subscript[z, 1]*Subscript[z, 2]] == Log[Subscript[z, 1]]+ Log[Subscript[z, 2]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [25 / 100]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 0.-6.283185308*I | |||
Test Values: {z[1] = 1/2*3^(1/2)+1/2*I, z[2] = -1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.-6.283185308*I | |||
Test Values: {z[1] = 1/2*3^(1/2)+1/2*I, z[2] = -.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.1e-9-6.283185308*I | |||
Test Values: {z[1] = 1/2*3^(1/2)+1/2*I, z[2] = -2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .133199999e-10-6.283185307*I | |||
Test Values: {z[1] = -1/2+1/2*I*3^(1/2), z[2] = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [25 / 100]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.0, -6.283185307179587] | |||
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[z, 2], -1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.0, -6.283185307179587] | |||
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[z, 2], -0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/4.8.E2 4.8.E2] || [[Item:Q1593|<math>\ln@{z_{1}z_{2}} = \ln@@{z_{1}}+\ln@@{z_{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@{z_{1}z_{2}} = \ln@@{z_{1}}+\ln@@{z_{2}}</syntaxhighlight> || <math>-\pi \leq \phase@@{z_{1}}+\phase@@{z_{2}}, \phase@@{z_{1}}+\phase@@{z_{2}} \leq \pi</math> || <syntaxhighlight lang=mathematica>ln(z[1]*z[2]) = ln(z[1])+ ln(z[2])</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[Subscript[z, 1]*Subscript[z, 2]] == Log[Subscript[z, 1]]+ Log[Subscript[z, 2]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 59] || Successful [Tested: 75] | |||
|- | |||
| [https://dlmf.nist.gov/4.8.E3 4.8.E3] || [[Item:Q1594|<math>\Ln@@{\frac{z_{1}}{z_{2}}} = \Ln@@{z_{1}}-\Ln@@{z_{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Ln@@{\frac{z_{1}}{z_{2}}} = \Ln@@{z_{1}}-\Ln@@{z_{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln((z[1])/(z[2])) = ln(z[1])- ln(z[2])</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[Divide[Subscript[z, 1],Subscript[z, 2]]] == Log[Subscript[z, 1]]- Log[Subscript[z, 2]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [25 / 100]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 0.-6.283185307*I | |||
Test Values: {z[1] = -1/2+1/2*I*3^(1/2), z[2] = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.+6.283185307*I | |||
Test Values: {z[1] = 1/2-1/2*I*3^(1/2), z[2] = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .1e-9+6.283185307*I | |||
Test Values: {z[1] = 1/2-1/2*I*3^(1/2), z[2] = -1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.1e-9+6.283185307*I | |||
Test Values: {z[1] = 1/2-1/2*I*3^(1/2), z[2] = -.5}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [25 / 100]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.0, -6.283185307179586] | |||
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[Subscript[z, 2], Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.0, 6.283185307179586] | |||
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]], Rule[Subscript[z, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/4.8.E4 4.8.E4] || [[Item:Q1595|<math>\ln@@{\frac{z_{1}}{z_{2}}} = \ln@@{z_{1}}-\ln@@{z_{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@@{\frac{z_{1}}{z_{2}}} = \ln@@{z_{1}}-\ln@@{z_{2}}</syntaxhighlight> || <math>-\pi \leq \phase@@{z_{1}}-\phase@@{z_{2}}, \phase@@{z_{1}}-\phase@@{z_{2}} \leq \pi</math> || <syntaxhighlight lang=mathematica>ln((z[1])/(z[2])) = ln(z[1])- ln(z[2])</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[Divide[Subscript[z, 1],Subscript[z, 2]]] == Log[Subscript[z, 1]]- Log[Subscript[z, 2]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 0.+6.283185307*I | |||
Test Values: {z[1] = 1/2-1/2*I*3^(1/2), z[2] = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.+6.283185308*I | |||
Test Values: {z[1] = -1/2*3^(1/2)-1/2*I, z[2] = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 6.283185308*I | |||
Test Values: {z[1] = 2, z[2] = -2}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [11 / 86]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.0, 6.283185307179586] | |||
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]], Rule[Subscript[z, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.0, 6.283185307179586] | |||
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]], Rule[Subscript[z, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/4.8.E5 4.8.E5] || [[Item:Q1596|<math>\Ln@{z^{n}} = n\Ln@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Ln@{z^{n}} = n\Ln@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln((z)^(n)) = n*ln(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[(z)^(n)] == n*Log[z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [5 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .133199999e-10-6.283185307*I | |||
Test Values: {z = -1/2+1/2*I*3^(1/2), n = 2, n = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .4399599996e-9-6.283185306*I | |||
Test Values: {z = -1/2+1/2*I*3^(1/2), n = 3, n = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .4399599996e-9+6.283185306*I | |||
Test Values: {z = 1/2-1/2*I*3^(1/2), n = 3, n = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .133199999e-10+6.283185307*I | |||
Test Values: {z = -1/2*3^(1/2)-1/2*I, n = 2, n = 3}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.0, -6.283185307179586] | |||
Test Values: {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.0, 6.283185307179586] | |||
Test Values: {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/4.8.E6 4.8.E6] || [[Item:Q1597|<math>\ln@{z^{n}} = n\ln@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@{z^{n}} = n\ln@@{z}</syntaxhighlight> || <math>-\pi \leq n\phase@@{z}, n\phase@@{z} \leq \pi</math> || <syntaxhighlight lang=mathematica>ln((z)^(n)) = n*ln(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[(z)^(n)] == n*Log[z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 17]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .4399599996e-9+6.283185306*I | |||
Test Values: {z = 1/2-1/2*I*3^(1/2), n = 3, n = 3}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.0, -6.283185307179586] | |||
Test Values: {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.0, 6.283185307179586] | |||
Test Values: {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/4.8.E7 4.8.E7] || [[Item:Q1598|<math>\ln@@{\frac{1}{z}} = -\ln@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@@{\frac{1}{z}} = -\ln@@{z}</syntaxhighlight> || <math>|\phase@@{z}| \leq \pi</math> || <syntaxhighlight lang=mathematica>ln((1)/(z)) = - ln(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[Divide[1,z]] == - Log[z]</syntaxhighlight> || Failure || Failure || Successful [Tested: 7] || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.8.E8 4.8.E8] || [[Item:Q1599|<math>\Ln@{\exp@@{z}} = z+2k\pi\iunit</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Ln@{\exp@@{z}} = z+2k\pi\iunit</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln(exp(z)) = z + 2*k*Pi*I</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[Exp[z]] == z + 2*k*Pi*I</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.1e-9-6.283185308*I | |||
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1, k = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.1e-9-12.56637062*I | |||
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2, k = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.1e-9-18.84955592*I | |||
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 3, k = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.-6.283185308*I | |||
Test Values: {z = -1/2+1/2*I*3^(1/2), k = 1, k = 3}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.0, -18.84955592153876] | |||
Test Values: {Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.0, -18.84955592153876] | |||
Test Values: {Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/4.8.E9 4.8.E9] || [[Item:Q1600|<math>\ln@{\exp@@{z}} = z</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@{\exp@@{z}} = z</syntaxhighlight> || <math>-\pi \leq \imagpart@@{z}, \imagpart@@{z} \leq \pi</math> || <syntaxhighlight lang=mathematica>ln(exp(z)) = z</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[Exp[z]] == z</syntaxhighlight> || Failure || Failure || Successful [Tested: 7] || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.8.E10 4.8.E10] || [[Item:Q1601|<math>\exp@{\ln@@{z}} = \exp@{\Ln@@{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\exp@{\ln@@{z}} = \exp@{\Ln@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(ln(z)) = exp(ln(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[Log[z]] == Exp[Log[z]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.8.E10 4.8.E10] || [[Item:Q1601|<math>\exp@{\Ln@@{z}} = z</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\exp@{\Ln@@{z}} = z</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(ln(z)) = z</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[Log[z]] == z</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.8.E11 4.8.E11] || [[Item:Q1602|<math>\Ln@{a^{z}} = z\Ln@@{a}+2k\pi\iunit</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Ln@{a^{z}} = z\Ln@@{a}+2k\pi\iunit</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln((a)^(z)) = z*ln(a)+ 2*k*Pi*I</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[(a)^(z)] == z*Log[a]+ 2*k*Pi*I</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [126 / 126]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 0.-6.283185308*I | |||
Test Values: {a = -1.5, z = 1/2*3^(1/2)+1/2*I, k = 1, k = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.-12.56637062*I | |||
Test Values: {a = -1.5, z = 1/2*3^(1/2)+1/2*I, k = 2, k = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.-18.84955592*I | |||
Test Values: {a = -1.5, z = 1/2*3^(1/2)+1/2*I, k = 3, k = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.-6.283185308*I | |||
Test Values: {a = -1.5, z = -1/2+1/2*I*3^(1/2), k = 1, k = 3}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [42 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.0, -18.84955592153876] | |||
Test Values: {Rule[a, -1.5], Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.0, -18.84955592153876] | |||
Test Values: {Rule[a, -1.5], Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/4.8.E12 4.8.E12] || [[Item:Q1603|<math>\ln@{a^{z}} = z\ln@@{a}+2k\pi\iunit</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@{a^{z}} = z\ln@@{a}+2k\pi\iunit</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln((a)^(z)) = z*ln(a)+ 2*k*Pi*I</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[(a)^(z)] == z*Log[a]+ 2*k*Pi*I</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [126 / 126]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 0.-6.283185308*I | |||
Test Values: {a = -1.5, z = 1/2*3^(1/2)+1/2*I, k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.-12.56637062*I | |||
Test Values: {a = -1.5, z = 1/2*3^(1/2)+1/2*I, k = 2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.-18.84955592*I | |||
Test Values: {a = -1.5, z = 1/2*3^(1/2)+1/2*I, k = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.-6.283185308*I | |||
Test Values: {a = -1.5, z = -1/2+1/2*I*3^(1/2), k = 1}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [126 / 126]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.0, -6.283185307179586] | |||
Test Values: {Rule[a, -1.5], Rule[k, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.0, -12.566370614359172] | |||
Test Values: {Rule[a, -1.5], Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/4.8.E13 4.8.E13] || [[Item:Q1604|<math>\ln@{a^{x}} = x\ln@@{a}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@{a^{x}} = x\ln@@{a}</syntaxhighlight> || <math>a > 0</math> || <syntaxhighlight lang=mathematica>ln((a)^(x)) = x*ln(a)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[(a)^(x)] == x*Log[a]</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 9] | |||
|- style="background: #dfe6e9;" | |||
| [https://dlmf.nist.gov/4.8.E14 4.8.E14] || [[Item:Q1605|<math>a^{z_{1}}a^{z_{2}} = a^{z_{1}+z_{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>a^{z_{1}}a^{z_{2}} = a^{z_{1}+z_{2}}</syntaxhighlight> || <math>a \neq 0</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(a)^(z[1])* (a)^(z[2]) = (a)^(z[1]+ z[2])</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(a)^(Subscript[z, 1])* (a)^(Subscript[z, 2]) == (a)^(Subscript[z, 1]+ Subscript[z, 2])</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | |||
|- style="background: #dfe6e9;" | |||
| [https://dlmf.nist.gov/4.8.E15 4.8.E15] || [[Item:Q1606|<math>a^{z}b^{z} = (ab)^{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>a^{z}b^{z} = (ab)^{z}</syntaxhighlight> || <math>-\pi \leq \phase@@{a}+\phase@@{b}, \phase@@{a}+\phase@@{b} \leq \pi</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(a)^(z)* (b)^(z) = (a*b)^(z)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(a)^(z)* (b)^(z) == (a*b)^(z)</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | |||
|- style="background: #dfe6e9;" | |||
| [https://dlmf.nist.gov/4.8.E16 4.8.E16] || [[Item:Q1607|<math>e^{z_{1}}e^{z_{2}} = e^{z_{1}+z_{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>e^{z_{1}}e^{z_{2}} = e^{z_{1}+z_{2}}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">exp(z[1])*exp(z[2]) = exp(z[1]+ z[2])</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Exp[Subscript[z, 1]]*Exp[Subscript[z, 2]] == Exp[Subscript[z, 1]+ Subscript[z, 2]]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | |||
|- style="background: #dfe6e9;" | |||
| [https://dlmf.nist.gov/4.8.E17 4.8.E17] || [[Item:Q1608|<math>(e^{z_{1}})^{z_{2}} = e^{z_{1}z_{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>(e^{z_{1}})^{z_{2}} = e^{z_{1}z_{2}}</syntaxhighlight> || <math>-\pi \leq \imagpart@@{z_{1}}, \imagpart@@{z_{1}} \leq \pi</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(exp(z[1]))^(z[2]) = exp(z[1]*z[2])</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(Exp[Subscript[z, 1]])^(Subscript[z, 2]) == Exp[Subscript[z, 1]*Subscript[z, 2]]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | |||
|- | |||
| [https://dlmf.nist.gov/4.10.E1 4.10.E1] || [[Item:Q1616|<math>\int\frac{\diff{z}}{z} = \ln@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\frac{\diff{z}}{z} = \ln@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int((1)/(z), z) = ln(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[1,z], z, GenerateConditions->None] == Log[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.10.E2 4.10.E2] || [[Item:Q1617|<math>\int\ln@@{z}\diff{z} = z\ln@@{z}-z</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\ln@@{z}\diff{z} = z\ln@@{z}-z</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(ln(z), z) = z*ln(z)- z</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Log[z], z, GenerateConditions->None] == z*Log[z]- z</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.10.E3 4.10.E3] || [[Item:Q1618|<math>\int z^{n}\ln@@{z}\diff{z} = \frac{z^{n+1}}{n+1}\ln@@{z}-\frac{z^{n+1}}{(n+1)^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int z^{n}\ln@@{z}\diff{z} = \frac{z^{n+1}}{n+1}\ln@@{z}-\frac{z^{n+1}}{(n+1)^{2}}</syntaxhighlight> || <math>n \neq -1</math> || <syntaxhighlight lang=mathematica>int((z)^(n)* ln(z), z) = ((z)^(n + 1))/(n + 1)*ln(z)-((z)^(n + 1))/((n + 1)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(z)^(n)* Log[z], z, GenerateConditions->None] == Divide[(z)^(n + 1),n + 1]*Log[z]-Divide[(z)^(n + 1),(n + 1)^(2)]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 21] | |||
|- | |||
| [https://dlmf.nist.gov/4.10.E4 4.10.E4] || [[Item:Q1619|<math>\int\frac{\diff{z}}{z\ln@@{z}} = \ln@{\ln@@{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\frac{\diff{z}}{z\ln@@{z}} = \ln@{\ln@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int((1)/(z*ln(z)), z) = ln(ln(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[1,z*Log[z]], z, GenerateConditions->None] == Log[Log[z]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.10.E5 4.10.E5] || [[Item:Q1620|<math>\int_{0}^{1}\frac{\ln@@{t}}{1-t}\diff{t} = -\frac{\pi^{2}}{6}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{1}\frac{\ln@@{t}}{1-t}\diff{t} = -\frac{\pi^{2}}{6}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int((ln(t))/(1 - t), t = 0..1) = -((Pi)^(2))/(6)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[Log[t],1 - t], {t, 0, 1}, GenerateConditions->None] == -Divide[(Pi)^(2),6]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | |||
|- | |||
| [https://dlmf.nist.gov/4.10.E6 4.10.E6] || [[Item:Q1621|<math>\int_{0}^{1}\frac{\ln@@{t}}{1+t}\diff{t} = -\frac{\pi^{2}}{12}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{1}\frac{\ln@@{t}}{1+t}\diff{t} = -\frac{\pi^{2}}{12}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int((ln(t))/(1 + t), t = 0..1) = -((Pi)^(2))/(12)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[Log[t],1 + t], {t, 0, 1}, GenerateConditions->None] == -Divide[(Pi)^(2),12]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | |||
|- | |||
| [https://dlmf.nist.gov/4.10.E8 4.10.E8] || [[Item:Q1623|<math>\int e^{az}\diff{z} = \frac{e^{az}}{a}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int e^{az}\diff{z} = \frac{e^{az}}{a}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(exp(a*z), z) = (exp(a*z))/(a)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[a*z], z, GenerateConditions->None] == Divide[Exp[a*z],a]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 42] | |||
|- | |||
| [https://dlmf.nist.gov/4.10.E9 4.10.E9] || [[Item:Q1624|<math>\int\frac{\diff{z}}{e^{az}+b} = \frac{1}{ab}(az-\ln@{e^{az}+b})</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\frac{\diff{z}}{e^{az}+b} = \frac{1}{ab}(az-\ln@{e^{az}+b})</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int((1)/(exp(a*z)+ b), z) = (1)/(a*b)*(a*z - ln(exp(a*z)+ b))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[1,Exp[a*z]+ b], z, GenerateConditions->None] == Divide[1,a*b]*(a*z - Log[Exp[a*z]+ b])</syntaxhighlight> || Failure || Successful || Successful [Tested: 252] || Successful [Tested: 252] | |||
|- | |||
| [https://dlmf.nist.gov/4.10.E10 4.10.E10] || [[Item:Q1625|<math>\int\frac{e^{az}-1}{e^{az}+1}\diff{z} = \frac{2}{a}\ln@{e^{az/2}+e^{-az/2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\frac{e^{az}-1}{e^{az}+1}\diff{z} = \frac{2}{a}\ln@{e^{az/2}+e^{-az/2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int((exp(a*z)- 1)/(exp(a*z)+ 1), z) = (2)/(a)*ln(exp(a*z/2)+ exp(- a*z/2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[Exp[a*z]- 1,Exp[a*z]+ 1], z, GenerateConditions->None] == Divide[2,a]*Log[Exp[a*z/2]+ Exp[- a*z/2]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 42] || Successful [Tested: 42] | |||
|- | |||
| [https://dlmf.nist.gov/4.10.E11 4.10.E11] || [[Item:Q1626|<math>\int_{-\infty}^{\infty}e^{-cx^{2}}\diff{x} = \sqrt{\frac{\pi}{c}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{-\infty}^{\infty}e^{-cx^{2}}\diff{x} = \sqrt{\frac{\pi}{c}}</syntaxhighlight> || <math>\realpart@@{c} > 0</math> || <syntaxhighlight lang=mathematica>int(exp(- c*(x)^(2)), x = - infinity..infinity) = sqrt((Pi)/(c))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[- c*(x)^(2)], {x, - Infinity, Infinity}, GenerateConditions->None] == Sqrt[Divide[Pi,c]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 3] | |||
|- | |||
| [https://dlmf.nist.gov/4.10.E12 4.10.E12] || [[Item:Q1627|<math>\int_{0}^{\ln@@{2}}\frac{xe^{x}}{e^{x}-1}\diff{x} = \frac{\pi^{2}}{12}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\ln@@{2}}\frac{xe^{x}}{e^{x}-1}\diff{x} = \frac{\pi^{2}}{12}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int((x*exp(x))/(exp(x)- 1), x = 0..ln(2)) = ((Pi)^(2))/(12)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[x*Exp[x],Exp[x]- 1], {x, 0, Log[2]}, GenerateConditions->None] == Divide[(Pi)^(2),12]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | |||
|- | |||
| [https://dlmf.nist.gov/4.10.E13 4.10.E13] || [[Item:Q1628|<math>\int_{0}^{\infty}\frac{\diff{x}}{e^{x}+1} = \ln@@{2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\frac{\diff{x}}{e^{x}+1} = \ln@@{2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int((1)/(exp(x)+ 1), x = 0..infinity) = ln(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[1,Exp[x]+ 1], {x, 0, Infinity}, GenerateConditions->None] == Log[2]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | |||
|- style="background: #dfe6e9;" | |||
| [https://dlmf.nist.gov/4.12.E1 4.12.E1] || [[Item:Q1629|<math>\phi(x+1) = e^{\phi(x)}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\phi(x+1) = e^{\phi(x)}</syntaxhighlight> || <math>-1 < x, x < \infty</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">phi(x + 1) = exp(phi(x))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">\[Phi][x + 1] == Exp[\[Phi][x]]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | |||
|- style="background: #dfe6e9;" | |||
| [https://dlmf.nist.gov/4.12.E2 4.12.E2] || [[Item:Q1630|<math>\phi(0) = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\phi(0) = 0</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">phi(0) = 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">\[Phi][0] == 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | |||
|- style="background: #dfe6e9;" | |||
| [https://dlmf.nist.gov/4.12.E3 4.12.E3] || [[Item:Q1631|<math>\psi(e^{x}) = 1+\psi(x)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\psi(e^{x}) = 1+\psi(x)</syntaxhighlight> || <math>-\infty < x, x < \infty</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">psi(exp(x)) = 1 + psi(x)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">\[Psi][Exp[x]] == 1 + \[Psi][x]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | |||
|- style="background: #dfe6e9;" | |||
| [https://dlmf.nist.gov/4.12.E4 4.12.E4] || [[Item:Q1632|<math>\psi(0) = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\psi(0) = 0</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">psi(0) = 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">\[Psi][0] == 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | |||
|- style="background: #dfe6e9;" | |||
| [https://dlmf.nist.gov/4.12.E5 4.12.E5] || [[Item:Q1633|<math>\phi(x) = \psi(x)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\phi(x) = \psi(x)</syntaxhighlight> || <math>0 \leq x, x \leq 1</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">phi(x) = psi(x)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">\[Phi][x] == \[Psi][x]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | |||
|- | |||
| [https://dlmf.nist.gov/4.12.E6 4.12.E6] || [[Item:Q1634|<math>\phi(x) = \ln@{x+1}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\phi(x) = \ln@{x+1}</syntaxhighlight> || <math>-1 < x, x < 0</math> || <syntaxhighlight lang=mathematica>phi(x) = ln(x + 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>\[Phi][x] == Log[x + 1]</syntaxhighlight> || Failure || Failure || Error || Skip - No test values generated | |||
|- style="background: #dfe6e9;" | |||
| [https://dlmf.nist.gov/4.12.E8 4.12.E8] || [[Item:Q1636|<math>\psi(x) = e^{x}-1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\psi(x) = e^{x}-1</syntaxhighlight> || <math>-\infty < x, x < 0</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">psi(x) = exp(x)- 1</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">\[Psi][x] == Exp[x]- 1</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | |||
|- | |||
| [https://dlmf.nist.gov/4.13.E1 4.13.E1] || [[Item:Q1639|<math>We^{W} = x</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>We^{W} = x</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>W*exp(W) = x</syntaxhighlight> || <syntaxhighlight lang=mathematica>W*Exp[W] == x</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [30 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.263026030+2.030302705*I | |||
Test Values: {W = 1/2*3^(1/2)+1/2*I, x = 1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .736973970+2.030302705*I | |||
Test Values: {W = 1/2*3^(1/2)+1/2*I, x = .5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.763026030+2.030302705*I | |||
Test Values: {W = 1/2*3^(1/2)+1/2*I, x = 2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -2.096603674+.1092863076*I | |||
Test Values: {W = -1/2+1/2*I*3^(1/2), x = 1.5}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [30 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.2630260306572938, 2.0303027048207967] | |||
Test Values: {Rule[W, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.7369739693427062, 2.0303027048207967] | |||
Test Values: {Rule[W, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/4.13#Ex1 4.13#Ex1] || [[Item:Q1640|<math>\LambertWp@{-1/e} = \LambertWm@{-1/e}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\LambertWp@{-1/e} = \LambertWm@{-1/e}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>LambertW(0, - 1/exp(1)) = LambertW(-1, - 1/exp(1))</syntaxhighlight> || <syntaxhighlight lang=mathematica>ProductLog[0, - 1/E] == ProductLog[-1, - 1/E]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | |||
|- | |||
| [https://dlmf.nist.gov/4.13#Ex1 4.13#Ex1] || [[Item:Q1640|<math>\LambertWm@{-1/e} = -1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\LambertWm@{-1/e} = -1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>LambertW(-1, - 1/exp(1)) = - 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>ProductLog[-1, - 1/E] == - 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | |||
|- | |||
| [https://dlmf.nist.gov/4.13#Ex2 4.13#Ex2] || [[Item:Q1641|<math>\LambertWp@{0} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\LambertWp@{0} = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>LambertW(0, 0) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>ProductLog[0, 0] == 0</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | |||
|- | |||
| [https://dlmf.nist.gov/4.13#Ex3 4.13#Ex3] || [[Item:Q1642|<math>\LambertWp@{e} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\LambertWp@{e} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>LambertW(0, exp(1)) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>ProductLog[0, E] == 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | |||
|- | |||
| [https://dlmf.nist.gov/4.13#Ex4 4.13#Ex4] || [[Item:Q1643|<math>U+\ln@@{U} = x</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>U+\ln@@{U} = x</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>U + ln(U) = x</syntaxhighlight> || <syntaxhighlight lang=mathematica>U + Log[U] == x</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [30 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.6339745958+1.023598776*I | |||
Test Values: {U = 1/2*3^(1/2)+1/2*I, x = 1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .3660254042+1.023598776*I | |||
Test Values: {U = 1/2*3^(1/2)+1/2*I, x = .5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.133974596+1.023598776*I | |||
Test Values: {U = 1/2*3^(1/2)+1/2*I, x = 2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -2.000000000+2.960420506*I | |||
Test Values: {U = -1/2+1/2*I*3^(1/2), x = 1.5}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [30 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.6339745962155613, 1.0235987755982987] | |||
Test Values: {Rule[U, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.3660254037844387, 1.0235987755982987] | |||
Test Values: {Rule[U, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/4.13#Ex5 4.13#Ex5] || [[Item:Q1644|<math>U = U(x)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>U = U(x)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>U = U*(x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>U == U*(x)</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [30 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.4330127020-.2500000000*I | |||
Test Values: {U = 1/2*3^(1/2)+1/2*I, x = 1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .4330127020+.2500000000*I | |||
Test Values: {U = 1/2*3^(1/2)+1/2*I, x = .5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.8660254040-.5000000000*I | |||
Test Values: {U = 1/2*3^(1/2)+1/2*I, x = 2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .2500000000-.4330127020*I | |||
Test Values: {U = -1/2+1/2*I*3^(1/2), x = 1.5}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [30 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.4330127018922193, -0.24999999999999994] | |||
Test Values: {Rule[U, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.43301270189221935, 0.24999999999999997] | |||
Test Values: {Rule[U, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/4.13#Ex5 4.13#Ex5] || [[Item:Q1644|<math>U(x) = \LambertW@{e^{x}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>U(x) = \LambertW@{e^{x}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>U(x) = LambertW(exp(x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>U[x] == ProductLog[Exp[x]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [30 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .34078386e-1+.7500000000*I | |||
Test Values: {U = 1/2*3^(1/2)+1/2*I, x = 1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.3332359062+.2500000000*I | |||
Test Values: {U = 1/2*3^(1/2)+1/2*I, x = .5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .174905209+1.*I | |||
