Results of Confluent Hypergeometric Functions II: Difference between revisions
Jump to navigation
Jump to search
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
||
Line 1: | Line 1: | ||
<div style="width: 100%; height: 75vh; overflow: auto;"> | |||
{| class="wikitable sortable" style="margin: 0;" | |||
|- | |||
! scope="col" style="position: sticky; top: 0;" | DLMF | |||
! scope="col" style="position: sticky; top: 0;" | Formula | |||
! scope="col" style="position: sticky; top: 0;" | Constraints | |||
! scope="col" style="position: sticky; top: 0;" | Maple | |||
! scope="col" style="position: sticky; top: 0;" | Mathematica | |||
! scope="col" style="position: sticky; top: 0;" | Symbolic<br>Maple | |||
! scope="col" style="position: sticky; top: 0;" | Symbolic<br>Mathematica | |||
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Maple | |||
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | |||
|- | |||
| [https://dlmf.nist.gov/13.14.E1 13.14.E1] || [[Item:Q4490|<math>\deriv[2]{W}{z}+\left(-\frac{1}{4}+\frac{\kappa}{z}+\frac{\frac{1}{4}-\mu^{2}}{z^{2}}\right)W = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[2]{W}{z}+\left(-\frac{1}{4}+\frac{\kappa}{z}+\frac{\frac{1}{4}-\mu^{2}}{z^{2}}\right)W = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(W, [z$(2)])+(-(1)/(4)+(kappa)/(z)+((1)/(4)- (mu)^(2))/((z)^(2)))*W = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[W, {z, 2}]+(-Divide[1,4]+Divide[\[Kappa],z]+Divide[Divide[1,4]- \[Mu]^(2),(z)^(2)])*W == 0</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.1000000000e-9-.2499999999*I | |||
Test Values: {W = 1/2*3^(1/2)+1/2*I, kappa = 1/2*3^(1/2)+1/2*I, mu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .9330127021-.3660254041*I | |||
Test Values: {W = 1/2*3^(1/2)+1/2*I, kappa = 1/2*3^(1/2)+1/2*I, mu = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-1.3877787807814457*^-17, -0.25] | |||
Test Values: {Rule[W, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.7320508075688772, 0.7500000000000002] | |||
Test Values: {Rule[W, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/13.14.E2 13.14.E2] || [[Item:Q4491|<math>\WhittakerconfhyperM{\kappa}{\mu}@{z} = e^{-\frac{1}{2}z}z^{\frac{1}{2}+\mu}\KummerconfhyperM@{\tfrac{1}{2}+\mu-\kappa}{1+2\mu}{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperM{\kappa}{\mu}@{z} = e^{-\frac{1}{2}z}z^{\frac{1}{2}+\mu}\KummerconfhyperM@{\tfrac{1}{2}+\mu-\kappa}{1+2\mu}{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>WhittakerM(kappa, mu, z) = exp(-(1)/(2)*z)*(z)^((1)/(2)+ mu)* KummerM((1)/(2)+ mu - kappa, 1 + 2*mu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerM[\[Kappa], \[Mu], z] == Exp[-Divide[1,2]*z]*(z)^(Divide[1,2]+ \[Mu])* Hypergeometric1F1[Divide[1,2]+ \[Mu]- \[Kappa], 1 + 2*\[Mu], z]</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [78 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, -1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, -0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/13.14.E3 13.14.E3] || [[Item:Q4492|<math>\WhittakerconfhyperW{\kappa}{\mu}@{z} = e^{-\frac{1}{2}z}z^{\frac{1}{2}+\mu}\KummerconfhyperU@{\tfrac{1}{2}+\mu-\kappa}{1+2\mu}{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperW{\kappa}{\mu}@{z} = e^{-\frac{1}{2}z}z^{\frac{1}{2}+\mu}\KummerconfhyperU@{\tfrac{1}{2}+\mu-\kappa}{1+2\mu}{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>WhittakerW(kappa, mu, z) = exp(-(1)/(2)*z)*(z)^((1)/(2)+ mu)* KummerU((1)/(2)+ mu - kappa, 1 + 2*mu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerW[\[Kappa], \[Mu], z] == Exp[-Divide[1,2]*z]*(z)^(Divide[1,2]+ \[Mu])* HypergeometricU[Divide[1,2]+ \[Mu]- \[Kappa], 1 + 2*\[Mu], z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 300] | |||
|- | |||
| [https://dlmf.nist.gov/13.14.E4 13.14.E4] || [[Item:Q4493|<math>\KummerconfhyperM@{a}{b}{z} = e^{\frac{1}{2}z}z^{-\frac{1}{2}b}\WhittakerconfhyperM{\frac{1}{2}b-a}{\frac{1}{2}b-\frac{1}{2}}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\KummerconfhyperM@{a}{b}{z} = e^{\frac{1}{2}z}z^{-\frac{1}{2}b}\WhittakerconfhyperM{\frac{1}{2}b-a}{\frac{1}{2}b-\frac{1}{2}}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>KummerM(a, b, z) = exp((1)/(2)*z)*(z)^(-(1)/(2)*b)* WhittakerM((1)/(2)*b - a, (1)/(2)*b -(1)/(2), z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric1F1[a, b, z] == Exp[Divide[1,2]*z]*(z)^(-Divide[1,2]*b)* WhittakerM[Divide[1,2]*b - a, Divide[1,2]*b -Divide[1,2], z]</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [35 / 252]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | |||
Test Values: {Rule[a, -1.5], Rule[b, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | |||
Test Values: {Rule[a, -1.5], Rule[b, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/13.14.E5 13.14.E5] || [[Item:Q4494|<math>\KummerconfhyperU@{a}{b}{z} = e^{\frac{1}{2}z}z^{-\frac{1}{2}b}\WhittakerconfhyperW{\frac{1}{2}b-a}{\frac{1}{2}b-\frac{1}{2}}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\KummerconfhyperU@{a}{b}{z} = e^{\frac{1}{2}z}z^{-\frac{1}{2}b}\WhittakerconfhyperW{\frac{1}{2}b-a}{\frac{1}{2}b-\frac{1}{2}}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>KummerU(a, b, z) = exp((1)/(2)*z)*(z)^(-(1)/(2)*b)* WhittakerW((1)/(2)*b - a, (1)/(2)*b -(1)/(2), z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>HypergeometricU[a, b, z] == Exp[Divide[1,2]*z]*(z)^(-Divide[1,2]*b)* WhittakerW[Divide[1,2]*b - a, Divide[1,2]*b -Divide[1,2], z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 252] | |||
|- | |||
| [https://dlmf.nist.gov/13.14.E6 13.14.E6] || [[Item:Q4495|<math>\WhittakerconfhyperM{\kappa}{\mu}@{z} = e^{-\frac{1}{2}z}z^{\frac{1}{2}+\mu}\sum_{s=0}^{\infty}\frac{\Pochhammersym{\frac{1}{2}+\mu-\kappa}{s}}{\Pochhammersym{1+2\mu}{s}s!}z^{s}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperM{\kappa}{\mu}@{z} = e^{-\frac{1}{2}z}z^{\frac{1}{2}+\mu}\sum_{s=0}^{\infty}\frac{\Pochhammersym{\frac{1}{2}+\mu-\kappa}{s}}{\Pochhammersym{1+2\mu}{s}s!}z^{s}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>WhittakerM(kappa, mu, z) = exp(-(1)/(2)*z)*(z)^((1)/(2)+ mu)* sum((pochhammer((1)/(2)+ mu - kappa, s))/(pochhammer(1 + 2*mu, s)*factorial(s))*(z)^(s), s = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerM[\[Kappa], \[Mu], z] == Exp[-Divide[1,2]*z]*(z)^(Divide[1,2]+ \[Mu])* Sum[Divide[Pochhammer[Divide[1,2]+ \[Mu]- \[Kappa], s],Pochhammer[1 + 2*\[Mu], s]*(s)!]*(z)^(s), {s, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || Successful [Tested: 70] | |||
|- | |||
| [https://dlmf.nist.gov/13.14.E6 13.14.E6] || [[Item:Q4495|<math>e^{-\frac{1}{2}z}z^{\frac{1}{2}+\mu}\sum_{s=0}^{\infty}\frac{\Pochhammersym{\frac{1}{2}+\mu-\kappa}{s}}{\Pochhammersym{1+2\mu}{s}s!}z^{s} = z^{\frac{1}{2}+\mu}\sum_{n=0}^{\infty}\genhyperF{2}{1}@@{-n,\tfrac{1}{2}+\mu-\kappa}{1+2\mu}{2}\frac{\left(-\tfrac{1}{2}z\right)^{n}}{n!}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{-\frac{1}{2}z}z^{\frac{1}{2}+\mu}\sum_{s=0}^{\infty}\frac{\Pochhammersym{\frac{1}{2}+\mu-\kappa}{s}}{\Pochhammersym{1+2\mu}{s}s!}z^{s} = z^{\frac{1}{2}+\mu}\sum_{n=0}^{\infty}\genhyperF{2}{1}@@{-n,\tfrac{1}{2}+\mu-\kappa}{1+2\mu}{2}\frac{\left(-\tfrac{1}{2}z\right)^{n}}{n!}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(-(1)/(2)*z)*(z)^((1)/(2)+ mu)* sum((pochhammer((1)/(2)+ mu - kappa, s))/(pochhammer(1 + 2*mu, s)*factorial(s))*(z)^(s), s = 0..infinity) = (z)^((1)/(2)+ mu)* sum(hypergeom([- n ,(1)/(2)+ mu - kappa], [1 + 2*mu], 2)*((-(1)/(2)*z)^(n))/(factorial(n)), n = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[-Divide[1,2]*z]*(z)^(Divide[1,2]+ \[Mu])* Sum[Divide[Pochhammer[Divide[1,2]+ \[Mu]- \[Kappa], s],Pochhammer[1 + 2*\[Mu], s]*(s)!]*(z)^(s), {s, 0, Infinity}, GenerateConditions->None] == (z)^(Divide[1,2]+ \[Mu])* Sum[HypergeometricPFQ[{- n ,Divide[1,2]+ \[Mu]- \[Kappa]}, {1 + 2*\[Mu]}, 2]*Divide[(-Divide[1,2]*z)^(n),(n)!], {n, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Successful [Tested: 70] || <div class="toccolours mw-collapsible mw-collapsed">Failed [70 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.7625032651803492, -0.1563764235133353], Times[Complex[-0.9238795325112867, -0.3826834323650898], NSum[Times[Power[Times[Rational[-1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], n], Power[Factorial[n], -1], HypergeometricPFQ[{Plus[Rational[3, 4], Times[-1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, n]} | |||
Test Values: {Rational[3, 2]}, 2]], {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Rational[1, 4]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[1.7168297866655773, 0.2697440808837949], Times[Complex[-0.9238795325112867, -0.3826834323650898], NSum[Times[Power[Times[Rational[-1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], n], Power[Factorial[n], -1], HypergeometricPFQ[{Plus[Rational[3, 4], Times[-1, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]], Times[-1, n]} | |||
