8.5: Difference between revisions
Jump to navigation
Jump to search
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
||
Line 14: | Line 14: | ||
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ||
|- | |- | ||
| [https://dlmf.nist.gov/8.5.E1 8.5.E1] | | | [https://dlmf.nist.gov/8.5.E1 8.5.E1] || <math qid="Q2510">\incgamma@{a}{z} = a^{-1}z^{a}e^{-z}\KummerconfhyperM@{1}{1+a}{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\incgamma@{a}{z} = a^{-1}z^{a}e^{-z}\KummerconfhyperM@{1}{1+a}{z}</syntaxhighlight> || <math>\realpart@@{a} > 0</math> || <syntaxhighlight lang=mathematica>GAMMA(a)-GAMMA(a, z) = (a)^(- 1)* (z)^(a)* exp(- z)*KummerM(1, 1 + a, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Gamma[a, 0, z] == (a)^(- 1)* (z)^(a)* Exp[- z]*Hypergeometric1F1[1, 1 + a, z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/8.5.E1 8.5.E1] | | | [https://dlmf.nist.gov/8.5.E1 8.5.E1] || <math qid="Q2510">a^{-1}z^{a}e^{-z}\KummerconfhyperM@{1}{1+a}{z} = a^{-1}z^{a}\KummerconfhyperM@{a}{1+a}{-z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>a^{-1}z^{a}e^{-z}\KummerconfhyperM@{1}{1+a}{z} = a^{-1}z^{a}\KummerconfhyperM@{a}{1+a}{-z}</syntaxhighlight> || <math>\realpart@@{a} > 0</math> || <syntaxhighlight lang=mathematica>(a)^(- 1)* (z)^(a)* exp(- z)*KummerM(1, 1 + a, z) = (a)^(- 1)* (z)^(a)* KummerM(a, 1 + a, - z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(a)^(- 1)* (z)^(a)* Exp[- z]*Hypergeometric1F1[1, 1 + a, z] == (a)^(- 1)* (z)^(a)* Hypergeometric1F1[a, 1 + a, - z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/8.5.E2 8.5.E2] | | | [https://dlmf.nist.gov/8.5.E2 8.5.E2] || <math qid="Q2511">\scincgamma@{a}{z} = e^{-z}\OlverconfhyperM@{1}{1+a}{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\scincgamma@{a}{z} = e^{-z}\OlverconfhyperM@{1}{1+a}{z}</syntaxhighlight> || <math>\realpart@@{a} > 0</math> || <syntaxhighlight lang=mathematica>(z)^(-(a))*(GAMMA(a)-GAMMA(a, z))/GAMMA(a) = exp(- z)*KummerM(1, 1 + a, z)/GAMMA(1 + a)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || Successful || Missing Macro Error || - || - | ||
|- | |- | ||
| [https://dlmf.nist.gov/8.5.E2 8.5.E2] | | | [https://dlmf.nist.gov/8.5.E2 8.5.E2] || <math qid="Q2511">e^{-z}\OlverconfhyperM@{1}{1+a}{z} = \OlverconfhyperM@{a}{1+a}{-z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{-z}\OlverconfhyperM@{1}{1+a}{z} = \OlverconfhyperM@{a}{1+a}{-z}</syntaxhighlight> || <math>\realpart@@{a} > 0</math> || <syntaxhighlight lang=mathematica>exp(- z)*KummerM(1, 1 + a, z)/GAMMA(1 + a) = KummerM(a, 1 + a, - z)/GAMMA(1 + a)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[- z]*Hypergeometric1F1Regularized[1, 1 + a, z] == Hypergeometric1F1Regularized[a, 1 + a, - z]</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[a, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | Test Values: {Rule[a, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[a, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[a, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/8.5.E3 