Test Values: {U = 1/2*3^(1/2)+1/2*I, x = 2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -2.014959720+1.299038106*I | |||
Test Values: {U = -1/2+1/2*I*3^(1/2), x = 1.5}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [30 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.0340783855511575, 0.7499999999999999] | |||
Test Values: {Rule[U, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.333235906269531, 0.24999999999999997] | |||
Test Values: {Rule[U, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/4.13.E5 4.13.E5] || [[Item:Q1646|<math>\LambertWp@{x} = \sum_{n=1}^{\infty}(-1)^{n-1}\frac{n^{n-2}}{(n-1)!}x^{n}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\LambertWp@{x} = \sum_{n=1}^{\infty}(-1)^{n-1}\frac{n^{n-2}}{(n-1)!}x^{n}</syntaxhighlight> || <math>|x| < \dfrac{1}{e}</math> || <syntaxhighlight lang=mathematica>LambertW(0, x) = sum((- 1)^(n - 1)*((n)^(n - 2))/(factorial(n - 1))*(x)^(n), n = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ProductLog[0, x] == Sum[(- 1)^(n - 1)*Divide[(n)^(n - 2),(n - 1)!]*(x)^(n), {n, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || Error || Successful [Tested: 0] | |||
|- | |||
| [https://dlmf.nist.gov/4.13.E6 4.13.E6] || [[Item:Q1647|<math>\LambertW@{-e^{-1-(t^{2}/2)}} = \sum_{n=0}^{\infty}(-1)^{n-1}c_{n}t^{n}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\LambertW@{-e^{-1-(t^{2}/2)}} = \sum_{n=0}^{\infty}(-1)^{n-1}c_{n}t^{n}</syntaxhighlight> || <math>|t| < 2\sqrt{\pi}</math> || <syntaxhighlight lang=mathematica>LambertW(- exp(- 1 -((t)^(2)/2))) = sum((- 1)^(n - 1)* c[n]*(t)^(n), n = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ProductLog[- Exp[- 1 -((t)^(2)/2)]] == Sum[(- 1)^(n - 1)* Subscript[c, n]*(t)^(n), {n, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [60 / 60]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Float(infinity)+Float(infinity)*I | |||
Test Values: {t = -1.5, c[n] = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Float(infinity)+Float(infinity)*I | |||
Test Values: {t = -1.5, c[n] = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Float(infinity)+Float(infinity)*I | |||
Test Values: {t = -1.5, c[n] = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Float(infinity)+Float(infinity)*I | |||
Test Values: {t = -1.5, c[n] = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [60 / 60]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[-0.13696418431579768, Times[-1.0, NSum[Times[Power[-1.5, n], Power[-1, Plus[-1, n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]] | |||
Test Values: {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[t, -1.5], Rule[Subscript[c, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[-0.13696418431579768, Times[-1.0, NSum[Times[Power[-1.5, n], Power[-1, Plus[-1, n]], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]] | |||
Test Values: {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[t, -1.5], Rule[Subscript[c, n], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- style="background: #dfe6e9;" | |||
| [https://dlmf.nist.gov/4.13.E7 4.13.E7] || [[Item:Q1648|<math>c_{0} = 1,c_{1}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>c_{0} = 1,c_{1}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">c[0] = 1; c[1]</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[c, 0] == 1 | |||
Subscript[c, 1]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | |||
|- style="background: #dfe6e9;" | |||
| [https://dlmf.nist.gov/4.13.E8 4.13.E8] || [[Item:Q1649|<math>c_{n} = \frac{1}{n+1}\left(c_{n-1}-\sum_{k=2}^{n-1}kc_{k}c_{n+1-k}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>c_{n} = \frac{1}{n+1}\left(c_{n-1}-\sum_{k=2}^{n-1}kc_{k}c_{n+1-k}\right)</syntaxhighlight> || <math>n \geq 2</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">c[n] = (1)/(n + 1)*(c[n - 1]- sum(k*c[k]*c[n + 1 - k], k = 2..n - 1))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[c, n] == Divide[1,n + 1]*(Subscript[c, n - 1]- Sum[k*Subscript[c, k]*Subscript[c, n + 1 - k], {k, 2, n - 1}, GenerateConditions->None])</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | |||
|- style="background: #dfe6e9;" | |||
| [https://dlmf.nist.gov/4.13.E9 4.13.E9] || [[Item:Q1650|<math>1\cdot 3\cdot 5\cdots(2n+1)c_{2n+1} = g_{n}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>1\cdot 3\cdot 5\cdots(2n+1)c_{2n+1} = g_{n}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">1 * 3 * 5*(2*n + 1)*c[2*n + 1] = g[n]</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">1 * 3 * 5*(2*n + 1)*Subscript[c, 2*n + 1] == Subscript[g, n]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | |||
|- | |||
| [https://dlmf.nist.gov/4.14.E1 4.14.E1] || [[Item:Q1653|<math>\sin@@{z} = \frac{e^{\iunit z}-e^{-\iunit z}}{2\iunit}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@@{z} = \frac{e^{\iunit z}-e^{-\iunit z}}{2\iunit}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(z) = (exp(I*z)- exp(- I*z))/(2*I)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[z] == Divide[Exp[I*z]- Exp[- I*z],2*I]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.14.E2 4.14.E2] || [[Item:Q1654|<math>\cos@@{z} = \frac{e^{\iunit z}+e^{-\iunit z}}{2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@@{z} = \frac{e^{\iunit z}+e^{-\iunit z}}{2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(z) = (exp(I*z)+ exp(- I*z))/(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[z] == Divide[Exp[I*z]+ Exp[- I*z],2]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.14.E3 4.14.E3] || [[Item:Q1655|<math>\cos@@{z}+ i\sin@@{z} = e^{+ iz}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@@{z}+ i\sin@@{z} = e^{+ iz}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(z)+ I*sin(z) = exp(+ I*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[z]+ I*Sin[z] == Exp[+ I*z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.14.E3 4.14.E3] || [[Item:Q1655|<math>\cos@@{z}- i\sin@@{z} = e^{- iz}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@@{z}- i\sin@@{z} = e^{- iz}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(z)- I*sin(z) = exp(- I*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[z]- I*Sin[z] == Exp[- I*z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.14.E4 4.14.E4] || [[Item:Q1656|<math>\tan@@{z} = \frac{\sin@@{z}}{\cos@@{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tan@@{z} = \frac{\sin@@{z}}{\cos@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tan(z) = (sin(z))/(cos(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tan[z] == Divide[Sin[z],Cos[z]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.14.E5 4.14.E5] || [[Item:Q1657|<math>\csc@@{z} = \frac{1}{\sin@@{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\csc@@{z} = \frac{1}{\sin@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>csc(z) = (1)/(sin(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Csc[z] == Divide[1,Sin[z]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.14.E6 4.14.E6] || [[Item:Q1658|<math>\sec@@{z} = \frac{1}{\cos@@{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sec@@{z} = \frac{1}{\cos@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sec(z) = (1)/(cos(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sec[z] == Divide[1,Cos[z]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.14.E7 4.14.E7] || [[Item:Q1659|<math>\cot@@{z} = \frac{\cos@@{z}}{\sin@@{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cot@@{z} = \frac{\cos@@{z}}{\sin@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cot(z) = (cos(z))/(sin(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cot[z] == Divide[Cos[z],Sin[z]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.14.E7 4.14.E7] || [[Item:Q1659|<math>\frac{\cos@@{z}}{\sin@@{z}} = \frac{1}{\tan@@{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{\cos@@{z}}{\sin@@{z}} = \frac{1}{\tan@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(cos(z))/(sin(z)) = (1)/(tan(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[Cos[z],Sin[z]] == Divide[1,Tan[z]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.14.E8 4.14.E8] || [[Item:Q1660|<math>\sin@{z+2k\pi} = \sin@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@{z+2k\pi} = \sin@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(z + 2*k*Pi) = sin(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[z + 2*k*Pi] == Sin[z]</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 21] | |||
|- | |||
| [https://dlmf.nist.gov/4.14.E9 4.14.E9] || [[Item:Q1661|<math>\cos@{z+2k\pi} = \cos@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@{z+2k\pi} = \cos@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(z + 2*k*Pi) = cos(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[z + 2*k*Pi] == Cos[z]</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 21] | |||
|- | |||
| [https://dlmf.nist.gov/4.14.E10 4.14.E10] || [[Item:Q1662|<math>\tan@{z+k\pi} = \tan@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tan@{z+k\pi} = \tan@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tan(z + k*Pi) = tan(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tan[z + k*Pi] == Tan[z]</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 21] | |||
|- | |||
| [https://dlmf.nist.gov/4.15.E1 4.15.E1] || [[Item:Q1663|<math>\cos@{x+iy} = \sin@{x+\tfrac{1}{2}\pi+iy}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@{x+iy} = \sin@{x+\tfrac{1}{2}\pi+iy}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(x + I*y) = sin(x +(1)/(2)*Pi + I*y)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[x + I*y] == Sin[x +Divide[1,2]*Pi + I*y]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 18] | |||
|- | |||
| [https://dlmf.nist.gov/4.15.E2 4.15.E2] || [[Item:Q1664|<math>\cot@{x+iy} = -\tan@{x+\tfrac{1}{2}\pi+iy}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cot@{x+iy} = -\tan@{x+\tfrac{1}{2}\pi+iy}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cot(x + I*y) = - tan(x +(1)/(2)*Pi + I*y)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cot[x + I*y] == - Tan[x +Divide[1,2]*Pi + I*y]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 18] | |||
|- | |||
| [https://dlmf.nist.gov/4.15.E3 4.15.E3] || [[Item:Q1665|<math>\sec@{x+iy} = \csc@{x+\tfrac{1}{2}\pi+iy}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sec@{x+iy} = \csc@{x+\tfrac{1}{2}\pi+iy}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sec(x + I*y) = csc(x +(1)/(2)*Pi + I*y)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sec[x + I*y] == Csc[x +Divide[1,2]*Pi + I*y]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 18] | |||
|- | |||
| [https://dlmf.nist.gov/4.17.E1 4.17.E1] || [[Item:Q1666|<math>\lim_{z\to 0}\frac{\sin@@{z}}{z} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\lim_{z\to 0}\frac{\sin@@{z}}{z} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>limit((sin(z))/(z), z = 0) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Limit[Divide[Sin[z],z], z -> 0, GenerateConditions->None] == 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | |||
|- | |||
| [https://dlmf.nist.gov/4.17.E2 4.17.E2] || [[Item:Q1667|<math>\lim_{z\to 0}\frac{\tan@@{z}}{z} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\lim_{z\to 0}\frac{\tan@@{z}}{z} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>limit((tan(z))/(z), z = 0) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Limit[Divide[Tan[z],z], z -> 0, GenerateConditions->None] == 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | |||
|- | |||
| [https://dlmf.nist.gov/4.17.E3 4.17.E3] || [[Item:Q1668|<math>\lim_{z\to 0}\frac{1-\cos@@{z}}{z^{2}} = \frac{1}{2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\lim_{z\to 0}\frac{1-\cos@@{z}}{z^{2}} = \frac{1}{2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>limit((1 - cos(z))/((z)^(2)), z = 0) = (1)/(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Limit[Divide[1 - Cos[z],(z)^(2)], z -> 0, GenerateConditions->None] == Divide[1,2]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | |||
|- | |||
| [https://dlmf.nist.gov/4.18.E1 4.18.E1] || [[Item:Q1669|<math>\frac{2x}{\pi} \leq \sin@@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{2x}{\pi} \leq \sin@@{x}</syntaxhighlight> || <math>0 \leq x, x \leq \frac{1}{2}\pi</math> || <syntaxhighlight lang=mathematica>(2*x)/(Pi) <= sin(x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[2*x,Pi] <= Sin[x]</syntaxhighlight> || Failure || Failure || Successful [Tested: 2] || Successful [Tested: 2] | |||
|- | |||
| [https://dlmf.nist.gov/4.18.E1 4.18.E1] || [[Item:Q1669|<math>\sin@@{x} \leq x</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@@{x} \leq x</syntaxhighlight> || <math>0 \leq x, x \leq \frac{1}{2}\pi</math> || <syntaxhighlight lang=mathematica>sin(x) <= x</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[x] <= x</syntaxhighlight> || Failure || Failure || Successful [Tested: 2] || Successful [Tested: 2] | |||
|- | |||
| [https://dlmf.nist.gov/4.18.E2 4.18.E2] || [[Item:Q1670|<math>x \leq \tan@@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>x \leq \tan@@{x}</syntaxhighlight> || <math>0 \leq x, x < \frac{1}{2}\pi</math> || <syntaxhighlight lang=mathematica>x <= tan(x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>x <= Tan[x]</syntaxhighlight> || Failure || Failure || Successful [Tested: 2] || Successful [Tested: 2] | |||
|- | |||
| [https://dlmf.nist.gov/4.18.E3 4.18.E3] || [[Item:Q1671|<math>\cos@@{x} \leq \frac{\sin@@{x}}{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@@{x} \leq \frac{\sin@@{x}}{x}</syntaxhighlight> || <math>0 \leq x, x \leq \pi</math> || <syntaxhighlight lang=mathematica>cos(x) <= (sin(x))/(x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[x] <= Divide[Sin[x],x]</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3] | |||
|- | |||
| [https://dlmf.nist.gov/4.18.E3 4.18.E3] || [[Item:Q1671|<math>\frac{\sin@@{x}}{x} \leq 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{\sin@@{x}}{x} \leq 1</syntaxhighlight> || <math>0 \leq x, x \leq \pi</math> || <syntaxhighlight lang=mathematica>(sin(x))/(x) <= 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[Sin[x],x] <= 1</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3] | |||
|- | |||
| [https://dlmf.nist.gov/4.18.E4 4.18.E4] || [[Item:Q1672|<math>\pi < \frac{\sin@{\pi x}}{x(1-x)}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\pi < \frac{\sin@{\pi x}}{x(1-x)}</syntaxhighlight> || <math>0 < x, x < 1</math> || <syntaxhighlight lang=mathematica>Pi < (sin(Pi*x))/(x*(1 - x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Pi < Divide[Sin[Pi*x],x*(1 - x)]</syntaxhighlight> || Failure || Failure || Successful [Tested: 1] || Successful [Tested: 1] | |||
|- | |||
| [https://dlmf.nist.gov/4.18.E4 4.18.E4] || [[Item:Q1672|<math>\frac{\sin@{\pi x}}{x(1-x)} \leq 4</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{\sin@{\pi x}}{x(1-x)} \leq 4</syntaxhighlight> || <math>0 < x, x < 1</math> || <syntaxhighlight lang=mathematica>(sin(Pi*x))/(x*(1 - x)) <= 4</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[Sin[Pi*x],x*(1 - x)] <= 4</syntaxhighlight> || Failure || Failure || Successful [Tested: 1] || Successful [Tested: 1] | |||
|- | |||
| [https://dlmf.nist.gov/4.18.E5 4.18.E5] || [[Item:Q1673|<math>|\sinh@@{y}| \leq |\sin@@{z}|\leq\cosh@@{y}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\sinh@@{y}| \leq |\sin@@{z}|\leq\cosh@@{y}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs(sinh(y)) <= abs(sin(x + y*I)) <= cosh(y)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Sinh[y]] <= Abs[Sin[x + y*I]] <= Cosh[y]</syntaxhighlight> || Failure || Failure || Error || Successful [Tested: 18] | |||
|- | |||
| [https://dlmf.nist.gov/4.18.E6 4.18.E6] || [[Item:Q1674|<math>|\sinh@@{y}| \leq |\cos@@{z}|\leq\cosh@@{y}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\sinh@@{y}| \leq |\cos@@{z}|\leq\cosh@@{y}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs(sinh(y)) <= abs(cos(x + y*I)) <= cosh(y)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Sinh[y]] <= Abs[Cos[x + y*I]] <= Cosh[y]</syntaxhighlight> || Failure || Failure || Error || Successful [Tested: 18] | |||
|- | |||
| [https://dlmf.nist.gov/4.18.E7 4.18.E7] || [[Item:Q1675|<math>|\csc@@{z}| \leq \csch@@{|y|}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\csc@@{z}| \leq \csch@@{|y|}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs(csc(x + y*I)) <= csch(abs(y))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Csc[x + y*I]] <= Csch[Abs[y]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 18] || Successful [Tested: 18] | |||
|- | |||
| [https://dlmf.nist.gov/4.18.E8 4.18.E8] || [[Item:Q1676|<math>|\cos@@{z}| \leq \cosh@@{|z|}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\cos@@{z}| \leq \cosh@@{|z|}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs(cos(z)) <= cosh(abs(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Cos[z]] <= Cosh[Abs[z]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 7] || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.18.E9 4.18.E9] || [[Item:Q1677|<math>|\sin@@{z}| \leq \sinh@@{|z|}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\sin@@{z}| \leq \sinh@@{|z|}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs(sin(z)) <= sinh(abs(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Sin[z]] <= Sinh[Abs[z]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 7] || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.18#Ex1 4.18#Ex1] || [[Item:Q1678|<math>|\cos@@{z}| < 2</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\cos@@{z}| < 2</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs(cos(z)) < 2</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Cos[z]] < 2</syntaxhighlight> || Failure || Failure || Successful [Tested: 7] || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.18#Ex2 4.18#Ex2] || [[Item:Q1679|<math>|\sin@@{z}| \leq \tfrac{6}{5}|z|</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\sin@@{z}| \leq \tfrac{6}{5}|z|</syntaxhighlight> || <math>|z| < 1</math> || <syntaxhighlight lang=mathematica>abs(sin(z)) <= (6)/(5)*abs(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Sin[z]] <= Divide[6,5]*Abs[z]</syntaxhighlight> || Failure || Failure || Successful [Tested: 1] || Successful [Tested: 1] | |||
|- | |||
| [https://dlmf.nist.gov/4.19.E7 4.19.E7] || [[Item:Q1686|<math>\ln@{\frac{\sin@@{z}}{z}} = \sum_{n=1}^{\infty}\frac{(-1)^{n}2^{2n-1}\BernoullinumberB{2n}}{n(2n)!}z^{2n}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@{\frac{\sin@@{z}}{z}} = \sum_{n=1}^{\infty}\frac{(-1)^{n}2^{2n-1}\BernoullinumberB{2n}}{n(2n)!}z^{2n}</syntaxhighlight> || <math>|z| < \pi</math> || <syntaxhighlight lang=mathematica>ln((sin(z))/(z)) = sum(((- 1)^(n)* (2)^(2*n - 1)* bernoulli(2*n))/(n*factorial(2*n))*(z)^(2*n), n = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[Divide[Sin[z],z]] == Sum[Divide[(- 1)^(n)* (2)^(2*n - 1)* BernoulliB[2*n],n*(2*n)!]*(z)^(2*n), {n, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Successful [Tested: 7] || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.19.E8 4.19.E8] || [[Item:Q1687|<math>\ln@{\cos@@{z}} = \sum_{n=1}^{\infty}\frac{(-1)^{n}2^{2n-1}(2^{2n}-1)\BernoullinumberB{2n}}{n(2n)!}z^{2n}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@{\cos@@{z}} = \sum_{n=1}^{\infty}\frac{(-1)^{n}2^{2n-1}(2^{2n}-1)\BernoullinumberB{2n}}{n(2n)!}z^{2n}</syntaxhighlight> || <math>|z| < \frac{1}{2}\pi</math> || <syntaxhighlight lang=mathematica>ln(cos(z)) = sum(((- 1)^(n)* (2)^(2*n - 1)*((2)^(2*n)- 1)*bernoulli(2*n))/(n*factorial(2*n))*(z)^(2*n), n = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[Cos[z]] == Sum[Divide[(- 1)^(n)* (2)^(2*n - 1)*((2)^(2*n)- 1)*BernoulliB[2*n],n*(2*n)!]*(z)^(2*n), {n, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Manual Skip! || Successful [Tested: 6] | |||
|- | |||
| [https://dlmf.nist.gov/4.19.E9 4.19.E9] || [[Item:Q1688|<math>\ln@{\frac{\tan@@{z}}{z}} = \sum_{n=1}^{\infty}\frac{(-1)^{n-1}2^{2n}(2^{2n-1}-1)\BernoullinumberB{2n}}{n(2n)!}z^{2n}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@{\frac{\tan@@{z}}{z}} = \sum_{n=1}^{\infty}\frac{(-1)^{n-1}2^{2n}(2^{2n-1}-1)\BernoullinumberB{2n}}{n(2n)!}z^{2n}</syntaxhighlight> || <math>|z| < \frac{1}{2}\pi</math> || <syntaxhighlight lang=mathematica>ln((tan(z))/(z)) = sum(((- 1)^(n - 1)* (2)^(2*n)*((2)^(2*n - 1)- 1)*bernoulli(2*n))/(n*factorial(2*n))*(z)^(2*n), n = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[Divide[Tan[z],z]] == Sum[Divide[(- 1)^(n - 1)* (2)^(2*n)*((2)^(2*n - 1)- 1)*BernoulliB[2*n],n*(2*n)!]*(z)^(2*n), {n, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Manual Skip! || Successful [Tested: 6] | |||
|- | |||
| [https://dlmf.nist.gov/4.20.E1 4.20.E1] || [[Item:Q1689|<math>\deriv{}{z}\sin@@{z} = \cos@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{}{z}\sin@@{z} = \cos@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(sin(z), z) = cos(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[Sin[z], z] == Cos[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.20.E2 4.20.E2] || [[Item:Q1690|<math>\deriv{}{z}\cos@@{z} = -\sin@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{}{z}\cos@@{z} = -\sin@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(cos(z), z) = - sin(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[Cos[z], z] == - Sin[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.20.E3 4.20.E3] || [[Item:Q1691|<math>\deriv{}{z}\tan@@{z} = \sec^{2}@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{}{z}\tan@@{z} = \sec^{2}@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(tan(z), z) = (sec(z))^(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[Tan[z], z] == (Sec[z])^(2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.20.E4 4.20.E4] || [[Item:Q1692|<math>\deriv{}{z}\csc@@{z} = -\csc@@{z}\cot@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{}{z}\csc@@{z} = -\csc@@{z}\cot@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(csc(z), z) = - csc(z)*cot(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[Csc[z], z] == - Csc[z]*Cot[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.20.E5 4.20.E5] || [[Item:Q1693|<math>\deriv{}{z}\sec@@{z} = \sec@@{z}\tan@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{}{z}\sec@@{z} = \sec@@{z}\tan@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(sec(z), z) = sec(z)*tan(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[Sec[z], z] == Sec[z]*Tan[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.20.E6 4.20.E6] || [[Item:Q1694|<math>\deriv{}{z}\cot@@{z} = -\csc^{2}@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{}{z}\cot@@{z} = -\csc^{2}@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(cot(z), z) = - (csc(z))^(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[Cot[z], z] == - (Csc[z])^(2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.20.E7 4.20.E7] || [[Item:Q1695|<math>\deriv[n]{}{z}\sin@@{z} = \sin@{z+\tfrac{1}{2}n\pi}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[n]{}{z}\sin@@{z} = \sin@{z+\tfrac{1}{2}n\pi}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(sin(z), [z$(n)]) = sin(z +(1)/(2)*n*Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[Sin[z], {z, n}] == Sin[z +Divide[1,2]*n*Pi]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 21] | |||
|- | |||
| [https://dlmf.nist.gov/4.20.E8 4.20.E8] || [[Item:Q1696|<math>\deriv[n]{}{z}\cos@@{z} = \cos@{z+\tfrac{1}{2}n\pi}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[n]{}{z}\cos@@{z} = \cos@{z+\tfrac{1}{2}n\pi}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(cos(z), [z$(n)]) = cos(z +(1)/(2)*n*Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[Cos[z], {z, n}] == Cos[z +Divide[1,2]*n*Pi]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 21] | |||
|- | |||
| [https://dlmf.nist.gov/4.20.E9 4.20.E9] || [[Item:Q1697|<math>\deriv[2]{w}{z}+a^{2}w = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[2]{w}{z}+a^{2}w = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(w, [z$(2)])+ (a)^(2)* w = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[w, {z, 2}]+ (a)^(2)* w == 0</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.948557159+1.125000000*I | |||
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.948557159+1.125000000*I | |||
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.948557159+1.125000000*I | |||
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.948557159+1.125000000*I | |||
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.948557158514987, 1.1249999999999998] | |||
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.948557158514987, 1.1249999999999998] | |||
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/4.20.E10 4.20.E10] || [[Item:Q1698|<math>\left(\deriv{w}{z}\right)^{2}+a^{2}w^{2} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\left(\deriv{w}{z}\right)^{2}+a^{2}w^{2} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(diff(w, z))^(2)+ (a)^(2)* (w)^(2) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>(D[w, z])^(2)+ (a)^(2)* (w)^(2) == 1</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [272 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .125000001+1.948557159*I | |||
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .125000001+1.948557159*I | |||
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .125000001+1.948557159*I | |||
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .125000001+1.948557159*I | |||
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [272 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.12500000000000022, 1.9485571585149868] | |||
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.12500000000000022, 1.9485571585149868] | |||
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/4.20.E11 4.20.E11] || [[Item:Q1699|<math>\deriv{w}{z}-a^{2}w^{2} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{w}{z}-a^{2}w^{2} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(w, z)- (a)^(2)* (w)^(2) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[w, z]- (a)^(2)* (w)^(2) == 1</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -2.125000001-1.948557159*I | |||
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -2.125000001-1.948557159*I | |||
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -2.125000001-1.948557159*I | |||
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -2.125000001-1.948557159*I | |||
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-2.125, -1.9485571585149868] | |||
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-2.125, -1.9485571585149868] | |||
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/4.20.E12 4.20.E12] || [[Item:Q1700|<math>w = A\cos@{az}+B\sin@{az}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>w = A\cos@{az}+B\sin@{az}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>w = A*cos(a*z)+ B*sin(a*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>w == A*Cos[a*z]+ B*Sin[a*z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.138704571+1.826991634*I | |||
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.586785764-.8180862806*I | |||
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.979513822-1.625744019*I | |||
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.8007246334+.1975056737*I | |||
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.138704570618858, 1.8269916342928783] | |||
Test Values: {Rule[a, -1.5], Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[B, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-1.5867857625486925, -0.8180862808059206] | |||
Test Values: {Rule[a, -1.5], Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[B, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/4.20.E13 4.20.E13] || [[Item:Q1701|<math>w = (1/a)\sin@{az+c}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>w = (1/a)\sin@{az+c}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>w = (1/a)*sin(a*z + c)</syntaxhighlight> || <syntaxhighlight lang=mathematica>w == (1/a)*Sin[a*z + c]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .5761075690+1.016359912*I | |||
Test Values: {a = -1.5, c = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.288669860e-1-.3275339707*I | |||
Test Values: {a = -1.5, c = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.1554713530-.2104590960*I | |||
Test Values: {a = -1.5, c = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .6937358929+1.037178419*I | |||
Test Values: {a = -1.5, c = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.5761075684969701, 1.0163599120046827] | |||
Test Values: {Rule[a, -1.5], Rule[c, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.028866985825810376, -0.3275339701177746] | |||
Test Values: {Rule[a, -1.5], Rule[c, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/4.20.E14 4.20.E14] || [[Item:Q1702|<math>w = (1/a)\tan@{az+c}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>w = (1/a)\tan@{az+c}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>w = (1/a)*tan(a*z + c)</syntaxhighlight> || <syntaxhighlight lang=mathematica>w == (1/a)*Tan[a*z + c]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.000937702+.460093509e-1*I | |||
Test Values: {a = -1.5, c = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .7686167751-.1524919258*I | |||
Test Values: {a = -1.5, c = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .9655903492+1.180557377*I | |||