Test Values: {Rational[3, 2]}, 2]], {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[μ, Rational[1, 4]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/13.14.E7 13.14.E7] || [[Item:Q4496|<math>\frac{\Pochhammersym{-\frac{1}{2}n-\kappa}{n+1}}{(n+1)!}\WhittakerconfhyperM{\kappa}{\frac{1}{2}(n+1)}@{z} = e^{-\frac{1}{2}z}z^{-\frac{1}{2}n}\sum_{s=n+1}^{\infty}\frac{\Pochhammersym{-\frac{1}{2}n-\kappa}{s}}{\EulerGamma@{s-n}s!}z^{s}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{\Pochhammersym{-\frac{1}{2}n-\kappa}{n+1}}{(n+1)!}\WhittakerconfhyperM{\kappa}{\frac{1}{2}(n+1)}@{z} = e^{-\frac{1}{2}z}z^{-\frac{1}{2}n}\sum_{s=n+1}^{\infty}\frac{\Pochhammersym{-\frac{1}{2}n-\kappa}{s}}{\EulerGamma@{s-n}s!}z^{s}</syntaxhighlight> || <math>\realpart@@{(2\mu+1)} > 0, \realpart@@{(s-n)} > 0</math> || <syntaxhighlight lang=mathematica>(pochhammer(-(1)/(2)*n - kappa, n + 1))/(factorial(n + 1))*WhittakerM(kappa, (1)/(2)*(n + 1), z) = exp(-(1)/(2)*z)*(z)^(-(1)/(2)*n)* sum((pochhammer(-(1)/(2)*n - kappa, s))/(GAMMA(s - n)*factorial(s))*(z)^(s), s = n + 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[Pochhammer[-Divide[1,2]*n - \[Kappa], n + 1],(n + 1)!]*WhittakerM[\[Kappa], Divide[1,2]*(n + 1), z] == Exp[-Divide[1,2]*z]*(z)^(-Divide[1,2]*n)* Sum[Divide[Pochhammer[-Divide[1,2]*n - \[Kappa], s],Gamma[s - n]*(s)!]*(z)^(s), {s, n + 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || Skipped - Because timed out || Successful [Tested: 210] | |||
|- | |||
| [https://dlmf.nist.gov/13.14.E8 13.14.E8] || [[Item:Q4497|<math>\WhittakerconfhyperW{\kappa}{+\frac{1}{2}n}@{z} = \frac{(-1)^{n}e^{-\frac{1}{2}z}z^{\frac{1}{2}n+\frac{1}{2}}}{n!\EulerGamma@{\frac{1}{2}-\frac{1}{2}n-\kappa}}\left(\sum_{k=1}^{n}\frac{n!(k-1)!}{(n-k)!\Pochhammersym{\kappa+\frac{1}{2}-\frac{1}{2}n}{k}}z^{-k}-\sum_{k=0}^{\infty}\frac{\Pochhammersym{\frac{1}{2}n+\frac{1}{2}-\kappa}{k}}{\Pochhammersym{n+1}{k}k!}z^{k}\left(\ln@@{z}+\digamma@{\tfrac{1}{2}n+\tfrac{1}{2}-\kappa+k}-\digamma@{1+k}-\digamma@{n+1+k}\right)\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperW{\kappa}{+\frac{1}{2}n}@{z} = \frac{(-1)^{n}e^{-\frac{1}{2}z}z^{\frac{1}{2}n+\frac{1}{2}}}{n!\EulerGamma@{\frac{1}{2}-\frac{1}{2}n-\kappa}}\left(\sum_{k=1}^{n}\frac{n!(k-1)!}{(n-k)!\Pochhammersym{\kappa+\frac{1}{2}-\frac{1}{2}n}{k}}z^{-k}-\sum_{k=0}^{\infty}\frac{\Pochhammersym{\frac{1}{2}n+\frac{1}{2}-\kappa}{k}}{\Pochhammersym{n+1}{k}k!}z^{k}\left(\ln@@{z}+\digamma@{\tfrac{1}{2}n+\tfrac{1}{2}-\kappa+k}-\digamma@{1+k}-\digamma@{n+1+k}\right)\right)</syntaxhighlight> || <math>\realpart@@{(\frac{1}{2}-\frac{1}{2}n-\kappa)} > 0</math> || <syntaxhighlight lang=mathematica>WhittakerW(kappa, +(1)/(2)*n, z) = ((- 1)^(n)* exp(-(1)/(2)*z)*(z)^((1)/(2)*n +(1)/(2)))/(factorial(n)*GAMMA((1)/(2)-(1)/(2)*n - kappa))*(sum((factorial(n)*factorial(k - 1))/(factorial(n - k)*pochhammer(kappa +(1)/(2)-(1)/(2)*n, k))*(z)^(- k), k = 1..n)- sum((pochhammer((1)/(2)*n +(1)/(2)- kappa, k))/(pochhammer(n + 1, k)*factorial(k))*(z)^(k)*(ln(z)+ Psi((1)/(2)*n +(1)/(2)- kappa + k)- Psi(1 + k)- Psi(n + 1 + k)), k = 0..infinity))</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerW[\[Kappa], +Divide[1,2]*n, z] == Divide[(- 1)^(n)* Exp[-Divide[1,2]*z]*(z)^(Divide[1,2]*n +Divide[1,2]),(n)!*Gamma[Divide[1,2]-Divide[1,2]*n - \[Kappa]]]*(Sum[Divide[(n)!*(k - 1)!,(n - k)!*Pochhammer[\[Kappa]+Divide[1,2]-Divide[1,2]*n, k]]*(z)^(- k), {k, 1, n}, GenerateConditions->None]- Sum[Divide[Pochhammer[Divide[1,2]*n +Divide[1,2]- \[Kappa], k],Pochhammer[n + 1, k]*(k)!]*(z)^(k)*(Log[z]+ PolyGamma[Divide[1,2]*n +Divide[1,2]- \[Kappa]+ k]- PolyGamma[1 + k]- PolyGamma[n + 1 + k]), {k, 0, Infinity}, GenerateConditions->None])</syntaxhighlight> || Aborted || Aborted || Skipped - Because timed out || Skipped - Because timed out | |||
|- | |||
| [https://dlmf.nist.gov/13.14.E8 13.14.E8] || [[Item:Q4497|<math>\WhittakerconfhyperW{\kappa}{-\frac{1}{2}n}@{z} = \frac{(-1)^{n}e^{-\frac{1}{2}z}z^{\frac{1}{2}n+\frac{1}{2}}}{n!\EulerGamma@{\frac{1}{2}-\frac{1}{2}n-\kappa}}\left(\sum_{k=1}^{n}\frac{n!(k-1)!}{(n-k)!\Pochhammersym{\kappa+\frac{1}{2}-\frac{1}{2}n}{k}}z^{-k}-\sum_{k=0}^{\infty}\frac{\Pochhammersym{\frac{1}{2}n+\frac{1}{2}-\kappa}{k}}{\Pochhammersym{n+1}{k}k!}z^{k}\left(\ln@@{z}+\digamma@{\tfrac{1}{2}n+\tfrac{1}{2}-\kappa+k}-\digamma@{1+k}-\digamma@{n+1+k}\right)\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperW{\kappa}{-\frac{1}{2}n}@{z} = \frac{(-1)^{n}e^{-\frac{1}{2}z}z^{\frac{1}{2}n+\frac{1}{2}}}{n!\EulerGamma@{\frac{1}{2}-\frac{1}{2}n-\kappa}}\left(\sum_{k=1}^{n}\frac{n!(k-1)!}{(n-k)!\Pochhammersym{\kappa+\frac{1}{2}-\frac{1}{2}n}{k}}z^{-k}-\sum_{k=0}^{\infty}\frac{\Pochhammersym{\frac{1}{2}n+\frac{1}{2}-\kappa}{k}}{\Pochhammersym{n+1}{k}k!}z^{k}\left(\ln@@{z}+\digamma@{\tfrac{1}{2}n+\tfrac{1}{2}-\kappa+k}-\digamma@{1+k}-\digamma@{n+1+k}\right)\right)</syntaxhighlight> || <math>\realpart@@{(\frac{1}{2}-\frac{1}{2}n-\kappa)} > 0</math> || <syntaxhighlight lang=mathematica>WhittakerW(kappa, -(1)/(2)*n, z) = ((- 1)^(n)* exp(-(1)/(2)*z)*(z)^((1)/(2)*n +(1)/(2)))/(factorial(n)*GAMMA((1)/(2)-(1)/(2)*n - kappa))*(sum((factorial(n)*factorial(k - 1))/(factorial(n - k)*pochhammer(kappa +(1)/(2)-(1)/(2)*n, k))*(z)^(- k), k = 1..n)- sum((pochhammer((1)/(2)*n +(1)/(2)- kappa, k))/(pochhammer(n + 1, k)*factorial(k))*(z)^(k)*(ln(z)+ Psi((1)/(2)*n +(1)/(2)- kappa + k)- Psi(1 + k)- Psi(n + 1 + k)), k = 0..infinity))</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerW[\[Kappa], -Divide[1,2]*n, z] == Divide[(- 1)^(n)* Exp[-Divide[1,2]*z]*(z)^(Divide[1,2]*n +Divide[1,2]),(n)!*Gamma[Divide[1,2]-Divide[1,2]*n - \[Kappa]]]*(Sum[Divide[(n)!*(k - 1)!,(n - k)!*Pochhammer[\[Kappa]+Divide[1,2]-Divide[1,2]*n, k]]*(z)^(- k), {k, 1, n}, GenerateConditions->None]- Sum[Divide[Pochhammer[Divide[1,2]*n +Divide[1,2]- \[Kappa], k],Pochhammer[n + 1, k]*(k)!]*(z)^(k)*(Log[z]+ PolyGamma[Divide[1,2]*n +Divide[1,2]- \[Kappa]+ k]- PolyGamma[1 + k]- PolyGamma[n + 1 + k]), {k, 0, Infinity}, GenerateConditions->None])</syntaxhighlight> || Aborted || Aborted || Skipped - Because timed out || Skipped - Because timed out | |||
|- | |||
| [https://dlmf.nist.gov/13.14.E9 13.14.E9] || [[Item:Q4498|<math>\WhittakerconfhyperW{\kappa}{+\frac{1}{2}n}@{z} = (-1)^{\kappa-\frac{1}{2}n-\frac{1}{2}}e^{-\frac{1}{2}z}z^{\frac{1}{2}n+\frac{1}{2}}\sum_{k=0}^{\kappa-\frac{1}{2}n-\frac{1}{2}}\binom{\kappa-\frac{1}{2}n-\frac{1}{2}}{k}\Pochhammersym{n+1+k}{\kappa-k-\frac{1}{2}n-\frac{1}{2}}(-z)^{k}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperW{\kappa}{+\frac{1}{2}n}@{z} = (-1)^{\kappa-\frac{1}{2}n-\frac{1}{2}}e^{-\frac{1}{2}z}z^{\frac{1}{2}n+\frac{1}{2}}\sum_{k=0}^{\kappa-\frac{1}{2}n-\frac{1}{2}}\binom{\kappa-\frac{1}{2}n-\frac{1}{2}}{k}\Pochhammersym{n+1+k}{\kappa-k-\frac{1}{2}n-\frac{1}{2}}(-z)^{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>WhittakerW(kappa, +(1)/(2)*n, z) = (- 1)^(kappa -(1)/(2)*n -(1)/(2))* exp(-(1)/(2)*z)*(z)^((1)/(2)*n +(1)/(2))* sum(binomial(kappa -(1)/(2)*n -(1)/(2),k)*pochhammer(n + 1 + k, kappa - k -(1)/(2)*n -(1)/(2))*(- z)^(k), k = 0..kappa -(1)/(2)*n -(1)/(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerW[\[Kappa], +Divide[1,2]*n, z] == (- 1)^(\[Kappa]-Divide[1,2]*n -Divide[1,2])* Exp[-Divide[1,2]*z]*(z)^(Divide[1,2]*n +Divide[1,2])* Sum[Binomial[\[Kappa]-Divide[1,2]*n -Divide[1,2],k]*Pochhammer[n + 1 + k, \[Kappa]- k -Divide[1,2]*n -Divide[1,2]]*(- z)^(k), {k, 0, \[Kappa]-Divide[1,2]*n -Divide[1,2]}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Successful [Tested: 7] || <div class="toccolours mw-collapsible mw-collapsed">Failed [189 / 210]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.5169913326612593, -0.09737869271758438] | |||
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.1703866965609513, -0.19101907289178782] | |||
