DLMF:25.11.E21 (Q7695): Difference between revisions
		
		
		
		Jump to navigation
		Jump to search
		
imported>Admin  Admin moved page Main Page to Verifying DLMF with Maple and Mathematica  | 
				imported>Admin  Admin moved page Main Page to Verifying DLMF with Maple and Mathematica  | 
				||
| Property / Symbols used | |||
| Property / Symbols used: principal branch of logarithm function / rank | |||
Normal rank  | |||
| Property / Symbols used: principal branch of logarithm function / qualifier | |||
test:  Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \ln@@{\NVar{z}}}\ln@@{\NVar{z}} | |||
| Property / Symbols used: principal branch of logarithm function / qualifier | |||
xml-id: C4.S2.E2.m2acdec  | |||
Revision as of 12:40, 2 January 2020
No description defined
| Language | Label | Description | Also known as | 
|---|---|---|---|
| English | DLMF:25.11.E21  | 
No description defined  | 
Statements
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Hurwitzzeta'@{1-2n}{\frac{h}{k}}=\frac{(\digamma@{2n}-\ln@{2\pi k})\BernoullipolyB{2n}@{h/k}}{2n}-\frac{(\digamma@{2n}-\ln@{2\pi})\BernoullinumberB{2n}}{2nk^{2n}}+\frac{(-1)^{n+1}\pi}{(2\pi k)^{2n}}\sum_{r=1}^{k-1}\sin@{\frac{2\pi rh}{k}}\digamma^{(2n-1)}@{\frac{r}{k}}+\frac{(-1)^{n+1}2\cdot(2n-1)!}{(2\pi k)^{2n}}\sum_{r=1}^{k-1}\cos@{\frac{2\pi rh}{k}}\Hurwitzzeta'@{2n}{\frac{r}{k}}+\frac{\Riemannzeta'@{1-2n}}{k^{2n}},}
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references