8.5.E3] | | | [https://dlmf.nist.gov/8.5.E3 8.5.E3] || <math qid="Q2512">\incGamma@{a}{z} = e^{-z}\KummerconfhyperU@{1-a}{1-a}{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\incGamma@{a}{z} = e^{-z}\KummerconfhyperU@{1-a}{1-a}{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>GAMMA(a, z) = exp(- z)*KummerU(1 - a, 1 - a, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Gamma[a, z] == Exp[- z]*HypergeometricU[1 - a, 1 - a, z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 42] | ||
|- | |- | ||
| [https://dlmf.nist.gov/8.5.E3 8.5.E3] | | | [https://dlmf.nist.gov/8.5.E3 8.5.E3] || <math qid="Q2512">e^{-z}\KummerconfhyperU@{1-a}{1-a}{z} = z^{a}e^{-z}\KummerconfhyperU@{1}{1+a}{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{-z}\KummerconfhyperU@{1-a}{1-a}{z} = z^{a}e^{-z}\KummerconfhyperU@{1}{1+a}{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(- z)*KummerU(1 - a, 1 - a, z) = (z)^(a)* exp(- z)*KummerU(1, 1 + a, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[- z]*HypergeometricU[1 - a, 1 - a, z] == (z)^(a)* Exp[- z]*HypergeometricU[1, 1 + a, z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 42] | ||
|- | |- | ||
| [https://dlmf.nist.gov/8.5.E4 8.5.E4] | | | [https://dlmf.nist.gov/8.5.E4 8.5.E4] || <math qid="Q2513">\incgamma@{a}{z} = a^{-1}z^{\frac{1}{2}a-\frac{1}{2}}e^{-\frac{1}{2}z}\WhittakerconfhyperM{\frac{1}{2}a-\frac{1}{2}}{\frac{1}{2}a}@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\incgamma@{a}{z} = a^{-1}z^{\frac{1}{2}a-\frac{1}{2}}e^{-\frac{1}{2}z}\WhittakerconfhyperM{\frac{1}{2}a-\frac{1}{2}}{\frac{1}{2}a}@{z}</syntaxhighlight> || <math>\realpart@@{a} > 0</math> || <syntaxhighlight lang=mathematica>GAMMA(a)-GAMMA(a, z) = (a)^(- 1)* (z)^((1)/(2)*a -(1)/(2))* exp(-(1)/(2)*z)*WhittakerM((1)/(2)*a -(1)/(2), (1)/(2)*a, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Gamma[a, 0, z] == (a)^(- 1)* (z)^(Divide[1,2]*a -Divide[1,2])* Exp[-Divide[1,2]*z]*WhittakerM[Divide[1,2]*a -Divide[1,2], Divide[1,2]*a, z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 21] | ||
|- | |- | ||
| [https://dlmf.nist.gov/8.5.E5 8.5.E5] | | | [https://dlmf.nist.gov/8.5.E5 8.5.E5] || <math qid="Q2514">\incGamma@{a}{z} = e^{-\frac{1}{2}z}z^{\frac{1}{2}a-\frac{1}{2}}\WhittakerconfhyperW{\frac{1}{2}a-\frac{1}{2}}{\frac{1}{2}a}@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\incGamma@{a}{z} = e^{-\frac{1}{2}z}z^{\frac{1}{2}a-\frac{1}{2}}\WhittakerconfhyperW{\frac{1}{2}a-\frac{1}{2}}{\frac{1}{2}a}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>GAMMA(a, z) = exp(-(1)/(2)*z)*(z)^((1)/(2)*a -(1)/(2))* WhittakerW((1)/(2)*a -(1)/(2), (1)/(2)*a, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Gamma[a, z] == Exp[-Divide[1,2]*z]*(z)^(Divide[1,2]*a -Divide[1,2])* WhittakerW[Divide[1,2]*a -Divide[1,2], Divide[1,2]*a, z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 42] | ||
|} | |} | ||