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/13.14.E9 13.14.E9] || [[Item:Q4498|<math>\WhittakerconfhyperW{\kappa}{-\frac{1}{2}n}@{z} = (-1)^{\kappa-\frac{1}{2}n-\frac{1}{2}}e^{-\frac{1}{2}z}z^{\frac{1}{2}n+\frac{1}{2}}\sum_{k=0}^{\kappa-\frac{1}{2}n-\frac{1}{2}}\binom{\kappa-\frac{1}{2}n-\frac{1}{2}}{k}\Pochhammersym{n+1+k}{\kappa-k-\frac{1}{2}n-\frac{1}{2}}(-z)^{k}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperW{\kappa}{-\frac{1}{2}n}@{z} = (-1)^{\kappa-\frac{1}{2}n-\frac{1}{2}}e^{-\frac{1}{2}z}z^{\frac{1}{2}n+\frac{1}{2}}\sum_{k=0}^{\kappa-\frac{1}{2}n-\frac{1}{2}}\binom{\kappa-\frac{1}{2}n-\frac{1}{2}}{k}\Pochhammersym{n+1+k}{\kappa-k-\frac{1}{2}n-\frac{1}{2}}(-z)^{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>WhittakerW(kappa, -(1)/(2)*n, z) = (- 1)^(kappa -(1)/(2)*n -(1)/(2))* exp(-(1)/(2)*z)*(z)^((1)/(2)*n +(1)/(2))* sum(binomial(kappa -(1)/(2)*n -(1)/(2),k)*pochhammer(n + 1 + k, kappa - k -(1)/(2)*n -(1)/(2))*(- z)^(k), k = 0..kappa -(1)/(2)*n -(1)/(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerW[\[Kappa], -Divide[1,2]*n, z] == (- 1)^(\[Kappa]-Divide[1,2]*n -Divide[1,2])* Exp[-Divide[1,2]*z]*(z)^(Divide[1,2]*n +Divide[1,2])* Sum[Binomial[\[Kappa]-Divide[1,2]*n -Divide[1,2],k]*Pochhammer[n + 1 + k, \[Kappa]- k -Divide[1,2]*n -Divide[1,2]]*(- z)^(k), {k, 0, \[Kappa]-Divide[1,2]*n -Divide[1,2]}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Successful [Tested: 7] || <div class="toccolours mw-collapsible mw-collapsed">Failed [189 / 210]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.5169913326612593, -0.09737869271758438] | |||
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.1703866965609513, -0.19101907289178816] | |||
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/13.14.E10 13.14.E10] || [[Item:Q4499|<math>\WhittakerconfhyperM{\kappa}{\mu}@{ze^{+\pi\iunit}} = +\iunit e^{+\mu\pi\iunit}\WhittakerconfhyperM{-\kappa}{\mu}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperM{\kappa}{\mu}@{ze^{+\pi\iunit}} = +\iunit e^{+\mu\pi\iunit}\WhittakerconfhyperM{-\kappa}{\mu}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>WhittakerM(kappa, mu, z*exp(+ Pi*I)) = + I*exp(+ mu*Pi*I)*WhittakerM(- kappa, mu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerM[\[Kappa], \[Mu], z*Exp[+ Pi*I]] == + I*Exp[+ \[Mu]*Pi*I]*WhittakerM[- \[Kappa], \[Mu], z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [130 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -4.895892966+1.186871174*I | |||
Test Values: {kappa = 1/2*3^(1/2)+1/2*I, mu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .4883444919-1.278994596*I | |||
Test Values: {kappa = 1/2*3^(1/2)+1/2*I, mu = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [190 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-4.89589296422639, 1.1868711700759136] | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[16.701326575973276, -3.4860202275194005] | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/13.14.E10 13.14.E10] || [[Item:Q4499|<math>\WhittakerconfhyperM{\kappa}{\mu}@{ze^{-\pi\iunit}} = -\iunit e^{-\mu\pi\iunit}\WhittakerconfhyperM{-\kappa}{\mu}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperM{\kappa}{\mu}@{ze^{-\pi\iunit}} = -\iunit e^{-\mu\pi\iunit}\WhittakerconfhyperM{-\kappa}{\mu}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>WhittakerM(kappa, mu, z*exp(- Pi*I)) = - I*exp(- mu*Pi*I)*WhittakerM(- kappa, mu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerM[\[Kappa], \[Mu], z*Exp[- Pi*I]] == - I*Exp[- \[Mu]*Pi*I]*WhittakerM[- \[Kappa], \[Mu], z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [198 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -9.930599690-2.602006174*I | |||
Test Values: {kappa = 1/2*3^(1/2)+1/2*I, mu = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 3.613026945+13.86544735*I | |||
Test Values: {kappa = 1/2*3^(1/2)+1/2*I, mu = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [140 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, -1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, -0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/13.14.E11 13.14.E11] || [[Item:Q4500|<math>\WhittakerconfhyperM{\kappa}{\mu}@{ze^{2m\pi\iunit}} = (-1)^{m}e^{2m\mu\pi\iunit}\WhittakerconfhyperM{\kappa}{\mu}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperM{\kappa}{\mu}@{ze^{2m\pi\iunit}} = (-1)^{m}e^{2m\mu\pi\iunit}\WhittakerconfhyperM{\kappa}{\mu}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>WhittakerM(kappa, mu, z*exp(2*m*Pi*I)) = (- 1)^(m)* exp(2*m*mu*Pi*I)*WhittakerM(kappa, mu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerM[\[Kappa], \[Mu], z*Exp[2*m*Pi*I]] == (- 1)^(m)* Exp[2*m*\[Mu]*Pi*I]*WhittakerM[\[Kappa], \[Mu], z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [251 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .5508945958+.2826830659*I | |||
Test Values: {kappa = 1/2*3^(1/2)+1/2*I, mu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .5259254704+.2923012958*I | |||
Test Values: {kappa = 1/2*3^(1/2)+1/2*I, mu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [220 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.5508945961174277, 0.2826830653610755] | |||
Test Values: {Rule[m, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.5259254730625326, 0.2923012928351815] | |||
Test Values: {Rule[m, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/13.14.E12 13.14.E12] || [[Item:Q4501|<math>\WhittakerconfhyperW{\kappa}{\mu}@{ze^{2m\pi\iunit}} = \frac{(-1)^{m+1}2\pi\iunit\sin@{2\pi\mu m}}{\EulerGamma@{\frac{1}{2}-\mu-\kappa}\EulerGamma@{1+2\mu}\sin@{2\pi\mu}}\WhittakerconfhyperM{\kappa}{\mu}@{z}+(-1)^{m}e^{-2m\mu\pi\iunit}\WhittakerconfhyperW{\kappa}{\mu}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperW{\kappa}{\mu}@{ze^{2m\pi\iunit}} = \frac{(-1)^{m+1}2\pi\iunit\sin@{2\pi\mu m}}{\EulerGamma@{\frac{1}{2}-\mu-\kappa}\EulerGamma@{1+2\mu}\sin@{2\pi\mu}}\WhittakerconfhyperM{\kappa}{\mu}@{z}+(-1)^{m}e^{-2m\mu\pi\iunit}\WhittakerconfhyperW{\kappa}{\mu}@{z}</syntaxhighlight> || <math>\realpart@@{(\frac{1}{2}-\mu-\kappa)} > 0, \realpart@@{(1+2\mu)} > 0</math> || <syntaxhighlight lang=mathematica>WhittakerW(kappa, mu, z*exp(2*m*Pi*I)) = ((- 1)^(m + 1)* 2*Pi*I*sin(2*Pi*mu*m))/(GAMMA((1)/(2)- mu - kappa)*GAMMA(1 + 2*mu)*sin(2*Pi*mu))*WhittakerM(kappa, mu, z)+(- 1)^(m)* exp(- 2*m*mu*Pi*I)*WhittakerW(kappa, mu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerW[\[Kappa], \[Mu], z*Exp[2*m*Pi*I]] == Divide[(- 1)^(m + 1)* 2*Pi*I*Sin[2*Pi*\[Mu]*m],Gamma[Divide[1,2]- \[Mu]- \[Kappa]]*Gamma[1 + 2*\[Mu]]*Sin[2*Pi*\[Mu]]]*WhittakerM[\[Kappa], \[Mu], z]+(- 1)^(m)* Exp[- 2*m*\[Mu]*Pi*I]*WhittakerW[\[Kappa], \[Mu], z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -18.11244228+18.74801506*I | |||
Test Values: {kappa = -1/2+1/2*I*3^(1/2), mu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 602.4607544+35.9074468*I | |||
Test Values: {kappa = -1/2+1/2*I*3^(1/2), mu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-18.112442291727014, 18.74801503541069] | |||
Test Values: {Rule[m, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[602.4607532493621, 35.9074491081993] | |||
Test Values: {Rule[m, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/13.14.E13 13.14.E13] || [[Item:Q4502|<math>(-1)^{m}\WhittakerconfhyperW{\kappa}{\mu}@{ze^{2m\pi\iunit}} = -\frac{e^{2\kappa\pi\iunit}\sin@{2m\mu\pi}+\sin@{(2m-2)\mu\pi}}{\sin@{2\mu\pi}}\WhittakerconfhyperW{\kappa}{\mu}@{z}-\frac{\sin@{2m\mu\pi}2\pi\iunit e^{\kappa\pi\iunit}}{\sin@{2\mu\pi}\EulerGamma@{\frac{1}{2}+\mu-\kappa}\EulerGamma@{\frac{1}{2}-\mu-\kappa}}\WhittakerconfhyperW{-\kappa}{\mu}@{ze^{\pi\iunit}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>(-1)^{m}\WhittakerconfhyperW{\kappa}{\mu}@{ze^{2m\pi\iunit}} = -\frac{e^{2\kappa\pi\iunit}\sin@{2m\mu\pi}+\sin@{(2m-2)\mu\pi}}{\sin@{2\mu\pi}}\WhittakerconfhyperW{\kappa}{\mu}@{z}-\frac{\sin@{2m\mu\pi}2\pi\iunit e^{\kappa\pi\iunit}}{\sin@{2\mu\pi}\EulerGamma@{\frac{1}{2}+\mu-\kappa}\EulerGamma@{\frac{1}{2}-\mu-\kappa}}\WhittakerconfhyperW{-\kappa}{\mu}@{ze^{\pi\iunit}}</syntaxhighlight> || <math>\realpart@@{(\frac{1}{2}+\mu-\kappa)} > 0, \realpart@@{(\frac{1}{2}-\mu-\kappa)} > 0</math> || <syntaxhighlight lang=mathematica>(- 1)^(m)* WhittakerW(kappa, mu, z*exp(2*m*Pi*I)) = -(exp(2*kappa*Pi*I)*sin(2*m*mu*Pi)+ sin((2*m - 2)*mu*Pi))/(sin(2*mu*Pi))*WhittakerW(kappa, mu, z)-(sin(2*m*mu*Pi)*2*Pi*I*exp(kappa*Pi*I))/(sin(2*mu*Pi)*GAMMA((1)/(2)+ mu - kappa)*GAMMA((1)/(2)- mu - kappa))*WhittakerW(- kappa, mu, z*exp(Pi*I))</syntaxhighlight> || <syntaxhighlight lang=mathematica>(- 1)^(m)* WhittakerW[\[Kappa], \[Mu], z*Exp[2*m*Pi*I]] == -Divide[Exp[2*\[Kappa]*Pi*I]*Sin[2*m*\[Mu]*Pi]+ Sin[(2*m - 2)*\[Mu]*Pi],Sin[2*\[Mu]*Pi]]*WhittakerW[\[Kappa], \[Mu], z]-Divide[Sin[2*m*\[Mu]*Pi]*2*Pi*I*Exp[\[Kappa]*Pi*I],Sin[2*\[Mu]*Pi]*Gamma[Divide[1,2]+ \[Mu]- \[Kappa]]*Gamma[Divide[1,2]- \[Mu]- \[Kappa]]]*WhittakerW[- \[Kappa], \[Mu], z*Exp[Pi*I]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.774951075e-1+.230823188e-1*I | |||
Test Values: {kappa = -1/2+1/2*I*3^(1/2), mu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.823749563+12.44290473*I | |||
Test Values: {kappa = -1/2+1/2*I*3^(1/2), mu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.07749510760596677, 0.023082318493995446] | |||
Test Values: {Rule[m, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-1.823749593471332, 12.442904704149905] | |||