Test Values: {a = -1.5, c = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .7863384613+.9337431086*I | |||
Test Values: {a = -1.5, c = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.0009377022129278, 0.04600935086169866] | |||
Test Values: {Rule[a, -1.5], Rule[c, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.7686167748870922, -0.1524919257161706] | |||
Test Values: {Rule[a, -1.5], Rule[c, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/4.21.E1 4.21.E1] || [[Item:Q1703|<math>\sin@@{u}+\cos@@{u} = \sqrt{2}\sin@{u+\tfrac{1}{4}\pi}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@@{u}+\cos@@{u} = \sqrt{2}\sin@{u+\tfrac{1}{4}\pi}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(u)+ cos(u) = sqrt(2)*sin(u +(1)/(4)*Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[u]+ Cos[u] == Sqrt[2]*Sin[u +Divide[1,4]*Pi]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 10] | |||
|- | |||
| [https://dlmf.nist.gov/4.21.E1 4.21.E1] || [[Item:Q1703|<math>\sin@@{u}-\cos@@{u} = \sqrt{2}\sin@{u-\tfrac{1}{4}\pi}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@@{u}-\cos@@{u} = \sqrt{2}\sin@{u-\tfrac{1}{4}\pi}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(u)- cos(u) = sqrt(2)*sin(u -(1)/(4)*Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[u]- Cos[u] == Sqrt[2]*Sin[u -Divide[1,4]*Pi]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 10] | |||
|- | |||
| [https://dlmf.nist.gov/4.21.E1 4.21.E1] || [[Item:Q1703|<math>\sqrt{2}\sin@{u+\tfrac{1}{4}\pi} = +\sqrt{2}\cos@{u-\tfrac{1}{4}\pi}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sqrt{2}\sin@{u+\tfrac{1}{4}\pi} = +\sqrt{2}\cos@{u-\tfrac{1}{4}\pi}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sqrt(2)*sin(u +(1)/(4)*Pi) = +sqrt(2)*cos(u -(1)/(4)*Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[2]*Sin[u +Divide[1,4]*Pi] == +Sqrt[2]*Cos[u -Divide[1,4]*Pi]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 10] | |||
|- | |||
| [https://dlmf.nist.gov/4.21.E1 4.21.E1] || [[Item:Q1703|<math>\sqrt{2}\sin@{u-\tfrac{1}{4}\pi} = -\sqrt{2}\cos@{u+\tfrac{1}{4}\pi}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sqrt{2}\sin@{u-\tfrac{1}{4}\pi} = -\sqrt{2}\cos@{u+\tfrac{1}{4}\pi}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sqrt(2)*sin(u -(1)/(4)*Pi) = -sqrt(2)*cos(u +(1)/(4)*Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[2]*Sin[u -Divide[1,4]*Pi] == -Sqrt[2]*Cos[u +Divide[1,4]*Pi]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 10] | |||
|- | |||
| [https://dlmf.nist.gov/4.21.E2 4.21.E2] || [[Item:Q1704|<math>\sin@{u+ v} = \sin@@{u}\cos@@{v}+\cos@@{u}\sin@@{v}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@{u+ v} = \sin@@{u}\cos@@{v}+\cos@@{u}\sin@@{v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(u + v) = sin(u)*cos(v)+ cos(u)*sin(v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[u + v] == Sin[u]*Cos[v]+ Cos[u]*Sin[v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100] | |||
|- | |||
| [https://dlmf.nist.gov/4.21.E2 4.21.E2] || [[Item:Q1704|<math>\sin@{u- v} = \sin@@{u}\cos@@{v}-\cos@@{u}\sin@@{v}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@{u- v} = \sin@@{u}\cos@@{v}-\cos@@{u}\sin@@{v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(u - v) = sin(u)*cos(v)- cos(u)*sin(v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[u - v] == Sin[u]*Cos[v]- Cos[u]*Sin[v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100] | |||
|- | |||
| [https://dlmf.nist.gov/4.21.E3 4.21.E3] || [[Item:Q1705|<math>\cos@{u+ v} = \cos@@{u}\cos@@{v}-\sin@@{u}\sin@@{v}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@{u+ v} = \cos@@{u}\cos@@{v}-\sin@@{u}\sin@@{v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(u + v) = cos(u)*cos(v)- sin(u)*sin(v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[u + v] == Cos[u]*Cos[v]- Sin[u]*Sin[v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100] | |||
|- | |||
| [https://dlmf.nist.gov/4.21.E3 4.21.E3] || [[Item:Q1705|<math>\cos@{u- v} = \cos@@{u}\cos@@{v}+\sin@@{u}\sin@@{v}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@{u- v} = \cos@@{u}\cos@@{v}+\sin@@{u}\sin@@{v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(u - v) = cos(u)*cos(v)+ sin(u)*sin(v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[u - v] == Cos[u]*Cos[v]+ Sin[u]*Sin[v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100] | |||
|- | |||
| [https://dlmf.nist.gov/4.21.E4 4.21.E4] || [[Item:Q1706|<math>\tan@{u+ v} = \frac{\tan@@{u}+\tan@@{v}}{1-\tan@@{u}\tan@@{v}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tan@{u+ v} = \frac{\tan@@{u}+\tan@@{v}}{1-\tan@@{u}\tan@@{v}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tan(u + v) = (tan(u)+ tan(v))/(1 - tan(u)*tan(v))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tan[u + v] == Divide[Tan[u]+ Tan[v],1 - Tan[u]*Tan[v]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100] | |||
|- | |||
| [https://dlmf.nist.gov/4.21.E4 4.21.E4] || [[Item:Q1706|<math>\tan@{u- v} = \frac{\tan@@{u}-\tan@@{v}}{1+\tan@@{u}\tan@@{v}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tan@{u- v} = \frac{\tan@@{u}-\tan@@{v}}{1+\tan@@{u}\tan@@{v}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tan(u - v) = (tan(u)- tan(v))/(1 + tan(u)*tan(v))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tan[u - v] == Divide[Tan[u]- Tan[v],1 + Tan[u]*Tan[v]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100] | |||
|- | |||
| [https://dlmf.nist.gov/4.21.E5 4.21.E5] || [[Item:Q1707|<math>\cot@{u+ v} = \frac{+\cot@@{u}\cot@@{v}-1}{\cot@@{u}+\cot@@{v}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cot@{u+ v} = \frac{+\cot@@{u}\cot@@{v}-1}{\cot@@{u}+\cot@@{v}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cot(u + v) = (+ cot(u)*cot(v)- 1)/(cot(u)+ cot(v))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cot[u + v] == Divide[+ Cot[u]*Cot[v]- 1,Cot[u]+ Cot[v]]</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [10 / 100]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | |||
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.9674787081851645*^15, 2.0439439417914815*^15] | |||
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/4.21.E5 4.21.E5] || [[Item:Q1707|<math>\cot@{u- v} = \frac{-\cot@@{u}\cot@@{v}-1}{\cot@@{u}-\cot@@{v}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cot@{u- v} = \frac{-\cot@@{u}\cot@@{v}-1}{\cot@@{u}-\cot@@{v}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cot(u - v) = (- cot(u)*cot(v)- 1)/(cot(u)- cot(v))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cot[u - v] == Divide[- Cot[u]*Cot[v]- 1,Cot[u]- Cot[v]]</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [10 / 100]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | |||
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | |||
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/4.21.E6 4.21.E6] || [[Item:Q1708|<math>\sin@@{u}+\sin@@{v} = 2\sin@{\frac{u+v}{2}}\cos@{\frac{u-v}{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@@{u}+\sin@@{v} = 2\sin@{\frac{u+v}{2}}\cos@{\frac{u-v}{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(u)+ sin(v) = 2*sin((u + v)/(2))*cos((u - v)/(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[u]+ Sin[v] == 2*Sin[Divide[u + v,2]]*Cos[Divide[u - v,2]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100] | |||
|- | |||
| [https://dlmf.nist.gov/4.21.E7 4.21.E7] || [[Item:Q1709|<math>\sin@@{u}-\sin@@{v} = 2\cos@{\frac{u+v}{2}}\sin@{\frac{u-v}{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@@{u}-\sin@@{v} = 2\cos@{\frac{u+v}{2}}\sin@{\frac{u-v}{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(u)- sin(v) = 2*cos((u + v)/(2))*sin((u - v)/(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[u]- Sin[v] == 2*Cos[Divide[u + v,2]]*Sin[Divide[u - v,2]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100] | |||
|- | |||
| [https://dlmf.nist.gov/4.21.E8 4.21.E8] || [[Item:Q1710|<math>\cos@@{u}+\cos@@{v} = 2\cos@{\frac{u+v}{2}}\cos@{\frac{u-v}{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@@{u}+\cos@@{v} = 2\cos@{\frac{u+v}{2}}\cos@{\frac{u-v}{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(u)+ cos(v) = 2*cos((u + v)/(2))*cos((u - v)/(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[u]+ Cos[v] == 2*Cos[Divide[u + v,2]]*Cos[Divide[u - v,2]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100] | |||
|- | |||
| [https://dlmf.nist.gov/4.21.E9 4.21.E9] || [[Item:Q1711|<math>\cos@@{u}-\cos@@{v} = -2\sin@{\frac{u+v}{2}}\sin@{\frac{u-v}{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@@{u}-\cos@@{v} = -2\sin@{\frac{u+v}{2}}\sin@{\frac{u-v}{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(u)- cos(v) = - 2*sin((u + v)/(2))*sin((u - v)/(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[u]- Cos[v] == - 2*Sin[Divide[u + v,2]]*Sin[Divide[u - v,2]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100] | |||
|- | |||
| [https://dlmf.nist.gov/4.21.E10 4.21.E10] || [[Item:Q1712|<math>\tan@@{u}+\tan@@{v} = \frac{\sin@{u+ v}}{\cos@@{u}\cos@@{v}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tan@@{u}+\tan@@{v} = \frac{\sin@{u+ v}}{\cos@@{u}\cos@@{v}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tan(u)+ tan(v) = (sin(u + v))/(cos(u)*cos(v))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tan[u]+ Tan[v] == Divide[Sin[u + v],Cos[u]*Cos[v]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100] | |||
|- | |||
| [https://dlmf.nist.gov/4.21.E10 4.21.E10] || [[Item:Q1712|<math>\tan@@{u}-\tan@@{v} = \frac{\sin@{u- v}}{\cos@@{u}\cos@@{v}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tan@@{u}-\tan@@{v} = \frac{\sin@{u- v}}{\cos@@{u}\cos@@{v}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tan(u)- tan(v) = (sin(u - v))/(cos(u)*cos(v))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tan[u]- Tan[v] == Divide[Sin[u - v],Cos[u]*Cos[v]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100] | |||
|- | |||
| [https://dlmf.nist.gov/4.21.E11 4.21.E11] || [[Item:Q1713|<math>\cot@@{u}+\cot@@{v} = \frac{\sin@{v+ u}}{\sin@@{u}\sin@@{v}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cot@@{u}+\cot@@{v} = \frac{\sin@{v+ u}}{\sin@@{u}\sin@@{v}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cot(u)+ cot(v) = (sin(v + u))/(sin(u)*sin(v))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cot[u]+ Cot[v] == Divide[Sin[v + u],Sin[u]*Sin[v]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100] | |||
|- | |||
| [https://dlmf.nist.gov/4.21.E11 4.21.E11] || [[Item:Q1713|<math>\cot@@{u}-\cot@@{v} = \frac{\sin@{v- u}}{\sin@@{u}\sin@@{v}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cot@@{u}-\cot@@{v} = \frac{\sin@{v- u}}{\sin@@{u}\sin@@{v}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cot(u)- cot(v) = (sin(v - u))/(sin(u)*sin(v))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cot[u]- Cot[v] == Divide[Sin[v - u],Sin[u]*Sin[v]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100] | |||
|- | |||
| [https://dlmf.nist.gov/4.21.E12 4.21.E12] || [[Item:Q1714|<math>\sin^{2}@@{z}+\cos^{2}@@{z} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin^{2}@@{z}+\cos^{2}@@{z} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(sin(z))^(2)+ (cos(z))^(2) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Sin[z])^(2)+ (Cos[z])^(2) == 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.21.E13 4.21.E13] || [[Item:Q1715|<math>\sec^{2}@@{z} = 1+\tan^{2}@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sec^{2}@@{z} = 1+\tan^{2}@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(sec(z))^(2) = 1 + (tan(z))^(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Sec[z])^(2) == 1 + (Tan[z])^(2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.21.E14 4.21.E14] || [[Item:Q1716|<math>\csc^{2}@@{z} = 1+\cot^{2}@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\csc^{2}@@{z} = 1+\cot^{2}@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(csc(z))^(2) = 1 + (cot(z))^(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Csc[z])^(2) == 1 + (Cot[z])^(2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.21.E15 4.21.E15] || [[Item:Q1717|<math>2\sin@@{u}\sin@@{v} = \cos@{u-v}-\cos@{u+v}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>2\sin@@{u}\sin@@{v} = \cos@{u-v}-\cos@{u+v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>2*sin(u)*sin(v) = cos(u - v)- cos(u + v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>2*Sin[u]*Sin[v] == Cos[u - v]- Cos[u + v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100] | |||
|- | |||
| [https://dlmf.nist.gov/4.21.E16 4.21.E16] || [[Item:Q1718|<math>2\cos@@{u}\cos@@{v} = \cos@{u-v}+\cos@{u+v}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>2\cos@@{u}\cos@@{v} = \cos@{u-v}+\cos@{u+v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>2*cos(u)*cos(v) = cos(u - v)+ cos(u + v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>2*Cos[u]*Cos[v] == Cos[u - v]+ Cos[u + v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100] | |||
|- | |||
| [https://dlmf.nist.gov/4.21.E17 4.21.E17] || [[Item:Q1719|<math>2\sin@@{u}\cos@@{v} = \sin@{u-v}+\sin@{u+v}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>2\sin@@{u}\cos@@{v} = \sin@{u-v}+\sin@{u+v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>2*sin(u)*cos(v) = sin(u - v)+ sin(u + v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>2*Sin[u]*Cos[v] == Sin[u - v]+ Sin[u + v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100] | |||
|- | |||
| [https://dlmf.nist.gov/4.21.E18 4.21.E18] || [[Item:Q1720|<math>\sin^{2}@@{u}-\sin^{2}@@{v} = \sin@{u+v}\sin@{u-v}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin^{2}@@{u}-\sin^{2}@@{v} = \sin@{u+v}\sin@{u-v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(sin(u))^(2)- (sin(v))^(2) = sin(u + v)*sin(u - v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Sin[u])^(2)- (Sin[v])^(2) == Sin[u + v]*Sin[u - v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100] | |||
|- | |||
| [https://dlmf.nist.gov/4.21.E19 4.21.E19] || [[Item:Q1721|<math>\cos^{2}@@{u}-\cos^{2}@@{v} = -\sin@{u+v}\sin@{u-v}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos^{2}@@{u}-\cos^{2}@@{v} = -\sin@{u+v}\sin@{u-v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(cos(u))^(2)- (cos(v))^(2) = - sin(u + v)*sin(u - v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Cos[u])^(2)- (Cos[v])^(2) == - Sin[u + v]*Sin[u - v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100] | |||
|- | |||
| [https://dlmf.nist.gov/4.21.E20 4.21.E20] || [[Item:Q1722|<math>\cos^{2}@@{u}-\sin^{2}@@{v} = \cos@{u+v}\cos@{u-v}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos^{2}@@{u}-\sin^{2}@@{v} = \cos@{u+v}\cos@{u-v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(cos(u))^(2)- (sin(v))^(2) = cos(u + v)*cos(u - v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Cos[u])^(2)- (Sin[v])^(2) == Cos[u + v]*Cos[u - v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100] | |||
|- | |||
| [https://dlmf.nist.gov/4.21.E21 4.21.E21] || [[Item:Q1723|<math>\sin@@{\frac{z}{2}} = +\left(\frac{1-\cos@@{z}}{2}\right)^{1/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@@{\frac{z}{2}} = +\left(\frac{1-\cos@@{z}}{2}\right)^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin((z)/(2)) = +((1 - cos(z))/(2))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[Divide[z,2]] == +(Divide[1 - Cos[z],2])^(1/2)</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.5419255224+.8655716642*I | |||
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.8655770340-.4585952894*I | |||
Test Values: {z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.541925522457336, 0.8655716640572733] | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.8655770337160631, -0.4585952893468805] | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br></div></div> | |||
|- | |||
| [https://dlmf.nist.gov/4.21.E21 4.21.E21] || [[Item:Q1723|<math>\sin@@{\frac{z}{2}} = -\left(\frac{1-\cos@@{z}}{2}\right)^{1/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@@{\frac{z}{2}} = -\left(\frac{1-\cos@@{z}}{2}\right)^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin((z)/(2)) = -((1 - cos(z))/(2))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[Divide[z,2]] == -(Divide[1 - Cos[z],2])^(1/2)</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [5 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .8655770340+.4585952894*I | |||
Test Values: {z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .5419255224-.8655716642*I | |||
Test Values: {z = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.363277520 | |||
Test Values: {z = 1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .4948079184 | |||
Test Values: {z = .5}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [5 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.8655770337160631, 0.4585952893468805] | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.5419255224573365, -0.8655716640572731] | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/4.21.E22 4.21.E22] || [[Item:Q1724|<math>\cos@@{\frac{z}{2}} = +\left(\frac{1+\cos@@{z}}{2}\right)^{1/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@@{\frac{z}{2}} = +\left(\frac{1+\cos@@{z}}{2}\right)^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos((z)/(2)) = +((1 + cos(z))/(2))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[Divide[z,2]] == +(Divide[1 + Cos[z],2])^(1/2)</syntaxhighlight> || Failure || Failure || Successful [Tested: 7] || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.21.E22 4.21.E22] || [[Item:Q1724|<math>\cos@@{\frac{z}{2}} = -\left(\frac{1+\cos@@{z}}{2}\right)^{1/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@@{\frac{z}{2}} = -\left(\frac{1+\cos@@{z}}{2}\right)^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos((z)/(2)) = -((1 + cos(z))/(2))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[Divide[z,2]] == -(Divide[1 + Cos[z],2])^(1/2)</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.872439139-.2119959694*I | |||
Test Values: {z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.122352334+.2210167318*I | |||
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.122352334+.2210167318*I | |||
Test Values: {z = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.872439139-.2119959694*I | |||
Test Values: {z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.872439138961815, -0.2119959693051084] | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[2.1223523339444896, 0.22101673165487346] | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/4.21.E23 4.21.E23] || [[Item:Q1725|<math>\tan@@{\frac{z}{2}} = +\left(\frac{1-\cos@@{z}}{1+\cos@@{z}}\right)^{1/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tan@@{\frac{z}{2}} = +\left(\frac{1-\cos@@{z}}{1+\cos@@{z}}\right)^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tan((z)/(2)) = +((1 - cos(z))/(1 + cos(z)))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tan[Divide[z,2]] == +(Divide[1 - Cos[z],1 + Cos[z]])^(1/2)</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.4211742148+.8595320616*I | |||
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.8580864930-.5869891489*I | |||
Test Values: {z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.4211742148849969, 0.8595320613685856] | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.858086492859854, -0.5869891488727426] | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br></div></div> | |||
|- | |||
| [https://dlmf.nist.gov/4.21.E23 4.21.E23] || [[Item:Q1725|<math>\tan@@{\frac{z}{2}} = -\left(\frac{1-\cos@@{z}}{1+\cos@@{z}}\right)^{1/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tan@@{\frac{z}{2}} = -\left(\frac{1-\cos@@{z}}{1+\cos@@{z}}\right)^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tan((z)/(2)) = -((1 - cos(z))/(1 + cos(z)))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tan[Divide[z,2]] == -(Divide[1 - Cos[z],1 + Cos[z]])^(1/2)</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [5 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .8580864930+.5869891489*I | |||
Test Values: {z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .4211742148-.8595320616*I | |||
Test Values: {z = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.863192920 | |||
Test Values: {z = 1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .5106838424 | |||
Test Values: {z = .5}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [5 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.858086492859854, 0.5869891488727426] | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.4211742148849973, -0.8595320613685857] | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/4.21.E23 4.21.E23] || [[Item:Q1725|<math>+\left(\frac{1-\cos@@{z}}{1+\cos@@{z}}\right)^{1/2} = \frac{1-\cos@@{z}}{\sin@@{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>+\left(\frac{1-\cos@@{z}}{1+\cos@@{z}}\right)^{1/2} = \frac{1-\cos@@{z}}{\sin@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>+((1 - cos(z))/(1 + cos(z)))^(1/2) = (1 - cos(z))/(sin(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>+(Divide[1 - Cos[z],1 + Cos[z]])^(1/2) == Divide[1 - Cos[z],Sin[z]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .4211742148-.8595320615*I | |||
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .8580864930+.5869891489*I | |||
Test Values: {z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.42117421488499684, -0.8595320613685857] | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.8580864928598539, 0.5869891488727426] | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br></div></div> | |||
|- | |||
| [https://dlmf.nist.gov/4.21.E23 4.21.E23] || [[Item:Q1725|<math>-\left(\frac{1-\cos@@{z}}{1+\cos@@{z}}\right)^{1/2} = \frac{1-\cos@@{z}}{\sin@@{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>-\left(\frac{1-\cos@@{z}}{1+\cos@@{z}}\right)^{1/2} = \frac{1-\cos@@{z}}{\sin@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>-((1 - cos(z))/(1 + cos(z)))^(1/2) = (1 - cos(z))/(sin(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>-(Divide[1 - Cos[z],1 + Cos[z]])^(1/2) == Divide[1 - Cos[z],Sin[z]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [5 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.8580864930-.5869891489*I | |||
Test Values: {z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.4211742148+.8595320615*I | |||
Test Values: {z = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.863192920 | |||
Test Values: {z = 1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.5106838424 | |||
Test Values: {z = .5}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [5 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.8580864928598539, -0.5869891488727426] | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.4211742148849972, 0.8595320613685855] | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/4.21.E23 4.21.E23] || [[Item:Q1725|<math>\frac{1-\cos@@{z}}{\sin@@{z}} = \frac{\sin@@{z}}{1+\cos@@{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1-\cos@@{z}}{\sin@@{z}} = \frac{\sin@@{z}}{1+\cos@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(1 - cos(z))/(sin(z)) = (sin(z))/(1 + cos(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1 - Cos[z],Sin[z]] == Divide[Sin[z],1 + Cos[z]]</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.21.E24 4.21.E24] || [[Item:Q1726|<math>\sin@{-z} = -\sin@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@{-z} = -\sin@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(- z) = - sin(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[- z] == - Sin[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.21.E25 4.21.E25] || [[Item:Q1727|<math>\cos@{-z} = \cos@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@{-z} = \cos@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(- z) = cos(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[- z] == Cos[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.21.E26 4.21.E26] || [[Item:Q1728|<math>\tan@{-z} = -\tan@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tan@{-z} = -\tan@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tan(- z) = - tan(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tan[- z] == - Tan[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.21.E27 4.21.E27] || [[Item:Q1729|<math>\sin@{2z} = 2\sin@@{z}\cos@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@{2z} = 2\sin@@{z}\cos@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(2*z) = 2*sin(z)*cos(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[2*z] == 2*Sin[z]*Cos[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.21.E27 4.21.E27] || [[Item:Q1729|<math>2\sin@@{z}\cos@@{z} = \frac{2\tan@@{z}}{1+\tan^{2}@@{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>2\sin@@{z}\cos@@{z} = \frac{2\tan@@{z}}{1+\tan^{2}@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>2*sin(z)*cos(z) = (2*tan(z))/(1 + (tan(z))^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>2*Sin[z]*Cos[z] == Divide[2*Tan[z],1 + (Tan[z])^(2)]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.21.E28 4.21.E28] || [[Item:Q1730|<math>\cos@{2z} = 2\cos^{2}@@{z}-1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@{2z} = 2\cos^{2}@@{z}-1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(2*z) = 2*(cos(z))^(2)- 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[2*z] == 2*(Cos[z])^(2)- 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.21.E28 4.21.E28] || [[Item:Q1730|<math>2\cos^{2}@@{z}-1 = 1-2\sin^{2}@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>2\cos^{2}@@{z}-1 = 1-2\sin^{2}@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>2*(cos(z))^(2)- 1 = 1 - 2*(sin(z))^(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>2*(Cos[z])^(2)- 1 == 1 - 2*(Sin[z])^(2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.21.E28 4.21.E28] || [[Item:Q1730|<math>1-2\sin^{2}@@{z} = \cos^{2}@@{z}-\sin^{2}@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>1-2\sin^{2}@@{z} = \cos^{2}@@{z}-\sin^{2}@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>1 - 2*(sin(z))^(2) = (cos(z))^(2)- (sin(z))^(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>1 - 2*(Sin[z])^(2) == (Cos[z])^(2)- (Sin[z])^(2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.21.E28 4.21.E28] || [[Item:Q1730|<math>\cos^{2}@@{z}-\sin^{2}@@{z} = \frac{1-\tan^{2}@@{z}}{1+\tan^{2}@@{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos^{2}@@{z}-\sin^{2}@@{z} = \frac{1-\tan^{2}@@{z}}{1+\tan^{2}@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(cos(z))^(2)- (sin(z))^(2) = (1 - (tan(z))^(2))/(1 + (tan(z))^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Cos[z])^(2)- (Sin[z])^(2) == Divide[1 - (Tan[z])^(2),1 + (Tan[z])^(2)]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.21.E29 4.21.E29] || [[Item:Q1731|<math>\tan@{2z} = \frac{2\tan@@{z}}{1-\tan^{2}@@{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tan@{2z} = \frac{2\tan@@{z}}{1-\tan^{2}@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tan(2*z) = (2*tan(z))/(1 - (tan(z))^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tan[2*z] == Divide[2*Tan[z],1 - (Tan[z])^(2)]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.21.E29 4.21.E29] || [[Item:Q1731|<math>\frac{2\tan@@{z}}{1-\tan^{2}@@{z}} = \frac{2\cot@@{z}}{\cot^{2}@@{z}-1}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{2\tan@@{z}}{1-\tan^{2}@@{z}} = \frac{2\cot@@{z}}{\cot^{2}@@{z}-1}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(2*tan(z))/(1 - (tan(z))^(2)) = (2*cot(z))/((cot(z))^(2)- 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[2*Tan[z],1 - (Tan[z])^(2)] == Divide[2*Cot[z],(Cot[z])^(2)- 1]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.21.E29 4.21.E29] || [[Item:Q1731|<math>\frac{2\cot@@{z}}{\cot^{2}@@{z}-1} = \frac{2}{\cot@@{z}-\tan@@{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{2\cot@@{z}}{\cot^{2}@@{z}-1} = \frac{2}{\cot@@{z}-\tan@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(2*cot(z))/((cot(z))^(2)- 1) = (2)/(cot(z)- tan(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[2*Cot[z],(Cot[z])^(2)- 1] == Divide[2,Cot[z]- Tan[z]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.21.E30 4.21.E30] || [[Item:Q1732|<math>\sin@{3z} = 3\sin@@{z}-4\sin^{3}@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@{3z} = 3\sin@@{z}-4\sin^{3}@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(3*z) = 3*sin(z)- 4*(sin(z))^(3)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[3*z] == 3*Sin[z]- 4*(Sin[z])^(3)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.21.E31 4.21.E31] || [[Item:Q1733|<math>\cos@{3z} = -3\cos@@{z}+4\cos^{3}@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@{3z} = -3\cos@@{z}+4\cos^{3}@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(3*z) = - 3*cos(z)+ 4*(cos(z))^(3)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[3*z] == - 3*Cos[z]+ 4*(Cos[z])^(3)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.21.E32 4.21.E32] || [[Item:Q1734|<math>\sin@{4z} = 8\cos^{3}@@{z}\sin@@{z}-4\cos@@{z}\sin@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@{4z} = 8\cos^{3}@@{z}\sin@@{z}-4\cos@@{z}\sin@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(4*z) = 8*(cos(z))^(3)* sin(z)- 4*cos(z)*sin(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[4*z] == 8*(Cos[z])^(3)* Sin[z]- 4*Cos[z]*Sin[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.21.E33 4.21.E33] || [[Item:Q1735|<math>\cos@{4z} = 8\cos^{4}@@{z}-8\cos^{2}@@{z}+1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@{4z} = 8\cos^{4}@@{z}-8\cos^{2}@@{z}+1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(4*z) = 8*(cos(z))^(4)- 8*(cos(z))^(2)+ 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[4*z] == 8*(Cos[z])^(4)- 8*(Cos[z])^(2)+ 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.21.E34 4.21.E34] || [[Item:Q1736|<math>\cos@{nz}+i\sin@{nz} = (\cos@@{z}+i\sin@@{z})^{n}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@{nz}+i\sin@{nz} = (\cos@@{z}+i\sin@@{z})^{n}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(n*z)+ I*sin(n*z) = (cos(z)+ I*sin(z))^(n)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[n*z]+ I*Sin[n*z] == (Cos[z]+ I*Sin[z])^(n)</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 21] | |||
