DLMF:15.9.E1 (Q5091): Difference between revisions

From testwiki
Jump to navigation Jump to search
imported>Admin
 
imported>Admin
Property / Symbols used
 
Property / Symbols used: $$={{}_{2}F_{1}}\left(\NVar{a},\NVar{b};\NVar{c};\NVar{z}\right)$$ Gauss’ hypergeometric function / rank
 
Normal rank
Property / Symbols used: $$={{}_{2}F_{1}}\left(\NVar{a},\NVar{b};\NVar{c};\NVar{z}\right)$$ Gauss’ hypergeometric function / qualifier
 
test:

F ( a , b ; c ; z ) Gauss-hypergeometric-F 𝑎 𝑏 𝑐 𝑧 {\displaystyle{\displaystyle F\left(\NVar{a},\NVar{b};\NVar{c};\NVar{z}\right)}}

\hyperF@{\NVar{a}}{\NVar{b}}{\NVar{c}}{\NVar{z}}
Property / Symbols used: $$={{}_{2}F_{1}}\left(\NVar{a},\NVar{b};\NVar{c};\NVar{z}\right)$$ Gauss’ hypergeometric function / qualifier
 
xml-id: C15.S2.E1.m2adec

Revision as of 13:07, 2 January 2020

No description defined
Language Label Description Also known as
English
DLMF:15.9.E1
No description defined

    Statements

    P n ( α , β ) ( x ) = ( α + 1 ) n n ! F ( - n , n + α + β + 1 α + 1 ; 1 - x 2 ) . Jacobi-polynomial-P 𝛼 𝛽 𝑛 𝑥 Pochhammer 𝛼 1 𝑛 𝑛 Gauss-hypergeometric-F 𝑛 𝑛 𝛼 𝛽 1 𝛼 1 1 𝑥 2 {\displaystyle{\displaystyle P^{(\alpha,\beta)}_{n}\left(x\right)=\frac{{\left% (\alpha+1\right)_{n}}}{n!}F\left({-n,n+\alpha+\beta+1\atop\alpha+1};\frac{1-x}% {2}\right).}}
    0 references
    0 references
    F ( a , b ; c ; z ) Gauss-hypergeometric-F 𝑎 𝑏 𝑐 𝑧 {\displaystyle{\displaystyle F\left(\NVar{a},\NVar{b};\NVar{c};\NVar{z}\right)}}
    C15.S2.E1.m2adec
    0 references