Test Values: {Rule[m, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/13.14.E25 13.14.E25] || [[Item:Q4517|<math>\Wronskian@{\WhittakerconfhyperM{\kappa}{\mu}@{z},\WhittakerconfhyperM{\kappa}{-\mu}@{z}} = -2\mu</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Wronskian@{\WhittakerconfhyperM{\kappa}{\mu}@{z},\WhittakerconfhyperM{\kappa}{-\mu}@{z}} = -2\mu</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(WhittakerM(kappa, mu, z))*diff(WhittakerM(kappa, - mu, z), z)-diff(WhittakerM(kappa, mu, z), z)*(WhittakerM(kappa, - mu, z)) = - 2*mu</syntaxhighlight> || <syntaxhighlight lang=mathematica>Wronskian[{WhittakerM[\[Kappa], \[Mu], z], WhittakerM[\[Kappa], - \[Mu], z]}, z] == - 2*\[Mu]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [168 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Float(infinity)+Float(infinity)*I | |||
Test Values: {kappa = 1/2*3^(1/2)+1/2*I, mu = -3/2, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Float(infinity)+Float(infinity)*I | |||
Test Values: {kappa = 1/2*3^(1/2)+1/2*I, mu = -3/2, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [162 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, -1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/13.14.E26 13.14.E26] || [[Item:Q4518|<math>\Wronskian@{\WhittakerconfhyperM{\kappa}{\mu}@{z},\WhittakerconfhyperW{\kappa}{\mu}@{z}} = -\frac{\EulerGamma@{1+2\mu}}{\EulerGamma@{\frac{1}{2}+\mu-\kappa}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Wronskian@{\WhittakerconfhyperM{\kappa}{\mu}@{z},\WhittakerconfhyperW{\kappa}{\mu}@{z}} = -\frac{\EulerGamma@{1+2\mu}}{\EulerGamma@{\frac{1}{2}+\mu-\kappa}}</syntaxhighlight> || <math>\realpart@@{(1+2\mu)} > 0, \realpart@@{(\frac{1}{2}+\mu-\kappa)} > 0</math> || <syntaxhighlight lang=mathematica>(WhittakerM(kappa, mu, z))*diff(WhittakerW(kappa, mu, z), z)-diff(WhittakerM(kappa, mu, z), z)*(WhittakerW(kappa, mu, z)) = -(GAMMA(1 + 2*mu))/(GAMMA((1)/(2)+ mu - kappa))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Wronskian[{WhittakerM[\[Kappa], \[Mu], z], WhittakerW[\[Kappa], \[Mu], z]}, z] == -Divide[Gamma[1 + 2*\[Mu]],Gamma[Divide[1,2]+ \[Mu]- \[Kappa]]]</syntaxhighlight> || Failure || Failure || Manual Skip! || Successful [Tested: 300] | |||
|- | |||
| [https://dlmf.nist.gov/13.14.E27 13.14.E27] || [[Item:Q4519|<math>\Wronskian@{\WhittakerconfhyperM{\kappa}{\mu}@{z},\WhittakerconfhyperW{-\kappa}{\mu}@{e^{+\pi\iunit}z}} = \frac{\EulerGamma@{1+2\mu}}{\EulerGamma@{\frac{1}{2}+\mu+\kappa}}e^{-(\frac{1}{2}+\mu)\pi\iunit}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Wronskian@{\WhittakerconfhyperM{\kappa}{\mu}@{z},\WhittakerconfhyperW{-\kappa}{\mu}@{e^{+\pi\iunit}z}} = \frac{\EulerGamma@{1+2\mu}}{\EulerGamma@{\frac{1}{2}+\mu+\kappa}}e^{-(\frac{1}{2}+\mu)\pi\iunit}</syntaxhighlight> || <math>\realpart@@{(1+2\mu)} > 0, \realpart@@{(\frac{1}{2}+\mu+\kappa)} > 0</math> || <syntaxhighlight lang=mathematica>(WhittakerM(kappa, mu, z))*diff(WhittakerW(- kappa, mu, exp(+ Pi*I)*z), z)-diff(WhittakerM(kappa, mu, z), z)*(WhittakerW(- kappa, mu, exp(+ Pi*I)*z)) = (GAMMA(1 + 2*mu))/(GAMMA((1)/(2)+ mu + kappa))*exp(-((1)/(2)+ mu)*Pi*I)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Wronskian[{WhittakerM[\[Kappa], \[Mu], z], WhittakerW[- \[Kappa], \[Mu], Exp[+ Pi*I]*z]}, z] == Divide[Gamma[1 + 2*\[Mu]],Gamma[Divide[1,2]+ \[Mu]+ \[Kappa]]]*Exp[-(Divide[1,2]+ \[Mu])*Pi*I]</syntaxhighlight> || Failure || Failure || Manual Skip! || <div class="toccolours mw-collapsible mw-collapsed">Failed [52 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[4.299229486082212, -6.012569912273703] | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-4.626622324464266, 5.570319989341637] | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/13.14.E27 13.14.E27] || [[Item:Q4519|<math>\Wronskian@{\WhittakerconfhyperM{\kappa}{\mu}@{z},\WhittakerconfhyperW{-\kappa}{\mu}@{e^{-\pi\iunit}z}} = \frac{\EulerGamma@{1+2\mu}}{\EulerGamma@{\frac{1}{2}+\mu+\kappa}}e^{+(\frac{1}{2}+\mu)\pi\iunit}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Wronskian@{\WhittakerconfhyperM{\kappa}{\mu}@{z},\WhittakerconfhyperW{-\kappa}{\mu}@{e^{-\pi\iunit}z}} = \frac{\EulerGamma@{1+2\mu}}{\EulerGamma@{\frac{1}{2}+\mu+\kappa}}e^{+(\frac{1}{2}+\mu)\pi\iunit}</syntaxhighlight> || <math>\realpart@@{(1+2\mu)} > 0, \realpart@@{(\frac{1}{2}+\mu+\kappa)} > 0</math> || <syntaxhighlight lang=mathematica>(WhittakerM(kappa, mu, z))*diff(WhittakerW(- kappa, mu, exp(- Pi*I)*z), z)-diff(WhittakerM(kappa, mu, z), z)*(WhittakerW(- kappa, mu, exp(- Pi*I)*z)) = (GAMMA(1 + 2*mu))/(GAMMA((1)/(2)+ mu + kappa))*exp(+((1)/(2)+ mu)*Pi*I)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Wronskian[{WhittakerM[\[Kappa], \[Mu], z], WhittakerW[- \[Kappa], \[Mu], Exp[- Pi*I]*z]}, z] == Divide[Gamma[1 + 2*\[Mu]],Gamma[Divide[1,2]+ \[Mu]+ \[Kappa]]]*Exp[+(Divide[1,2]+ \[Mu])*Pi*I]</syntaxhighlight> || Failure || Failure || Manual Skip! || <div class="toccolours mw-collapsible mw-collapsed">Failed [129 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-4.299229486082214, 6.012569912273712] | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[4.626622324464252, -5.570319989341608] | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/13.14.E28 13.14.E28] || [[Item:Q4520|<math>\Wronskian@{\WhittakerconfhyperM{\kappa}{-\mu}@{z},\WhittakerconfhyperW{\kappa}{\mu}@{z}} = -\frac{\EulerGamma@{1-2\mu}}{\EulerGamma@{\frac{1}{2}-\mu-\kappa}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Wronskian@{\WhittakerconfhyperM{\kappa}{-\mu}@{z},\WhittakerconfhyperW{\kappa}{\mu}@{z}} = -\frac{\EulerGamma@{1-2\mu}}{\EulerGamma@{\frac{1}{2}-\mu-\kappa}}</syntaxhighlight> || <math>\realpart@@{(1-2\mu)} > 0, \realpart@@{(\frac{1}{2}-\mu-\kappa)} > 0</math> || <syntaxhighlight lang=mathematica>(WhittakerM(kappa, - mu, z))*diff(WhittakerW(kappa, mu, z), z)-diff(WhittakerM(kappa, - mu, z), z)*(WhittakerW(kappa, mu, z)) = -(GAMMA(1 - 2*mu))/(GAMMA((1)/(2)- mu - kappa))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Wronskian[{WhittakerM[\[Kappa], - \[Mu], z], WhittakerW[\[Kappa], \[Mu], z]}, z] == -Divide[Gamma[1 - 2*\[Mu]],Gamma[Divide[1,2]- \[Mu]- \[Kappa]]]</syntaxhighlight> || Failure || Failure || Manual Skip! || Successful [Tested: 300] | |||
|- | |||
| [https://dlmf.nist.gov/13.14.E29 13.14.E29] || [[Item:Q4521|<math>\Wronskian@{\WhittakerconfhyperM{\kappa}{-\mu}@{z},\WhittakerconfhyperW{-\kappa}{\mu}@{e^{+\pi\iunit}z}} = \frac{\EulerGamma@{1-2\mu}}{\EulerGamma@{\frac{1}{2}-\mu+\kappa}}e^{-(\frac{1}{2}-\mu)\pi\iunit}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Wronskian@{\WhittakerconfhyperM{\kappa}{-\mu}@{z},\WhittakerconfhyperW{-\kappa}{\mu}@{e^{+\pi\iunit}z}} = \frac{\EulerGamma@{1-2\mu}}{\EulerGamma@{\frac{1}{2}-\mu+\kappa}}e^{-(\frac{1}{2}-\mu)\pi\iunit}</syntaxhighlight> || <math>\realpart@@{(1-2\mu)} > 0, \realpart@@{(\frac{1}{2}-\mu+\kappa)} > 0</math> || <syntaxhighlight lang=mathematica>(WhittakerM(kappa, - mu, z))*diff(WhittakerW(- kappa, mu, exp(+ Pi*I)*z), z)-diff(WhittakerM(kappa, - mu, z), z)*(WhittakerW(- kappa, mu, exp(+ Pi*I)*z)) = (GAMMA(1 - 2*mu))/(GAMMA((1)/(2)- mu + kappa))*exp(-((1)/(2)- mu)*Pi*I)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Wronskian[{WhittakerM[\[Kappa], - \[Mu], z], WhittakerW[- \[Kappa], \[Mu], Exp[+ Pi*I]*z]}, z] == Divide[Gamma[1 - 2*\[Mu]],Gamma[Divide[1,2]- \[Mu]+ \[Kappa]]]*Exp[-(Divide[1,2]- \[Mu])*Pi*I]</syntaxhighlight> || Failure || Failure || Manual Skip! || <div class="toccolours mw-collapsible mw-collapsed">Failed [52 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-4.626622324464262, 5.570319989341637] | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[4.299229486082212, -6.012569912273703] | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/13.14.E29 13.14.E29] || [[Item:Q4521|<math>\Wronskian@{\WhittakerconfhyperM{\kappa}{-\mu}@{z},\WhittakerconfhyperW{-\kappa}{\mu}@{e^{-\pi\iunit}z}} = \frac{\EulerGamma@{1-2\mu}}{\EulerGamma@{\frac{1}{2}-\mu+\kappa}}e^{+(\frac{1}{2}-\mu)\pi\iunit}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Wronskian@{\WhittakerconfhyperM{\kappa}{-\mu}@{z},\WhittakerconfhyperW{-\kappa}{\mu}@{e^{-\pi\iunit}z}} = \frac{\EulerGamma@{1-2\mu}}{\EulerGamma@{\frac{1}{2}-\mu+\kappa}}e^{+(\frac{1}{2}-\mu)\pi\iunit}</syntaxhighlight> || <math>\realpart@@{(1-2\mu)} > 0, \realpart@@{(\frac{1}{2}-\mu+\kappa)} > 0</math> || <syntaxhighlight lang=mathematica>(WhittakerM(kappa, - mu, z))*diff(WhittakerW(- kappa, mu, exp(- Pi*I)*z), z)-diff(WhittakerM(kappa, - mu, z), z)*(WhittakerW(- kappa, mu, exp(- Pi*I)*z)) = (GAMMA(1 - 2*mu))/(GAMMA((1)/(2)- mu + kappa))*exp(+((1)/(2)- mu)*Pi*I)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Wronskian[{WhittakerM[\[Kappa], - \[Mu], z], WhittakerW[- \[Kappa], \[Mu], Exp[- Pi*I]*z]}, z] == Divide[Gamma[1 - 2*\[Mu]],Gamma[Divide[1,2]- \[Mu]+ \[Kappa]]]*Exp[+(Divide[1,2]- \[Mu])*Pi*I]</syntaxhighlight> || Failure || Failure || Manual Skip! || <div class="toccolours mw-collapsible mw-collapsed">Failed [129 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[4.626622324464292, -5.570319989341681] | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-4.299229486082212, 6.012569912273712] | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/13.14.E30 13.14.E30] || [[Item:Q4522|<math>\Wronskian@{\WhittakerconfhyperW{\kappa}{\mu}@{z},\WhittakerconfhyperW{-\kappa}{\mu}@{e^{+\pi\iunit}z}} = e^{-\kappa\pi\iunit}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Wronskian@{\WhittakerconfhyperW{\kappa}{\mu}@{z},\WhittakerconfhyperW{-\kappa}{\mu}@{e^{+\pi\iunit}z}} = e^{-\kappa\pi\iunit}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(WhittakerW(kappa, mu, z))*diff(WhittakerW(- kappa, mu, exp(+ Pi*I)*z), z)-diff(WhittakerW(kappa, mu, z), z)*(WhittakerW(- kappa, mu, exp(+ Pi*I)*z)) = exp(- kappa*Pi*I)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Wronskian[{WhittakerW[\[Kappa], \[Mu], z], WhittakerW[- \[Kappa], \[Mu], Exp[+ Pi*I]*z]}, z] == Exp[- \[Kappa]*Pi*I]</syntaxhighlight> || Failure || Failure || Manual Skip! || <div class="toccolours mw-collapsible mw-collapsed">Failed [160 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[4.200902390403695, 2.050381381630863] | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[4.200902390403695, 2.0503813816308636] | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/13.14.E30 13.14.E30] || [[Item:Q4522|<math>\Wronskian@{\WhittakerconfhyperW{\kappa}{\mu}@{z},\WhittakerconfhyperW{-\kappa}{\mu}@{e^{-\pi\iunit}z}} = e^{+\kappa\pi\iunit}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Wronskian@{\WhittakerconfhyperW{\kappa}{\mu}@{z},\WhittakerconfhyperW{-\kappa}{\mu}@{e^{-\pi\iunit}z}} = e^{+\kappa\pi\iunit}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(WhittakerW(kappa, mu, z))*diff(WhittakerW(- kappa, mu, exp(- Pi*I)*z), z)-diff(WhittakerW(kappa, mu, z), z)*(WhittakerW(- kappa, mu, exp(- Pi*I)*z)) = exp(+ kappa*Pi*I)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Wronskian[{WhittakerW[\[Kappa], \[Mu], z], WhittakerW[- \[Kappa], \[Mu], Exp[- Pi*I]*z]}, z] == Exp[+ \[Kappa]*Pi*I]</syntaxhighlight> || Failure || Failure || Manual Skip! || <div class="toccolours mw-collapsible mw-collapsed">Failed [80 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-4.200902390403696, -2.050381381630864] | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-4.200902390403694, -2.050381381630864] | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/13.14.E31 13.14.E31] || [[Item:Q4523|<math>\WhittakerconfhyperW{\kappa}{\mu}@{z} = \WhittakerconfhyperW{\kappa}{-\mu}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperW{\kappa}{\mu}@{z} = \WhittakerconfhyperW{\kappa}{-\mu}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>WhittakerW(kappa, mu, z) = WhittakerW(kappa, - mu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerW[\[Kappa], \[Mu], z] == WhittakerW[\[Kappa], - \[Mu], z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 300] | |||
|- | |||
| [https://dlmf.nist.gov/13.14.E32 13.14.E32] || [[Item:Q4524|<math>\frac{1}{\EulerGamma@{1+2\mu}}\WhittakerconfhyperM{\kappa}{\mu}@{z} = \frac{e^{+(\kappa-\mu-\frac{1}{2})\pi\iunit}}{\EulerGamma@{\frac{1}{2}+\mu+\kappa}}\WhittakerconfhyperW{\kappa}{\mu}@{z}+\frac{e^{+\kappa\pi\iunit}}{\EulerGamma@{\frac{1}{2}+\mu-\kappa}}\WhittakerconfhyperW{-\kappa}{\mu}@{e^{+\pi\iunit}z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1}{\EulerGamma@{1+2\mu}}\WhittakerconfhyperM{\kappa}{\mu}@{z} = \frac{e^{+(\kappa-\mu-\frac{1}{2})\pi\iunit}}{\EulerGamma@{\frac{1}{2}+\mu+\kappa}}\WhittakerconfhyperW{\kappa}{\mu}@{z}+\frac{e^{+\kappa\pi\iunit}}{\EulerGamma@{\frac{1}{2}+\mu-\kappa}}\WhittakerconfhyperW{-\kappa}{\mu}@{e^{+\pi\iunit}z}</syntaxhighlight> || <math>\realpart@@{(1+2\mu)} > 0, \realpart@@{(\frac{1}{2}+\mu+\kappa)} > 0, \realpart@@{(\frac{1}{2}+\mu-\kappa)} > 0</math> || <syntaxhighlight lang=mathematica>(1)/(GAMMA(1 + 2*mu))*WhittakerM(kappa, mu, z) = (exp(+(kappa - mu -(1)/(2))*Pi*I))/(GAMMA((1)/(2)+ mu + kappa))*WhittakerW(kappa, mu, z)+(exp(+ kappa*Pi*I))/(GAMMA((1)/(2)+ mu - kappa))*WhittakerW(- kappa, mu, exp(+ Pi*I)*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,Gamma[1 + 2*\[Mu]]]*WhittakerM[\[Kappa], \[Mu], z] == Divide[Exp[+(\[Kappa]- \[Mu]-Divide[1,2])*Pi*I],Gamma[Divide[1,2]+ \[Mu]+ \[Kappa]]]*WhittakerW[\[Kappa], \[Mu], z]+Divide[Exp[+ \[Kappa]*Pi*I],Gamma[Divide[1,2]+ \[Mu]- \[Kappa]]]*WhittakerW[- \[Kappa], \[Mu], Exp[+ Pi*I]*z]</syntaxhighlight> || Failure || Failure || Manual Skip! || <div class="toccolours mw-collapsible mw-collapsed">Failed [72 / 252]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.5728285416311911, 0.99341853424812] | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.537549923135155, 2.4049195501566403] | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/13.14.E32 13.14.E32] || [[Item:Q4524|<math>\frac{1}{\EulerGamma@{1+2\mu}}\WhittakerconfhyperM{\kappa}{\mu}@{z} = \frac{e^{-(\kappa-\mu-\frac{1}{2})\pi\iunit}}{\EulerGamma@{\frac{1}{2}+\mu+\kappa}}\WhittakerconfhyperW{\kappa}{\mu}@{z}+\frac{e^{-\kappa\pi\iunit}}{\EulerGamma@{\frac{1}{2}+\mu-\kappa}}\WhittakerconfhyperW{-\kappa}{\mu}@{e^{-\pi\iunit}z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1}{\EulerGamma@{1+2\mu}}\WhittakerconfhyperM{\kappa}{\mu}@{z} = \frac{e^{-(\kappa-\mu-\frac{1}{2})\pi\iunit}}{\EulerGamma@{\frac{1}{2}+\mu+\kappa}}\WhittakerconfhyperW{\kappa}{\mu}@{z}+\frac{e^{-\kappa\pi\iunit}}{\EulerGamma@{\frac{1}{2}+\mu-\kappa}}\WhittakerconfhyperW{-\kappa}{\mu}@{e^{-\pi\iunit}z}</syntaxhighlight> || <math>\realpart@@{(1+2\mu)} > 0, \realpart@@{(\frac{1}{2}+\mu+\kappa)} > 0, \realpart@@{(\frac{1}{2}+\mu-\kappa)} > 0</math> || <syntaxhighlight lang=mathematica>(1)/(GAMMA(1 + 2*mu))*WhittakerM(kappa, mu, z) = (exp(-(kappa - mu -(1)/(2))*Pi*I))/(GAMMA((1)/(2)+ mu + kappa))*WhittakerW(kappa, mu, z)+(exp(- kappa*Pi*I))/(GAMMA((1)/(2)+ mu - kappa))*WhittakerW(- kappa, mu, exp(- Pi*I)*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,Gamma[1 + 2*\[Mu]]]*WhittakerM[\[Kappa], \[Mu], z] == Divide[Exp[-(\[Kappa]- \[Mu]-Divide[1,2])*Pi*I],Gamma[Divide[1,2]+ \[Mu]+ \[Kappa]]]*WhittakerW[\[Kappa], \[Mu], z]+Divide[Exp[- \[Kappa]*Pi*I],Gamma[Divide[1,2]+ \[Mu]- \[Kappa]]]*WhittakerW[- \[Kappa], \[Mu], Exp[- Pi*I]*z]</syntaxhighlight> || Failure || Failure || Manual Skip! || <div class="toccolours mw-collapsible mw-collapsed">Failed [180 / 252]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.6446478863068316, -8.276809691598643] | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-188.39316140446167, 86.36502083726177] | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/13.14.E33 13.14.E33] || [[Item:Q4525|<math>\WhittakerconfhyperW{\kappa}{\mu}@{z} = \frac{\EulerGamma@{-2\mu}}{\EulerGamma@{\frac{1}{2}-\mu-\kappa}}\WhittakerconfhyperM{\kappa}{\mu}@{z}+\frac{\EulerGamma@{2\mu}}{\EulerGamma@{\frac{1}{2}+\mu-\kappa}}\WhittakerconfhyperM{\kappa}{-\mu}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperW{\kappa}{\mu}@{z} = \frac{\EulerGamma@{-2\mu}}{\EulerGamma@{\frac{1}{2}-\mu-\kappa}}\WhittakerconfhyperM{\kappa}{\mu}@{z}+\frac{\EulerGamma@{2\mu}}{\EulerGamma@{\frac{1}{2}+\mu-\kappa}}\WhittakerconfhyperM{\kappa}{-\mu}@{z}</syntaxhighlight> || <math>\realpart@@{(-2\mu)} > 0, \realpart@@{(\frac{1}{2}-\mu-\kappa)} > 0, \realpart@@{(2\mu)} > 0, \realpart@@{(\frac{1}{2}+\mu-\kappa)} > 0</math> || <syntaxhighlight lang=mathematica>WhittakerW(kappa, mu, z) = (GAMMA(- 2*mu))/(GAMMA((1)/(2)- mu - kappa))*WhittakerM(kappa, mu, z)+(GAMMA(2*mu))/(GAMMA((1)/(2)+ mu - kappa))*WhittakerM(kappa, - mu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerW[\[Kappa], \[Mu], z] == Divide[Gamma[- 2*\[Mu]],Gamma[Divide[1,2]- \[Mu]- \[Kappa]]]*WhittakerM[\[Kappa], \[Mu], z]+Divide[Gamma[2*\[Mu]],Gamma[Divide[1,2]+ \[Mu]- \[Kappa]]]*WhittakerM[\[Kappa], - \[Mu], z]</syntaxhighlight> || Successful || Failure || - || Skip - No test values generated | |||
|- | |||