|- | |||
| [https://dlmf.nist.gov/4.21.E35 4.21.E35] || [[Item:Q1737|<math>\sin@{nz} = 2^{n-1}\prod_{k=0}^{n-1}\sin@{z+\frac{k\pi}{n}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@{nz} = 2^{n-1}\prod_{k=0}^{n-1}\sin@{z+\frac{k\pi}{n}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(n*z) = (2)^(n - 1)* product(sin(z +(k*Pi)/(n)), k = 0..n - 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[n*z] == (2)^(n - 1)* Product[Sin[z +Divide[k*Pi,n]], {k, 0, n - 1}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || Successful [Tested: 21] || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.21#Ex1 4.21#Ex1] || [[Item:Q1738|<math>\sin@@{z} = \frac{2t}{1+t^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@@{z} = \frac{2t}{1+t^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(z) = (2*t)/(1 + (t)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[z] == Divide[2*t,1 + (t)^(2)]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [42 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.782057258+.3375964631*I | |||
Test Values: {t = -1.5, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .2523455641+.8586367171*I | |||
Test Values: {t = -1.5, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.593808282-.8586367171*I | |||
Test Values: {t = -1.5, z = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .640965885e-1-.3375964631*I | |||
Test Values: {t = -1.5, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [42 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.782057257377061, 0.33759646322287] | |||
Test Values: {Rule[t, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.25234556426971166, 0.8586367168171449] | |||
Test Values: {Rule[t, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/4.21#Ex2 4.21#Ex2] || [[Item:Q1739|<math>\cos@@{z} = \frac{1-t^{2}}{1+t^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@@{z} = \frac{1-t^{2}}{1+t^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(z) = (1 - (t)^(2))/(1 + (t)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[z] == Divide[1 - (t)^(2),1 + (t)^(2)]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [42 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.115158404-.3969495503*I | |||
Test Values: {t = -1.5, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.612380902+.4690753764*I | |||
Test Values: {t = -1.5, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.612380902+.4690753764*I | |||
Test Values: {t = -1.5, z = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.115158404-.3969495503*I | |||
Test Values: {t = -1.5, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [42 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.1151584036726099, -0.3969495502290325] | |||
Test Values: {Rule[t, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.612380901479495, 0.46907537626850365] | |||
Test Values: {Rule[t, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/4.21.E37 4.21.E37] || [[Item:Q1741|<math>\sin@@{z} = \sin@@{x}\cosh@@{y}+\iunit\cos@@{x}\sinh@@{y}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@@{z} = \sin@@{x}\cosh@@{y}+\iunit\cos@@{x}\sinh@@{y}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(x + y*I) = sin(x)*cosh(y)+ I*cos(x)*sinh(y)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[x + y*I] == Sin[x]*Cosh[y]+ I*Cos[x]*Sinh[y]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 18] | |||
|- | |||
| [https://dlmf.nist.gov/4.21.E38 4.21.E38] || [[Item:Q1742|<math>\cos@@{z} = \cos@@{x}\cosh@@{y}-\iunit\sin@@{x}\sinh@@{y}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@@{z} = \cos@@{x}\cosh@@{y}-\iunit\sin@@{x}\sinh@@{y}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(x + y*I) = cos(x)*cosh(y)- I*sin(x)*sinh(y)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[x + y*I] == Cos[x]*Cosh[y]- I*Sin[x]*Sinh[y]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 18] | |||
|- | |||
| [https://dlmf.nist.gov/4.21.E39 4.21.E39] || [[Item:Q1743|<math>\tan@@{z} = \frac{\sin@{2x}+\iunit\sinh@{2y}}{\cos@{2x}+\cosh@{2y}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tan@@{z} = \frac{\sin@{2x}+\iunit\sinh@{2y}}{\cos@{2x}+\cosh@{2y}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tan(x + y*I) = (sin(2*x)+ I*sinh(2*y))/(cos(2*x)+ cosh(2*y))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tan[x + y*I] == Divide[Sin[2*x]+ I*Sinh[2*y],Cos[2*x]+ Cosh[2*y]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 18] | |||
|- | |||
| [https://dlmf.nist.gov/4.21.E40 4.21.E40] || [[Item:Q1744|<math>\cot@@{z} = \frac{\sin@{2x}-\iunit\sinh@{2y}}{\cosh@{2y}-\cos@{2x}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cot@@{z} = \frac{\sin@{2x}-\iunit\sinh@{2y}}{\cosh@{2y}-\cos@{2x}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cot(x + y*I) = (sin(2*x)- I*sinh(2*y))/(cosh(2*y)- cos(2*x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cot[x + y*I] == Divide[Sin[2*x]- I*Sinh[2*y],Cosh[2*y]- Cos[2*x]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 18] | |||
|- | |||
| [https://dlmf.nist.gov/4.21.E41 4.21.E41] || [[Item:Q1745|<math>|\sin@@{z}| = (\sin^{2}@@{x}+\sinh^{2}@@{y})^{1/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\sin@@{z}| = (\sin^{2}@@{x}+\sinh^{2}@@{y})^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs(sin(x + y*I)) = ((sin(x))^(2)+ (sinh(y))^(2))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Sin[x + y*I]] == ((Sin[x])^(2)+ (Sinh[y])^(2))^(1/2)</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 18] | |||
|- | |||
| [https://dlmf.nist.gov/4.21.E41 4.21.E41] || [[Item:Q1745|<math>(\sin^{2}@@{x}+\sinh^{2}@@{y})^{1/2} = \left(\tfrac{1}{2}\left(\cosh@{2y}-\cos@{2x}\right)\right)^{1/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>(\sin^{2}@@{x}+\sinh^{2}@@{y})^{1/2} = \left(\tfrac{1}{2}\left(\cosh@{2y}-\cos@{2x}\right)\right)^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>((sin(x))^(2)+ (sinh(y))^(2))^(1/2) = ((1)/(2)*(cosh(2*y)- cos(2*x)))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>((Sin[x])^(2)+ (Sinh[y])^(2))^(1/2) == (Divide[1,2]*(Cosh[2*y]- Cos[2*x]))^(1/2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 18] | |||
|- | |||
| [https://dlmf.nist.gov/4.21.E42 4.21.E42] || [[Item:Q1746|<math>|\cos@@{z}| = (\cos^{2}@@{x}+\sinh^{2}@@{y})^{1/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\cos@@{z}| = (\cos^{2}@@{x}+\sinh^{2}@@{y})^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs(cos(x + y*I)) = ((cos(x))^(2)+ (sinh(y))^(2))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Cos[x + y*I]] == ((Cos[x])^(2)+ (Sinh[y])^(2))^(1/2)</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 18] | |||
|- | |||
| [https://dlmf.nist.gov/4.21.E42 4.21.E42] || [[Item:Q1746|<math>(\cos^{2}@@{x}+\sinh^{2}@@{y})^{1/2} = \left(\tfrac{1}{2}(\cosh@{2y}+\cos@{2x})\right)^{1/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>(\cos^{2}@@{x}+\sinh^{2}@@{y})^{1/2} = \left(\tfrac{1}{2}(\cosh@{2y}+\cos@{2x})\right)^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>((cos(x))^(2)+ (sinh(y))^(2))^(1/2) = ((1)/(2)*(cosh(2*y)+ cos(2*x)))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>((Cos[x])^(2)+ (Sinh[y])^(2))^(1/2) == (Divide[1,2]*(Cosh[2*y]+ Cos[2*x]))^(1/2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 18] | |||
|- | |||
| [https://dlmf.nist.gov/4.21.E43 4.21.E43] || [[Item:Q1747|<math>|\tan@@{z}| = \left(\frac{\cosh@{2y}-\cos@{2x}}{\cosh@{2y}+\cos@{2x}}\right)^{1/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\tan@@{z}| = \left(\frac{\cosh@{2y}-\cos@{2x}}{\cosh@{2y}+\cos@{2x}}\right)^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs(tan(x + y*I)) = ((cosh(2*y)- cos(2*x))/(cosh(2*y)+ cos(2*x)))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Tan[x + y*I]] == (Divide[Cosh[2*y]- Cos[2*x],Cosh[2*y]+ Cos[2*x]])^(1/2)</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 18] | |||
|- | |||
| [https://dlmf.nist.gov/4.22.E1 4.22.E1] || [[Item:Q1748|<math>\sin@@{z} = z\prod_{n=1}^{\infty}\left(1-\frac{z^{2}}{n^{2}\pi^{2}}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@@{z} = z\prod_{n=1}^{\infty}\left(1-\frac{z^{2}}{n^{2}\pi^{2}}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(z) = z*product(1 -((z)^(2))/((n)^(2)* (Pi)^(2)), n = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[z] == z*Product[1 -Divide[(z)^(2),(n)^(2)* (Pi)^(2)], {n, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.22.E2 4.22.E2] || [[Item:Q1749|<math>\cos@@{z} = \prod_{n=1}^{\infty}\left(1-\frac{4z^{2}}{(2n-1)^{2}\pi^{2}}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@@{z} = \prod_{n=1}^{\infty}\left(1-\frac{4z^{2}}{(2n-1)^{2}\pi^{2}}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(z) = product(1 -(4*(z)^(2))/((2*n - 1)^(2)* (Pi)^(2)), n = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[z] == Product[1 -Divide[4*(z)^(2),(2*n - 1)^(2)* (Pi)^(2)], {n, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.22.E3 4.22.E3] || [[Item:Q1750|<math>\cot@@{z} = \frac{1}{z}+2z\sum_{n=1}^{\infty}\frac{1}{z^{2}-n^{2}\pi^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cot@@{z} = \frac{1}{z}+2z\sum_{n=1}^{\infty}\frac{1}{z^{2}-n^{2}\pi^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cot(z) = (1)/(z)+ 2*z*sum((1)/((z)^(2)- (n)^(2)* (Pi)^(2)), n = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cot[z] == Divide[1,z]+ 2*z*Sum[Divide[1,(z)^(2)- (n)^(2)* (Pi)^(2)], {n, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || Successful [Tested: 7] || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.22.E4 4.22.E4] || [[Item:Q1751|<math>\csc^{2}@@{z} = \sum_{n=-\infty}^{\infty}\frac{1}{(z-n\pi)^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\csc^{2}@@{z} = \sum_{n=-\infty}^{\infty}\frac{1}{(z-n\pi)^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(csc(z))^(2) = sum((1)/((z - n*Pi)^(2)), n = - infinity..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Csc[z])^(2) == Sum[Divide[1,(z - n*Pi)^(2)], {n, - Infinity, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || Successful [Tested: 7] || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.22.E5 4.22.E5] || [[Item:Q1752|<math>\csc@@{z} = \frac{1}{z}+2z\sum_{n=1}^{\infty}\frac{(-1)^{n}}{z^{2}-n^{2}\pi^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\csc@@{z} = \frac{1}{z}+2z\sum_{n=1}^{\infty}\frac{(-1)^{n}}{z^{2}-n^{2}\pi^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>csc(z) = (1)/(z)+ 2*z*sum(((- 1)^(n))/((z)^(2)- (n)^(2)* (Pi)^(2)), n = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Csc[z] == Divide[1,z]+ 2*z*Sum[Divide[(- 1)^(n),(z)^(2)- (n)^(2)* (Pi)^(2)], {n, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.23.E1 4.23.E1] || [[Item:Q1753|<math>\Asin@@{z} = \int_{0}^{z}\frac{\diff{t}}{(1-t^{2})^{1/2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Asin@@{z} = \int_{0}^{z}\frac{\diff{t}}{(1-t^{2})^{1/2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcSin[z] == Integrate[Divide[1,(1 - (t)^(2))^(1/2)], {t, 0, z}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Successful || - || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.23.E2 4.23.E2] || [[Item:Q1754|<math>\Acos@@{z} = \int_{z}^{1}\frac{\diff{t}}{(1-t^{2})^{1/2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Acos@@{z} = \int_{z}^{1}\frac{\diff{t}}{(1-t^{2})^{1/2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCos[z] == Integrate[Divide[1,(1 - (t)^(2))^(1/2)], {t, z, 1}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Successful || - || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.23.E3 4.23.E3] || [[Item:Q1755|<math>\Atan@@{z} = \int_{0}^{z}\frac{\diff{t}}{1+t^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Atan@@{z} = \int_{0}^{z}\frac{\diff{t}}{1+t^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcTan[z] == Integrate[Divide[1,1 + (t)^(2)], {t, 0, z}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Successful || - || Successful [Tested: 1] | |||
|- | |||
| [https://dlmf.nist.gov/4.23.E4 4.23.E4] || [[Item:Q1756|<math>\Acsc@@{z} = \Asin@{1/z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Acsc@@{z} = \Asin@{1/z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCsc[z] == ArcSin[1/z]</syntaxhighlight> || Missing Macro Error || Successful || - || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.23.E5 4.23.E5] || [[Item:Q1757|<math>\Asec@@{z} = \Acos@{1/z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Asec@@{z} = \Acos@{1/z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcSec[z] == ArcCos[1/z]</syntaxhighlight> || Missing Macro Error || Successful || - || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.23.E6 4.23.E6] || [[Item:Q1758|<math>\Acot@@{z} = \Atan@{1/z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Acot@@{z} = \Atan@{1/z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCot[z] == ArcTan[1/z]</syntaxhighlight> || Missing Macro Error || Successful || - || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.23.E7 4.23.E7] || [[Item:Q1759|<math>\acsc@@{z} = \asin@{1/z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\acsc@@{z} = \asin@{1/z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arccsc(z) = arcsin(1/z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCsc[z] == ArcSin[1/z]</syntaxhighlight> || Failure || Successful || Successful [Tested: 7] || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.23.E8 4.23.E8] || [[Item:Q1760|<math>\asec@@{z} = \acos@{1/z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\asec@@{z} = \acos@{1/z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arcsec(z) = arccos(1/z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcSec[z] == ArcCos[1/z]</syntaxhighlight> || Failure || Successful || Successful [Tested: 7] || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.23.E9 4.23.E9] || [[Item:Q1761|<math>\acot@@{z} = \atan@{1/z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\acot@@{z} = \atan@{1/z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arccot(z) = arctan(1/z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCot[z] == ArcTan[1/z]</syntaxhighlight> || Failure || Successful || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 3.141592654+0.*I | |||
Test Values: {z = -1/2+1/2*I*3^(1/2), z = 1/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 3.141592654+0.*I | |||
Test Values: {z = -1/2*3^(1/2)-1/2*I, z = 1/2}</syntaxhighlight><br></div></div> || Successful [Tested: 1] | |||
|- | |||
| [https://dlmf.nist.gov/4.23.E10 4.23.E10] || [[Item:Q1762|<math>\asin@{-z} = -\asin@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\asin@{-z} = -\asin@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arcsin(- z) = - arcsin(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcSin[- z] == - ArcSin[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.23.E11 4.23.E11] || [[Item:Q1763|<math>\acos@{-z} = \pi-\acos@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\acos@{-z} = \pi-\acos@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arccos(- z) = Pi - arccos(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCos[- z] == Pi - ArcCos[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.23.E12 4.23.E12] || [[Item:Q1764|<math>\atan@{-z} = -\atan@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\atan@{-z} = -\atan@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arctan(- z) = - arctan(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcTan[- z] == - ArcTan[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | |||
|- | |||
| [https://dlmf.nist.gov/4.23.E13 4.23.E13] || [[Item:Q1765|<math>\acsc@{-z} = -\acsc@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\acsc@{-z} = -\acsc@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arccsc(- z) = - arccsc(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCsc[- z] == - ArcCsc[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.23.E14 4.23.E14] || [[Item:Q1766|<math>\asec@{-z} = \pi-\asec@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\asec@{-z} = \pi-\asec@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arcsec(- z) = Pi - arcsec(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcSec[- z] == Pi - ArcSec[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.23.E15 4.23.E15] || [[Item:Q1767|<math>\acot@{-z} = -\acot@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\acot@{-z} = -\acot@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arccot(- z) = - arccot(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCot[- z] == - ArcCot[z]</syntaxhighlight> || Failure || Successful || Skip - No test values generated || Successful [Tested: 1] | |||
|- | |||
| [https://dlmf.nist.gov/4.23.E16 4.23.E16] || [[Item:Q1768|<math>\acos@@{z} = \tfrac{1}{2}\pi-\asin@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\acos@@{z} = \tfrac{1}{2}\pi-\asin@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arccos(z) = (1)/(2)*Pi - arcsin(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCos[z] == Divide[1,2]*Pi - ArcSin[z]</syntaxhighlight> || Failure || Successful || Successful [Tested: 7] || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.23.E17 4.23.E17] || [[Item:Q1769|<math>\asec@@{z} = \tfrac{1}{2}\pi-\acsc@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\asec@@{z} = \tfrac{1}{2}\pi-\acsc@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arcsec(z) = (1)/(2)*Pi - arccsc(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcSec[z] == Divide[1,2]*Pi - ArcCsc[z]</syntaxhighlight> || Failure || Successful || Successful [Tested: 7] || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.23.E18 4.23.E18] || [[Item:Q1770|<math>\acot@@{z} = +\tfrac{1}{2}\pi-\atan@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\acot@@{z} = +\tfrac{1}{2}\pi-\atan@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arccot(z) = +(1)/(2)*Pi - arctan(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCot[z] == +Divide[1,2]*Pi - ArcTan[z]</syntaxhighlight> || Successful || Failure || Skip - symbolical successful subtest || Successful [Tested: 1] | |||
|- | |||
| [https://dlmf.nist.gov/4.23.E18 4.23.E18] || [[Item:Q1770|<math>\acot@@{z} = -\tfrac{1}{2}\pi-\atan@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\acot@@{z} = -\tfrac{1}{2}\pi-\atan@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arccot(z) = -(1)/(2)*Pi - arctan(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCot[z] == -Divide[1,2]*Pi - ArcTan[z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 3.141592654+0.*I | |||
Test Values: {z = 1/2*3^(1/2)+1/2*I, z = 1/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 3.141592654+0.*I | |||
Test Values: {z = -1/2+1/2*I*3^(1/2), z = 1/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 3.141592654+0.*I | |||
Test Values: {z = 1/2-1/2*I*3^(1/2), z = 1/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 3.141592654+0.*I | |||
Test Values: {z = -1/2*3^(1/2)-1/2*I, z = 1/2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 1]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 3.141592653589793 | |||
Test Values: {Rule[z, Rational[1, 2]]}</syntaxhighlight><br></div></div> | |||
|- | |||
| [https://dlmf.nist.gov/4.23.E19 4.23.E19] || [[Item:Q1771|<math>\asin@@{z} = -i\ln@{(1-z^{2})^{1/2}+iz}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\asin@@{z} = -i\ln@{(1-z^{2})^{1/2}+iz}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arcsin(z) = - I*ln((1 - (z)^(2))^(1/2)+ I*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcSin[z] == - I*Log[(1 - (z)^(2))^(1/2)+ I*z]</syntaxhighlight> || Failure || Successful || Successful [Tested: 7] || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.23.E20 4.23.E20] || [[Item:Q1772|<math>\asin@@{x} = \tfrac{1}{2}\pi+ i\ln@{(x^{2}-1)^{1/2}+x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\asin@@{x} = \tfrac{1}{2}\pi+ i\ln@{(x^{2}-1)^{1/2}+x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arcsin(x) = (1)/(2)*Pi + I*ln(((x)^(2)- 1)^(1/2)+ x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcSin[x] == Divide[1,2]*Pi + I*Log[((x)^(2)- 1)^(1/2)+ x]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 0.-1.924847300*I | |||
Test Values: {x = 1.5, x = 3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.-2.633915794*I | |||
Test Values: {x = 2, x = 3/2}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 1]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.0, -1.9248473002384139] | |||
Test Values: {Rule[x, Rational[3, 2]]}</syntaxhighlight><br></div></div> | |||
|- | |||
| [https://dlmf.nist.gov/4.23.E20 4.23.E20] || [[Item:Q1772|<math>\asin@@{x} = \tfrac{1}{2}\pi- i\ln@{(x^{2}-1)^{1/2}+x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\asin@@{x} = \tfrac{1}{2}\pi- i\ln@{(x^{2}-1)^{1/2}+x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arcsin(x) = (1)/(2)*Pi - I*ln(((x)^(2)- 1)^(1/2)+ x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcSin[x] == Divide[1,2]*Pi - I*Log[((x)^(2)- 1)^(1/2)+ x]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -2.094395102+.1347500000e-10*I | |||
Test Values: {x = .5, x = 3/2}</syntaxhighlight><br></div></div> || Successful [Tested: 1] | |||
|- | |||
| [https://dlmf.nist.gov/4.23.E21 4.23.E21] || [[Item:Q1773|<math>\asin@@{x} = -\tfrac{1}{2}\pi+ i\ln@{(x^{2}-1)^{1/2}-x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\asin@@{x} = -\tfrac{1}{2}\pi+ i\ln@{(x^{2}-1)^{1/2}-x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arcsin(x) = -(1)/(2)*Pi + I*ln(((x)^(2)- 1)^(1/2)- x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcSin[x] == -Divide[1,2]*Pi + I*Log[((x)^(2)- 1)^(1/2)- x]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 6.283185308+.7e-9*I | |||
Test Values: {x = 1.5, x = -2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 4.188790205-.1347500000e-10*I | |||
Test Values: {x = .5, x = -2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 6.283185308+.2e-8*I | |||
Test Values: {x = 2, x = -2}</syntaxhighlight><br></div></div> || Successful [Tested: 1] | |||
|- | |||
| [https://dlmf.nist.gov/4.23.E21 4.23.E21] || [[Item:Q1773|<math>\asin@@{x} = -\tfrac{1}{2}\pi- i\ln@{(x^{2}-1)^{1/2}-x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\asin@@{x} = -\tfrac{1}{2}\pi- i\ln@{(x^{2}-1)^{1/2}-x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arcsin(x) = -(1)/(2)*Pi - I*ln(((x)^(2)- 1)^(1/2)- x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcSin[x] == -Divide[1,2]*Pi - I*Log[((x)^(2)- 1)^(1/2)- x]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 0.-1.924847301*I | |||
Test Values: {x = 1.5, x = -2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.-2.633915796*I | |||
Test Values: {x = 2, x = -2}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 1]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.0, 2.633915793849633] | |||
Test Values: {Rule[x, -2]}</syntaxhighlight><br></div></div> | |||
|- | |||
| [https://dlmf.nist.gov/4.23.E22 4.23.E22] || [[Item:Q1774|<math>\acos@@{z} = \tfrac{1}{2}\pi+i\ln@{(1-z^{2})^{1/2}+iz}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\acos@@{z} = \tfrac{1}{2}\pi+i\ln@{(1-z^{2})^{1/2}+iz}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arccos(z) = (1)/(2)*Pi + I*ln((1 - (z)^(2))^(1/2)+ I*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCos[z] == Divide[1,2]*Pi + I*Log[(1 - (z)^(2))^(1/2)+ I*z]</syntaxhighlight> || Failure || Successful || Successful [Tested: 7] || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.23.E23 4.23.E23] || [[Item:Q1775|<math>\acos@@{z} = -2i\ln@{\left(\frac{1+z}{2}\right)^{1/2}+i\left(\frac{1-z}{2}\right)^{1/2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\acos@@{z} = -2i\ln@{\left(\frac{1+z}{2}\right)^{1/2}+i\left(\frac{1-z}{2}\right)^{1/2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arccos(z) = - 2*I*ln(((1 + z)/(2))^(1/2)+ I*((1 - z)/(2))^(1/2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCos[z] == - 2*I*Log[(Divide[1 + z,2])^(1/2)+ I*(Divide[1 - z,2])^(1/2)]</syntaxhighlight> || Failure || Failure || Successful [Tested: 7] || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.23.E24 4.23.E24] || [[Item:Q1776|<math>\acos@@{x} = - i\ln@{(x^{2}-1)^{1/2}+x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\acos@@{x} = - i\ln@{(x^{2}-1)^{1/2}+x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arccos(x) = - I*ln(((x)^(2)- 1)^(1/2)+ x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCos[x] == - I*Log[((x)^(2)- 1)^(1/2)+ x]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.924847300*I | |||
Test Values: {x = 1.5, x = 3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.633915794*I | |||
Test Values: {x = 2, x = 3/2}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 1]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.0, 1.9248473002384139] | |||
Test Values: {Rule[x, Rational[3, 2]]}</syntaxhighlight><br></div></div> | |||
|- | |||
| [https://dlmf.nist.gov/4.23.E24 4.23.E24] || [[Item:Q1776|<math>\acos@@{x} = + i\ln@{(x^{2}-1)^{1/2}+x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\acos@@{x} = + i\ln@{(x^{2}-1)^{1/2}+x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arccos(x) = + I*ln(((x)^(2)- 1)^(1/2)+ x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCos[x] == + I*Log[((x)^(2)- 1)^(1/2)+ x]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 2.094395102-.1347500000e-10*I | |||
Test Values: {x = .5, x = 3/2}</syntaxhighlight><br></div></div> || Successful [Tested: 1] | |||
|- | |||
| [https://dlmf.nist.gov/4.23.E25 4.23.E25] || [[Item:Q1777|<math>\acos@@{x} = \pi- i\ln@{(x^{2}-1)^{1/2}-x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\acos@@{x} = \pi- i\ln@{(x^{2}-1)^{1/2}-x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arccos(x) = Pi - I*ln(((x)^(2)- 1)^(1/2)- x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCos[x] == Pi - I*Log[((x)^(2)- 1)^(1/2)- x]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -6.283185308-.7e-9*I | |||
Test Values: {x = 1.5, x = -2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -4.188790205+.1347500000e-10*I | |||
Test Values: {x = .5, x = -2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -6.283185308-.2e-8*I | |||
Test Values: {x = 2, x = -2}</syntaxhighlight><br></div></div> || Successful [Tested: 1] | |||
|- | |||
| [https://dlmf.nist.gov/4.23.E25 4.23.E25] || [[Item:Q1777|<math>\acos@@{x} = \pi+ i\ln@{(x^{2}-1)^{1/2}-x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\acos@@{x} = \pi+ i\ln@{(x^{2}-1)^{1/2}-x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arccos(x) = Pi + I*ln(((x)^(2)- 1)^(1/2)- x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCos[x] == Pi + I*Log[((x)^(2)- 1)^(1/2)- x]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 0.+1.924847301*I | |||
Test Values: {x = 1.5, x = -2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.+2.633915796*I | |||
Test Values: {x = 2, x = -2}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 1]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.0, -2.633915793849633] | |||
Test Values: {Rule[x, -2]}</syntaxhighlight><br></div></div> | |||
|- | |||
| [https://dlmf.nist.gov/4.23.E26 4.23.E26] || [[Item:Q1778|<math>\atan@@{z} = \frac{i}{2}\ln@{\frac{i+z}{i-z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\atan@@{z} = \frac{i}{2}\ln@{\frac{i+z}{i-z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arctan(z) = (I)/(2)*ln((I + z)/(I - z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcTan[z] == Divide[I,2]*Log[Divide[I + z,I - z]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 7] || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/4.23.E27 4.23.E27] || [[Item:Q1779|<math>\atan@{iy} = +\frac{1}{2}\pi+\frac{i}{2}\ln@{\frac{y+1}{y-1}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\atan@{iy} = +\frac{1}{2}\pi+\frac{i}{2}\ln@{\frac{y+1}{y-1}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arctan(I*y) = +(1)/(2)*Pi +(I)/(2)*ln((y + 1)/(y - 1))</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcTan[I*y] == +Divide[1,2]*Pi +Divide[I,2]*Log[Divide[y + 1,y - 1]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 6]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -3.141592654-.2e-9*I | |||
Test Values: {y = -1.5, y = -3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -3.141592654+.2e-9*I | |||
Test Values: {y = -2, y = -3/2}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 1]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-3.141592653589793, -1.1102230246251565*^-16] | |||
Test Values: {Rule[y, Rational[-3, 2]]}</syntaxhighlight><br></div></div> | |||
|- | |||