</div> | </div> |
Latest revision as of 11:17, 28 June 2021
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
8.5.E1 | \incgamma@{a}{z} = a^{-1}z^{a}e^{-z}\KummerconfhyperM@{1}{1+a}{z} |
GAMMA(a)-GAMMA(a, z) = (a)^(- 1)* (z)^(a)* exp(- z)*KummerM(1, 1 + a, z)
|
Gamma[a, 0, z] == (a)^(- 1)* (z)^(a)* Exp[- z]*Hypergeometric1F1[1, 1 + a, z]
|
Successful | Successful | - | Successful [Tested: 7] | |
8.5.E1 | a^{-1}z^{a}e^{-z}\KummerconfhyperM@{1}{1+a}{z} = a^{-1}z^{a}\KummerconfhyperM@{a}{1+a}{-z} |
(a)^(- 1)* (z)^(a)* exp(- z)*KummerM(1, 1 + a, z) = (a)^(- 1)* (z)^(a)* KummerM(a, 1 + a, - z)
|
(a)^(- 1)* (z)^(a)* Exp[- z]*Hypergeometric1F1[1, 1 + a, z] == (a)^(- 1)* (z)^(a)* Hypergeometric1F1[a, 1 + a, - z]
|
Successful | Successful | - | Successful [Tested: 7] | |
8.5.E2 | \scincgamma@{a}{z} = e^{-z}\OlverconfhyperM@{1}{1+a}{z} |
(z)^(-(a))*(GAMMA(a)-GAMMA(a, z))/GAMMA(a) = exp(- z)*KummerM(1, 1 + a, z)/GAMMA(1 + a)
|
Error
|
Successful | Missing Macro Error | - | - | |
8.5.E2 | e^{-z}\OlverconfhyperM@{1}{1+a}{z} = \OlverconfhyperM@{a}{1+a}{-z} |
exp(- z)*KummerM(1, 1 + a, z)/GAMMA(1 + a) = KummerM(a, 1 + a, - z)/GAMMA(1 + a)
|
Exp[- z]*Hypergeometric1F1Regularized[1, 1 + a, z] == Hypergeometric1F1Regularized[a, 1 + a, - z]
|
Successful | Successful | - | Failed [7 / 42]
Result: Indeterminate
Test Values: {Rule[a, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Indeterminate
Test Values: {Rule[a, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data | |
8.5.E3 | \incGamma@{a}{z} = e^{-z}\KummerconfhyperU@{1-a}{1-a}{z} |
|
GAMMA(a, z) = exp(- z)*KummerU(1 - a, 1 - a, z)
|
Gamma[a, z] == Exp[- z]*HypergeometricU[1 - a, 1 - a, z]
|
Successful | Successful | - | Successful [Tested: 42] |
8.5.E3 | e^{-z}\KummerconfhyperU@{1-a}{1-a}{z} = z^{a}e^{-z}\KummerconfhyperU@{1}{1+a}{z} |
|
exp(- z)*KummerU(1 - a, 1 - a, z) = (z)^(a)* exp(- z)*KummerU(1, 1 + a, z)
|
Exp[- z]*HypergeometricU[1 - a, 1 - a, z] == (z)^(a)* Exp[- z]*HypergeometricU[1, 1 + a, z]
|
Successful | Successful | - | Successful [Tested: 42] |
8.5.E4 | \incgamma@{a}{z} = a^{-1}z^{\frac{1}{2}a-\frac{1}{2}}e^{-\frac{1}{2}z}\WhittakerconfhyperM{\frac{1}{2}a-\frac{1}{2}}{\frac{1}{2}a}@{z} |
GAMMA(a)-GAMMA(a, z) = (a)^(- 1)* (z)^((1)/(2)*a -(1)/(2))* exp(-(1)/(2)*z)*WhittakerM((1)/(2)*a -(1)/(2), (1)/(2)*a, z)
|
Gamma[a, 0, z] == (a)^(- 1)* (z)^(Divide[1,2]*a -Divide[1,2])* Exp[-Divide[1,2]*z]*WhittakerM[Divide[1,2]*a -Divide[1,2], Divide[1,2]*a, z]
|
Successful | Successful | - | Successful [Tested: 21] | |
8.5.E5 | \incGamma@{a}{z} = e^{-\frac{1}{2}z}z^{\frac{1}{2}a-\frac{1}{2}}\WhittakerconfhyperW{\frac{1}{2}a-\frac{1}{2}}{\frac{1}{2}a}@{z} |
|
GAMMA(a, z) = exp(-(1)/(2)*z)*(z)^((1)/(2)*a -(1)/(2))* WhittakerW((1)/(2)*a -(1)/(2), (1)/(2)*a, z)
|
Gamma[a, z] == Exp[-Divide[1,2]*z]*(z)^(Divide[1,2]*a -Divide[1,2])* WhittakerW[Divide[1,2]*a -Divide[1,2], Divide[1,2]*a, z]
|
Successful | Successful | - | Successful [Tested: 42] |