| [https://dlmf.nist.gov/13.15.E1 13.15.E1] || [[Item:Q4526|<math>(\kappa-\mu-\tfrac{1}{2})\WhittakerconfhyperM{\kappa-1}{\mu}@{z}+(z-2\kappa)\WhittakerconfhyperM{\kappa}{\mu}@{z}+(\kappa+\mu+\tfrac{1}{2})\WhittakerconfhyperM{\kappa+1}{\mu}@{z} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>(\kappa-\mu-\tfrac{1}{2})\WhittakerconfhyperM{\kappa-1}{\mu}@{z}+(z-2\kappa)\WhittakerconfhyperM{\kappa}{\mu}@{z}+(\kappa+\mu+\tfrac{1}{2})\WhittakerconfhyperM{\kappa+1}{\mu}@{z} = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(kappa - mu -(1)/(2))*WhittakerM(kappa - 1, mu, z)+(z - 2*kappa)*WhittakerM(kappa, mu, z)+(kappa + mu +(1)/(2))*WhittakerM(kappa + 1, mu, z) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>(\[Kappa]- \[Mu]-Divide[1,2])*WhittakerM[\[Kappa]- 1, \[Mu], z]+(z - 2*\[Kappa])*WhittakerM[\[Kappa], \[Mu], z]+(\[Kappa]+ \[Mu]+Divide[1,2])*WhittakerM[\[Kappa]+ 1, \[Mu], z] == 0</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [84 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, -1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, -0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/13.15.E2 13.15.E2] || [[Item:Q4527|<math>2\mu(1+2\mu)\sqrt{z}\WhittakerconfhyperM{\kappa-\frac{1}{2}}{\mu-\frac{1}{2}}@{z}-(z+2\mu)(1+2\mu)\WhittakerconfhyperM{\kappa}{\mu}@{z}+(\kappa+\mu+\tfrac{1}{2})\sqrt{z}\WhittakerconfhyperM{\kappa+\frac{1}{2}}{\mu+\frac{1}{2}}@{z} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>2\mu(1+2\mu)\sqrt{z}\WhittakerconfhyperM{\kappa-\frac{1}{2}}{\mu-\frac{1}{2}}@{z}-(z+2\mu)(1+2\mu)\WhittakerconfhyperM{\kappa}{\mu}@{z}+(\kappa+\mu+\tfrac{1}{2})\sqrt{z}\WhittakerconfhyperM{\kappa+\frac{1}{2}}{\mu+\frac{1}{2}}@{z} = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>2*mu*(1 + 2*mu)*sqrt(z)*WhittakerM(kappa -(1)/(2), mu -(1)/(2), z)-(z + 2*mu)*(1 + 2*mu)*WhittakerM(kappa, mu, z)+(kappa + mu +(1)/(2))*sqrt(z)*WhittakerM(kappa +(1)/(2), mu +(1)/(2), z) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>2*\[Mu]*(1 + 2*\[Mu])*Sqrt[z]*WhittakerM[\[Kappa]-Divide[1,2], \[Mu]-Divide[1,2], z]-(z + 2*\[Mu])*(1 + 2*\[Mu])*WhittakerM[\[Kappa], \[Mu], z]+(\[Kappa]+ \[Mu]+Divide[1,2])*Sqrt[z]*WhittakerM[\[Kappa]+Divide[1,2], \[Mu]+Divide[1,2], z] == 0</syntaxhighlight> || Successful || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [81 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, -1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, -0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/13.15.E3 13.15.E3] || [[Item:Q4528|<math>(\kappa-\mu-\tfrac{1}{2})\WhittakerconfhyperM{\kappa-\frac{1}{2}}{\mu+\frac{1}{2}}@{z}+(1+2\mu)\sqrt{z}\WhittakerconfhyperM{\kappa}{\mu}@{z}-(\kappa+\mu+\tfrac{1}{2})\WhittakerconfhyperM{\kappa+\frac{1}{2}}{\mu+\frac{1}{2}}@{z} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>(\kappa-\mu-\tfrac{1}{2})\WhittakerconfhyperM{\kappa-\frac{1}{2}}{\mu+\frac{1}{2}}@{z}+(1+2\mu)\sqrt{z}\WhittakerconfhyperM{\kappa}{\mu}@{z}-(\kappa+\mu+\tfrac{1}{2})\WhittakerconfhyperM{\kappa+\frac{1}{2}}{\mu+\frac{1}{2}}@{z} = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(kappa - mu -(1)/(2))*WhittakerM(kappa -(1)/(2), mu +(1)/(2), z)+(1 + 2*mu)*sqrt(z)*WhittakerM(kappa, mu, z)-(kappa + mu +(1)/(2))*WhittakerM(kappa +(1)/(2), mu +(1)/(2), z) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>(\[Kappa]- \[Mu]-Divide[1,2])*WhittakerM[\[Kappa]-Divide[1,2], \[Mu]+Divide[1,2], z]+(1 + 2*\[Mu])*Sqrt[z]*WhittakerM[\[Kappa], \[Mu], z]-(\[Kappa]+ \[Mu]+Divide[1,2])*WhittakerM[\[Kappa]+Divide[1,2], \[Mu]+Divide[1,2], z] == 0</syntaxhighlight> || Successful || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [84 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, -1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, -0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/13.15.E4 13.15.E4] || [[Item:Q4529|<math>2\mu\WhittakerconfhyperM{\kappa-\frac{1}{2}}{\mu-\frac{1}{2}}@{z}-2\mu\WhittakerconfhyperM{\kappa+\frac{1}{2}}{\mu-\frac{1}{2}}@{z}-\sqrt{z}\WhittakerconfhyperM{\kappa}{\mu}@{z} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>2\mu\WhittakerconfhyperM{\kappa-\frac{1}{2}}{\mu-\frac{1}{2}}@{z}-2\mu\WhittakerconfhyperM{\kappa+\frac{1}{2}}{\mu-\frac{1}{2}}@{z}-\sqrt{z}\WhittakerconfhyperM{\kappa}{\mu}@{z} = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>2*mu*WhittakerM(kappa -(1)/(2), mu -(1)/(2), z)- 2*mu*WhittakerM(kappa +(1)/(2), mu -(1)/(2), z)-sqrt(z)*WhittakerM(kappa, mu, z) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>2*\[Mu]*WhittakerM[\[Kappa]-Divide[1,2], \[Mu]-Divide[1,2], z]- 2*\[Mu]*WhittakerM[\[Kappa]+Divide[1,2], \[Mu]-Divide[1,2], z]-Sqrt[z]*WhittakerM[\[Kappa], \[Mu], z] == 0</syntaxhighlight> || Successful || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [78 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, -1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, -0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/13.15.E5 13.15.E5] || [[Item:Q4530|<math>2\mu(1+2\mu)\WhittakerconfhyperM{\kappa}{\mu}@{z}-2\mu(1+2\mu)\sqrt{z}\WhittakerconfhyperM{\kappa-\frac{1}{2}}{\mu-\frac{1}{2}}@{z}-(\kappa-\mu-\tfrac{1}{2})\sqrt{z}\WhittakerconfhyperM{\kappa-\frac{1}{2}}{\mu+\frac{1}{2}}@{z} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>2\mu(1+2\mu)\WhittakerconfhyperM{\kappa}{\mu}@{z}-2\mu(1+2\mu)\sqrt{z}\WhittakerconfhyperM{\kappa-\frac{1}{2}}{\mu-\frac{1}{2}}@{z}-(\kappa-\mu-\tfrac{1}{2})\sqrt{z}\WhittakerconfhyperM{\kappa-\frac{1}{2}}{\mu+\frac{1}{2}}@{z} = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>2*mu*(1 + 2*mu)*WhittakerM(kappa, mu, z)- 2*mu*(1 + 2*mu)*sqrt(z)*WhittakerM(kappa -(1)/(2), mu -(1)/(2), z)-(kappa - mu -(1)/(2))*sqrt(z)*WhittakerM(kappa -(1)/(2), mu +(1)/(2), z) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>2*\[Mu]*(1 + 2*\[Mu])*WhittakerM[\[Kappa], \[Mu], z]- 2*\[Mu]*(1 + 2*\[Mu])*Sqrt[z]*WhittakerM[\[Kappa]-Divide[1,2], \[Mu]-Divide[1,2], z]-(\[Kappa]- \[Mu]-Divide[1,2])*Sqrt[z]*WhittakerM[\[Kappa]-Divide[1,2], \[Mu]+Divide[1,2], z] == 0</syntaxhighlight> || Successful || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [81 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, -1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, -0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/13.15.E6 13.15.E6] || [[Item:Q4531|<math>2\mu(1+2\mu)\sqrt{z}\WhittakerconfhyperM{\kappa+\frac{1}{2}}{\mu-\frac{1}{2}}@{z}+(z-2\mu)(1+2\mu)\WhittakerconfhyperM{\kappa}{\mu}@{z}+(\kappa-\mu-\tfrac{1}{2})\sqrt{z}\WhittakerconfhyperM{\kappa-\frac{1}{2}}{\mu+\frac{1}{2}}@{z} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>2\mu(1+2\mu)\sqrt{z}\WhittakerconfhyperM{\kappa+\frac{1}{2}}{\mu-\frac{1}{2}}@{z}+(z-2\mu)(1+2\mu)\WhittakerconfhyperM{\kappa}{\mu}@{z}+(\kappa-\mu-\tfrac{1}{2})\sqrt{z}\WhittakerconfhyperM{\kappa-\frac{1}{2}}{\mu+\frac{1}{2}}@{z} = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>2*mu*(1 + 2*mu)*sqrt(z)*WhittakerM(kappa +(1)/(2), mu -(1)/(2), z)+(z - 2*mu)*(1 + 2*mu)*WhittakerM(kappa, mu, z)+(kappa - mu -(1)/(2))*sqrt(z)*WhittakerM(kappa -(1)/(2), mu +(1)/(2), z) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>2*\[Mu]*(1 + 2*\[Mu])*Sqrt[z]*WhittakerM[\[Kappa]+Divide[1,2], \[Mu]-Divide[1,2], z]+(z - 2*\[Mu])*(1 + 2*\[Mu])*WhittakerM[\[Kappa], \[Mu], z]+(\[Kappa]- \[Mu]-Divide[1,2])*Sqrt[z]*WhittakerM[\[Kappa]-Divide[1,2], \[Mu]+Divide[1,2], z] == 0</syntaxhighlight> || Successful || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [81 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, -1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, -0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/13.15.E7 13.15.E7] || [[Item:Q4532|<math>2\mu(1+2\mu)\sqrt{z}\WhittakerconfhyperM{\kappa+\frac{1}{2}}{\mu-\frac{1}{2}}@{z}-2\mu(1+2\mu)\WhittakerconfhyperM{\kappa}{\mu}@{z}+(\kappa+\mu+\tfrac{1}{2})\sqrt{z}\WhittakerconfhyperM{\kappa+\frac{1}{2}}{\mu+\frac{1}{2}}@{z} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>2\mu(1+2\mu)\sqrt{z}\WhittakerconfhyperM{\kappa+\frac{1}{2}}{\mu-\frac{1}{2}}@{z}-2\mu(1+2\mu)\WhittakerconfhyperM{\kappa}{\mu}@{z}+(\kappa+\mu+\tfrac{1}{2})\sqrt{z}\WhittakerconfhyperM{\kappa+\frac{1}{2}}{\mu+\frac{1}{2}}@{z} = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>2*mu*(1 + 2*mu)*sqrt(z)*WhittakerM(kappa +(1)/(2), mu -(1)/(2), z)- 2*mu*(1 + 2*mu)*WhittakerM(kappa, mu, z)+(kappa + mu +(1)/(2))*sqrt(z)*WhittakerM(kappa +(1)/(2), mu +(1)/(2), z) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>2*\[Mu]*(1 + 2*\[Mu])*Sqrt[z]*WhittakerM[\[Kappa]+Divide[1,2], \[Mu]-Divide[1,2], z]- 2*\[Mu]*(1 + 2*\[Mu])*WhittakerM[\[Kappa], \[Mu], z]+(\[Kappa]+ \[Mu]+Divide[1,2])*Sqrt[z]*WhittakerM[\[Kappa]+Divide[1,2], \[Mu]+Divide[1,2], z] == 0</syntaxhighlight> || Successful || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [81 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, -1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, -0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/13.15.E8 13.15.E8] || [[Item:Q4533|<math>\WhittakerconfhyperW{\kappa+\frac{1}{2}}{\mu+\frac{1}{2}}@{z}-\sqrt{z}\WhittakerconfhyperW{\kappa}{\mu}@{z}+(\kappa-\mu-\tfrac{1}{2})\WhittakerconfhyperW{\kappa-\frac{1}{2}}{\mu+\frac{1}{2}}@{z} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperW{\kappa+\frac{1}{2}}{\mu+\frac{1}{2}}@{z}-\sqrt{z}\WhittakerconfhyperW{\kappa}{\mu}@{z}+(\kappa-\mu-\tfrac{1}{2})\WhittakerconfhyperW{\kappa-\frac{1}{2}}{\mu+\frac{1}{2}}@{z} = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>WhittakerW(kappa +(1)/(2), mu +(1)/(2), z)-sqrt(z)*WhittakerW(kappa, mu, z)+(kappa - mu -(1)/(2))*WhittakerW(kappa -(1)/(2), mu +(1)/(2), z) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerW[\[Kappa]+Divide[1,2], \[Mu]+Divide[1,2], z]-Sqrt[z]*WhittakerW[\[Kappa], \[Mu], z]+(\[Kappa]- \[Mu]-Divide[1,2])*WhittakerW[\[Kappa]-Divide[1,2], \[Mu]+Divide[1,2], z] == 0</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 300] | |||