| [https://dlmf.nist.gov/4.23.E27 4.23.E27] || [[Item:Q1779|<math>\atan@{iy} = -\frac{1}{2}\pi+\frac{i}{2}\ln@{\frac{y+1}{y-1}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\atan@{iy} = -\frac{1}{2}\pi+\frac{i}{2}\ln@{\frac{y+1}{y-1}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arctan(I*y) = -(1)/(2)*Pi +(I)/(2)*ln((y + 1)/(y - 1))</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcTan[I*y] == -Divide[1,2]*Pi +Divide[I,2]*Log[Divide[y + 1,y - 1]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [4 / 6]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 3.141592654+.2e-9*I | |||
Test Values: {y = 1.5, y = -3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 3.141592654+.2e-9*I | |||
Test Values: {y = -.5, y = -3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 3.141592654-.2e-9*I | |||
Test Values: {y = .5, y = -3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 3.141592654-.2e-9*I | |||
Test Values: {y = 2, y = -3/2}</syntaxhighlight><br></div></div> || Successful [Tested: 1] | |||
|- | |||
| [https://dlmf.nist.gov/4.23.E28 4.23.E28] || [[Item:Q1780|<math>z = \sin@@{w}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>z = \sin@@{w}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>z = sin(w)</syntaxhighlight> || <syntaxhighlight lang=mathematica>z == Sin[w]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [70 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .70450695e-2+.1624035369*I | |||
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.358980334+.5284289409*I | |||
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.3589803345-1.203621867*I | |||
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.725005738-.8375964631*I | |||
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [70 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.007045069484300837, 0.16240353677712993] | |||
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-1.3589803343001376, 0.5284289405615687] | |||
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/4.23.E29 4.23.E29] || [[Item:Q1781|<math>z = \cos@@{w}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>z = \cos@@{w}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>z = cos(w)</syntaxhighlight> || <syntaxhighlight lang=mathematica>z == Cos[w]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [70 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .1354823851+.8969495503*I | |||
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.230543019+1.262974954*I | |||
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.2305430189-.4690758537*I | |||
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.596568423-.1030504497*I | |||
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [70 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.13548238472721352, 0.8969495502290324] | |||
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-1.230543019057225, 1.2629749540134712] | |||
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/4.23.E30 4.23.E30] || [[Item:Q1782|<math>z = \tan@@{w}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>z = \tan@@{w}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>z = tan(w)</syntaxhighlight> || <syntaxhighlight lang=mathematica>z == Tan[w]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [70 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .1520945236-.3500402975*I | |||
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.213930880+.159851065e-1*I | |||
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.2139308804-1.716065702*I | |||
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.579956284-1.350040298*I | |||
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [70 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.1520945235384168, -0.3500402971922752] | |||
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-1.2139308802460218, 0.015985106592163567] | |||
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/4.23.E31 4.23.E31] || [[Item:Q1783|<math>w = \Asin@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>w = \Asin@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>w == ArcSin[z]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [70 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.0806272403869902, -0.15847894846240845] | |||
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.2407598364931787, -0.3314429455293106] | |||
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/4.23.E31 4.23.E31] || [[Item:Q1783|<math>\Asin@@{z} = (-1)^{k}\asin@@{z}+k\pi</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Asin@@{z} = (-1)^{k}\asin@@{z}+k\pi</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcSin[z] == (- 1)^(k)* ArcSin[z]+ k*Pi</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-1.5707963267948961, 1.3169578969248168] | |||
Test Values: {Rule[k, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -6.283185307179586 | |||
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/4.23.E32 4.23.E32] || [[Item:Q1784|<math>w = \Acos@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>w = \Acos@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>w == ArcCos[z]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [70 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.08062724038699065, 1.1584789484624083] | |||
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-1.0795053557191978, 1.3314429455293104] | |||
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/4.23.E32 4.23.E32] || [[Item:Q1784|<math>\Acos@@{z} = +\acos@@{z}+2k\pi</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Acos@@{z} = +\acos@@{z}+2k\pi</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCos[z] == + ArcCos[z]+ 2*k*Pi</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -6.283185307179586 | |||
Test Values: {Rule[k, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -12.566370614359172 | |||
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/4.23.E32 4.23.E32] || [[Item:Q1784|<math>\Acos@@{z} = -\acos@@{z}+2k\pi</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Acos@@{z} = -\acos@@{z}+2k\pi</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCos[z] == - ArcCos[z]+ 2*k*Pi</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-4.71238898038469, -1.3169578969248168] | |||
Test Values: {Rule[k, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-10.995574287564276, -1.3169578969248168] | |||
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/4.23.E33 4.23.E33] || [[Item:Q1785|<math>w = \Atan@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>w = \Atan@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>w == ArcTan[z]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [10 / 10]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.4023777947836326, 0.49999999999999994] | |||
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Rational[1, 2]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.9636476090008059, 0.8660254037844387] | |||
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[z, Rational[1, 2]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/4.23.E33 4.23.E33] || [[Item:Q1785|<math>\Atan@@{z} = \atan@@{z}+k\pi</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Atan@@{z} = \atan@@{z}+k\pi</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcTan[z] == ArcTan[z]+ k*Pi</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -3.141592653589793 | |||
Test Values: {Rule[k, 1], Rule[z, Rational[1, 2]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -6.283185307179586 | |||
Test Values: {Rule[k, 2], Rule[z, Rational[1, 2]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/4.23.E34 4.23.E34] || [[Item:Q1786|<math>\asin@@{z} = \asin@@{\beta}+\iunit\sign@{y}\ln@{\alpha+(\alpha^{2}-1)^{1/2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\asin@@{z} = \asin@@{\beta}+\iunit\sign@{y}\ln@{\alpha+(\alpha^{2}-1)^{1/2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arcsin(x + y*I) = arcsin((1)/(2)*((x + 1)^(2)+ (y)^(2))^(1/2)-(1)/(2)*((x - 1)^(2)+ (y)^(2))^(1/2))+ I*signum(y)*ln(((1)/(2)*((x + 1)^(2)+ (y)^(2))^(1/2)+(1)/(2)*((x - 1)^(2)+ (y)^(2))^(1/2))+(((1)/(2)*((x + 1)^(2)+ (y)^(2))^(1/2)+(1)/(2)*((x - 1)^(2)+ (y)^(2))^(1/2))^(2)- 1)^(1/2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcSin[x + y*I] == ArcSin[Divide[1,2]*((x + 1)^(2)+ (y)^(2))^(1/2)-Divide[1,2]*((x - 1)^(2)+ (y)^(2))^(1/2)]+ I*Sign[y]*Log[(Divide[1,2]*((x + 1)^(2)+ (y)^(2))^(1/2)+Divide[1,2]*((x - 1)^(2)+ (y)^(2))^(1/2))+((Divide[1,2]*((x + 1)^(2)+ (y)^(2))^(1/2)+Divide[1,2]*((x - 1)^(2)+ (y)^(2))^(1/2))^(2)- 1)^(1/2)]</syntaxhighlight> || Failure || Failure || Successful [Tested: 18] || Successful [Tested: 18] | |||
|- | |||
| [https://dlmf.nist.gov/4.23.E35 4.23.E35] || [[Item:Q1787|<math>\acos@@{z} = \acos@@{\beta}-\iunit\sign@{y}\ln@{\alpha+(\alpha^{2}-1)^{1/2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\acos@@{z} = \acos@@{\beta}-\iunit\sign@{y}\ln@{\alpha+(\alpha^{2}-1)^{1/2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arccos(x + y*I) = arccos((1)/(2)*((x + 1)^(2)+ (y)^(2))^(1/2)-(1)/(2)*((x - 1)^(2)+ (y)^(2))^(1/2))- I*signum(y)*ln(((1)/(2)*((x + 1)^(2)+ (y)^(2))^(1/2)+(1)/(2)*((x - 1)^(2)+ (y)^(2))^(1/2))+(((1)/(2)*((x + 1)^(2)+ (y)^(2))^(1/2)+(1)/(2)*((x - 1)^(2)+ (y)^(2))^(1/2))^(2)- 1)^(1/2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCos[x + y*I] == ArcCos[Divide[1,2]*((x + 1)^(2)+ (y)^(2))^(1/2)-Divide[1,2]*((x - 1)^(2)+ (y)^(2))^(1/2)]- I*Sign[y]*Log[(Divide[1,2]*((x + 1)^(2)+ (y)^(2))^(1/2)+Divide[1,2]*((x - 1)^(2)+ (y)^(2))^(1/2))+((Divide[1,2]*((x + 1)^(2)+ (y)^(2))^(1/2)+Divide[1,2]*((x - 1)^(2)+ (y)^(2))^(1/2))^(2)- 1)^(1/2)]</syntaxhighlight> || Failure || Failure || Successful [Tested: 18] || Successful [Tested: 18] | |||
|- | |||
| [https://dlmf.nist.gov/4.23.E36 4.23.E36] || [[Item:Q1788|<math>\atan@@{z} = \tfrac{1}{2}\atan@{\frac{2x}{1-x^{2}-y^{2}}}+\tfrac{1}{4}i\ln@{\frac{x^{2}+(y+1)^{2}}{x^{2}+(y-1)^{2}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\atan@@{z} = \tfrac{1}{2}\atan@{\frac{2x}{1-x^{2}-y^{2}}}+\tfrac{1}{4}i\ln@{\frac{x^{2}+(y+1)^{2}}{x^{2}+(y-1)^{2}}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arctan(x + y*I) = (1)/(2)*arctan((2*x)/(1 - (x)^(2)- (y)^(2)))+(1)/(4)*I*ln(((x)^(2)+(y + 1)^(2))/((x)^(2)+(y - 1)^(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcTan[x + y*I] == Divide[1,2]*ArcTan[Divide[2*x,1 - (x)^(2)- (y)^(2)]]+Divide[1,4]*I*Log[Divide[(x)^(2)+(y + 1)^(2),(x)^(2)+(y - 1)^(2)]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [16 / 18]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.570796327-.1e-9*I | |||
Test Values: {x = 1.5, y = -1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.570796327-.1e-9*I | |||
Test Values: {x = 1.5, y = 1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.570796327+0.*I | |||
Test Values: {x = 1.5, y = -.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.570796327+0.*I | |||
Test Values: {x = 1.5, y = .5}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [16 / 18]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.5707963267948968, 1.1102230246251565*^-16] | |||
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.5707963267948968, -1.6653345369377348*^-16] | |||
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/4.23.E39 4.23.E39] || [[Item:Q1791|<math>\Gudermannian@{x} = \int_{0}^{x}\sech@@{t}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Gudermannian@{x} = \int_{0}^{x}\sech@@{t}\diff{t}</syntaxhighlight> || <math>-\infty < x, x < \infty</math> || <syntaxhighlight lang=mathematica>arctan(sinh(x)) = int(sech(t), t = 0..x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Gudermannian[x] == Integrate[Sech[t], {t, 0, x}, GenerateConditions->None]</syntaxhighlight> || Successful || Aborted || - || Successful [Tested: 3] | |||
|- | |||
| [https://dlmf.nist.gov/4.23.E40 4.23.E40] || [[Item:Q1792|<math>\Gudermannian@{x} = 2\atan@{e^{x}}-\tfrac{1}{2}\pi\\</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Gudermannian@{x} = 2\atan@{e^{x}}-\tfrac{1}{2}\pi\\</syntaxhighlight> || <math>-\infty < x, x < \infty</math> || <syntaxhighlight lang=mathematica>arctan(sinh(x)) = 2*arctan(exp(x))-(1)/(2)*Pi</syntaxhighlight> || <syntaxhighlight lang=mathematica>Gudermannian[x] == 2*ArcTan[Exp[x]]-Divide[1,2]*Pi</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3] | |||
|- | |||
| [https://dlmf.nist.gov/4.23.E40 4.23.E40] || [[Item:Q1792|<math>2\atan@{e^{x}}-\tfrac{1}{2}\pi\\ = \asin@{\tanh@@{x}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>2\atan@{e^{x}}-\tfrac{1}{2}\pi\\ = \asin@{\tanh@@{x}}</syntaxhighlight> || <math>-\infty < x, x < \infty</math> || <syntaxhighlight lang=mathematica>2*arctan(exp(x))-(1)/(2)*Pi = arcsin(tanh(x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>2*ArcTan[Exp[x]]-Divide[1,2]*Pi == ArcSin[Tanh[x]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3] | |||
|- | |||
| [https://dlmf.nist.gov/4.23.E40 4.23.E40] || [[Item:Q1792|<math>\asin@{\tanh@@{x}} = \acsc@{\coth@@{x}}\\</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\asin@{\tanh@@{x}} = \acsc@{\coth@@{x}}\\</syntaxhighlight> || <math>-\infty < x, x < \infty</math> || <syntaxhighlight lang=mathematica>arcsin(tanh(x)) = arccsc(coth(x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcSin[Tanh[x]] == ArcCsc[Coth[x]]</syntaxhighlight> || Failure || Successful || Successful [Tested: 3] || Successful [Tested: 3] | |||
|- | |||
| [https://dlmf.nist.gov/4.23.E40 4.23.E40] || [[Item:Q1792|<math>\acsc@{\coth@@{x}}\\ = \acos@{\sech@@{x}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\acsc@{\coth@@{x}}\\ = \acos@{\sech@@{x}}</syntaxhighlight> || <math>-\infty < x, x < \infty</math> || <syntaxhighlight lang=mathematica>arccsc(coth(x)) = arccos(sech(x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCsc[Coth[x]] == ArcCos[Sech[x]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3] | |||
|- | |||
| [https://dlmf.nist.gov/4.23.E40 4.23.E40] || [[Item:Q1792|<math>\acos@{\sech@@{x}} = \asec@{\cosh@@{x}}\\</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\acos@{\sech@@{x}} = \asec@{\cosh@@{x}}\\</syntaxhighlight> || <math>-\infty < x, x < \infty</math> || <syntaxhighlight lang=mathematica>arccos(sech(x)) = arcsec(cosh(x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCos[Sech[x]] == ArcSec[Cosh[x]]</syntaxhighlight> || Failure || Successful || Successful [Tested: 3] || Successful [Tested: 3] | |||
|- | |||
| [https://dlmf.nist.gov/4.23.E40 4.23.E40] || [[Item:Q1792|<math>\asec@{\cosh@@{x}}\\ = \atan@{\sinh@@{x}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\asec@{\cosh@@{x}}\\ = \atan@{\sinh@@{x}}</syntaxhighlight> || <math>-\infty < x, x < \infty</math> || <syntaxhighlight lang=mathematica>arcsec(cosh(x)) = arctan(sinh(x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcSec[Cosh[x]] == ArcTan[Sinh[x]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3] | |||
|- | |||
| [https://dlmf.nist.gov/4.23.E40 4.23.E40] || [[Item:Q1792|<math>\atan@{\sinh@@{x}} = \acot@{\csch@@{x}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\atan@{\sinh@@{x}} = \acot@{\csch@@{x}}</syntaxhighlight> || <math>-\infty < x, x < \infty</math> || <syntaxhighlight lang=mathematica>arctan(sinh(x)) = arccot(csch(x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcTan[Sinh[x]] == ArcCot[Csch[x]]</syntaxhighlight> || Failure || Successful || Successful [Tested: 3] || Successful [Tested: 3] | |||
|- | |||
| [https://dlmf.nist.gov/4.23.E41 4.23.E41] || [[Item:Q1793|<math>\aGudermannian@{x} = \int_{0}^{x}\sec@@{t}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\aGudermannian@{x} = \int_{0}^{x}\sec@@{t}\diff{t}</syntaxhighlight> || <math>-\frac{1}{2}\pi < x, x < \frac{1}{2}\pi</math> || <syntaxhighlight lang=mathematica>arctanh(sin(x)) = int(sec(t), t = 0..x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>InverseGudermannian[x] == Integrate[Sec[t], {t, 0, x}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Successful [Tested: 2] || Successful [Tested: 2] | |||
|- | |||
| [https://dlmf.nist.gov/4.23.E42 4.23.E42] || [[Item:Q1794|<math>\aGudermannian@{x} = \ln@@{\tan@{\tfrac{1}{2}x+\tfrac{1}{4}\pi}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\aGudermannian@{x} = \ln@@{\tan@{\tfrac{1}{2}x+\tfrac{1}{4}\pi}}</syntaxhighlight> || <math>-\frac{1}{2}\pi < x, x < \frac{1}{2}\pi</math> || <syntaxhighlight lang=mathematica>arctanh(sin(x)) = ln(tan((1)/(2)*x +(1)/(4)*Pi))</syntaxhighlight> || <syntaxhighlight lang=mathematica>InverseGudermannian[x] == Log[Tan[Divide[1,2]*x +Divide[1,4]*Pi]]</syntaxhighlight> || Failure || Successful || Successful [Tested: 2] || Successful [Tested: 2] | |||
|- | |||
| [https://dlmf.nist.gov/4.23.E42 4.23.E42] || [[Item:Q1794|<math>\ln@@{\tan@{\tfrac{1}{2}x+\tfrac{1}{4}\pi}} = \ln@{\sec@@{x}+\tan@@{x}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@@{\tan@{\tfrac{1}{2}x+\tfrac{1}{4}\pi}} = \ln@{\sec@@{x}+\tan@@{x}}</syntaxhighlight> || <math>-\frac{1}{2}\pi < x, x < \frac{1}{2}\pi</math> || <syntaxhighlight lang=mathematica>ln(tan((1)/(2)*x +(1)/(4)*Pi)) = ln(sec(x)+ tan(x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[Tan[Divide[1,2]*x +Divide[1,4]*Pi]] == Log[Sec[x]+ Tan[x]]</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || Successful [Tested: 2] | |||
|- | |||
| [https://dlmf.nist.gov/4.23.E42 4.23.E42] || [[Item:Q1794|<math>\ln@{\sec@@{x}+\tan@@{x}} = \asinh@{\tan@@{x}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@{\sec@@{x}+\tan@@{x}} = \asinh@{\tan@@{x}}</syntaxhighlight> || <math>-\frac{1}{2}\pi < x, x < \frac{1}{2}\pi</math> || <syntaxhighlight lang=mathematica>ln(sec(x)+ tan(x)) = arcsinh(tan(x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[Sec[x]+ Tan[x]] == ArcSinh[Tan[x]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 2] || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[3.046904887125347, 3.141592653589793] | |||
Test Values: {Rule[x, 2]}</syntaxhighlight><br></div></div> | |||
|- | |||
| [https://dlmf.nist.gov/4.23.E42 4.23.E42] || [[Item:Q1794|<math>\asinh@{\tan@@{x}} = \acsch@{\cot@@{x}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\asinh@{\tan@@{x}} = \acsch@{\cot@@{x}}</syntaxhighlight> || <math>-\frac{1}{2}\pi < x, x < \frac{1}{2}\pi</math> || <syntaxhighlight lang=mathematica>arcsinh(tan(x)) = arccsch(cot(x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcSinh[Tan[x]] == ArcCsch[Cot[x]]</syntaxhighlight> || Failure || Successful || Successful [Tested: 2] || Successful [Tested: 2] | |||
|- | |||
| [https://dlmf.nist.gov/4.23.E42 4.23.E42] || [[Item:Q1794|<math>\acsch@{\cot@@{x}} = \acosh@{\sec@@{x}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\acsch@{\cot@@{x}} = \acosh@{\sec@@{x}}</syntaxhighlight> || <math>-\frac{1}{2}\pi < x, x < \frac{1}{2}\pi</math> || <syntaxhighlight lang=mathematica>arccsch(cot(x)) = arccosh(sec(x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCsch[Cot[x]] == ArcCosh[Sec[x]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 2] || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-3.046904887125347, -3.141592653589793] | |||
Test Values: {Rule[x, 2]}</syntaxhighlight><br></div></div> | |||
|- | |||
| [https://dlmf.nist.gov/4.23.E42 4.23.E42] || [[Item:Q1794|<math>\acosh@{\sec@@{x}} = \asech@{\cos@@{x}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\acosh@{\sec@@{x}} = \asech@{\cos@@{x}}</syntaxhighlight> || <math>-\frac{1}{2}\pi < x, x < \frac{1}{2}\pi</math> || <syntaxhighlight lang=mathematica>arccosh(sec(x)) = arcsech(cos(x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCosh[Sec[x]] == ArcSech[Cos[x]]</syntaxhighlight> || Failure || Successful || Successful [Tested: 2] || Successful [Tested: 2] | |||
|- | |||
| [https://dlmf.nist.gov/4.23.E42 4.23.E42] || [[Item:Q1794|<math>\asech@{\cos@@{x}} = \atanh@{\sin@@{x}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\asech@{\cos@@{x}} = \atanh@{\sin@@{x}}</syntaxhighlight> || <math>-\frac{1}{2}\pi < x, x < \frac{1}{2}\pi</math> || <syntaxhighlight lang=mathematica>arcsech(cos(x)) = arctanh(sin(x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcSech[Cos[x]] == ArcTanh[Sin[x]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 2] || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.0, 3.141592653589793] | |||
Test Values: {Rule[x, 2]}</syntaxhighlight><br></div></div> | |||
|- | |||
| [https://dlmf.nist.gov/4.23.E42 4.23.E42] || [[Item:Q1794|<math>\atanh@{\sin@@{x}} = \acoth@{\csc@@{x}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\atanh@{\sin@@{x}} = \acoth@{\csc@@{x}}</syntaxhighlight> || <math>-\frac{1}{2}\pi < x, x < \frac{1}{2}\pi</math> || <syntaxhighlight lang=mathematica>arctanh(sin(x)) = arccoth(csc(x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcTanh[Sin[x]] == ArcCoth[Csc[x]]</syntaxhighlight> || Failure || Successful || Successful [Tested: 2] || Successful [Tested: 2] | |||
|} | |||
</div> |
Latest revision as of 12:28, 22 May 2021
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
4.2.E1 | \Ln@@{z} = \int_{1}^{z}\frac{\diff{t}}{t} |
ln(z) = int((1)/(t), t = 1..z)
|
Log[z] == Integrate[Divide[1,t], {t, 1, z}, GenerateConditions->None]
|
Failure | Successful | Successful [Tested: 7] | Successful [Tested: 7] | |
4.2.E2 | \ln@@{z} = \int_{1}^{z}\frac{\diff{t}}{t} |
|
ln(z) = int((1)/(t), t = 1..z)
|
Log[z] == Integrate[Divide[1,t], {t, 1, z}, GenerateConditions->None]
|
Failure | Successful | Successful [Tested: 7] | Successful [Tested: 7] |
4.2.E3 | \ln@@{z} = \ln@@{\abs{z}}+\iunit\phase@@{z} |
ln(z) = ln(abs(z))+ I*argument(z)
|
Log[z] == Log[Abs[z]]+ I*Arg[z]
|
Failure | Successful | Successful [Tested: 7] | Successful [Tested: 7] | |
4.2.E4 | z = x |
(x + y*I) = x |
(x + y*I) == x |
Skipped - no semantic math | Skipped - no semantic math | - | - | |
4.2.E5 | \ln@@{z} = \ln@@{\abs{z}}+\iunit\phase@@{z} |
ln(z) = ln(abs(z))+ I*argument(z)
|
Log[z] == Log[Abs[z]]+ I*Arg[z]
|
Failure | Successful | Successful [Tested: 7] | Successful [Tested: 7] | |
4.2.E6 | \Ln@@{z} = \ln@@{z}+2k\pi\iunit |
|
ln(z) = ln(z)+ 2*k*Pi*I
|
Log[z] == Log[z]+ 2*k*Pi*I
|
Failure | Failure | Failed [21 / 21] Result: -6.283185308*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1}
Result: -12.56637062*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2}
Result: -18.84955592*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 3}
Result: -6.283185308*I
Test Values: {z = -1/2+1/2*I*3^(1/2), k = 1}
... skip entries to safe data |
Failed [21 / 21]
Result: Complex[0.0, -6.283185307179586]
Test Values: {Rule[k, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[0.0, -12.566370614359172]
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |
4.2.E7 | \ln@{x+\iunit 0} = \ln@@{|x|}+ i\pi |
ln(x + I*0) = ln(abs(x))+ I*Pi
|
Log[x + I*0] == Log[Abs[x]]+ I*Pi
|
Failure | Successful | Error | Skip - symbolical successful subtest | |
4.2.E7 | \ln@{x-\iunit 0} = \ln@@{|x|}- i\pi |
ln(x - I*0) = ln(abs(x))- I*Pi
|
Log[x - I*0] == Log[Abs[x]]- I*Pi
|
Failure | Failure | Error | Skip - No test values generated | |
4.2.E8 | \genlog{a}@@{z} = \ifrac{\ln@@{z}}{\ln@@{a}} |
|
log[a](z) = (ln(z))/(ln(a))
|
Log[a,z] == Divide[Log[z],Log[a]]
|
Successful | Successful | - | Successful [Tested: 42] |
4.2.E9 | \genlog{a}@@{z} = \frac{\genlog{b}@@{z}}{\genlog{b}@@{a}} |
|
log[a](z) = (log[b](z))/(log[b](a))
|
Log[a,z] == Divide[Log[b,z],Log[b,a]]
|
Successful | Successful | - | Successful [Tested: 252] |
4.2.E10 | \genlog{a}@@{b} = \frac{1}{\genlog{b}@@{a}} |
|
log[a](b) = (1)/(log[b](a))
|
Log[a,b] == Divide[1,Log[b,a]]
|
Successful | Successful | - | Successful [Tested: 36] |
4.2.E11 | e = 2.71828\ 18284\ 59045\ 23536\dots |
|
exp(1) = 2.71828182845904523536
|
E == 2.71828182845904523536
|
Successful | Successful | - | Successful [Tested: 1] |
4.2.E12 | \ln@@{e} = 1 |
|
ln(exp(1)) = 1
|
Log[E] == 1
|
Successful | Successful | - | Successful [Tested: 1] |
4.2.E13 | \int_{1}^{e}\frac{\diff{t}}{t} = 1 |
|
int((1)/(t), t = 1..exp(1)) = 1
|
Integrate[Divide[1,t], {t, 1, E}, GenerateConditions->None] == 1
|
Successful | Successful | - | Successful [Tested: 1] |
4.2.E14 | \genlog{e}@@{z} = \ln@@{z} |
|
log[exp(1)](z) = ln(z)
|
Log[E,z] == Log[z]
|
Successful | Successful | - | Successful [Tested: 7] |
4.2.E15 | \genlog{10}@@{z} = \ifrac{(\ln@@{z})}{(\ln@@{10})} |
|
log[10](z) = (ln(z))/(ln(10))
|
Log[10,z] == Divide[Log[z],Log[10]]
|
Successful | Successful | - | Successful [Tested: 7] |
4.2.E15 | \ifrac{(\ln@@{z})}{(\ln@@{10})} = (\genlog{10}@@{e})\ln@@{z} |
|
(ln(z))/(ln(10)) = (log[10](exp(1)))*ln(z)
|
Divide[Log[z],Log[10]] == (Log[10,E])*Log[z]
|
Successful | Successful | - | Successful [Tested: 7] |
4.2.E16 | \ln@@{z} = (\ln@@{10})\genlog{10}@@{z} |
|
ln(z) = (ln(10))*log[10](z)
|
Log[z] == (Log[10])*Log[10,z]
|
Successful | Successful | - | Successful [Tested: 7] |
4.2.E17 | \genlog{10}@@{e} = 0.43429\ 44819\ 03251\ 82765\dots |
|
log[10](exp(1)) = 0.43429448190325182765
|
Log[10,E] == 0.43429448190325182765
|
Failure | Successful | Successful [Tested: 0] | Successful [Tested: 1] |
4.2.E18 | \ln@@{10} = 2.30258\ 50929\ 94045\ 68401\dots |
|
ln(10) = 2.30258509299404568401
|
Log[10] == 2.30258509299404568401
|
Successful | Successful | - | Successful [Tested: 1] |
4.2.E20 | \exp@{z+2\pi i} = \exp@@{z} |
|
exp(z + 2*Pi*I) = exp(z)
|
Exp[z + 2*Pi*I] == Exp[z]
|
Successful | Successful | - | Successful [Tested: 7] |
4.2.E21 | \exp@{-z} = 1/\exp@{z} |
|
exp(- z) = 1/exp(z)
|
Exp[- z] == 1/Exp[z]
|
Successful | Successful | - | Successful [Tested: 7] |
4.2.E22 | |\exp@@{z}| = \exp@{\realpart@@{z}} |
|
abs(exp(z)) = exp(Re(z))
|
Abs[Exp[z]] == Exp[Re[z]]
|
Successful | Successful | - | Successful [Tested: 7] |
4.2.E23 | \phase@{\exp@@{z}} = \imagpart@@{z}+2k\pi |
|
argument(exp(z)) = Im(z)+ 2*k*Pi
|
Arg[Exp[z]] == Im[z]+ 2*k*Pi
|
Failure | Failure | Failed [21 / 21] Result: -6.283185308
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1, k = 3}
Result: -12.56637062
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2, k = 3}
Result: -18.84955592
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 3, k = 3}
Result: -6.283185308
Test Values: {z = -1/2+1/2*I*3^(1/2), k = 1, k = 3}
... skip entries to safe data |
Failed [7 / 7]
Result: -18.84955592153876
Test Values: {Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: -18.84955592153876
Test Values: {Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
4.2.E24 | \exp@@{z} = e^{x}\cos@@{y}+ie^{x}\sin@@{y} |
|
exp(x + y*I) = exp(x)*cos(y)+ I*exp(x)*sin(y)
|
Exp[x + y*I] == Exp[x]*Cos[y]+ I*Exp[x]*Sin[y]
|
Successful | Successful | - | Successful [Tested: 18] |
4.2.E26 | z^{a} = \exp@{a\Ln@@{z}} |
(z)^(a) = exp(a*ln(z))
|
(z)^(a) == Exp[a*Log[z]]
|
Successful | Successful | - | Successful [Tested: 42] | |
4.2.E28 | z^{a} = \exp@{a\ln@@{z}} |
|
(z)^(a) = exp(a*ln(z))
|
(z)^(a) == Exp[a*Log[z]]
|
Successful | Successful | - | Successful [Tested: 42] |
4.2.E29 | |z^{a}| = |z|^{\realpart@@{a}}\exp@{-(\imagpart@@{a})\phase@@{z}} |
|
abs((z)^(a)) = (abs(z))^(Re(a))* exp(-(Im(a))*argument(z))
|
Abs[(z)^(a)] == (Abs[z])^(Re[a])* Exp[-(Im[a])*Arg[z]]
|
Failure | Failure | Successful [Tested: 42] | Successful [Tested: 42] |
4.2.E30 | \phase@{z^{a}} = (\realpart@@{a})\phase@@{z}+(\imagpart@@{a})\ln@@{|z|} |
|
argument((z)^(a)) = (Re(a))*argument(z)+(Im(a))*ln(abs(z))
|
Arg[(z)^(a)] == (Re[a])*Arg[z]+(Im[a])*Log[Abs[z]]
|
Failure | Failure | Failed [6 / 42] Result: -6.283185308
Test Values: {a = -1.5, z = -1/2*3^(1/2)-1/2*I}
Result: 6.283185308
Test Values: {a = 1.5, z = -1/2*3^(1/2)-1/2*I}
Result: 6.283185307
Test Values: {a = -2, z = -1/2+1/2*I*3^(1/2)}
Result: -6.283185309
Test Values: {a = -2, z = -1/2*3^(1/2)-1/2*I} ... skip entries to safe data |
Failed [6 / 42]
Result: -6.283185307179586
Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]} Result: 6.283185307179586
Test Values: {Rule[a, 1.5], Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]} ... skip entries to safe data |
4.2#Ex1 | |z^{a}| = |z|^{a} |
|
abs((z)^(a)) = (abs(z))^(a) |
Abs[(z)^(a)] == (Abs[z])^(a) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
4.2#Ex2 | \phase@{z^{a}} = a\phase@@{z} |
|
argument((z)^(a)) = a*argument(z) |
Arg[(z)^(a)] == a*Arg[z] |
Failure | Failure | Failed [6 / 42] Result: -6.283185308
Test Values: {a = -1.5, z = -1/2*3^(1/2)-1/2*I} Result: 6.283185308
Test Values: {a = 1.5, z = -1/2*3^(1/2)-1/2*I} Result: 6.283185307
Test Values: {a = -2, z = -1/2+1/2*I*3^(1/2)} Result: -6.283185309
Test Values: {a = -2, z = -1/2*3^(1/2)-1/2*I} ... skip entries to safe data |
Failed [6 / 42]
Result: -6.283185307179586
Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]} Result: 6.283185307179586
Test Values: {Rule[a, 1.5], Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]} ... skip entries to safe data |
4.2.E32 | e^{z} = \exp@@{z} |
|
exp(z) = exp(z) |
Exp[z] == Exp[z] |
Successful | Successful | - | Successful [Tested: 7] |
4.2.E33 | e^{z} = (\exp@@{z})\exp@{2kz\pi\iunit} |
|
exp(z) = (exp(z))*exp(2*k*z*Pi*I) |
Exp[z] == (Exp[z])*Exp[2*k*z*Pi*I] |
Failure | Failure | Failed [16 / 21] Result: 1.989606315+1.174241786*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1, k = 3} Result: 2.084725711+1.143917762*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2, k = 3} Result: 2.086486474+1.139979111*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 3, k = 3} Result: .3946493584+.4640329579*I
