DLMF:25.11.E20 (Q7694): Difference between revisions
Jump to navigation
Jump to search
imported>Admin Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
imported>Admin Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
||
| Property / constraint | |||
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{s}>-1}\realpart@@{s}>-1 | |||
| Property / constraint: Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{s}>-1} / rank | |||
Normal rank | |||
Revision as of 17:16, 30 December 2019
No description defined
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | DLMF:25.11.E20 |
No description defined |
Statements
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (-1)^{k}\Hurwitzzeta^{(k)}@{s}{a}=\frac{(\ln@@{a})^{k}}{a^{s}}\left(\frac{1}{2}+\frac{a}{s-1}\right)+k!a^{1-s}\sum_{r=0}^{k-1}\frac{(\ln@@{a})^{r}}{r!(s-1)^{k-r+1}}-\frac{s(s+1)}{2}\int_{0}^{\infty}\frac{(\perBernoulliB{2}@{x}-\BernoullinumberB{2})(\ln@{x+a})^{k}}{(x+a)^{s+2}}\diff{x}+\frac{k(2s+1)}{2}\int_{0}^{\infty}\frac{(\perBernoulliB{2}@{x}-\BernoullinumberB{2})(\ln@{x+a})^{k-1}}{(x+a)^{s+2}}\diff{x}-\frac{k(k-1)}{2}\int_{0}^{\infty}\frac{(\perBernoulliB{2}@{x}-\BernoullinumberB{2})(\ln@{x+a})^{k-2}}{(x+a)^{s+2}}\diff{x},}
0 references
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{s}>-1}
0 references