|- | |||
| [https://dlmf.nist.gov/13.15.E9 13.15.E9] || [[Item:Q4534|<math>\WhittakerconfhyperW{\kappa+\frac{1}{2}}{\mu-\frac{1}{2}}@{z}-\sqrt{z}\WhittakerconfhyperW{\kappa}{\mu}@{z}+(\kappa+\mu-\tfrac{1}{2})\WhittakerconfhyperW{\kappa-\frac{1}{2}}{\mu-\frac{1}{2}}@{z} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperW{\kappa+\frac{1}{2}}{\mu-\frac{1}{2}}@{z}-\sqrt{z}\WhittakerconfhyperW{\kappa}{\mu}@{z}+(\kappa+\mu-\tfrac{1}{2})\WhittakerconfhyperW{\kappa-\frac{1}{2}}{\mu-\frac{1}{2}}@{z} = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>WhittakerW(kappa +(1)/(2), mu -(1)/(2), z)-sqrt(z)*WhittakerW(kappa, mu, z)+(kappa + mu -(1)/(2))*WhittakerW(kappa -(1)/(2), mu -(1)/(2), z) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerW[\[Kappa]+Divide[1,2], \[Mu]-Divide[1,2], z]-Sqrt[z]*WhittakerW[\[Kappa], \[Mu], z]+(\[Kappa]+ \[Mu]-Divide[1,2])*WhittakerW[\[Kappa]-Divide[1,2], \[Mu]-Divide[1,2], z] == 0</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 300] | |||
|- | |||
| [https://dlmf.nist.gov/13.15.E10 13.15.E10] || [[Item:Q4535|<math>2\mu\WhittakerconfhyperW{\kappa}{\mu}@{z}-\sqrt{z}\WhittakerconfhyperW{\kappa+\frac{1}{2}}{\mu+\frac{1}{2}}@{z}+\sqrt{z}\WhittakerconfhyperW{\kappa+\frac{1}{2}}{\mu-\frac{1}{2}}@{z} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>2\mu\WhittakerconfhyperW{\kappa}{\mu}@{z}-\sqrt{z}\WhittakerconfhyperW{\kappa+\frac{1}{2}}{\mu+\frac{1}{2}}@{z}+\sqrt{z}\WhittakerconfhyperW{\kappa+\frac{1}{2}}{\mu-\frac{1}{2}}@{z} = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>2*mu*WhittakerW(kappa, mu, z)-sqrt(z)*WhittakerW(kappa +(1)/(2), mu +(1)/(2), z)+sqrt(z)*WhittakerW(kappa +(1)/(2), mu -(1)/(2), z) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>2*\[Mu]*WhittakerW[\[Kappa], \[Mu], z]-Sqrt[z]*WhittakerW[\[Kappa]+Divide[1,2], \[Mu]+Divide[1,2], z]+Sqrt[z]*WhittakerW[\[Kappa]+Divide[1,2], \[Mu]-Divide[1,2], z] == 0</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 300] | |||
|- | |||
| [https://dlmf.nist.gov/13.15.E11 13.15.E11] || [[Item:Q4536|<math>\WhittakerconfhyperW{\kappa+1}{\mu}@{z}+(2\kappa-z)\WhittakerconfhyperW{\kappa}{\mu}@{z}+(\kappa-\mu-\tfrac{1}{2})(\kappa+\mu-\tfrac{1}{2})\WhittakerconfhyperW{\kappa-1}{\mu}@{z} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperW{\kappa+1}{\mu}@{z}+(2\kappa-z)\WhittakerconfhyperW{\kappa}{\mu}@{z}+(\kappa-\mu-\tfrac{1}{2})(\kappa+\mu-\tfrac{1}{2})\WhittakerconfhyperW{\kappa-1}{\mu}@{z} = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>WhittakerW(kappa + 1, mu, z)+(2*kappa - z)*WhittakerW(kappa, mu, z)+(kappa - mu -(1)/(2))*(kappa + mu -(1)/(2))*WhittakerW(kappa - 1, mu, z) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerW[\[Kappa]+ 1, \[Mu], z]+(2*\[Kappa]- z)*WhittakerW[\[Kappa], \[Mu], z]+(\[Kappa]- \[Mu]-Divide[1,2])*(\[Kappa]+ \[Mu]-Divide[1,2])*WhittakerW[\[Kappa]- 1, \[Mu], z] == 0</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 300] | |||
|- | |||
| [https://dlmf.nist.gov/13.15.E12 13.15.E12] || [[Item:Q4537|<math>(\kappa-\mu-\tfrac{1}{2})\sqrt{z}\WhittakerconfhyperW{\kappa-\frac{1}{2}}{\mu+\frac{1}{2}}@{z}+2\mu\WhittakerconfhyperW{\kappa}{\mu}@{z}-(\kappa+\mu-\tfrac{1}{2})\sqrt{z}\WhittakerconfhyperW{\kappa-\frac{1}{2}}{\mu-\frac{1}{2}}@{z} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>(\kappa-\mu-\tfrac{1}{2})\sqrt{z}\WhittakerconfhyperW{\kappa-\frac{1}{2}}{\mu+\frac{1}{2}}@{z}+2\mu\WhittakerconfhyperW{\kappa}{\mu}@{z}-(\kappa+\mu-\tfrac{1}{2})\sqrt{z}\WhittakerconfhyperW{\kappa-\frac{1}{2}}{\mu-\frac{1}{2}}@{z} = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(kappa - mu -(1)/(2))*sqrt(z)*WhittakerW(kappa -(1)/(2), mu +(1)/(2), z)+ 2*mu*WhittakerW(kappa, mu, z)-(kappa + mu -(1)/(2))*sqrt(z)*WhittakerW(kappa -(1)/(2), mu -(1)/(2), z) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>(\[Kappa]- \[Mu]-Divide[1,2])*Sqrt[z]*WhittakerW[\[Kappa]-Divide[1,2], \[Mu]+Divide[1,2], z]+ 2*\[Mu]*WhittakerW[\[Kappa], \[Mu], z]-(\[Kappa]+ \[Mu]-Divide[1,2])*Sqrt[z]*WhittakerW[\[Kappa]-Divide[1,2], \[Mu]-Divide[1,2], z] == 0</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 300] | |||
|- | |||
| [https://dlmf.nist.gov/13.15.E13 13.15.E13] || [[Item:Q4538|<math>(\kappa+\mu-\tfrac{1}{2})\sqrt{z}\WhittakerconfhyperW{\kappa-\frac{1}{2}}{\mu-\frac{1}{2}}@{z}-(z+2\mu)\WhittakerconfhyperW{\kappa}{\mu}@{z}+\sqrt{z}\WhittakerconfhyperW{\kappa+\frac{1}{2}}{\mu+\frac{1}{2}}@{z} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>(\kappa+\mu-\tfrac{1}{2})\sqrt{z}\WhittakerconfhyperW{\kappa-\frac{1}{2}}{\mu-\frac{1}{2}}@{z}-(z+2\mu)\WhittakerconfhyperW{\kappa}{\mu}@{z}+\sqrt{z}\WhittakerconfhyperW{\kappa+\frac{1}{2}}{\mu+\frac{1}{2}}@{z} = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(kappa + mu -(1)/(2))*sqrt(z)*WhittakerW(kappa -(1)/(2), mu -(1)/(2), z)-(z + 2*mu)*WhittakerW(kappa, mu, z)+sqrt(z)*WhittakerW(kappa +(1)/(2), mu +(1)/(2), z) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>(\[Kappa]+ \[Mu]-Divide[1,2])*Sqrt[z]*WhittakerW[\[Kappa]-Divide[1,2], \[Mu]-Divide[1,2], z]-(z + 2*\[Mu])*WhittakerW[\[Kappa], \[Mu], z]+Sqrt[z]*WhittakerW[\[Kappa]+Divide[1,2], \[Mu]+Divide[1,2], z] == 0</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 300] | |||
|- | |||
| [https://dlmf.nist.gov/13.15.E14 13.15.E14] || [[Item:Q4539|<math>(\kappa-\mu-\tfrac{1}{2})\sqrt{z}\WhittakerconfhyperW{\kappa-\frac{1}{2}}{\mu+\frac{1}{2}}@{z}-(z-2\mu)\WhittakerconfhyperW{\kappa}{\mu}@{z}+\sqrt{z}\WhittakerconfhyperW{\kappa+\frac{1}{2}}{\mu-\frac{1}{2}}@{z} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>(\kappa-\mu-\tfrac{1}{2})\sqrt{z}\WhittakerconfhyperW{\kappa-\frac{1}{2}}{\mu+\frac{1}{2}}@{z}-(z-2\mu)\WhittakerconfhyperW{\kappa}{\mu}@{z}+\sqrt{z}\WhittakerconfhyperW{\kappa+\frac{1}{2}}{\mu-\frac{1}{2}}@{z} = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(kappa - mu -(1)/(2))*sqrt(z)*WhittakerW(kappa -(1)/(2), mu +(1)/(2), z)-(z - 2*mu)*WhittakerW(kappa, mu, z)+sqrt(z)*WhittakerW(kappa +(1)/(2), mu -(1)/(2), z) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>(\[Kappa]- \[Mu]-Divide[1,2])*Sqrt[z]*WhittakerW[\[Kappa]-Divide[1,2], \[Mu]+Divide[1,2], z]-(z - 2*\[Mu])*WhittakerW[\[Kappa], \[Mu], z]+Sqrt[z]*WhittakerW[\[Kappa]+Divide[1,2], \[Mu]-Divide[1,2], z] == 0</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 300] | |||
|- | |||
| [https://dlmf.nist.gov/13.15.E15 13.15.E15] || [[Item:Q4540|<math>\deriv[n]{}{z}\left(e^{\frac{1}{2}z}z^{\mu-\frac{1}{2}}\WhittakerconfhyperM{\kappa}{\mu}@{z}\right) = (-1)^{n}\Pochhammersym{-2\mu}{n}e^{\frac{1}{2}z}z^{\mu-\frac{1}{2}(n+1)}\WhittakerconfhyperM{\kappa-\frac{1}{2}n}{\mu-\frac{1}{2}n}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[n]{}{z}\left(e^{\frac{1}{2}z}z^{\mu-\frac{1}{2}}\WhittakerconfhyperM{\kappa}{\mu}@{z}\right) = (-1)^{n}\Pochhammersym{-2\mu}{n}e^{\frac{1}{2}z}z^{\mu-\frac{1}{2}(n+1)}\WhittakerconfhyperM{\kappa-\frac{1}{2}n}{\mu-\frac{1}{2}n}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(exp((1)/(2)*z)*(z)^(mu -(1)/(2))* WhittakerM(kappa, mu, z), [z$(n)]) = (- 1)^(n)* pochhammer(- 2*mu, n)*exp((1)/(2)*z)*(z)^(mu -(1)/(2)*(n + 1))* WhittakerM(kappa -(1)/(2)*n, mu -(1)/(2)*n, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[Exp[Divide[1,2]*z]*(z)^(\[Mu]-Divide[1,2])* WhittakerM[\[Kappa], \[Mu], z], {z, n}] == (- 1)^(n)* Pochhammer[- 2*\[Mu], n]*Exp[Divide[1,2]*z]*(z)^(\[Mu]-Divide[1,2]*(n + 1))* WhittakerM[\[Kappa]-Divide[1,2]*n, \[Mu]-Divide[1,2]*n, z]</syntaxhighlight> || Failure || Failure || Skipped - Because timed out || <div class="toccolours mw-collapsible mw-collapsed">Failed [210 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: DirectedInfinity[] | |||
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, -1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: DirectedInfinity[] | |||