Test Values: {z = -1/2+1/2*I*3^(1/2), k = 1, k = 3} ... skip entries to safe data |
Failed [6 / 7]
Result: Complex[2.0864864733305994, 1.139979110702337]
Test Values: {Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[0.3929465878104918, 0.4620308216689905]
Test Values: {Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |
4.2.E36 | -\pi \leq \imagpart@@{\left(\frac{1}{a}\Ln@@{w}\right)} |
|
- Pi <= Im((1)/(a)*ln(w)) |
- Pi <= Im[Divide[1,a]*Log[w]] |
Failure | Failure | Failed [5 / 60] Result: -3.141592654 <= -4.188790204
Test Values: {a = -.5, w = -1/2+1/2*I*3^(1/2)} Result: -3.141592654 <= -6.283185308
Test Values: {a = -.5, w = -1.5} Result: -3.141592654 <= -6.283185308
Test Values: {a = -.5, w = -.5} Result: -3.141592654 <= -6.283185308
Test Values: {a = -.5, w = -2} ... skip entries to safe data |
Failed [5 / 60]
Result: False
Test Values: {Rule[a, -0.5], Rule[w, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} Result: False
Test Values: {Rule[a, -0.5], Rule[w, -1.5]} ... skip entries to safe data |
4.2.E36 | \imagpart@@{\left(\frac{1}{a}\Ln@@{w}\right)} \leq \pi |
|
Im((1)/(a)*ln(w)) <= Pi |
Im[Divide[1,a]*Log[w]] <= Pi |
Failure | Failure | Failed [5 / 60] Result: 5.235987758 <= 3.141592654
Test Values: {a = -.5, w = -1/2*3^(1/2)-1/2*I} Result: 4.188790204 <= 3.141592654
Test Values: {a = .5, w = -1/2+1/2*I*3^(1/2)} Result: 6.283185308 <= 3.141592654
Test Values: {a = .5, w = -1.5} Result: 6.283185308 <= 3.141592654
Test Values: {a = .5, w = -.5} ... skip entries to safe data |
Failed [5 / 60]
Result: False
Test Values: {Rule[a, -0.5], Rule[w, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]} Result: False
Test Values: {Rule[a, 0.5], Rule[w, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |
4.4.E1 | \ln@@{1} = 0 |
|
ln(1) = 0 |
Log[1] == 0 |
Successful | Successful | - | Successful [Tested: 1] |
4.4.E2 | \ln@{-1+\iunit 0} = +\pi\iunit |
|
ln(- 1 + I*0) = + Pi*I |
Log[- 1 + I*0] == + Pi*I |
Successful | Successful | Skip - symbolical successful subtest | Successful [Tested: 1] |
4.4.E2 | \ln@{-1-\iunit 0} = -\pi\iunit |
|
ln(- 1 - I*0) = - Pi*I |
Log[- 1 - I*0] == - Pi*I |
Failure | Failure | Failed [1 / 1] Result: 6.283185308*I
Test Values: {} |
Failed [1 / 1]
Result: Complex[0.0, 6.283185307179586]
Test Values: {} |
4.4.E3 | \ln@{+\iunit} = +\tfrac{1}{2}\pi\iunit |
|
ln(+ I) = +(1)/(2)*Pi*I |
Log[+ I] == +Divide[1,2]*Pi*I |
Successful | Successful | - | Successful [Tested: 1] |
4.4.E3 | \ln@{-\iunit} = -\tfrac{1}{2}\pi\iunit |
|
ln(- I) = -(1)/(2)*Pi*I |
Log[- I] == -Divide[1,2]*Pi*I |
Successful | Successful | - | Successful [Tested: 1] |
4.4.E4 | e^{0} = 1 |
|
exp(0) = 1 |
Exp[0] == 1 |
Skipped - no semantic math | Skipped - no semantic math | - | - |
4.4.E5 | e^{+\pi\iunit} = -1 |
|
exp(+ Pi*I) = - 1 |
Exp[+ Pi*I] == - 1 |
Successful | Successful | - | Successful [Tested: 1] |
4.4.E5 | e^{-\pi\iunit} = -1 |
|
exp(- Pi*I) = - 1 |
Exp[- Pi*I] == - 1 |
Successful | Successful | - | Successful [Tested: 1] |
4.4.E6 | e^{+\pi\iunit/2} = +\iunit |
|
exp(+ Pi*I/2) = + I |
Exp[+ Pi*I/2] == + I |
Successful | Successful | - | Successful [Tested: 1] |
4.4.E6 | e^{-\pi\iunit/2} = -\iunit |
|
exp(- Pi*I/2) = - I |
Exp[- Pi*I/2] == - I |
Successful | Successful | - | Successful [Tested: 1] |
4.4.E7 | e^{2\pi k\iunit} = 1 |
|
exp(2*Pi*k*I) = 1 |
Exp[2*Pi*k*I] == 1 |
Successful | Successful | - | Successful [Tested: 1] |
4.4.E8 | e^{+\pi\iunit/3} = \frac{1}{2}+\iunit\frac{\sqrt{3}}{2} |
|
exp(+ Pi*I/3) = (1)/(2)+ I*(sqrt(3))/(2) |
Exp[+ Pi*I/3] == Divide[1,2]+ I*Divide[Sqrt[3],2] |
Successful | Successful | - | Successful [Tested: 1] |
4.4.E8 | e^{-\pi\iunit/3} = \frac{1}{2}-\iunit\frac{\sqrt{3}}{2} |
|
exp(- Pi*I/3) = (1)/(2)- I*(sqrt(3))/(2) |
Exp[- Pi*I/3] == Divide[1,2]- I*Divide[Sqrt[3],2] |
Successful | Successful | - | Successful [Tested: 1] |
4.4.E9 | e^{+ 2\pi\iunit/3} = -\frac{1}{2}+\iunit\frac{\sqrt{3}}{2} |
|
exp(+ 2*Pi*I/3) = -(1)/(2)+ I*(sqrt(3))/(2) |
Exp[+ 2*Pi*I/3] == -Divide[1,2]+ I*Divide[Sqrt[3],2] |
Successful | Successful | - | Successful [Tested: 1] |
4.4.E9 | e^{- 2\pi\iunit/3} = -\frac{1}{2}-\iunit\frac{\sqrt{3}}{2} |
|
exp(- 2*Pi*I/3) = -(1)/(2)- I*(sqrt(3))/(2) |
Exp[- 2*Pi*I/3] == -Divide[1,2]- I*Divide[Sqrt[3],2] |
Successful | Successful | - | Successful [Tested: 1] |
4.4.E10 | e^{+\pi\iunit/4} = \frac{1}{\sqrt{2}}+\iunit\frac{1}{\sqrt{2}} |
|
exp(+ Pi*I/4) = (1)/(sqrt(2))+ I*(1)/(sqrt(2)) |
Exp[+ Pi*I/4] == Divide[1,Sqrt[2]]+ I*Divide[1,Sqrt[2]] |
Successful | Successful | - | Successful [Tested: 1] |
4.4.E10 | e^{-\pi\iunit/4} = \frac{1}{\sqrt{2}}-\iunit\frac{1}{\sqrt{2}} |
|
exp(- Pi*I/4) = (1)/(sqrt(2))- I*(1)/(sqrt(2)) |
Exp[- Pi*I/4] == Divide[1,Sqrt[2]]- I*Divide[1,Sqrt[2]] |
Successful | Successful | - | Successful [Tested: 1] |
4.4.E11 | e^{+ 3\pi\iunit/4} = -\frac{1}{\sqrt{2}}+\iunit\frac{1}{\sqrt{2}} |
|
exp(+ 3*Pi*I/4) = -(1)/(sqrt(2))+ I*(1)/(sqrt(2)) |
Exp[+ 3*Pi*I/4] == -Divide[1,Sqrt[2]]+ I*Divide[1,Sqrt[2]] |
Successful | Successful | - | Successful [Tested: 1] |
4.4.E11 | e^{- 3\pi\iunit/4} = -\frac{1}{\sqrt{2}}-\iunit\frac{1}{\sqrt{2}} |
|
exp(- 3*Pi*I/4) = -(1)/(sqrt(2))- I*(1)/(sqrt(2)) |
Exp[- 3*Pi*I/4] == -Divide[1,Sqrt[2]]- I*Divide[1,Sqrt[2]] |
Successful | Successful | - | Successful [Tested: 1] |
4.4.E12 | \iunit^{+\iunit} = e^{-\pi/2} |
|
(I)^(+ I) = exp(- Pi/2) |
(I)^(+ I) == Exp[- Pi/2] |
Successful | Successful | - | Successful [Tested: 1] |
4.4.E12 | \iunit^{-\iunit} = e^{+\pi/2} |
|
(I)^(- I) = exp(+ Pi/2) |
(I)^(- I) == Exp[+ Pi/2] |
Successful | Successful | - | Successful [Tested: 1] |
4.4.E13 | \lim_{x\to\infty}x^{-a}\ln@@{x} = 0 |
limit((x)^(- a)* ln(x), x = infinity) = 0 |
Limit[(x)^(- a)* Log[x], x -> Infinity, GenerateConditions->None] == 0 |
Successful | Successful | - | Successful [Tested: 3] | |
4.4.E14 | \lim_{x\to 0}x^{a}\ln@@{x} = 0 |
limit((x)^(a)* ln(x), x = 0) = 0 |
Limit[(x)^(a)* Log[x], x -> 0, GenerateConditions->None] == 0 |
Failure | Successful | Successful [Tested: 3] | Successful [Tested: 3] | |
4.4.E15 | \lim_{x\to\infty}x^{a}e^{-x} = 0 |
|
limit((x)^(a)* exp(- x), x = infinity) = 0 |
Limit[(x)^(a)* Exp[- x], x -> Infinity, GenerateConditions->None] == 0 |
Skipped - no semantic math | Skipped - no semantic math | - | - |
4.4.E16 | \lim_{z\to\infty}z^{a}e^{-z} = 0 |
limit((z)^(a)* exp(- z), z = infinity) = 0 |
Limit[(z)^(a)* Exp[- z], z -> Infinity, GenerateConditions->None] == 0 |
Skipped - no semantic math | Skipped - no semantic math | - | - | |
4.4.E17 | \lim_{n\to\infty}\left(1+\frac{z}{n}\right)^{n} = e^{z} |
limit((1 +(z)/(n))^(n), n = infinity) = exp(z) |
Limit[(1 +Divide[z,n])^(n), n -> Infinity, GenerateConditions->None] == Exp[z] |
Skipped - no semantic math | Skipped - no semantic math | - | - | |
4.4.E18 | \lim_{n\to\infty}\left(1+\frac{1}{n}\right)^{n} = e |
|
limit((1 +(1)/(n))^(n), n = infinity) = exp(1) |
Limit[(1 +Divide[1,n])^(n), n -> Infinity, GenerateConditions->None] == E |
Skipped - no semantic math | Skipped - no semantic math | - | - |
4.4.E19 | \lim_{n\to\infty}\left(\left(\sum^{n}_{k=1}\frac{1}{k}\right)-\ln@@{n}\right) = \EulerConstant |
|
limit((sum((1)/(k), k = 1..n))- ln(n), n = infinity) = gamma |
Limit[(Sum[Divide[1,k], {k, 1, n}, GenerateConditions->None])- Log[n], n -> Infinity, GenerateConditions->None] == EulerGamma |
Successful | Successful | - | Successful [Tested: 1] |
4.4.E19 | \EulerConstant = 0.57721\ 56649\ 01532\ 86060\dots |
|
gamma = 0.57721566490153286060 |
EulerGamma == 0.57721566490153286060 |
Successful | Successful | - | Successful [Tested: 1] |
4.5.E1 | \frac{x}{1+x} < \ln@{1+x} |
(x)/(1 + x) < ln(1 + x) |
Divide[x,1 + x] < Log[1 + x] |
Failure | Failure | Successful [Tested: 3] | Successful [Tested: 3] | |
4.5.E1 | \ln@{1+x} < x |
ln(1 + x) < x |
Log[1 + x] < x |
Failure | Failure | Successful [Tested: 3] | Successful [Tested: 3] | |
4.5.E2 | x < -\ln@{1-x} |
x < - ln(1 - x) |
x < - Log[1 - x] |
Failure | Failure | Successful [Tested: 1] | Successful [Tested: 1] | |
4.5.E2 | -\ln@{1-x} < \frac{x}{1-x} |
- ln(1 - x) < (x)/(1 - x) |
- Log[1 - x] < Divide[x,1 - x] |
Failure | Failure | Successful [Tested: 1] | Successful [Tested: 1] | |
4.5.E3 | |\ln@{1-x}| < \tfrac{3}{2}x |
abs(ln(1 - x)) < (3)/(2)*x |
Abs[Log[1 - x]] < Divide[3,2]*x |
Failure | Failure | Successful [Tested: 1] | Successful [Tested: 1] | |
4.5.E4 | \ln@@{x} \leq x-1 |
ln(x) <= x - 1 |
Log[x] <= x - 1 |
Failure | Failure | Successful [Tested: 3] | Successful [Tested: 3] | |
4.5.E5 | \ln@@{x} \leq a(x^{1/a}-1) |
ln(x) <= a*((x)^(1/a)- 1) |
Log[x] <= a*((x)^(1/a)- 1) |
Error | Failure | - | Successful [Tested: 9] | |
4.5.E6 | |\ln@{1+z}| \leq -\ln@{1-|z|} |
abs(ln(1 + z)) <= - ln(1 -abs(z)) |
Abs[Log[1 + z]] <= - Log[1 -Abs[z]] |
Failure | Failure | Successful [Tested: 1] | Successful [Tested: 1] | |
4.5.E7 | e^{-x/(1-x)} < 1-x |
exp(- x/(1 - x)) < 1 - x |
Exp[- x/(1 - x)] < 1 - x |
Skipped - no semantic math | Failure | - | Successful [Tested: 1] | |
4.5.E7 | 1-x < e^{-x} |
1 - x < exp(- x) |
1 - x < Exp[- x] |
Error | Failure | - | Successful [Tested: 1] | |
4.5.E8 | 1+x < e^{x} |
1 + x < exp(x) |
1 + x < Exp[x] |
Skipped - no semantic math | Failure | - | Successful [Tested: 3] | |
4.5.E9 | e^{x} < \frac{1}{1-x} |
exp(x) < (1)/(1 - x) |
Exp[x] < Divide[1,1 - x] |
Skipped - no semantic math | Failure | - | Successful [Tested: 1] | |
4.5.E10 | \frac{x}{1+x} < 1-e^{-x} |
(x)/(1 + x) < 1 - exp(- x) |
Divide[x,1 + x] < 1 - Exp[- x] |
Skipped - no semantic math | Failure | - | Successful [Tested: 3] | |
4.5.E10 | 1-e^{-x} < x |
1 - exp(- x) < x |
1 - Exp[- x] < x |
Error | Failure | - | Successful [Tested: 3] | |
4.5.E11 | x < e^{x}-1 |
x < exp(x)- 1 |
x < Exp[x]- 1 |
Skipped - no semantic math | Failure | - | Successful [Tested: 1] | |
4.5.E11 | e^{x}-1 < \frac{x}{1-x} |
exp(x)- 1 < (x)/(1 - x) |
Exp[x]- 1 < Divide[x,1 - x] |
Error | Failure | - | Successful [Tested: 1] | |
4.5.E12 | e^{x/(1+x)} < 1+x |
exp(x/(1 + x)) < 1 + x |
Exp[x/(1 + x)] < 1 + x |
Skipped - no semantic math | Failure | - | Successful [Tested: 3] | |
4.5.E13 | e^{xy/(x+y)} < \left(1+\frac{x}{y}\right)^{y} |
exp(x*y/(x + y)) < (1 +(x)/(y))^(y) |
Exp[x*y/(x + y)] < (1 +Divide[x,y])^(y) |
Skipped - no semantic math | Failure | - | Successful [Tested: 9] | |
4.5.E13 | \left(1+\frac{x}{y}\right)^{y} < e^{x} |
(1 +(x)/(y))^(y) < exp(x) |
(1 +Divide[x,y])^(y) < Exp[x] |
Error | Failure | - | Successful [Tested: 9] | |
4.5.E14 | e^{-x} < 1-\tfrac{1}{2}x |
exp(- x) < 1 -(1)/(2)*x |
Exp[- x] < 1 -Divide[1,2]*x |
Skipped - no semantic math | Failure | - | Successful [Tested: 2] | |
4.5.E15 | \tfrac{1}{4}|z| < |e^{z}-1| |
(1)/(4)*abs(z) < abs(exp(z)- 1) |
Divide[1,4]*Abs[z] < Abs[Exp[z]- 1] |
Skipped - no semantic math | Failure | - | Successful [Tested: 1] | |
4.5.E15 | |e^{z}-1| < \tfrac{7}{4}|z| |
abs(exp(z)- 1) < (7)/(4)*abs(z) |
Abs[Exp[z]- 1] < Divide[7,4]*Abs[z] |
Error | Failure | - | Successful [Tested: 1] | |
4.5.E16 | |e^{z}-1| \leq e^{|z|}-1 |
|
abs(exp(z)- 1) <= exp(abs(z))- 1 |
Abs[Exp[z]- 1] <= Exp[Abs[z]]- 1 |
Skipped - no semantic math | Failure | - | Successful [Tested: 1] |
4.5.E16 | e^{|z|}-1 \leq |z|e^{|z|} |
|
exp(abs(z))- 1 <= abs(z)*exp(abs(z)) |
Exp[Abs[z]]- 1 <= Abs[z]*Exp[Abs[z]] |
Error | Failure | - | Successful [Tested: 1] |
4.7.E1 | \deriv{}{z}\ln@@{z} = \frac{1}{z} |
|
diff(ln(z), z) = (1)/(z) |
D[Log[z], z] == Divide[1,z] |
Successful | Successful | - | Successful [Tested: 7] |
4.7.E2 | \deriv{}{z}\Ln@@{z} = \frac{1}{z} |
|
diff(ln(z), z) = (1)/(z) |
D[Log[z], z] == Divide[1,z] |
Successful | Successful | - | Successful [Tested: 7] |
4.7.E3 | \deriv[n]{}{z}\ln@@{z} = (-1)^{n-1}(n-1)!z^{-n} |
|
diff(ln(z), [z$(n)]) = (- 1)^(n - 1)*factorial(n - 1)*(z)^(- n) |
D[Log[z], {z, n}] == (- 1)^(n - 1)*(n - 1)!*(z)^(- n) |
Failure | Failure | Successful [Tested: 21] | Successful [Tested: 21] |
4.7.E4 | \deriv[n]{}{z}\Ln@@{z} = (-1)^{n-1}(n-1)!z^{-n} |
|
diff(ln(z), [z$(n)]) = (- 1)^(n - 1)*factorial(n - 1)*(z)^(- n) |
D[Log[z], {z, n}] == (- 1)^(n - 1)*(n - 1)!*(z)^(- n) |
Failure | Failure | Successful [Tested: 21] | Successful [Tested: 21] |
4.7.E7 | \deriv{}{z}e^{z} = e^{z} |
|
diff(exp(z), z) = exp(z) |
D[Exp[z], z] == Exp[z] |
Successful | Successful | - | Successful [Tested: 7] |
4.7.E8 | \deriv{}{z}e^{az} = ae^{az} |
|
diff(exp(a*z), z) = a*exp(a*z) |
D[Exp[a*z], z] == a*Exp[a*z] |
Successful | Successful | - | Successful [Tested: 42] |
4.7.E9 | \deriv{}{z}a^{z} = a^{z}\ln@@{a} |
diff((a)^(z), z) = (a)^(z)* ln(a) |
D[(a)^(z), z] == (a)^(z)* Log[a] |
Successful | Successful | - | Successful [Tested: 42] | |
4.7.E10 | \deriv{}{z}z^{a} = az^{a-1} |
|
diff((z)^(a), z) = a*(z)^(a - 1) |
D[(z)^(a), z] == a*(z)^(a - 1) |
Successful | Successful | - | Successful [Tested: 42] |
4.7.E14 | \deriv[2]{w}{z} = aw |
diff(w, [z$(2)]) = a*w |
D[w, {z, 2}] == a*w |
Failure | Failure | Failed [300 / 300] Result: 1.299038106+.7500000000*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I} Result: 1.299038106+.7500000000*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)} Result: 1.299038106+.7500000000*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)} Result: 1.299038106+.7500000000*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I} ... skip entries to safe data |
Failed [300 / 300]
Result: Complex[1.299038105676658, 0.7499999999999999]
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[1.299038105676658, 0.7499999999999999]
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data | |
4.7.E15 | w = Ae^{\sqrt{a}z}+Be^{-\sqrt{a}z} |
|
w = A*exp(sqrt(a)*z)+ B*exp(-sqrt(a)*z) |
w == A*Exp[Sqrt[a]*z]+ B*Exp[-Sqrt[a]*z] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
4.8.E1 | \Ln@{z_{1}z_{2}} = \Ln@@{z_{1}}+\Ln@@{z_{2}} |
|
ln(z[1]*z[2]) = ln(z[1])+ ln(z[2]) |
Log[Subscript[z, 1]*Subscript[z, 2]] == Log[Subscript[z, 1]]+ Log[Subscript[z, 2]] |
Failure | Failure | Failed [25 / 100] Result: 0.-6.283185308*I
Test Values: {z[1] = 1/2*3^(1/2)+1/2*I, z[2] = -1.5} Result: 0.-6.283185308*I
Test Values: {z[1] = 1/2*3^(1/2)+1/2*I, z[2] = -.5} Result: -.1e-9-6.283185308*I
Test Values: {z[1] = 1/2*3^(1/2)+1/2*I, z[2] = -2} Result: .133199999e-10-6.283185307*I
Test Values: {z[1] = -1/2+1/2*I*3^(1/2), z[2] = -1/2+1/2*I*3^(1/2)} ... skip entries to safe data |
Failed [25 / 100]
Result: Complex[0.0, -6.283185307179587]
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[z, 2], -1.5]} Result: Complex[0.0, -6.283185307179587]
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[z, 2], -0.5]} ... skip entries to safe data |
4.8.E2 | \ln@{z_{1}z_{2}} = \ln@@{z_{1}}+\ln@@{z_{2}} |
ln(z[1]*z[2]) = ln(z[1])+ ln(z[2]) |
Log[Subscript[z, 1]*Subscript[z, 2]] == Log[Subscript[z, 1]]+ Log[Subscript[z, 2]] |
Failure | Failure | Successful [Tested: 59] | Successful [Tested: 75] | |
4.8.E3 | \Ln@@{\frac{z_{1}}{z_{2}}} = \Ln@@{z_{1}}-\Ln@@{z_{2}} |
|
ln((z[1])/(z[2])) = ln(z[1])- ln(z[2]) |
Log[Divide[Subscript[z, 1],Subscript[z, 2]]] == Log[Subscript[z, 1]]- Log[Subscript[z, 2]] |
Failure | Failure | Failed [25 / 100] Result: 0.-6.283185307*I
Test Values: {z[1] = -1/2+1/2*I*3^(1/2), z[2] = -1/2*3^(1/2)-1/2*I} Result: 0.+6.283185307*I
Test Values: {z[1] = 1/2-1/2*I*3^(1/2), z[2] = -1/2+1/2*I*3^(1/2)} Result: .1e-9+6.283185307*I
Test Values: {z[1] = 1/2-1/2*I*3^(1/2), z[2] = -1.5} Result: -.1e-9+6.283185307*I
Test Values: {z[1] = 1/2-1/2*I*3^(1/2), z[2] = -.5} ... skip entries to safe data |
Failed [25 / 100]
Result: Complex[0.0, -6.283185307179586]
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[Subscript[z, 2], Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]} Result: Complex[0.0, 6.283185307179586]
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]], Rule[Subscript[z, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |
4.8.E4 | \ln@@{\frac{z_{1}}{z_{2}}} = \ln@@{z_{1}}-\ln@@{z_{2}} |
ln((z[1])/(z[2])) = ln(z[1])- ln(z[2]) |
Log[Divide[Subscript[z, 1],Subscript[z, 2]]] == Log[Subscript[z, 1]]- Log[Subscript[z, 2]] |
Failure | Failure | Failed [3 / 70] Result: 0.+6.283185307*I
Test Values: {z[1] = 1/2-1/2*I*3^(1/2), z[2] = -1/2+1/2*I*3^(1/2)} Result: 0.+6.283185308*I
Test Values: {z[1] = -1/2*3^(1/2)-1/2*I, z[2] = 1/2*3^(1/2)+1/2*I} Result: 6.283185308*I
Test Values: {z[1] = 2, z[2] = -2} |
Failed [11 / 86]
Result: Complex[0.0, 6.283185307179586]
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]], Rule[Subscript[z, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} Result: Complex[0.0, 6.283185307179586]
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]], Rule[Subscript[z, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} ... skip entries to safe data | |
4.8.E5 | \Ln@{z^{n}} = n\Ln@@{z} |
|
ln((z)^(n)) = n*ln(z) |
Log[(z)^(n)] == n*Log[z] |
Failure | Failure | Failed [5 / 21] Result: .133199999e-10-6.283185307*I
Test Values: {z = -1/2+1/2*I*3^(1/2), n = 2, n = 3} Result: .4399599996e-9-6.283185306*I
Test Values: {z = -1/2+1/2*I*3^(1/2), n = 3, n = 3} Result: .4399599996e-9+6.283185306*I
Test Values: {z = 1/2-1/2*I*3^(1/2), n = 3, n = 3} Result: .133199999e-10+6.283185307*I
Test Values: {z = -1/2*3^(1/2)-1/2*I, n = 2, n = 3} ... skip entries to safe data |
Failed [3 / 7]
Result: Complex[0.0, -6.283185307179586]
Test Values: {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} Result: Complex[0.0, 6.283185307179586]
Test Values: {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]} ... skip entries to safe data |
4.8.E6 | \ln@{z^{n}} = n\ln@@{z} |
ln((z)^(n)) = n*ln(z) |
Log[(z)^(n)] == n*Log[z] |
Failure | Failure | Failed [1 / 17] Result: .4399599996e-9+6.283185306*I
Test Values: {z = 1/2-1/2*I*3^(1/2), n = 3, n = 3} |
Failed [3 / 7]
Result: Complex[0.0, -6.283185307179586]
Test Values: {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} Result: Complex[0.0, 6.283185307179586]
Test Values: {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]} ... skip entries to safe data | |
4.8.E7 | \ln@@{\frac{1}{z}} = -\ln@@{z} |
ln((1)/(z)) = - ln(z) |
Log[Divide[1,z]] == - Log[z] |
Failure | Failure | Successful [Tested: 7] | Successful [Tested: 7] | |
4.8.E8 | \Ln@{\exp@@{z}} = z+2k\pi\iunit |
|
ln(exp(z)) = z + 2*k*Pi*I |
Log[Exp[z]] == z + 2*k*Pi*I |
Failure | Failure | Failed [21 / 21] Result: -.1e-9-6.283185308*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1, k = 3} Result: -.1e-9-12.56637062*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2, k = 3} Result: -.1e-9-18.84955592*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 3, k = 3} Result: 0.-6.283185308*I
Test Values: {z = -1/2+1/2*I*3^(1/2), k = 1, k = 3} ... skip entries to safe data |
Failed [7 / 7]
Result: Complex[0.0, -18.84955592153876]
Test Values: {Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[0.0, -18.84955592153876]
Test Values: {Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |
4.8.E9 | \ln@{\exp@@{z}} = z |
ln(exp(z)) = z |
Log[Exp[z]] == z |
Failure | Failure | Successful [Tested: 7] | Successful [Tested: 7] | |
4.8.E10 | \exp@{\ln@@{z}} = \exp@{\Ln@@{z}} |
|
exp(ln(z)) = exp(ln(z)) |
Exp[Log[z]] == Exp[Log[z]] |
Successful | Successful | - | Successful [Tested: 7] |
4.8.E10 | \exp@{\Ln@@{z}} = z |
|
exp(ln(z)) = z |
Exp[Log[z]] == z |
Successful | Successful | - | Successful [Tested: 7] |
4.8.E11 | \Ln@{a^{z}} = z\Ln@@{a}+2k\pi\iunit |
|
ln((a)^(z)) = z*ln(a)+ 2*k*Pi*I |
Log[(a)^(z)] == z*Log[a]+ 2*k*Pi*I |
Failure | Failure | Failed [126 / 126] Result: 0.-6.283185308*I
Test Values: {a = -1.5, z = 1/2*3^(1/2)+1/2*I, k = 1, k = 3} Result: 0.-12.56637062*I
Test Values: {a = -1.5, z = 1/2*3^(1/2)+1/2*I, k = 2, k = 3} Result: 0.-18.84955592*I
Test Values: {a = -1.5, z = 1/2*3^(1/2)+1/2*I, k = 3, k = 3} Result: 0.-6.283185308*I
Test Values: {a = -1.5, z = -1/2+1/2*I*3^(1/2), k = 1, k = 3} ... skip entries to safe data |
Failed [42 / 42]
Result: Complex[0.0, -18.84955592153876]
Test Values: {Rule[a, -1.5], Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[0.0, -18.84955592153876]
Test Values: {Rule[a, -1.5], Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |
4.8.E12 | \ln@{a^{z}} = z\ln@@{a}+2k\pi\iunit |
|
ln((a)^(z)) = z*ln(a)+ 2*k*Pi*I |
Log[(a)^(z)] == z*Log[a]+ 2*k*Pi*I |
Failure | Failure | Failed [126 / 126] Result: 0.-6.283185308*I
Test Values: {a = -1.5, z = 1/2*3^(1/2)+1/2*I, k = 1} Result: 0.-12.56637062*I
Test Values: {a = -1.5, z = 1/2*3^(1/2)+1/2*I, k = 2} Result: 0.-18.84955592*I
Test Values: {a = -1.5, z = 1/2*3^(1/2)+1/2*I, k = 3} Result: 0.-6.283185308*I
Test Values: {a = -1.5, z = -1/2+1/2*I*3^(1/2), k = 1} ... skip entries to safe data |
Failed [126 / 126]
Result: Complex[0.0, -6.283185307179586]
Test Values: {Rule[a, -1.5], Rule[k, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[0.0, -12.566370614359172]
Test Values: {Rule[a, -1.5], Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} ... skip entries to safe data |
4.8.E13 | \ln@{a^{x}} = x\ln@@{a} |
ln((a)^(x)) = x*ln(a) |
Log[(a)^(x)] == x*Log[a] |
Successful | Failure | - | Successful [Tested: 9] | |
4.8.E14 | a^{z_{1}}a^{z_{2}} = a^{z_{1}+z_{2}} |
(a)^(z[1])* (a)^(z[2]) = (a)^(z[1]+ z[2]) |
(a)^(Subscript[z, 1])* (a)^(Subscript[z, 2]) == (a)^(Subscript[z, 1]+ Subscript[z, 2]) |
Skipped - no semantic math | Skipped - no semantic math | - | - | |
4.8.E15 | a^{z}b^{z} = (ab)^{z} |
(a)^(z)* (b)^(z) = (a*b)^(z) |
(a)^(z)* (b)^(z) == (a*b)^(z) |
Skipped - no semantic math | Skipped - no semantic math | - | - | |
4.8.E16 | e^{z_{1}}e^{z_{2}} = e^{z_{1}+z_{2}} |
|
exp(z[1])*exp(z[2]) = exp(z[1]+ z[2]) |
Exp[Subscript[z, 1]]*Exp[Subscript[z, 2]] == Exp[Subscript[z, 1]+ Subscript[z, 2]] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
4.8.E17 | (e^{z_{1}})^{z_{2}} = e^{z_{1}z_{2}} |
(exp(z[1]))^(z[2]) = exp(z[1]*z[2]) |
(Exp[Subscript[z, 1]])^(Subscript[z, 2]) == Exp[Subscript[z, 1]*Subscript[z, 2]] |
Skipped - no semantic math | Skipped - no semantic math | - | - | |
4.10.E1 | \int\frac{\diff{z}}{z} = \ln@@{z} |
|
int((1)/(z), z) = ln(z) |
Integrate[Divide[1,z], z, GenerateConditions->None] == Log[z] |
Successful | Successful | - | Successful [Tested: 7] |
4.10.E2 | \int\ln@@{z}\diff{z} = z\ln@@{z}-z |
|
int(ln(z), z) = z*ln(z)- z |
Integrate[Log[z], z, GenerateConditions->None] == z*Log[z]- z |
Successful | Successful | - | Successful [Tested: 7] |
4.10.E3 | \int z^{n}\ln@@{z}\diff{z} = \frac{z^{n+1}}{n+1}\ln@@{z}-\frac{z^{n+1}}{(n+1)^{2}} |
int((z)^(n)* ln(z), z) = ((z)^(n + 1))/(n + 1)*ln(z)-((z)^(n + 1))/((n + 1)^(2)) |
Integrate[(z)^(n)* Log[z], z, GenerateConditions->None] == Divide[(z)^(n + 1),n + 1]*Log[z]-Divide[(z)^(n + 1),(n + 1)^(2)] |
Successful | Successful | - | Successful [Tested: 21] | |
4.10.E4 | \int\frac{\diff{z}}{z\ln@@{z}} = \ln@{\ln@@{z}} |
|
int((1)/(z*ln(z)), z) = ln(ln(z)) |
Integrate[Divide[1,z*Log[z]], z, GenerateConditions->None] == Log[Log[z]] |
Successful | Successful | - | Successful [Tested: 7] |
4.10.E5 | \int_{0}^{1}\frac{\ln@@{t}}{1-t}\diff{t} = -\frac{\pi^{2}}{6} |
|
int((ln(t))/(1 - t), t = 0..1) = -((Pi)^(2))/(6) |
Integrate[Divide[Log[t],1 - t], {t, 0, 1}, GenerateConditions->None] == -Divide[(Pi)^(2),6] |
Successful | Successful | - | Successful [Tested: 1] |
4.10.E6 | \int_{0}^{1}\frac{\ln@@{t}}{1+t}\diff{t} = -\frac{\pi^{2}}{12} |
|
int((ln(t))/(1 + t), t = 0..1) = -((Pi)^(2))/(12) |
Integrate[Divide[Log[t],1 + t], {t, 0, 1}, GenerateConditions->None] == -Divide[(Pi)^(2),12] |
Successful | Successful | - | Successful [Tested: 1] |
4.10.E8 | \int e^{az}\diff{z} = \frac{e^{az}}{a} |
|
int(exp(a*z), z) = (exp(a*z))/(a) |
Integrate[Exp[a*z], z, GenerateConditions->None] == Divide[Exp[a*z],a] |
Successful | Successful | - | Successful [Tested: 42] |
4.10.E9 | \int\frac{\diff{z}}{e^{az}+b} = \frac{1}{ab}(az-\ln@{e^{az}+b}) |
|
int((1)/(exp(a*z)+ b), z) = (1)/(a*b)*(a*z - ln(exp(a*z)+ b)) |
Integrate[Divide[1,Exp[a*z]+ b], z, GenerateConditions->None] == Divide[1,a*b]*(a*z - Log[Exp[a*z]+ b]) |
Failure | Successful | Successful [Tested: 252] | Successful [Tested: 252] |
4.10.E10 | \int\frac{e^{az}-1}{e^{az}+1}\diff{z} = \frac{2}{a}\ln@{e^{az/2}+e^{-az/2}} |
|
int((exp(a*z)- 1)/(exp(a*z)+ 1), z) = (2)/(a)*ln(exp(a*z/2)+ exp(- a*z/2)) |
Integrate[Divide[Exp[a*z]- 1,Exp[a*z]+ 1], z, GenerateConditions->None] == Divide[2,a]*Log[Exp[a*z/2]+ Exp[- a*z/2]] |
Failure | Failure | Successful [Tested: 42] | Successful [Tested: 42] |
4.10.E11 | \int_{-\infty}^{\infty}e^{-cx^{2}}\diff{x} = \sqrt{\frac{\pi}{c}} |
int(exp(- c*(x)^(2)), x = - infinity..infinity) = sqrt((Pi)/(c)) |
Integrate[Exp[- c*(x)^(2)], {x, - Infinity, Infinity}, GenerateConditions->None] == Sqrt[Divide[Pi,c]] |
Successful | Successful | - | Successful [Tested: 3] | |
4.10.E12 | \int_{0}^{\ln@@{2}}\frac{xe^{x}}{e^{x}-1}\diff{x} = \frac{\pi^{2}}{12} |
|
int((x*exp(x))/(exp(x)- 1), x = 0..ln(2)) = ((Pi)^(2))/(12) |
Integrate[Divide[x*Exp[x],Exp[x]- 1], {x, 0, Log[2]}, GenerateConditions->None] == Divide[(Pi)^(2),12] |
Successful | Successful | - | Successful [Tested: 1] |
4.10.E13 | \int_{0}^{\infty}\frac{\diff{x}}{e^{x}+1} = \ln@@{2} |
|
int((1)/(exp(x)+ 1), x = 0..infinity) = ln(2) |
Integrate[Divide[1,Exp[x]+ 1], {x, 0, Infinity}, GenerateConditions->None] == Log[2] |
Successful | Successful | - | Successful [Tested: 1] |
4.12.E1 | \phi(x+1) = e^{\phi(x)} |
phi(x + 1) = exp(phi(x)) |
\[Phi][x + 1] == Exp[\[Phi][x]] |
Skipped - no semantic math | Skipped - no semantic math | - | - | |
4.12.E2 | \phi(0) = 0 |
|
phi(0) = 0 |
\[Phi][0] == 0 |
Skipped - no semantic math | Skipped - no semantic math | - | - |
4.12.E3 | \psi(e^{x}) = 1+\psi(x) |
psi(exp(x)) = 1 + psi(x) |
\[Psi][Exp[x]] == 1 + \[Psi][x] |
Skipped - no semantic math | Skipped - no semantic math | - | - | |
4.12.E4 | \psi(0) = 0 |
|
psi(0) = 0 |
\[Psi][0] == 0 |
Skipped - no semantic math | Skipped - no semantic math | - | - |
4.12.E5 | \phi(x) = \psi(x) |
phi(x) = psi(x) |
\[Phi][x] == \[Psi][x] |
Skipped - no semantic math | Skipped - no semantic math | - | - | |
4.12.E6 | \phi(x) = \ln@{x+1} |
phi(x) = ln(x + 1) |
\[Phi][x] == Log[x + 1] |
Failure | Failure | Error | Skip - No test values generated | |
4.12.E8 | \psi(x) = e^{x}-1 |
psi(x) = exp(x)- 1 |
\[Psi][x] == Exp[x]- 1 |
Skipped - no semantic math | Skipped - no semantic math | - | - | |
4.13.E1 | We^{W} = x |
|
W*exp(W) = x |
W*Exp[W] == x |
Failure | Failure | Failed [30 / 30] Result: -.263026030+2.030302705*I
Test Values: {W = 1/2*3^(1/2)+1/2*I, x = 1.5} Result: .736973970+2.030302705*I
Test Values: {W = 1/2*3^(1/2)+1/2*I, x = .5} Result: -.763026030+2.030302705*I
Test Values: {W = 1/2*3^(1/2)+1/2*I, x = 2} Result: -2.096603674+.1092863076*I
Test Values: {W = -1/2+1/2*I*3^(1/2), x = 1.5} ... skip entries to safe data |
Failed [30 / 30]
Result: Complex[-0.2630260306572938, 2.0303027048207967]
Test Values: {Rule[W, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5]} Result: Complex[0.7369739693427062, 2.0303027048207967]
Test Values: {Rule[W, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 0.5]} ... skip entries to safe data |
4.13#Ex1 | \LambertWp@{-1/e} = \LambertWm@{-1/e} |
|
LambertW(0, - 1/exp(1)) = LambertW(-1, - 1/exp(1)) |
ProductLog[0, - 1/E] == ProductLog[-1, - 1/E] |
Successful | Successful | - | Successful [Tested: 1] |
4.13#Ex1 | \LambertWm@{-1/e} = -1 |
|
LambertW(-1, - 1/exp(1)) = - 1 |
ProductLog[-1, - 1/E] == - 1 |
Successful | Successful | - | Successful [Tested: 1] |
4.13#Ex2 | \LambertWp@{0} = 0 |
|
LambertW(0, 0) = 0 |
ProductLog[0, 0] == 0 |
Successful | Successful | - | Successful [Tested: 1] |
4.13#Ex3 | \LambertWp@{e} = 1 |
|
LambertW(0, exp(1)) = 1 |
ProductLog[0, E] == 1 |
Successful | Successful | - | Successful [Tested: 1] |
4.13#Ex4 | U+\ln@@{U} = x |
|
U + ln(U) = x |
U + Log[U] == x |
Failure | Failure | Failed [30 / 30] Result: -.6339745958+1.023598776*I
Test Values: {U = 1/2*3^(1/2)+1/2*I, x = 1.5} Result: .3660254042+1.023598776*I
Test Values: {U = 1/2*3^(1/2)+1/2*I, x = .5} Result: -1.133974596+1.023598776*I
Test Values: {U = 1/2*3^(1/2)+1/2*I, x = 2} Result: -2.000000000+2.960420506*I
Test Values: {U = -1/2+1/2*I*3^(1/2), x = 1.5} ... skip entries to safe data |
Failed [30 / 30]
Result: Complex[-0.6339745962155613, 1.0235987755982987]
Test Values: {Rule[U, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5]} Result: Complex[0.3660254037844387, 1.0235987755982987]
Test Values: {Rule[U, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 0.5]} ... skip entries to safe data |
4.13#Ex5 | U = U(x) |
|
U = U*(x) |
U == U*(x) |
Failure | Failure | Failed [30 / 30] Result: -.4330127020-.2500000000*I
Test Values: {U = 1/2*3^(1/2)+1/2*I, x = 1.5} Result: .4330127020+.2500000000*I
Test Values: {U = 1/2*3^(1/2)+1/2*I, x = .5} Result: -.8660254040-.5000000000*I
Test Values: {U = 1/2*3^(1/2)+1/2*I, x = 2} Result: .2500000000-.4330127020*I
Test Values: {U = -1/2+1/2*I*3^(1/2), x = 1.5} ... skip entries to safe data |
Failed [30 / 30]
Result: Complex[-0.4330127018922193, -0.24999999999999994]
Test Values: {Rule[U, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5]} Result: Complex[0.43301270189221935, 0.24999999999999997]
Test Values: {Rule[U, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 0.5]} ... skip entries to safe data |
4.13#Ex5 | U(x) = \LambertW@{e^{x}} |
|
U(x) = LambertW(exp(x)) |
U[x] == ProductLog[Exp[x]] |
Failure | Failure | Failed [30 / 30] Result: .34078386e-1+.7500000000*I
Test Values: {U = 1/2*3^(1/2)+1/2*I, x = 1.5} Result: -.3332359062+.2500000000*I
Test Values: {U = 1/2*3^(1/2)+1/2*I, x = .5} Result: .174905209+1.*I
Test Values: {U = 1/2*3^(1/2)+1/2*I, x = 2} Result: -2.014959720+1.299038106*I
Test Values: {U = -1/2+1/2*I*3^(1/2), x = 1.5} ... skip entries to safe data |
Failed [30 / 30]
Result: Complex[0.0340783855511575, 0.7499999999999999]
Test Values: {Rule[U, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5]} Result: Complex[-0.333235906269531, 0.24999999999999997]
Test Values: {Rule[U, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 0.5]} ... skip entries to safe data |
4.13.E5 | \LambertWp@{x} = \sum_{n=1}^{\infty}(-1)^{n-1}\frac{n^{n-2}}{(n-1)!}x^{n} |
LambertW(0, x) = sum((- 1)^(n - 1)*((n)^(n - 2))/(factorial(n - 1))*(x)^(n), n = 1..infinity) |
ProductLog[0, x] == Sum[(- 1)^(n - 1)*Divide[(n)^(n - 2),(n - 1)!]*(x)^(n), {n, 1, Infinity}, GenerateConditions->None] |
Failure | Successful | Error | Successful [Tested: 0] | |
4.13.E6 | \LambertW@{-e^{-1-(t^{2}/2)}} = \sum_{n=0}^{\infty}(-1)^{n-1}c_{n}t^{n} |
LambertW(- exp(- 1 -((t)^(2)/2))) = sum((- 1)^(n - 1)* c[n]*(t)^(n), n = 0..infinity) |
ProductLog[- Exp[- 1 -((t)^(2)/2)]] == Sum[(- 1)^(n - 1)* Subscript[c, n]*(t)^(n), {n, 0, Infinity}, GenerateConditions->None] |
Failure | Failure | Failed [60 / 60] Result: Float(infinity)+Float(infinity)*I
Test Values: {t = -1.5, c[n] = 1/2*3^(1/2)+1/2*I} Result: Float(infinity)+Float(infinity)*I
Test Values: {t = -1.5, c[n] = -1/2+1/2*I*3^(1/2)} Result: Float(infinity)+Float(infinity)*I
Test Values: {t = -1.5, c[n] = 1/2-1/2*I*3^(1/2)} Result: Float(infinity)+Float(infinity)*I
Test Values: {t = -1.5, c[n] = -1/2*3^(1/2)-1/2*I} ... skip entries to safe data |
Failed [60 / 60]
Result: Plus[-0.13696418431579768, Times[-1.0, NSum[Times[Power[-1.5, n], Power[-1, Plus[-1, n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]
Test Values: {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[t, -1.5], Rule[Subscript[c, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Plus[-0.13696418431579768, Times[-1.0, NSum[Times[Power[-1.5, n], Power[-1, Plus[-1, n]], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]
Test Values: {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[t, -1.5], Rule[Subscript[c, n], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data | |
4.13.E7 | c_{0} = 1,c_{1} |
|
c[0] = 1; c[1] |
Subscript[c, 0] == 1
Subscript[c, 1] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
4.13.E8 | c_{n} = \frac{1}{n+1}\left(c_{n-1}-\sum_{k=2}^{n-1}kc_{k}c_{n+1-k}\right) |
c[n] = (1)/(n + 1)*(c[n - 1]- sum(k*c[k]*c[n + 1 - k], k = 2..n - 1)) |
Subscript[c, n] == Divide[1,n + 1]*(Subscript[c, n - 1]- Sum[k*Subscript[c, k]*Subscript[c, n + 1 - k], {k, 2, n - 1}, GenerateConditions->None]) |
Skipped - no semantic math | Skipped - no semantic math | - | - | |
4.13.E9 | 1\cdot 3\cdot 5\cdots(2n+1)c_{2n+1} = g_{n} |
|
1 * 3 * 5*(2*n + 1)*c[2*n + 1] = g[n] |
1 * 3 * 5*(2*n + 1)*Subscript[c, 2*n + 1] == Subscript[g, n] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
4.14.E1 | \sin@@{z} = \frac{e^{\iunit z}-e^{-\iunit z}}{2\iunit} |
|
sin(z) = (exp(I*z)- exp(- I*z))/(2*I) |
Sin[z] == Divide[Exp[I*z]- Exp[- I*z],2*I] |
Successful | Successful | - | Successful [Tested: 7] |
4.14.E2 | \cos@@{z} = \frac{e^{\iunit z}+e^{-\iunit z}}{2} |
|
cos(z) = (exp(I*z)+ exp(- I*z))/(2) |
Cos[z] == Divide[Exp[I*z]+ Exp[- I*z],2] |
Successful | Successful | - | Successful [Tested: 7] |
4.14.E3 | \cos@@{z}+ i\sin@@{z} = e^{+ iz} |
|
cos(z)+ I*sin(z) = exp(+ I*z) |
Cos[z]+ I*Sin[z] == Exp[+ I*z] |
Successful | Successful | - | Successful [Tested: 7] |
4.14.E3 | \cos@@{z}- i\sin@@{z} = e^{- iz} |
|
cos(z)- I*sin(z) = exp(- I*z) |
Cos[z]- I*Sin[z] == Exp[- I*z] |
Successful | Successful | - | Successful [Tested: 7] |
4.14.E4 | \tan@@{z} = \frac{\sin@@{z}}{\cos@@{z}} |
|
tan(z) = (sin(z))/(cos(z)) |
Tan[z] == Divide[Sin[z],Cos[z]] |
Successful | Successful | - | Successful [Tested: 7] |
4.14.E5 | \csc@@{z} = \frac{1}{\sin@@{z}} |
|
csc(z) = (1)/(sin(z)) |
Csc[z] == Divide[1,Sin[z]] |
Successful | Successful | - | Successful [Tested: 7] |
4.14.E6 | \sec@@{z} = \frac{1}{\cos@@{z}} |
|
sec(z) = (1)/(cos(z)) |
Sec[z] == Divide[1,Cos[z]] |
Successful | Successful | - | Successful [Tested: 7] |
4.14.E7 | \cot@@{z} = \frac{\cos@@{z}}{\sin@@{z}} |
|
cot(z) = (cos(z))/(sin(z)) |
Cot[z] == Divide[Cos[z],Sin[z]] |
Successful | Successful | - | Successful [Tested: 7] |
4.14.E7 | \frac{\cos@@{z}}{\sin@@{z}} = \frac{1}{\tan@@{z}} |
|
(cos(z))/(sin(z)) = (1)/(tan(z)) |
Divide[Cos[z],Sin[z]] == Divide[1,Tan[z]] |
Successful | Successful | - | Successful [Tested: 7] |
4.14.E8 | \sin@{z+2k\pi} = \sin@@{z} |
|
sin(z + 2*k*Pi) = sin(z) |
Sin[z + 2*k*Pi] == Sin[z] |
Successful | Failure | - | Successful [Tested: 21] |
4.14.E9 | \cos@{z+2k\pi} = \cos@@{z} |
|
cos(z + 2*k*Pi) = cos(z) |
Cos[z + 2*k*Pi] == Cos[z] |
Successful | Failure | - | Successful [Tested: 21] |
4.14.E10 | \tan@{z+k\pi} = \tan@@{z} |
|
tan(z + k*Pi) = tan(z) |
Tan[z + k*Pi] == Tan[z] |
Successful | Failure | - | Successful [Tested: 21] |
4.15.E1 | \cos@{x+iy} = \sin@{x+\tfrac{1}{2}\pi+iy} |
|
cos(x + I*y) = sin(x +(1)/(2)*Pi + I*y) |
Cos[x + I*y] == Sin[x +Divide[1,2]*Pi + I*y] |
Successful | Successful | - | Successful [Tested: 18] |
4.15.E2 | \cot@{x+iy} = -\tan@{x+\tfrac{1}{2}\pi+iy} |
|
cot(x + I*y) = - tan(x +(1)/(2)*Pi + I*y) |
Cot[x + I*y] == - Tan[x +Divide[1,2]*Pi + I*y] |
Successful | Successful | - | Successful [Tested: 18] |
4.15.E3 | \sec@{x+iy} = \csc@{x+\tfrac{1}{2}\pi+iy} |
|
sec(x + I*y) = csc(x +(1)/(2)*Pi + I*y) |
Sec[x + I*y] == Csc[x +Divide[1,2]*Pi + I*y] |
Successful | Successful | - | Successful [Tested: 18] |
4.17.E1 | \lim_{z\to 0}\frac{\sin@@{z}}{z} = 1 |
|
limit((sin(z))/(z), z = 0) = 1 |
Limit[Divide[Sin[z],z], z -> 0, GenerateConditions->None] == 1 |
Successful | Successful | - | Successful [Tested: 1] |
4.17.E2 | \lim_{z\to 0}\frac{\tan@@{z}}{z} = 1 |
|
limit((tan(z))/(z), z = 0) = 1 |
Limit[Divide[Tan[z],z], z -> 0, GenerateConditions->None] == 1 |
Successful | Successful | - | Successful [Tested: 1] |
4.17.E3 | \lim_{z\to 0}\frac{1-\cos@@{z}}{z^{2}} = \frac{1}{2} |
|
limit((1 - cos(z))/((z)^(2)), z = 0) = (1)/(2) |
Limit[Divide[1 - Cos[z],(z)^(2)], z -> 0, GenerateConditions->None] == Divide[1,2] |
Successful | Successful | - | Successful [Tested: 1] |
4.18.E1 | \frac{2x}{\pi} \leq \sin@@{x} |
(2*x)/(Pi) <= sin(x) |
Divide[2*x,Pi] <= Sin[x] |
Failure | Failure | Successful [Tested: 2] | Successful [Tested: 2] | |
4.18.E1 | \sin@@{x} \leq x |
sin(x) <= x |
Sin[x] <= x |
Failure | Failure | Successful [Tested: 2] | Successful [Tested: 2] | |
4.18.E2 | x \leq \tan@@{x} |
x <= tan(x) |
x <= Tan[x] |
Failure | Failure | Successful [Tested: 2] | Successful [Tested: 2] | |
4.18.E3 | \cos@@{x} \leq \frac{\sin@@{x}}{x} |
cos(x) <= (sin(x))/(x) |
Cos[x] <= Divide[Sin[x],x] |
Failure | Failure | Successful [Tested: 3] | Successful [Tested: 3] | |
4.18.E3 | \frac{\sin@@{x}}{x} \leq 1 |
(sin(x))/(x) <= 1 |
Divide[Sin[x],x] <= 1 |
Failure | Failure | Successful [Tested: 3] | Successful [Tested: 3] | |
4.18.E4 | \pi < \frac{\sin@{\pi x}}{x(1-x)} |
Pi < (sin(Pi*x))/(x*(1 - x)) |
Pi < Divide[Sin[Pi*x],x*(1 - x)] |
Failure | Failure | Successful [Tested: 1] | Successful [Tested: 1] | |
4.18.E4 | \frac{\sin@{\pi x}}{x(1-x)} \leq 4 |
(sin(Pi*x))/(x*(1 - x)) <= 4 |
Divide[Sin[Pi*x],x*(1 - x)] <= 4 |
Failure | Failure | Successful [Tested: 1] | Successful [Tested: 1] | |
4.18.E5 | |\sinh@@{y}| \leq |\sin@@{z}|\leq\cosh@@{y} |
|
abs(sinh(y)) <= abs(sin(x + y*I)) <= cosh(y) |
Abs[Sinh[y]] <= Abs[Sin[x + y*I]] <= Cosh[y] |
Failure | Failure | Error | Successful [Tested: 18] |
4.18.E6 | |\sinh@@{y}| \leq |\cos@@{z}|\leq\cosh@@{y} |
|
abs(sinh(y)) <= abs(cos(x + y*I)) <= cosh(y) |
Abs[Sinh[y]] <= Abs[Cos[x + y*I]] <= Cosh[y] |
Failure | Failure | Error | Successful [Tested: 18] |
4.18.E7 | |\csc@@{z}| \leq \csch@@{|y|} |
|
abs(csc(x + y*I)) <= csch(abs(y)) |
Abs[Csc[x + y*I]] <= Csch[Abs[y]] |
Failure | Failure | Successful [Tested: 18] | Successful [Tested: 18] |
4.18.E8 | |\cos@@{z}| \leq \cosh@@{|z|} |
|
abs(cos(z)) <= cosh(abs(z)) |
Abs[Cos[z]] <= Cosh[Abs[z]] |
Failure | Failure | Successful [Tested: 7] | Successful [Tested: 7] |
4.18.E9 | |\sin@@{z}| \leq \sinh@@{|z|} |
|
abs(sin(z)) <= sinh(abs(z)) |
Abs[Sin[z]] <= Sinh[Abs[z]] |
Failure | Failure | Successful [Tested: 7] | Successful [Tested: 7] |
4.18#Ex1 | |\cos@@{z}| < 2 |
|
abs(cos(z)) < 2 |
Abs[Cos[z]] < 2 |
Failure | Failure | Successful [Tested: 7] | Successful [Tested: 7] |
4.18#Ex2 | |\sin@@{z}| \leq \tfrac{6}{5}|z| |
abs(sin(z)) <= (6)/(5)*abs(z) |
Abs[Sin[z]] <= Divide[6,5]*Abs[z] |
Failure | Failure | Successful [Tested: 1] | Successful [Tested: 1] | |
4.19.E7 | \ln@{\frac{\sin@@{z}}{z}} = \sum_{n=1}^{\infty}\frac{(-1)^{n}2^{2n-1}\BernoullinumberB{2n}}{n(2n)!}z^{2n} |
ln((sin(z))/(z)) = sum(((- 1)^(n)* (2)^(2*n - 1)* bernoulli(2*n))/(n*factorial(2*n))*(z)^(2*n), n = 1..infinity) |
Log[Divide[Sin[z],z]] == Sum[Divide[(- 1)^(n)* (2)^(2*n - 1)* BernoulliB[2*n],n*(2*n)!]*(z)^(2*n), {n, 1, Infinity}, GenerateConditions->None] |
Failure | Failure | Successful [Tested: 7] | Successful [Tested: 7] | |
4.19.E8 | \ln@{\cos@@{z}} = \sum_{n=1}^{\infty}\frac{(-1)^{n}2^{2n-1}(2^{2n}-1)\BernoullinumberB{2n}}{n(2n)!}z^{2n} |
ln(cos(z)) = sum(((- 1)^(n)* (2)^(2*n - 1)*((2)^(2*n)- 1)*bernoulli(2*n))/(n*factorial(2*n))*(z)^(2*n), n = 1..infinity) |
Log[Cos[z]] == Sum[Divide[(- 1)^(n)* (2)^(2*n - 1)*((2)^(2*n)- 1)*BernoulliB[2*n],n*(2*n)!]*(z)^(2*n), {n, 1, Infinity}, GenerateConditions->None] |
Failure | Failure | Manual Skip! | Successful [Tested: 6] | |
4.19.E9 | \ln@{\frac{\tan@@{z}}{z}} = \sum_{n=1}^{\infty}\frac{(-1)^{n-1}2^{2n}(2^{2n-1}-1)\BernoullinumberB{2n}}{n(2n)!}z^{2n} |
ln((tan(z))/(z)) = sum(((- 1)^(n - 1)* (2)^(2*n)*((2)^(2*n - 1)- 1)*bernoulli(2*n))/(n*factorial(2*n))*(z)^(2*n), n = 1..infinity) |
Log[Divide[Tan[z],z]] == Sum[Divide[(- 1)^(n - 1)* (2)^(2*n)*((2)^(2*n - 1)- 1)*BernoulliB[2*n],n*(2*n)!]*(z)^(2*n), {n, 1, Infinity}, GenerateConditions->None] |
Failure | Failure | Manual Skip! | Successful [Tested: 6] | |
4.20.E1 | \deriv{}{z}\sin@@{z} = \cos@@{z} |
|
diff(sin(z), z) = cos(z) |
D[Sin[z], z] == Cos[z] |
Successful | Successful | - | Successful [Tested: 7] |
4.20.E2 | \deriv{}{z}\cos@@{z} = -\sin@@{z} |
|
diff(cos(z), z) = - sin(z) |
D[Cos[z], z] == - Sin[z] |
Successful | Successful | - | Successful [Tested: 7] |
4.20.E3 | \deriv{}{z}\tan@@{z} = \sec^{2}@@{z} |
|
diff(tan(z), z) = (sec(z))^(2) |
D[Tan[z], z] == (Sec[z])^(2) |
Successful | Successful | - | Successful [Tested: 7] |
4.20.E4 | \deriv{}{z}\csc@@{z} = -\csc@@{z}\cot@@{z} |
|
diff(csc(z), z) = - csc(z)*cot(z) |
D[Csc[z], z] == - Csc[z]*Cot[z] |
Successful | Successful | - | Successful [Tested: 7] |
4.20.E5 | \deriv{}{z}\sec@@{z} = \sec@@{z}\tan@@{z} |
|
diff(sec(z), z) = sec(z)*tan(z) |
D[Sec[z], z] == Sec[z]*Tan[z] |
Successful | Successful | - | Successful [Tested: 7] |
4.20.E6 | \deriv{}{z}\cot@@{z} = -\csc^{2}@@{z} |
|
diff(cot(z), z) = - (csc(z))^(2) |
D[Cot[z], z] == - (Csc[z])^(2) |
Successful | Successful | - | Successful [Tested: 7] |
4.20.E7 | \deriv[n]{}{z}\sin@@{z} = \sin@{z+\tfrac{1}{2}n\pi} |
|
diff(sin(z), [z$(n)]) = sin(z +(1)/(2)*n*Pi) |
D[Sin[z], {z, n}] == Sin[z +Divide[1,2]*n*Pi] |
Successful | Successful | - | Successful [Tested: 21] |
4.20.E8 | \deriv[n]{}{z}\cos@@{z} = \cos@{z+\tfrac{1}{2}n\pi} |
|
diff(cos(z), [z$(n)]) = cos(z +(1)/(2)*n*Pi) |
D[Cos[z], {z, n}] == Cos[z +Divide[1,2]*n*Pi] |
Successful | Successful | - | Successful [Tested: 21] |
4.20.E9 | \deriv[2]{w}{z}+a^{2}w = 0 |
|
diff(w, [z$(2)])+ (a)^(2)* w = 0 |
D[w, {z, 2}]+ (a)^(2)* w == 0 |
Failure | Failure | Failed [300 / 300] Result: 1.948557159+1.125000000*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I} Result: 1.948557159+1.125000000*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)} Result: 1.948557159+1.125000000*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)} Result: 1.948557159+1.125000000*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I} ... skip entries to safe data |
Failed [300 / 300]
Result: Complex[1.948557158514987, 1.1249999999999998]
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[1.948557158514987, 1.1249999999999998]
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |
4.20.E10 | \left(\deriv{w}{z}\right)^{2}+a^{2}w^{2} = 1 |
|
(diff(w, z))^(2)+ (a)^(2)* (w)^(2) = 1 |
(D[w, z])^(2)+ (a)^(2)* (w)^(2) == 1 |
Failure | Failure | Failed [272 / 300] Result: .125000001+1.948557159*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I} Result: .125000001+1.948557159*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)} Result: .125000001+1.948557159*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)} Result: .125000001+1.948557159*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I} ... skip entries to safe data |
Failed [272 / 300]
Result: Complex[0.12500000000000022, 1.9485571585149868]
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[0.12500000000000022, 1.9485571585149868]
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |
4.20.E11 | \deriv{w}{z}-a^{2}w^{2} = 1 |
|
diff(w, z)- (a)^(2)* (w)^(2) = 1 |
D[w, z]- (a)^(2)* (w)^(2) == 1 |
Failure | Failure | Failed [300 / 300] Result: -2.125000001-1.948557159*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I} Result: -2.125000001-1.948557159*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)} Result: -2.125000001-1.948557159*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)} Result: -2.125000001-1.948557159*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I} ... skip entries to safe data |
Failed [300 / 300]
Result: Complex[-2.125, -1.9485571585149868]
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[-2.125, -1.9485571585149868]
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |
4.20.E12 | w = A\cos@{az}+B\sin@{az} |
|
w = A*cos(a*z)+ B*sin(a*z) |
w == A*Cos[a*z]+ B*Sin[a*z] |
Failure | Failure | Failed [300 / 300] Result: 1.138704571+1.826991634*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I} Result: -1.586785764-.8180862806*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)} Result: 1.979513822-1.625744019*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)} Result: -.8007246334+.1975056737*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I} ... skip entries to safe data |
Failed [300 / 300]
Result: Complex[1.138704570618858, 1.8269916342928783]
Test Values: {Rule[a, -1.5], Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[B, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[-1.5867857625486925, -0.8180862808059206]
Test Values: {Rule[a, -1.5], Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[B, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |
4.20.E13 | w = (1/a)\sin@{az+c} |
|
w = (1/a)*sin(a*z + c) |
w == (1/a)*Sin[a*z + c] |
Failure | Failure | Failed [300 / 300] Result: .5761075690+1.016359912*I
Test Values: {a = -1.5, c = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I} Result: -.288669860e-1-.3275339707*I
Test Values: {a = -1.5, c = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)} Result: -.1554713530-.2104590960*I
Test Values: {a = -1.5, c = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)} Result: .6937358929+1.037178419*I
Test Values: {a = -1.5, c = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I} ... skip entries to safe data |
Failed [300 / 300]
Result: Complex[0.5761075684969701, 1.0163599120046827]
Test Values: {Rule[a, -1.5], Rule[c, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[-0.028866985825810376, -0.3275339701177746]
Test Values: {Rule[a, -1.5], Rule[c, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |
4.20.E14 | w = (1/a)\tan@{az+c} |
|
w = (1/a)*tan(a*z + c) |
w == (1/a)*Tan[a*z + c] |
Failure | Failure | Failed [300 / 300] Result: 1.000937702+.460093509e-1*I
Test Values: {a = -1.5, c = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I} Result: .7686167751-.1524919258*I
Test Values: {a = -1.5, c = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)} Result: .9655903492+1.180557377*I
Test Values: {a = -1.5, c = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)} Result: .7863384613+.9337431086*I
Test Values: {a = -1.5, c = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I} ... skip entries to safe data |
Failed [300 / 300]
Result: Complex[1.0009377022129278, 0.04600935086169866]
Test Values: {Rule[a, -1.5], Rule[c, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[0.7686167748870922, -0.1524919257161706]
Test Values: {Rule[a, -1.5], Rule[c, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |
4.21.E1 | \sin@@{u}+\cos@@{u} = \sqrt{2}\sin@{u+\tfrac{1}{4}\pi} |
|
sin(u)+ cos(u) = sqrt(2)*sin(u +(1)/(4)*Pi) |
Sin[u]+ Cos[u] == Sqrt[2]*Sin[u +Divide[1,4]*Pi] |
Successful | Successful | - | Successful [Tested: 10] |
4.21.E1 | \sin@@{u}-\cos@@{u} = \sqrt{2}\sin@{u-\tfrac{1}{4}\pi} |
|
sin(u)- cos(u) = sqrt(2)*sin(u -(1)/(4)*Pi) |
Sin[u]- Cos[u] == Sqrt[2]*Sin[u -Divide[1,4]*Pi] |
Successful | Successful | - | Successful [Tested: 10] |
4.21.E1 | \sqrt{2}\sin@{u+\tfrac{1}{4}\pi} = +\sqrt{2}\cos@{u-\tfrac{1}{4}\pi} |
|
sqrt(2)*sin(u +(1)/(4)*Pi) = +sqrt(2)*cos(u -(1)/(4)*Pi) |
Sqrt[2]*Sin[u +Divide[1,4]*Pi] == +Sqrt[2]*Cos[u -Divide[1,4]*Pi] |
Successful | Successful | - | Successful [Tested: 10] |
4.21.E1 | \sqrt{2}\sin@{u-\tfrac{1}{4}\pi} = -\sqrt{2}\cos@{u+\tfrac{1}{4}\pi} |
|
sqrt(2)*sin(u -(1)/(4)*Pi) = -sqrt(2)*cos(u +(1)/(4)*Pi) |
Sqrt[2]*Sin[u -Divide[1,4]*Pi] == -Sqrt[2]*Cos[u +Divide[1,4]*Pi] |
Successful | Successful | - | Successful [Tested: 10] |
4.21.E2 | \sin@{u+ v} = \sin@@{u}\cos@@{v}+\cos@@{u}\sin@@{v} |
|
sin(u + v) = sin(u)*cos(v)+ cos(u)*sin(v) |
Sin[u + v] == Sin[u]*Cos[v]+ Cos[u]*Sin[v] |
Successful | Successful | - | Successful [Tested: 100] |
4.21.E2 | \sin@{u- v} = \sin@@{u}\cos@@{v}-\cos@@{u}\sin@@{v} |
|
sin(u - v) = sin(u)*cos(v)- cos(u)*sin(v) |
Sin[u - v] == Sin[u]*Cos[v]- Cos[u]*Sin[v] |
Successful | Successful | - | Successful [Tested: 100] |
4.21.E3 | \cos@{u+ v} = \cos@@{u}\cos@@{v}-\sin@@{u}\sin@@{v} |
|
cos(u + v) = cos(u)*cos(v)- sin(u)*sin(v) |
Cos[u + v] == Cos[u]*Cos[v]- Sin[u]*Sin[v] |
Successful | Successful | - | Successful [Tested: 100] |
4.21.E3 | \cos@{u- v} = \cos@@{u}\cos@@{v}+\sin@@{u}\sin@@{v} |
|
cos(u - v) = cos(u)*cos(v)+ sin(u)*sin(v) |
Cos[u - v] == Cos[u]*Cos[v]+ Sin[u]*Sin[v] |
Successful | Successful | - | Successful [Tested: 100] |
4.21.E4 | \tan@{u+ v} = \frac{\tan@@{u}+\tan@@{v}}{1-\tan@@{u}\tan@@{v}} |
|
tan(u + v) = (tan(u)+ tan(v))/(1 - tan(u)*tan(v)) |
Tan[u + v] == Divide[Tan[u]+ Tan[v],1 - Tan[u]*Tan[v]] |
Successful | Successful | - | Successful [Tested: 100] |
4.21.E4 | \tan@{u- v} = \frac{\tan@@{u}-\tan@@{v}}{1+\tan@@{u}\tan@@{v}} |
|
tan(u - v) = (tan(u)- tan(v))/(1 + tan(u)*tan(v)) |
Tan[u - v] == Divide[Tan[u]- Tan[v],1 + Tan[u]*Tan[v]] |
Successful | Successful | - | Successful [Tested: 100] |
4.21.E5 | \cot@{u+ v} = \frac{+\cot@@{u}\cot@@{v}-1}{\cot@@{u}+\cot@@{v}} |
|
cot(u + v) = (+ cot(u)*cot(v)- 1)/(cot(u)+ cot(v)) |
Cot[u + v] == Divide[+ Cot[u]*Cot[v]- 1,Cot[u]+ Cot[v]] |
Successful | Successful | - | Failed [10 / 100]
Result: Indeterminate
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]} Result: Complex[1.9674787081851645*^15, 2.0439439417914815*^15]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]} ... skip entries to safe data |
4.21.E5 | \cot@{u- v} = \frac{-\cot@@{u}\cot@@{v}-1}{\cot@@{u}-\cot@@{v}} |
|
cot(u - v) = (- cot(u)*cot(v)- 1)/(cot(u)- cot(v)) |
Cot[u - v] == Divide[- Cot[u]*Cot[v]- 1,Cot[u]- Cot[v]] |
Successful | Successful | - | Failed [10 / 100]
Result: Indeterminate
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Indeterminate
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |
4.21.E6 | \sin@@{u}+\sin@@{v} = 2\sin@{\frac{u+v}{2}}\cos@{\frac{u-v}{2}} |
|
sin(u)+ sin(v) = 2*sin((u + v)/(2))*cos((u - v)/(2)) |
Sin[u]+ Sin[v] == 2*Sin[Divide[u + v,2]]*Cos[Divide[u - v,2]] |
Successful | Successful | - | Successful [Tested: 100] |
4.21.E7 | \sin@@{u}-\sin@@{v} = 2\cos@{\frac{u+v}{2}}\sin@{\frac{u-v}{2}} |
|
sin(u)- sin(v) = 2*cos((u + v)/(2))*sin((u - v)/(2)) |
Sin[u]- Sin[v] == 2*Cos[Divide[u + v,2]]*Sin[Divide[u - v,2]] |
Successful | Successful | - | Successful [Tested: 100] |
4.21.E8 | \cos@@{u}+\cos@@{v} = 2\cos@{\frac{u+v}{2}}\cos@{\frac{u-v}{2}} |
|
cos(u)+ cos(v) = 2*cos((u + v)/(2))*cos((u - v)/(2)) |
Cos[u]+ Cos[v] == 2*Cos[Divide[u + v,2]]*Cos[Divide[u - v,2]] |
Successful | Successful | - | Successful [Tested: 100] |
4.21.E9 | \cos@@{u}-\cos@@{v} = -2\sin@{\frac{u+v}{2}}\sin@{\frac{u-v}{2}} |
|
cos(u)- cos(v) = - 2*sin((u + v)/(2))*sin((u - v)/(2)) |
Cos[u]- Cos[v] == - 2*Sin[Divide[u + v,2]]*Sin[Divide[u - v,2]] |
Successful | Successful | - | Successful [Tested: 100] |
4.21.E10 | \tan@@{u}+\tan@@{v} = \frac{\sin@{u+ v}}{\cos@@{u}\cos@@{v}} |
|
tan(u)+ tan(v) = (sin(u + v))/(cos(u)*cos(v)) |
Tan[u]+ Tan[v] == Divide[Sin[u + v],Cos[u]*Cos[v]] |
Successful | Successful | - | Successful [Tested: 100] |
4.21.E10 | \tan@@{u}-\tan@@{v} = \frac{\sin@{u- v}}{\cos@@{u}\cos@@{v}} |
|
tan(u)- tan(v) = (sin(u - v))/(cos(u)*cos(v)) |
Tan[u]- Tan[v] == Divide[Sin[u - v],Cos[u]*Cos[v]] |
Successful | Successful | - | Successful [Tested: 100] |
4.21.E11 | \cot@@{u}+\cot@@{v} = \frac{\sin@{v+ u}}{\sin@@{u}\sin@@{v}} |
|
cot(u)+ cot(v) = (sin(v + u))/(sin(u)*sin(v)) |
Cot[u]+ Cot[v] == Divide[Sin[v + u],Sin[u]*Sin[v]] |
Successful | Successful | - | Successful [Tested: 100] |
4.21.E11 | \cot@@{u}-\cot@@{v} = \frac{\sin@{v- u}}{\sin@@{u}\sin@@{v}} |
|
cot(u)- cot(v) = (sin(v - u))/(sin(u)*sin(v)) |
Cot[u]- Cot[v] == Divide[Sin[v - u],Sin[u]*Sin[v]] |
Successful | Successful | - | Successful [Tested: 100] |
4.21.E12 | \sin^{2}@@{z}+\cos^{2}@@{z} = 1 |
|
(sin(z))^(2)+ (cos(z))^(2) = 1 |
(Sin[z])^(2)+ (Cos[z])^(2) == 1 |
Successful | Successful | - | Successful [Tested: 7] |
4.21.E13 | \sec^{2}@@{z} = 1+\tan^{2}@@{z} |
|
(sec(z))^(2) = 1 + (tan(z))^(2) |
(Sec[z])^(2) == 1 + (Tan[z])^(2) |
Successful | Successful | - | Successful [Tested: 7] |
4.21.E14 | \csc^{2}@@{z} = 1+\cot^{2}@@{z} |
|
(csc(z))^(2) = 1 + (cot(z))^(2) |
(Csc[z])^(2) == 1 + (Cot[z])^(2) |
Successful | Successful | - | Successful [Tested: 7] |
4.21.E15 | 2\sin@@{u}\sin@@{v} = \cos@{u-v}-\cos@{u+v} |
|
2*sin(u)*sin(v) = cos(u - v)- cos(u + v) |
2*Sin[u]*Sin[v] == Cos[u - v]- Cos[u + v] |
Successful | Successful | - | Successful [Tested: 100] |
4.21.E16 | 2\cos@@{u}\cos@@{v} = \cos@{u-v}+\cos@{u+v} |
|
2*cos(u)*cos(v) = cos(u - v)+ cos(u + v) |
2*Cos[u]*Cos[v] == Cos[u - v]+ Cos[u + v] |
Successful | Successful | - | Successful [Tested: 100] |
4.21.E17 | 2\sin@@{u}\cos@@{v} = \sin@{u-v}+\sin@{u+v} |
|
2*sin(u)*cos(v) = sin(u - v)+ sin(u + v) |
2*Sin[u]*Cos[v] == Sin[u - v]+ Sin[u + v] |
Successful | Successful | - | Successful [Tested: 100] |
4.21.E18 | \sin^{2}@@{u}-\sin^{2}@@{v} = \sin@{u+v}\sin@{u-v} |
|
(sin(u))^(2)- (sin(v))^(2) = sin(u + v)*sin(u - v) |
(Sin[u])^(2)- (Sin[v])^(2) == Sin[u + v]*Sin[u - v] |
Successful | Successful | - | Successful [Tested: 100] |
4.21.E19 | \cos^{2}@@{u}-\cos^{2}@@{v} = -\sin@{u+v}\sin@{u-v} |
|
(cos(u))^(2)- (cos(v))^(2) = - sin(u + v)*sin(u - v) |
(Cos[u])^(2)- (Cos[v])^(2) == - Sin[u + v]*Sin[u - v] |
Successful | Successful | - | Successful [Tested: 100] |
4.21.E20 | \cos^{2}@@{u}-\sin^{2}@@{v} = \cos@{u+v}\cos@{u-v} |
|
(cos(u))^(2)- (sin(v))^(2) = cos(u + v)*cos(u - v) |
(Cos[u])^(2)- (Sin[v])^(2) == Cos[u + v]*Cos[u - v] |
Successful | Successful | - | Successful [Tested: 100] |
4.21.E21 | \sin@@{\frac{z}{2}} = +\left(\frac{1-\cos@@{z}}{2}\right)^{1/2} |
|
sin((z)/(2)) = +((1 - cos(z))/(2))^(1/2) |
Sin[Divide[z,2]] == +(Divide[1 - Cos[z],2])^(1/2) |
Failure | Failure | Failed [2 / 7] Result: -.5419255224+.8655716642*I
Test Values: {z = -1/2+1/2*I*3^(1/2)} Result: -.8655770340-.4585952894*I
Test Values: {z = -1/2*3^(1/2)-1/2*I} |
Failed [2 / 7]
Result: Complex[-0.541925522457336, 0.8655716640572733]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} Result: Complex[-0.8655770337160631, -0.4585952893468805]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]} |
4.21.E21 | \sin@@{\frac{z}{2}} = -\left(\frac{1-\cos@@{z}}{2}\right)^{1/2} |
|
sin((z)/(2)) = -((1 - cos(z))/(2))^(1/2) |
Sin[Divide[z,2]] == -(Divide[1 - Cos[z],2])^(1/2) |
Failure | Failure | Failed [5 / 7] Result: .8655770340+.4585952894*I
Test Values: {z = 1/2*3^(1/2)+1/2*I} Result: .5419255224-.8655716642*I
Test Values: {z = 1/2-1/2*I*3^(1/2)} Result: 1.363277520
Test Values: {z = 1.5} Result: .4948079184
Test Values: {z = .5} ... skip entries to safe data |
Failed [5 / 7]
Result: Complex[0.8655770337160631, 0.4585952893468805]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[0.5419255224573365, -0.8655716640572731]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]} ... skip entries to safe data |
4.21.E22 | \cos@@{\frac{z}{2}} = +\left(\frac{1+\cos@@{z}}{2}\right)^{1/2} |
|
cos((z)/(2)) = +((1 + cos(z))/(2))^(1/2) |
Cos[Divide[z,2]] == +(Divide[1 + Cos[z],2])^(1/2) |
Failure | Failure | Successful [Tested: 7] | Successful [Tested: 7] |
4.21.E22 | \cos@@{\frac{z}{2}} = -\left(\frac{1+\cos@@{z}}{2}\right)^{1/2} |
|
cos((z)/(2)) = -((1 + cos(z))/(2))^(1/2) |
Cos[Divide[z,2]] == -(Divide[1 + Cos[z],2])^(1/2) |
Failure | Failure | Failed [7 / 7] Result: 1.872439139-.2119959694*I
Test Values: {z = 1/2*3^(1/2)+1/2*I} Result: 2.122352334+.2210167318*I
Test Values: {z = -1/2+1/2*I*3^(1/2)} Result: 2.122352334+.2210167318*I
Test Values: {z = 1/2-1/2*I*3^(1/2)} Result: 1.872439139-.2119959694*I
Test Values: {z = -1/2*3^(1/2)-1/2*I} ... skip entries to safe data |
Failed [7 / 7]
Result: Complex[1.872439138961815, -0.2119959693051084]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[2.1223523339444896, 0.22101673165487346]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |
4.21.E23 | \tan@@{\frac{z}{2}} = +\left(\frac{1-\cos@@{z}}{1+\cos@@{z}}\right)^{1/2} |
|
tan((z)/(2)) = +((1 - cos(z))/(1 + cos(z)))^(1/2) |
Tan[Divide[z,2]] == +(Divide[1 - Cos[z],1 + Cos[z]])^(1/2) |
Failure | Failure | Failed [2 / 7] Result: -.4211742148+.8595320616*I
Test Values: {z = -1/2+1/2*I*3^(1/2)} Result: -.8580864930-.5869891489*I
Test Values: {z = -1/2*3^(1/2)-1/2*I} |
Failed [2 / 7]
Result: Complex[-0.4211742148849969, 0.8595320613685856]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} Result: Complex[-0.858086492859854, -0.5869891488727426]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]} |
4.21.E23 | \tan@@{\frac{z}{2}} = -\left(\frac{1-\cos@@{z}}{1+\cos@@{z}}\right)^{1/2} |
|
tan((z)/(2)) = -((1 - cos(z))/(1 + cos(z)))^(1/2) |
Tan[Divide[z,2]] == -(Divide[1 - Cos[z],1 + Cos[z]])^(1/2) |
Failure | Failure | Failed [5 / 7] Result: .8580864930+.5869891489*I
Test Values: {z = 1/2*3^(1/2)+1/2*I} Result: .4211742148-.8595320616*I
Test Values: {z = 1/2-1/2*I*3^(1/2)} Result: 1.863192920
Test Values: {z = 1.5} Result: .5106838424
Test Values: {z = .5} ... skip entries to safe data |
Failed [5 / 7]
Result: Complex[0.858086492859854, 0.5869891488727426]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[0.4211742148849973, -0.8595320613685857]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]} ... skip entries to safe data |
4.21.E23 | +\left(\frac{1-\cos@@{z}}{1+\cos@@{z}}\right)^{1/2} = \frac{1-\cos@@{z}}{\sin@@{z}} |
|
+((1 - cos(z))/(1 + cos(z)))^(1/2) = (1 - cos(z))/(sin(z)) |
+(Divide[1 - Cos[z],1 + Cos[z]])^(1/2) == Divide[1 - Cos[z],Sin[z]] |
Failure | Failure | Failed [2 / 7] Result: .4211742148-.8595320615*I
Test Values: {z = -1/2+1/2*I*3^(1/2)} Result: .8580864930+.5869891489*I
Test Values: {z = -1/2*3^(1/2)-1/2*I} |
Failed [2 / 7]
Result: Complex[0.42117421488499684, -0.8595320613685857]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} Result: Complex[0.8580864928598539, 0.5869891488727426]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]} |
4.21.E23 | -\left(\frac{1-\cos@@{z}}{1+\cos@@{z}}\right)^{1/2} = \frac{1-\cos@@{z}}{\sin@@{z}} |
|
-((1 - cos(z))/(1 + cos(z)))^(1/2) = (1 - cos(z))/(sin(z)) |
-(Divide[1 - Cos[z],1 + Cos[z]])^(1/2) == Divide[1 - Cos[z],Sin[z]] |
Failure | Failure | Failed [5 / 7] Result: -.8580864930-.5869891489*I
Test Values: {z = 1/2*3^(1/2)+1/2*I} Result: -.4211742148+.8595320615*I
Test Values: {z = 1/2-1/2*I*3^(1/2)} Result: -1.863192920
Test Values: {z = 1.5} Result: -.5106838424
Test Values: {z = .5} ... skip entries to safe data |
Failed [5 / 7]
Result: Complex[-0.8580864928598539, -0.5869891488727426]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[-0.4211742148849972, 0.8595320613685855]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]} ... skip entries to safe data |
4.21.E23 | \frac{1-\cos@@{z}}{\sin@@{z}} = \frac{\sin@@{z}}{1+\cos@@{z}} |
|
(1 - cos(z))/(sin(z)) = (sin(z))/(1 + cos(z)) |
Divide[1 - Cos[z],Sin[z]] == Divide[Sin[z],1 + Cos[z]] |
Successful | Successful | Skip - symbolical successful subtest | Successful [Tested: 7] |
4.21.E24 | \sin@{-z} = -\sin@@{z} |
|
sin(- z) = - sin(z) |
Sin[- z] == - Sin[z] |
Successful | Successful | - | Successful [Tested: 7] |
4.21.E25 | \cos@{-z} = \cos@@{z} |
|
cos(- z) = cos(z) |
Cos[- z] == Cos[z] |
Successful | Successful | - | Successful [Tested: 7] |
4.21.E26 | \tan@{-z} = -\tan@@{z} |
|
tan(- z) = - tan(z) |
Tan[- z] == - Tan[z] |
Successful | Successful | - | Successful [Tested: 7] |
4.21.E27 | \sin@{2z} = 2\sin@@{z}\cos@@{z} |
|
sin(2*z) = 2*sin(z)*cos(z) |
Sin[2*z] == 2*Sin[z]*Cos[z] |
Successful | Successful | - | Successful [Tested: 7] |
4.21.E27 | 2\sin@@{z}\cos@@{z} = \frac{2\tan@@{z}}{1+\tan^{2}@@{z}} |
|
2*sin(z)*cos(z) = (2*tan(z))/(1 + (tan(z))^(2)) |
2*Sin[z]*Cos[z] == Divide[2*Tan[z],1 + (Tan[z])^(2)] |
Successful | Successful | - | Successful [Tested: 7] |
4.21.E28 | \cos@{2z} = 2\cos^{2}@@{z}-1 |
|
cos(2*z) = 2*(cos(z))^(2)- 1 |
Cos[2*z] == 2*(Cos[z])^(2)- 1 |
Successful | Successful | - | Successful [Tested: 7] |
4.21.E28 | 2\cos^{2}@@{z}-1 = 1-2\sin^{2}@@{z} |
|
2*(cos(z))^(2)- 1 = 1 - 2*(sin(z))^(2) |
2*(Cos[z])^(2)- 1 == 1 - 2*(Sin[z])^(2) |
Successful | Successful | - | Successful [Tested: 7] |
4.21.E28 | 1-2\sin^{2}@@{z} = \cos^{2}@@{z}-\sin^{2}@@{z} |
|
1 - 2*(sin(z))^(2) = (cos(z))^(2)- (sin(z))^(2) |
1 - 2*(Sin[z])^(2) == (Cos[z])^(2)- (Sin[z])^(2) |
Successful | Successful | - | Successful [Tested: 7] |
4.21.E28 | \cos^{2}@@{z}-\sin^{2}@@{z} = \frac{1-\tan^{2}@@{z}}{1+\tan^{2}@@{z}} |
|
(cos(z))^(2)- (sin(z))^(2) = (1 - (tan(z))^(2))/(1 + (tan(z))^(2)) |
(Cos[z])^(2)- (Sin[z])^(2) == Divide[1 - (Tan[z])^(2),1 + (Tan[z])^(2)] |
Successful | Successful | - | Successful [Tested: 7] |
4.21.E29 | \tan@{2z} = \frac{2\tan@@{z}}{1-\tan^{2}@@{z}} |
|
tan(2*z) = (2*tan(z))/(1 - (tan(z))^(2)) |
Tan[2*z] == Divide[2*Tan[z],1 - (Tan[z])^(2)] |
Successful | Successful | - | Successful [Tested: 7] |
4.21.E29 | \frac{2\tan@@{z}}{1-\tan^{2}@@{z}} = \frac{2\cot@@{z}}{\cot^{2}@@{z}-1} |
|
(2*tan(z))/(1 - (tan(z))^(2)) = (2*cot(z))/((cot(z))^(2)- 1) |
Divide[2*Tan[z],1 - (Tan[z])^(2)] == Divide[2*Cot[z],(Cot[z])^(2)- 1] |
Successful | Successful | - | Successful [Tested: 7] |
4.21.E29 | \frac{2\cot@@{z}}{\cot^{2}@@{z}-1} = \frac{2}{\cot@@{z}-\tan@@{z}} |
|
(2*cot(z))/((cot(z))^(2)- 1) = (2)/(cot(z)- tan(z)) |
Divide[2*Cot[z],(Cot[z])^(2)- 1] == Divide[2,Cot[z]- Tan[z]] |
Successful | Successful | - | Successful [Tested: 7] |
4.21.E30 | \sin@{3z} = 3\sin@@{z}-4\sin^{3}@@{z} |
|
sin(3*z) = 3*sin(z)- 4*(sin(z))^(3) |
Sin[3*z] == 3*Sin[z]- 4*(Sin[z])^(3) |
Successful | Successful | - | Successful [Tested: 7] |
4.21.E31 | \cos@{3z} = -3\cos@@{z}+4\cos^{3}@@{z} |
|
cos(3*z) = - 3*cos(z)+ 4*(cos(z))^(3) |
Cos[3*z] == - 3*Cos[z]+ 4*(Cos[z])^(3) |
Successful | Successful | - | Successful [Tested: 7] |
4.21.E32 | \sin@{4z} = 8\cos^{3}@@{z}\sin@@{z}-4\cos@@{z}\sin@@{z} |
|
sin(4*z) = 8*(cos(z))^(3)* sin(z)- 4*cos(z)*sin(z) |
Sin[4*z] == 8*(Cos[z])^(3)* Sin[z]- 4*Cos[z]*Sin[z] |
Successful | Successful | - | Successful [Tested: 7] |
4.21.E33 | \cos@{4z} = 8\cos^{4}@@{z}-8\cos^{2}@@{z}+1 |
|
cos(4*z) = 8*(cos(z))^(4)- 8*(cos(z))^(2)+ 1 |
Cos[4*z] == 8*(Cos[z])^(4)- 8*(Cos[z])^(2)+ 1 |
Successful | Successful | - | Successful [Tested: 7] |
4.21.E34 | \cos@{nz}+i\sin@{nz} = (\cos@@{z}+i\sin@@{z})^{n} |
|
cos(n*z)+ I*sin(n*z) = (cos(z)+ I*sin(z))^(n) |
Cos[n*z]+ I*Sin[n*z] == (Cos[z]+ I*Sin[z])^(n) |
Successful | Failure | - | Successful [Tested: 21] |
4.21.E35 | \sin@{nz} = 2^{n-1}\prod_{k=0}^{n-1}\sin@{z+\frac{k\pi}{n}} |
|
sin(n*z) = (2)^(n - 1)* product(sin(z +(k*Pi)/(n)), k = 0..n - 1) |
Sin[n*z] == (2)^(n - 1)* Product[Sin[z +Divide[k*Pi,n]], {k, 0, n - 1}, GenerateConditions->None] |
Failure | Successful | Successful [Tested: 21] | Successful [Tested: 7] |
4.21#Ex1 | \sin@@{z} = \frac{2t}{1+t^{2}} |
|
sin(z) = (2*t)/(1 + (t)^(2)) |
Sin[z] == Divide[2*t,1 + (t)^(2)] |
Failure | Failure | Failed [42 / 42] Result: 1.782057258+.3375964631*I
Test Values: {t = -1.5, z = 1/2*3^(1/2)+1/2*I} Result: .2523455641+.8586367171*I
Test Values: {t = -1.5, z = -1/2+1/2*I*3^(1/2)} Result: 1.593808282-.8586367171*I
Test Values: {t = -1.5, z = 1/2-1/2*I*3^(1/2)} Result: .640965885e-1-.3375964631*I
Test Values: {t = -1.5, z = -1/2*3^(1/2)-1/2*I} ... skip entries to safe data |
Failed [42 / 42]
Result: Complex[1.782057257377061, 0.33759646322287]
Test Values: {Rule[t, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[0.25234556426971166, 0.8586367168171449]
Test Values: {Rule[t, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |
4.21#Ex2 | \cos@@{z} = \frac{1-t^{2}}{1+t^{2}} |
|
cos(z) = (1 - (t)^(2))/(1 + (t)^(2)) |
Cos[z] == Divide[1 - (t)^(2),1 + (t)^(2)] |
Failure | Failure | Failed [42 / 42] Result: 1.115158404-.3969495503*I
Test Values: {t = -1.5, z = 1/2*3^(1/2)+1/2*I} Result: 1.612380902+.4690753764*I
Test Values: {t = -1.5, z = -1/2+1/2*I*3^(1/2)} Result: 1.612380902+.4690753764*I
Test Values: {t = -1.5, z = 1/2-1/2*I*3^(1/2)} Result: 1.115158404-.3969495503*I
Test Values: {t = -1.5, z = -1/2*3^(1/2)-1/2*I} ... skip entries to safe data |
Failed [42 / 42]
Result: Complex[1.1151584036726099, -0.3969495502290325]
Test Values: {Rule[t, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[1.612380901479495, 0.46907537626850365]
Test Values: {Rule[t, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |
4.21.E37 | \sin@@{z} = \sin@@{x}\cosh@@{y}+\iunit\cos@@{x}\sinh@@{y} |
|
sin(x + y*I) = sin(x)*cosh(y)+ I*cos(x)*sinh(y) |
Sin[x + y*I] == Sin[x]*Cosh[y]+ I*Cos[x]*Sinh[y] |
Successful | Successful | - | Successful [Tested: 18] |
4.21.E38 | \cos@@{z} = \cos@@{x}\cosh@@{y}-\iunit\sin@@{x}\sinh@@{y} |
|
cos(x + y*I) = cos(x)*cosh(y)- I*sin(x)*sinh(y) |
Cos[x + y*I] == Cos[x]*Cosh[y]- I*Sin[x]*Sinh[y] |
Successful | Successful | - | Successful [Tested: 18] |
4.21.E39 | \tan@@{z} = \frac{\sin@{2x}+\iunit\sinh@{2y}}{\cos@{2x}+\cosh@{2y}} |
|
tan(x + y*I) = (sin(2*x)+ I*sinh(2*y))/(cos(2*x)+ cosh(2*y)) |
Tan[x + y*I] == Divide[Sin[2*x]+ I*Sinh[2*y],Cos[2*x]+ Cosh[2*y]] |
Successful | Successful | - | Successful [Tested: 18] |
4.21.E40 | \cot@@{z} = \frac{\sin@{2x}-\iunit\sinh@{2y}}{\cosh@{2y}-\cos@{2x}} |
|
cot(x + y*I) = (sin(2*x)- I*sinh(2*y))/(cosh(2*y)- cos(2*x)) |
Cot[x + y*I] == Divide[Sin[2*x]- I*Sinh[2*y],Cosh[2*y]- Cos[2*x]] |
Successful | Successful | - | Successful [Tested: 18] |
4.21.E41 | |\sin@@{z}| = (\sin^{2}@@{x}+\sinh^{2}@@{y})^{1/2} |
|
abs(sin(x + y*I)) = ((sin(x))^(2)+ (sinh(y))^(2))^(1/2) |
Abs[Sin[x + y*I]] == ((Sin[x])^(2)+ (Sinh[y])^(2))^(1/2) |
Successful | Failure | - | Successful [Tested: 18] |
4.21.E41 | (\sin^{2}@@{x}+\sinh^{2}@@{y})^{1/2} = \left(\tfrac{1}{2}\left(\cosh@{2y}-\cos@{2x}\right)\right)^{1/2} |
|
((sin(x))^(2)+ (sinh(y))^(2))^(1/2) = ((1)/(2)*(cosh(2*y)- cos(2*x)))^(1/2) |
((Sin[x])^(2)+ (Sinh[y])^(2))^(1/2) == (Divide[1,2]*(Cosh[2*y]- Cos[2*x]))^(1/2) |
Successful | Successful | - | Successful [Tested: 18] |
4.21.E42 | |\cos@@{z}| = (\cos^{2}@@{x}+\sinh^{2}@@{y})^{1/2} |
|
abs(cos(x + y*I)) = ((cos(x))^(2)+ (sinh(y))^(2))^(1/2) |
Abs[Cos[x + y*I]] == ((Cos[x])^(2)+ (Sinh[y])^(2))^(1/2) |
Successful | Failure | - | Successful [Tested: 18] |
4.21.E42 | (\cos^{2}@@{x}+\sinh^{2}@@{y})^{1/2} = \left(\tfrac{1}{2}(\cosh@{2y}+\cos@{2x})\right)^{1/2} |
|
((cos(x))^(2)+ (sinh(y))^(2))^(1/2) = ((1)/(2)*(cosh(2*y)+ cos(2*x)))^(1/2) |
((Cos[x])^(2)+ (Sinh[y])^(2))^(1/2) == (Divide[1,2]*(Cosh[2*y]+ Cos[2*x]))^(1/2) |
Successful | Successful | - | Successful [Tested: 18] |
4.21.E43 | |\tan@@{z}| = \left(\frac{\cosh@{2y}-\cos@{2x}}{\cosh@{2y}+\cos@{2x}}\right)^{1/2} |
|
abs(tan(x + y*I)) = ((cosh(2*y)- cos(2*x))/(cosh(2*y)+ cos(2*x)))^(1/2) |
Abs[Tan[x + y*I]] == (Divide[Cosh[2*y]- Cos[2*x],Cosh[2*y]+ Cos[2*x]])^(1/2) |
Successful | Failure | - | Successful [Tested: 18] |
4.22.E1 | \sin@@{z} = z\prod_{n=1}^{\infty}\left(1-\frac{z^{2}}{n^{2}\pi^{2}}\right) |
|
sin(z) = z*product(1 -((z)^(2))/((n)^(2)* (Pi)^(2)), n = 1..infinity) |
Sin[z] == z*Product[1 -Divide[(z)^(2),(n)^(2)* (Pi)^(2)], {n, 1, Infinity}, GenerateConditions->None] |
Successful | Successful | - | Successful [Tested: 7] |
4.22.E2 | \cos@@{z} = \prod_{n=1}^{\infty}\left(1-\frac{4z^{2}}{(2n-1)^{2}\pi^{2}}\right) |
|
cos(z) = product(1 -(4*(z)^(2))/((2*n - 1)^(2)* (Pi)^(2)), n = 1..infinity) |
Cos[z] == Product[1 -Divide[4*(z)^(2),(2*n - 1)^(2)* (Pi)^(2)], {n, 1, Infinity}, GenerateConditions->None] |
Successful | Successful | - | Successful [Tested: 7] |
4.22.E3 | \cot@@{z} = \frac{1}{z}+2z\sum_{n=1}^{\infty}\frac{1}{z^{2}-n^{2}\pi^{2}} |
|
cot(z) = (1)/(z)+ 2*z*sum((1)/((z)^(2)- (n)^(2)* (Pi)^(2)), n = 1..infinity) |
Cot[z] == Divide[1,z]+ 2*z*Sum[Divide[1,(z)^(2)- (n)^(2)* (Pi)^(2)], {n, 1, Infinity}, GenerateConditions->None] |
Failure | Successful | Successful [Tested: 7] | Successful [Tested: 7] |
4.22.E4 | \csc^{2}@@{z} = \sum_{n=-\infty}^{\infty}\frac{1}{(z-n\pi)^{2}} |
|
(csc(z))^(2) = sum((1)/((z - n*Pi)^(2)), n = - infinity..infinity) |
(Csc[z])^(2) == Sum[Divide[1,(z - n*Pi)^(2)], {n, - Infinity, Infinity}, GenerateConditions->None] |
Failure | Successful | Successful [Tested: 7] | Successful [Tested: 7] |
4.22.E5 | \csc@@{z} = \frac{1}{z}+2z\sum_{n=1}^{\infty}\frac{(-1)^{n}}{z^{2}-n^{2}\pi^{2}} |
|
csc(z) = (1)/(z)+ 2*z*sum(((- 1)^(n))/((z)^(2)- (n)^(2)* (Pi)^(2)), n = 1..infinity) |
Csc[z] == Divide[1,z]+ 2*z*Sum[Divide[(- 1)^(n),(z)^(2)- (n)^(2)* (Pi)^(2)], {n, 1, Infinity}, GenerateConditions->None] |
Successful | Successful | - | Successful [Tested: 7] |
4.23.E1 | \Asin@@{z} = \int_{0}^{z}\frac{\diff{t}}{(1-t^{2})^{1/2}} |
|
Error |
ArcSin[z] == Integrate[Divide[1,(1 - (t)^(2))^(1/2)], {t, 0, z}, GenerateConditions->None] |
Missing Macro Error | Successful | - | Successful [Tested: 7] |
4.23.E2 | \Acos@@{z} = \int_{z}^{1}\frac{\diff{t}}{(1-t^{2})^{1/2}} |
|
Error |
ArcCos[z] == Integrate[Divide[1,(1 - (t)^(2))^(1/2)], {t, z, 1}, GenerateConditions->None] |
Missing Macro Error | Successful | - | Successful [Tested: 7] |
4.23.E3 | \Atan@@{z} = \int_{0}^{z}\frac{\diff{t}}{1+t^{2}} |
|
Error |
ArcTan[z] == Integrate[Divide[1,1 + (t)^(2)], {t, 0, z}, GenerateConditions->None] |
Missing Macro Error | Successful | - | Successful [Tested: 1] |
4.23.E4 | \Acsc@@{z} = \Asin@{1/z} |
|
Error |
ArcCsc[z] == ArcSin[1/z] |
Missing Macro Error | Successful | - | Successful [Tested: 7] |
4.23.E5 | \Asec@@{z} = \Acos@{1/z} |
|
Error |
ArcSec[z] == ArcCos[1/z] |
Missing Macro Error | Successful | - | Successful [Tested: 7] |
4.23.E6 | \Acot@@{z} = \Atan@{1/z} |
|
Error |
ArcCot[z] == ArcTan[1/z] |
Missing Macro Error | Successful | - | Successful [Tested: 7] |
4.23.E7 | \acsc@@{z} = \asin@{1/z} |
|
arccsc(z) = arcsin(1/z) |
ArcCsc[z] == ArcSin[1/z] |
Failure | Successful | Successful [Tested: 7] | Successful [Tested: 7] |
4.23.E8 | \asec@@{z} = \acos@{1/z} |
|
arcsec(z) = arccos(1/z) |
ArcSec[z] == ArcCos[1/z] |
Failure | Successful | Successful [Tested: 7] | Successful [Tested: 7] |
4.23.E9 | \acot@@{z} = \atan@{1/z} |
|
arccot(z) = arctan(1/z) |
ArcCot[z] == ArcTan[1/z] |
Failure | Successful | Failed [2 / 7] Result: 3.141592654+0.*I
Test Values: {z = -1/2+1/2*I*3^(1/2), z = 1/2} Result: 3.141592654+0.*I
Test Values: {z = -1/2*3^(1/2)-1/2*I, z = 1/2} |
Successful [Tested: 1] |
4.23.E10 | \asin@{-z} = -\asin@@{z} |
|
arcsin(- z) = - arcsin(z) |
ArcSin[- z] == - ArcSin[z] |
Successful | Successful | - | Successful [Tested: 7] |
4.23.E11 | \acos@{-z} = \pi-\acos@@{z} |
|
arccos(- z) = Pi - arccos(z) |
ArcCos[- z] == Pi - ArcCos[z] |
Successful | Successful | - | Successful [Tested: 7] |
4.23.E12 | \atan@{-z} = -\atan@@{z} |
|
arctan(- z) = - arctan(z) |
ArcTan[- z] == - ArcTan[z] |
Successful | Successful | - | Successful [Tested: 1] |
4.23.E13 | \acsc@{-z} = -\acsc@@{z} |
|
arccsc(- z) = - arccsc(z) |
ArcCsc[- z] == - ArcCsc[z] |
Successful | Successful | - | Successful [Tested: 7] |
4.23.E14 | \asec@{-z} = \pi-\asec@@{z} |
|
arcsec(- z) = Pi - arcsec(z) |
ArcSec[- z] == Pi - ArcSec[z] |
Successful | Successful | - | Successful [Tested: 7] |
4.23.E15 | \acot@{-z} = -\acot@@{z} |
|
arccot(- z) = - arccot(z) |
ArcCot[- z] == - ArcCot[z] |
Failure | Successful | Skip - No test values generated | Successful [Tested: 1] |
4.23.E16 | \acos@@{z} = \tfrac{1}{2}\pi-\asin@@{z} |
|
arccos(z) = (1)/(2)*Pi - arcsin(z) |
ArcCos[z] == Divide[1,2]*Pi - ArcSin[z] |
Failure | Successful | Successful [Tested: 7] | Successful [Tested: 7] |
4.23.E17 | \asec@@{z} = \tfrac{1}{2}\pi-\acsc@@{z} |
|
arcsec(z) = (1)/(2)*Pi - arccsc(z) |
ArcSec[z] == Divide[1,2]*Pi - ArcCsc[z] |
Failure | Successful | Successful [Tested: 7] | Successful [Tested: 7] |
4.23.E18 | \acot@@{z} = +\tfrac{1}{2}\pi-\atan@@{z} |
|
arccot(z) = +(1)/(2)*Pi - arctan(z) |
ArcCot[z] == +Divide[1,2]*Pi - ArcTan[z] |
Successful | Failure | Skip - symbolical successful subtest | Successful [Tested: 1] |
4.23.E18 | \acot@@{z} = -\tfrac{1}{2}\pi-\atan@@{z} |
|
arccot(z) = -(1)/(2)*Pi - arctan(z) |
ArcCot[z] == -Divide[1,2]*Pi - ArcTan[z] |
Failure | Failure | Failed [7 / 7] Result: 3.141592654+0.*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, z = 1/2} Result: 3.141592654+0.*I
Test Values: {z = -1/2+1/2*I*3^(1/2), z = 1/2} Result: 3.141592654+0.*I
Test Values: {z = 1/2-1/2*I*3^(1/2), z = 1/2} Result: 3.141592654+0.*I
Test Values: {z = -1/2*3^(1/2)-1/2*I, z = 1/2} ... skip entries to safe data |
Failed [1 / 1]
Result: 3.141592653589793
Test Values: {Rule[z, Rational[1, 2]]} |
4.23.E19 | \asin@@{z} = -i\ln@{(1-z^{2})^{1/2}+iz} |
|
arcsin(z) = - I*ln((1 - (z)^(2))^(1/2)+ I*z) |
ArcSin[z] == - I*Log[(1 - (z)^(2))^(1/2)+ I*z] |
Failure | Successful | Successful [Tested: 7] | Successful [Tested: 7] |
4.23.E20 | \asin@@{x} = \tfrac{1}{2}\pi+ i\ln@{(x^{2}-1)^{1/2}+x} |
|
arcsin(x) = (1)/(2)*Pi + I*ln(((x)^(2)- 1)^(1/2)+ x) |
ArcSin[x] == Divide[1,2]*Pi + I*Log[((x)^(2)- 1)^(1/2)+ x] |
Failure | Failure | Failed [2 / 3] Result: 0.-1.924847300*I
Test Values: {x = 1.5, x = 3/2} Result: 0.-2.633915794*I
Test Values: {x = 2, x = 3/2} |
Failed [1 / 1]
Result: Complex[0.0, -1.9248473002384139]
Test Values: {Rule[x, Rational[3, 2]]} |
4.23.E20 | \asin@@{x} = \tfrac{1}{2}\pi- i\ln@{(x^{2}-1)^{1/2}+x} |
|
arcsin(x) = (1)/(2)*Pi - I*ln(((x)^(2)- 1)^(1/2)+ x) |
ArcSin[x] == Divide[1,2]*Pi - I*Log[((x)^(2)- 1)^(1/2)+ x] |
Failure | Failure | Failed [1 / 3] Result: -2.094395102+.1347500000e-10*I
Test Values: {x = .5, x = 3/2} |
Successful [Tested: 1] |
4.23.E21 | \asin@@{x} = -\tfrac{1}{2}\pi+ i\ln@{(x^{2}-1)^{1/2}-x} |
|
arcsin(x) = -(1)/(2)*Pi + I*ln(((x)^(2)- 1)^(1/2)- x) |
ArcSin[x] == -Divide[1,2]*Pi + I*Log[((x)^(2)- 1)^(1/2)- x] |
Failure | Failure | Failed [3 / 3] Result: 6.283185308+.7e-9*I
Test Values: {x = 1.5, x = -2} Result: 4.188790205-.1347500000e-10*I
Test Values: {x = .5, x = -2} Result: 6.283185308+.2e-8*I
Test Values: {x = 2, x = -2} |
Successful [Tested: 1] |
4.23.E21 | \asin@@{x} = -\tfrac{1}{2}\pi- i\ln@{(x^{2}-1)^{1/2}-x} |
|
arcsin(x) = -(1)/(2)*Pi - I*ln(((x)^(2)- 1)^(1/2)- x) |
ArcSin[x] == -Divide[1,2]*Pi - I*Log[((x)^(2)- 1)^(1/2)- x] |
Failure | Failure | Failed [2 / 3] Result: 0.-1.924847301*I
Test Values: {x = 1.5, x = -2} Result: 0.-2.633915796*I
Test Values: {x = 2, x = -2} |
Failed [1 / 1]
Result: Complex[0.0, 2.633915793849633]
Test Values: {Rule[x, -2]} |
4.23.E22 | \acos@@{z} = \tfrac{1}{2}\pi+i\ln@{(1-z^{2})^{1/2}+iz} |
|
arccos(z) = (1)/(2)*Pi + I*ln((1 - (z)^(2))^(1/2)+ I*z) |
ArcCos[z] == Divide[1,2]*Pi + I*Log[(1 - (z)^(2))^(1/2)+ I*z] |
Failure | Successful | Successful [Tested: 7] | Successful [Tested: 7] |
4.23.E23 | \acos@@{z} = -2i\ln@{\left(\frac{1+z}{2}\right)^{1/2}+i\left(\frac{1-z}{2}\right)^{1/2}} |
|
arccos(z) = - 2*I*ln(((1 + z)/(2))^(1/2)+ I*((1 - z)/(2))^(1/2)) |
ArcCos[z] == - 2*I*Log[(Divide[1 + z,2])^(1/2)+ I*(Divide[1 - z,2])^(1/2)] |
Failure | Failure | Successful [Tested: 7] | Successful [Tested: 7] |
4.23.E24 | \acos@@{x} = - i\ln@{(x^{2}-1)^{1/2}+x} |
|
arccos(x) = - I*ln(((x)^(2)- 1)^(1/2)+ x) |
ArcCos[x] == - I*Log[((x)^(2)- 1)^(1/2)+ x] |
Failure | Failure | Failed [2 / 3] Result: 1.924847300*I
Test Values: {x = 1.5, x = 3/2} Result: 2.633915794*I
Test Values: {x = 2, x = 3/2} |
Failed [1 / 1]
Result: Complex[0.0, 1.9248473002384139]
Test Values: {Rule[x, Rational[3, 2]]} |
4.23.E24 | \acos@@{x} = + i\ln@{(x^{2}-1)^{1/2}+x} |
|
arccos(x) = + I*ln(((x)^(2)- 1)^(1/2)+ x) |
ArcCos[x] == + I*Log[((x)^(2)- 1)^(1/2)+ x] |
Failure | Failure | Failed [1 / 3] Result: 2.094395102-.1347500000e-10*I
Test Values: {x = .5, x = 3/2} |
Successful [Tested: 1] |
4.23.E25 | \acos@@{x} = \pi- i\ln@{(x^{2}-1)^{1/2}-x} |
|
arccos(x) = Pi - I*ln(((x)^(2)- 1)^(1/2)- x) |
ArcCos[x] == Pi - I*Log[((x)^(2)- 1)^(1/2)- x] |
Failure | Failure | Failed [3 / 3] Result: -6.283185308-.7e-9*I
Test Values: {x = 1.5, x = -2} Result: -4.188790205+.1347500000e-10*I
Test Values: {x = .5, x = -2} Result: -6.283185308-.2e-8*I
Test Values: {x = 2, x = -2} |
Successful [Tested: 1] |
4.23.E25 | \acos@@{x} = \pi+ i\ln@{(x^{2}-1)^{1/2}-x} |
|
arccos(x) = Pi + I*ln(((x)^(2)- 1)^(1/2)- x) |
ArcCos[x] == Pi + I*Log[((x)^(2)- 1)^(1/2)- x] |
Failure | Failure | Failed [2 / 3] Result: 0.+1.924847301*I
Test Values: {x = 1.5, x = -2} Result: 0.+2.633915796*I
Test Values: {x = 2, x = -2} |
Failed [1 / 1]
Result: Complex[0.0, -2.633915793849633]
Test Values: {Rule[x, -2]} |
4.23.E26 | \atan@@{z} = \frac{i}{2}\ln@{\frac{i+z}{i-z}} |
|
arctan(z) = (I)/(2)*ln((I + z)/(I - z)) |
ArcTan[z] == Divide[I,2]*Log[Divide[I + z,I - z]] |
Failure | Failure | Successful [Tested: 7] | Successful [Tested: 7] |
4.23.E27 | \atan@{iy} = +\frac{1}{2}\pi+\frac{i}{2}\ln@{\frac{y+1}{y-1}} |
|
arctan(I*y) = +(1)/(2)*Pi +(I)/(2)*ln((y + 1)/(y - 1)) |
ArcTan[I*y] == +Divide[1,2]*Pi +Divide[I,2]*Log[Divide[y + 1,y - 1]] |
Failure | Failure | Failed [2 / 6] Result: -3.141592654-.2e-9*I
Test Values: {y = -1.5, y = -3/2} Result: -3.141592654+.2e-9*I
Test Values: {y = -2, y = -3/2} |
Failed [1 / 1]
Result: Complex[-3.141592653589793, -1.1102230246251565*^-16]
Test Values: {Rule[y, Rational[-3, 2]]} |
4.23.E27 | \atan@{iy} = -\frac{1}{2}\pi+\frac{i}{2}\ln@{\frac{y+1}{y-1}} |
|
arctan(I*y) = -(1)/(2)*Pi +(I)/(2)*ln((y + 1)/(y - 1)) |
ArcTan[I*y] == -Divide[1,2]*Pi +Divide[I,2]*Log[Divide[y + 1,y - 1]] |
Failure | Failure | Failed [4 / 6] Result: 3.141592654+.2e-9*I
Test Values: {y = 1.5, y = -3/2} Result: 3.141592654+.2e-9*I
Test Values: {y = -.5, y = -3/2} Result: 3.141592654-.2e-9*I
Test Values: {y = .5, y = -3/2} Result: 3.141592654-.2e-9*I
Test Values: {y = 2, y = -3/2} |
Successful [Tested: 1] |
4.23.E28 | z = \sin@@{w} |
|
z = sin(w) |
z == Sin[w] |
Failure | Failure | Failed [70 / 70] Result: .70450695e-2+.1624035369*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I} Result: -1.358980334+.5284289409*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)} Result: -.3589803345-1.203621867*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)} Result: -1.725005738-.8375964631*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I} ... skip entries to safe data |
Failed [70 / 70]
Result: Complex[0.007045069484300837, 0.16240353677712993]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[-1.3589803343001376, 0.5284289405615687]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |
4.23.E29 | z = \cos@@{w} |
|
z = cos(w) |
z == Cos[w] |
Failure | Failure | Failed [70 / 70] Result: .1354823851+.8969495503*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I} Result: -1.230543019+1.262974954*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)} Result: -.2305430189-.4690758537*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)} Result: -1.596568423-.1030504497*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I} ... skip entries to safe data |
Failed [70 / 70]
Result: Complex[0.13548238472721352, 0.8969495502290324]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[-1.230543019057225, 1.2629749540134712]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |
4.23.E30 | z = \tan@@{w} |
|
z = tan(w) |
z == Tan[w] |
Failure | Failure | Failed [70 / 70] Result: .1520945236-.3500402975*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I} Result: -1.213930880+.159851065e-1*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)} Result: -.2139308804-1.716065702*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)} Result: -1.579956284-1.350040298*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I} ... skip entries to safe data |
Failed [70 / 70]
Result: Complex[0.1520945235384168, -0.3500402971922752]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[-1.2139308802460218, 0.015985106592163567]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |
4.23.E31 | w = \Asin@@{z} |
|
Error |
w == ArcSin[z] |
Missing Macro Error | Failure | - | Failed [70 / 70]
Result: Complex[0.0806272403869902, -0.15847894846240845]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[1.2407598364931787, -0.3314429455293106]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |
4.23.E31 | \Asin@@{z} = (-1)^{k}\asin@@{z}+k\pi |
|
Error |
ArcSin[z] == (- 1)^(k)* ArcSin[z]+ k*Pi |
Missing Macro Error | Failure | - | Failed [21 / 21]
Result: Complex[-1.5707963267948961, 1.3169578969248168]
Test Values: {Rule[k, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: -6.283185307179586
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} ... skip entries to safe data |
4.23.E32 | w = \Acos@@{z} |
|
Error |
w == ArcCos[z] |
Missing Macro Error | Failure | - | Failed [70 / 70]
Result: Complex[0.08062724038699065, 1.1584789484624083]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[-1.0795053557191978, 1.3314429455293104]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |
4.23.E32 | \Acos@@{z} = +\acos@@{z}+2k\pi |
|
Error |
ArcCos[z] == + ArcCos[z]+ 2*k*Pi |
Missing Macro Error | Failure | - | Failed [21 / 21]
Result: -6.283185307179586
Test Values: {Rule[k, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: -12.566370614359172
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} ... skip entries to safe data |
4.23.E32 | \Acos@@{z} = -\acos@@{z}+2k\pi |
|
Error |
ArcCos[z] == - ArcCos[z]+ 2*k*Pi |
Missing Macro Error | Failure | - | Failed [21 / 21]
Result: Complex[-4.71238898038469, -1.3169578969248168]
Test Values: {Rule[k, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[-10.995574287564276, -1.3169578969248168]
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} ... skip entries to safe data |
4.23.E33 | w = \Atan@@{z} |
|
Error |
w == ArcTan[z] |
Missing Macro Error | Failure | - | Failed [10 / 10]
Result: Complex[0.4023777947836326, 0.49999999999999994]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Rational[1, 2]]} Result: Complex[-0.9636476090008059, 0.8660254037844387]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[z, Rational[1, 2]]} ... skip entries to safe data |
4.23.E33 | \Atan@@{z} = \atan@@{z}+k\pi |
|
Error |
ArcTan[z] == ArcTan[z]+ k*Pi |
Missing Macro Error | Failure | - | Failed [3 / 3]
Result: -3.141592653589793
Test Values: {Rule[k, 1], Rule[z, Rational[1, 2]]} Result: -6.283185307179586
Test Values: {Rule[k, 2], Rule[z, Rational[1, 2]]} ... skip entries to safe data |
4.23.E34 | \asin@@{z} = \asin@@{\beta}+\iunit\sign@{y}\ln@{\alpha+(\alpha^{2}-1)^{1/2}} |
|
arcsin(x + y*I) = arcsin((1)/(2)*((x + 1)^(2)+ (y)^(2))^(1/2)-(1)/(2)*((x - 1)^(2)+ (y)^(2))^(1/2))+ I*signum(y)*ln(((1)/(2)*((x + 1)^(2)+ (y)^(2))^(1/2)+(1)/(2)*((x - 1)^(2)+ (y)^(2))^(1/2))+(((1)/(2)*((x + 1)^(2)+ (y)^(2))^(1/2)+(1)/(2)*((x - 1)^(2)+ (y)^(2))^(1/2))^(2)- 1)^(1/2)) |
ArcSin[x + y*I] == ArcSin[Divide[1,2]*((x + 1)^(2)+ (y)^(2))^(1/2)-Divide[1,2]*((x - 1)^(2)+ (y)^(2))^(1/2)]+ I*Sign[y]*Log[(Divide[1,2]*((x + 1)^(2)+ (y)^(2))^(1/2)+Divide[1,2]*((x - 1)^(2)+ (y)^(2))^(1/2))+((Divide[1,2]*((x + 1)^(2)+ (y)^(2))^(1/2)+Divide[1,2]*((x - 1)^(2)+ (y)^(2))^(1/2))^(2)- 1)^(1/2)] |
Failure | Failure | Successful [Tested: 18] | Successful [Tested: 18] |
4.23.E35 | \acos@@{z} = \acos@@{\beta}-\iunit\sign@{y}\ln@{\alpha+(\alpha^{2}-1)^{1/2}} |
|
arccos(x + y*I) = arccos((1)/(2)*((x + 1)^(2)+ (y)^(2))^(1/2)-(1)/(2)*((x - 1)^(2)+ (y)^(2))^(1/2))- I*signum(y)*ln(((1)/(2)*((x + 1)^(2)+ (y)^(2))^(1/2)+(1)/(2)*((x - 1)^(2)+ (y)^(2))^(1/2))+(((1)/(2)*((x + 1)^(2)+ (y)^(2))^(1/2)+(1)/(2)*((x - 1)^(2)+ (y)^(2))^(1/2))^(2)- 1)^(1/2)) |
ArcCos[x + y*I] == ArcCos[Divide[1,2]*((x + 1)^(2)+ (y)^(2))^(1/2)-Divide[1,2]*((x - 1)^(2)+ (y)^(2))^(1/2)]- I*Sign[y]*Log[(Divide[1,2]*((x + 1)^(2)+ (y)^(2))^(1/2)+Divide[1,2]*((x - 1)^(2)+ (y)^(2))^(1/2))+((Divide[1,2]*((x + 1)^(2)+ (y)^(2))^(1/2)+Divide[1,2]*((x - 1)^(2)+ (y)^(2))^(1/2))^(2)- 1)^(1/2)] |
Failure | Failure | Successful [Tested: 18] | Successful [Tested: 18] |
4.23.E36 | \atan@@{z} = \tfrac{1}{2}\atan@{\frac{2x}{1-x^{2}-y^{2}}}+\tfrac{1}{4}i\ln@{\frac{x^{2}+(y+1)^{2}}{x^{2}+(y-1)^{2}}} |
|
arctan(x + y*I) = (1)/(2)*arctan((2*x)/(1 - (x)^(2)- (y)^(2)))+(1)/(4)*I*ln(((x)^(2)+(y + 1)^(2))/((x)^(2)+(y - 1)^(2))) |
ArcTan[x + y*I] == Divide[1,2]*ArcTan[Divide[2*x,1 - (x)^(2)- (y)^(2)]]+Divide[1,4]*I*Log[Divide[(x)^(2)+(y + 1)^(2),(x)^(2)+(y - 1)^(2)]] |
Failure | Failure | Failed [16 / 18] Result: 1.570796327-.1e-9*I
Test Values: {x = 1.5, y = -1.5} Result: 1.570796327-.1e-9*I
Test Values: {x = 1.5, y = 1.5} Result: 1.570796327+0.*I
Test Values: {x = 1.5, y = -.5} Result: 1.570796327+0.*I
Test Values: {x = 1.5, y = .5} ... skip entries to safe data |
Failed [16 / 18]
Result: Complex[1.5707963267948968, 1.1102230246251565*^-16]
Test Values: {Rule[x, 1.5], Rule[y, -1.5]} Result: Complex[1.5707963267948968, -1.6653345369377348*^-16]
Test Values: {Rule[x, 1.5], Rule[y, 1.5]} ... skip entries to safe data |
4.23.E39 | \Gudermannian@{x} = \int_{0}^{x}\sech@@{t}\diff{t} |
arctan(sinh(x)) = int(sech(t), t = 0..x) |
Gudermannian[x] == Integrate[Sech[t], {t, 0, x}, GenerateConditions->None] |
Successful | Aborted | - | Successful [Tested: 3] | |
4.23.E40 | \Gudermannian@{x} = 2\atan@{e^{x}}-\tfrac{1}{2}\pi\\ |
arctan(sinh(x)) = 2*arctan(exp(x))-(1)/(2)*Pi |
Gudermannian[x] == 2*ArcTan[Exp[x]]-Divide[1,2]*Pi |
Failure | Failure | Successful [Tested: 3] | Successful [Tested: 3] | |
4.23.E40 | 2\atan@{e^{x}}-\tfrac{1}{2}\pi\\ = \asin@{\tanh@@{x}} |
2*arctan(exp(x))-(1)/(2)*Pi = arcsin(tanh(x)) |
2*ArcTan[Exp[x]]-Divide[1,2]*Pi == ArcSin[Tanh[x]] |
Failure | Failure | Successful [Tested: 3] | Successful [Tested: 3] | |
4.23.E40 | \asin@{\tanh@@{x}} = \acsc@{\coth@@{x}}\\ |
arcsin(tanh(x)) = arccsc(coth(x)) |
ArcSin[Tanh[x]] == ArcCsc[Coth[x]] |
Failure | Successful | Successful [Tested: 3] | Successful [Tested: 3] | |
4.23.E40 | \acsc@{\coth@@{x}}\\ = \acos@{\sech@@{x}} |
arccsc(coth(x)) = arccos(sech(x)) |
ArcCsc[Coth[x]] == ArcCos[Sech[x]] |
Failure | Failure | Successful [Tested: 3] | Successful [Tested: 3] | |
4.23.E40 | \acos@{\sech@@{x}} = \asec@{\cosh@@{x}}\\ |
arccos(sech(x)) = arcsec(cosh(x)) |
ArcCos[Sech[x]] == ArcSec[Cosh[x]] |
Failure | Successful | Successful [Tested: 3] | Successful [Tested: 3] | |
4.23.E40 | \asec@{\cosh@@{x}}\\ = \atan@{\sinh@@{x}} |
arcsec(cosh(x)) = arctan(sinh(x)) |
ArcSec[Cosh[x]] == ArcTan[Sinh[x]] |
Failure | Failure | Successful [Tested: 3] | Successful [Tested: 3] | |
4.23.E40 | \atan@{\sinh@@{x}} = \acot@{\csch@@{x}} |
arctan(sinh(x)) = arccot(csch(x)) |
ArcTan[Sinh[x]] == ArcCot[Csch[x]] |
Failure | Successful | Successful [Tested: 3] | Successful [Tested: 3] | |
4.23.E41 | \aGudermannian@{x} = \int_{0}^{x}\sec@@{t}\diff{t} |
arctanh(sin(x)) = int(sec(t), t = 0..x) |
InverseGudermannian[x] == Integrate[Sec[t], {t, 0, x}, GenerateConditions->None] |
Failure | Aborted | Successful [Tested: 2] | Successful [Tested: 2] | |
4.23.E42 | \aGudermannian@{x} = \ln@@{\tan@{\tfrac{1}{2}x+\tfrac{1}{4}\pi}} |
arctanh(sin(x)) = ln(tan((1)/(2)*x +(1)/(4)*Pi)) |
InverseGudermannian[x] == Log[Tan[Divide[1,2]*x +Divide[1,4]*Pi]] |
Failure | Successful | Successful [Tested: 2] | Successful [Tested: 2] | |
4.23.E42 | \ln@@{\tan@{\tfrac{1}{2}x+\tfrac{1}{4}\pi}} = \ln@{\sec@@{x}+\tan@@{x}} |
ln(tan((1)/(2)*x +(1)/(4)*Pi)) = ln(sec(x)+ tan(x)) |
Log[Tan[Divide[1,2]*x +Divide[1,4]*Pi]] == Log[Sec[x]+ Tan[x]] |
Successful | Successful | Skip - symbolical successful subtest | Successful [Tested: 2] | |
4.23.E42 | \ln@{\sec@@{x}+\tan@@{x}} = \asinh@{\tan@@{x}} |
ln(sec(x)+ tan(x)) = arcsinh(tan(x)) |
Log[Sec[x]+ Tan[x]] == ArcSinh[Tan[x]] |
Failure | Failure | Successful [Tested: 2] | Failed [1 / 3]
Result: Complex[3.046904887125347, 3.141592653589793]
Test Values: {Rule[x, 2]} | |
4.23.E42 | \asinh@{\tan@@{x}} = \acsch@{\cot@@{x}} |
arcsinh(tan(x)) = arccsch(cot(x)) |
ArcSinh[Tan[x]] == ArcCsch[Cot[x]] |
Failure | Successful | Successful [Tested: 2] | Successful [Tested: 2] | |
4.23.E42 | \acsch@{\cot@@{x}} = \acosh@{\sec@@{x}} |
arccsch(cot(x)) = arccosh(sec(x)) |
ArcCsch[Cot[x]] == ArcCosh[Sec[x]] |
Failure | Failure | Successful [Tested: 2] | Failed [1 / 3]
Result: Complex[-3.046904887125347, -3.141592653589793]
Test Values: {Rule[x, 2]} | |
4.23.E42 | \acosh@{\sec@@{x}} = \asech@{\cos@@{x}} |
arccosh(sec(x)) = arcsech(cos(x)) |
ArcCosh[Sec[x]] == ArcSech[Cos[x]] |
Failure | Successful | Successful [Tested: 2] | Successful [Tested: 2] | |
4.23.E42 | \asech@{\cos@@{x}} = \atanh@{\sin@@{x}} |
arcsech(cos(x)) = arctanh(sin(x)) |
ArcSech[Cos[x]] == ArcTanh[Sin[x]] |
Failure | Failure | Successful [Tested: 2] | Failed [1 / 3]
Result: Complex[0.0, 3.141592653589793]
Test Values: {Rule[x, 2]} | |
4.23.E42 | \atanh@{\sin@@{x}} = \acoth@{\csc@@{x}} |
arctanh(sin(x)) = arccoth(csc(x)) |
ArcTanh[Sin[x]] == ArcCoth[Csc[x]] |
Failure | Successful | Successful [Tested: 2] | Successful [Tested: 2] |