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, -1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/13.15.E16 13.15.E16] || [[Item:Q4541|<math>\deriv[n]{}{z}\left(e^{\frac{1}{2}z}z^{-\mu-\frac{1}{2}}\WhittakerconfhyperM{\kappa}{\mu}@{z}\right) = \frac{\Pochhammersym{\frac{1}{2}+\mu-\kappa}{n}}{\Pochhammersym{1+2\mu}{n}}e^{\frac{1}{2}z}z^{-\mu-\frac{1}{2}(n+1)}\WhittakerconfhyperM{\kappa-\frac{1}{2}n}{\mu+\frac{1}{2}n}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[n]{}{z}\left(e^{\frac{1}{2}z}z^{-\mu-\frac{1}{2}}\WhittakerconfhyperM{\kappa}{\mu}@{z}\right) = \frac{\Pochhammersym{\frac{1}{2}+\mu-\kappa}{n}}{\Pochhammersym{1+2\mu}{n}}e^{\frac{1}{2}z}z^{-\mu-\frac{1}{2}(n+1)}\WhittakerconfhyperM{\kappa-\frac{1}{2}n}{\mu+\frac{1}{2}n}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(exp((1)/(2)*z)*(z)^(- mu -(1)/(2))* WhittakerM(kappa, mu, z), [z$(n)]) = (pochhammer((1)/(2)+ mu - kappa, n))/(pochhammer(1 + 2*mu, n))*exp((1)/(2)*z)*(z)^(- mu -(1)/(2)*(n + 1))* WhittakerM(kappa -(1)/(2)*n, mu +(1)/(2)*n, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[Exp[Divide[1,2]*z]*(z)^(- \[Mu]-Divide[1,2])* WhittakerM[\[Kappa], \[Mu], z], {z, n}] == Divide[Pochhammer[Divide[1,2]+ \[Mu]- \[Kappa], n],Pochhammer[1 + 2*\[Mu], n]]*Exp[Divide[1,2]*z]*(z)^(- \[Mu]-Divide[1,2]*(n + 1))* WhittakerM[\[Kappa]-Divide[1,2]*n, \[Mu]+Divide[1,2]*n, z]</syntaxhighlight> || Failure || Failure || Skipped - Because timed out || <div class="toccolours mw-collapsible mw-collapsed">Failed [210 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: DirectedInfinity[] | |||
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, -1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: DirectedInfinity[] | |||
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, -1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/13.15.E17 13.15.E17] || [[Item:Q4542|<math>\left(z\deriv{}{z}z\right)^{n}\left(e^{\frac{1}{2}z}z^{-\kappa-1}\WhittakerconfhyperM{\kappa}{\mu}@{z}\right) = \Pochhammersym{\tfrac{1}{2}+\mu-\kappa}{n}e^{\frac{1}{2}z}z^{n-\kappa-1}\WhittakerconfhyperM{\kappa-n}{\mu}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\left(z\deriv{}{z}z\right)^{n}\left(e^{\frac{1}{2}z}z^{-\kappa-1}\WhittakerconfhyperM{\kappa}{\mu}@{z}\right) = \Pochhammersym{\tfrac{1}{2}+\mu-\kappa}{n}e^{\frac{1}{2}z}z^{n-\kappa-1}\WhittakerconfhyperM{\kappa-n}{\mu}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(z*diff(z, z))^(n)*(exp((1)/(2)*z)*(z)^(- kappa - 1)* WhittakerM(kappa, mu, z)) = pochhammer((1)/(2)+ mu - kappa, n)*exp((1)/(2)*z)*(z)^(n - kappa - 1)* WhittakerM(kappa - n, mu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(z*D[z, z])^(n)*(Exp[Divide[1,2]*z]*(z)^(- \[Kappa]- 1)* WhittakerM[\[Kappa], \[Mu], z]) == Pochhammer[Divide[1,2]+ \[Mu]- \[Kappa], n]*Exp[Divide[1,2]*z]*(z)^(n - \[Kappa]- 1)* WhittakerM[\[Kappa]- n, \[Mu], z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .3585110760+.454218427e-1*I | |||
Test Values: {kappa = 1/2*3^(1/2)+1/2*I, mu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.1773224730-.5602797385*I | |||
Test Values: {kappa = 1/2*3^(1/2)+1/2*I, mu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, n = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.35851107533499493, 0.045421842889073805] | |||
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.1773224737195902, -0.560279739303586] | |||
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/13.15.E18 13.15.E18] || [[Item:Q4543|<math>\deriv[n]{}{z}\left(e^{-\frac{1}{2}z}z^{\mu-\frac{1}{2}}\WhittakerconfhyperM{\kappa}{\mu}@{z}\right) = (-1)^{n}\Pochhammersym{-2\mu}{n}e^{-\frac{1}{2}z}z^{\mu-\frac{1}{2}(n+1)}\WhittakerconfhyperM{\kappa+\frac{1}{2}n}{\mu-\frac{1}{2}n}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[n]{}{z}\left(e^{-\frac{1}{2}z}z^{\mu-\frac{1}{2}}\WhittakerconfhyperM{\kappa}{\mu}@{z}\right) = (-1)^{n}\Pochhammersym{-2\mu}{n}e^{-\frac{1}{2}z}z^{\mu-\frac{1}{2}(n+1)}\WhittakerconfhyperM{\kappa+\frac{1}{2}n}{\mu-\frac{1}{2}n}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(exp(-(1)/(2)*z)*(z)^(mu -(1)/(2))* WhittakerM(kappa, mu, z), [z$(n)]) = (- 1)^(n)* pochhammer(- 2*mu, n)*exp(-(1)/(2)*z)*(z)^(mu -(1)/(2)*(n + 1))* WhittakerM(kappa +(1)/(2)*n, mu -(1)/(2)*n, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[Exp[-Divide[1,2]*z]*(z)^(\[Mu]-Divide[1,2])* WhittakerM[\[Kappa], \[Mu], z], {z, n}] == (- 1)^(n)* Pochhammer[- 2*\[Mu], n]*Exp[-Divide[1,2]*z]*(z)^(\[Mu]-Divide[1,2]*(n + 1))* WhittakerM[\[Kappa]+Divide[1,2]*n, \[Mu]-Divide[1,2]*n, z]</syntaxhighlight> || Failure || Failure || Skipped - Because timed out || <div class="toccolours mw-collapsible mw-collapsed">Failed [210 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: DirectedInfinity[] | |||
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, -1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: DirectedInfinity[] | |||
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, -1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/13.15.E19 13.15.E19] || [[Item:Q4544|<math>\deriv[n]{}{z}\left(e^{-\frac{1}{2}z}z^{-\mu-\frac{1}{2}}\WhittakerconfhyperM{\kappa}{\mu}@{z}\right) = (-1)^{n}\frac{\Pochhammersym{\frac{1}{2}+\mu+\kappa}{n}}{\Pochhammersym{1+2\mu}{n}}e^{-\frac{1}{2}z}z^{-\mu-\frac{1}{2}(n+1)}\*\WhittakerconfhyperM{\kappa+\frac{1}{2}n}{\mu+\frac{1}{2}n}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[n]{}{z}\left(e^{-\frac{1}{2}z}z^{-\mu-\frac{1}{2}}\WhittakerconfhyperM{\kappa}{\mu}@{z}\right) = (-1)^{n}\frac{\Pochhammersym{\frac{1}{2}+\mu+\kappa}{n}}{\Pochhammersym{1+2\mu}{n}}e^{-\frac{1}{2}z}z^{-\mu-\frac{1}{2}(n+1)}\*\WhittakerconfhyperM{\kappa+\frac{1}{2}n}{\mu+\frac{1}{2}n}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(exp(-(1)/(2)*z)*(z)^(- mu -(1)/(2))* WhittakerM(kappa, mu, z), [z$(n)]) = (- 1)^(n)*(pochhammer((1)/(2)+ mu + kappa, n))/(pochhammer(1 + 2*mu, n))*exp(-(1)/(2)*z)*(z)^(- mu -(1)/(2)*(n + 1))* WhittakerM(kappa +(1)/(2)*n, mu +(1)/(2)*n, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[Exp[-Divide[1,2]*z]*(z)^(- \[Mu]-Divide[1,2])* WhittakerM[\[Kappa], \[Mu], z], {z, n}] == (- 1)^(n)*Divide[Pochhammer[Divide[1,2]+ \[Mu]+ \[Kappa], n],Pochhammer[1 + 2*\[Mu], n]]*Exp[-Divide[1,2]*z]*(z)^(- \[Mu]-Divide[1,2]*(n + 1))* WhittakerM[\[Kappa]+Divide[1,2]*n, \[Mu]+Divide[1,2]*n, z]</syntaxhighlight> || Failure || Failure || Skipped - Because timed out || <div class="toccolours mw-collapsible mw-collapsed">Failed [210 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: DirectedInfinity[] | |||
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, -1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: DirectedInfinity[] | |||
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, -1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/13.15.E20 13.15.E20] || [[Item:Q4545|<math>\left(z\deriv{}{z}z\right)^{n}\left(e^{-\frac{1}{2}z}z^{\kappa-1}\WhittakerconfhyperM{\kappa}{\mu}@{z}\right) = \Pochhammersym{\tfrac{1}{2}+\mu+\kappa}{n}e^{-\frac{1}{2}z}z^{\kappa+n-1}\*\WhittakerconfhyperM{\kappa+n}{\mu}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\left(z\deriv{}{z}z\right)^{n}\left(e^{-\frac{1}{2}z}z^{\kappa-1}\WhittakerconfhyperM{\kappa}{\mu}@{z}\right) = \Pochhammersym{\tfrac{1}{2}+\mu+\kappa}{n}e^{-\frac{1}{2}z}z^{\kappa+n-1}\*\WhittakerconfhyperM{\kappa+n}{\mu}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(z*diff(z, z))^(n)*(exp(-(1)/(2)*z)*(z)^(kappa - 1)* WhittakerM(kappa, mu, z)) = pochhammer((1)/(2)+ mu + kappa, n)*exp(-(1)/(2)*z)*(z)^(kappa + n - 1)* WhittakerM(kappa + n, mu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(z*D[z, z])^(n)*(Exp[-Divide[1,2]*z]*(z)^(\[Kappa]- 1)* WhittakerM[\[Kappa], \[Mu], z]) == Pochhammer[Divide[1,2]+ \[Mu]+ \[Kappa], n]*Exp[-Divide[1,2]*z]*(z)^(\[Kappa]+ n - 1)* WhittakerM[\[Kappa]+ n, \[Mu], z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.221105652e-1-.2375136134*I | |||
Test Values: {kappa = 1/2*3^(1/2)+1/2*I, mu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .3191037849-.7838469226*I | |||
Test Values: {kappa = 1/2*3^(1/2)+1/2*I, mu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, n = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.02211056528532032, -0.23751361332195844] | |||
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.31910378464483535, -0.7838469223028885] | |||
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/13.15.E21 13.15.E21] || [[Item:Q4546|<math>\deriv[n]{}{z}\left(e^{\frac{1}{2}z}z^{-\mu-\frac{1}{2}}\WhittakerconfhyperW{\kappa}{\mu}@{z}\right) = (-1)^{n}\Pochhammersym{\tfrac{1}{2}+\mu-\kappa}{n}e^{\frac{1}{2}z}z^{-\mu-\frac{1}{2}(n+1)}\*\WhittakerconfhyperW{\kappa-\frac{1}{2}n}{\mu+\frac{1}{2}n}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[n]{}{z}\left(e^{\frac{1}{2}z}z^{-\mu-\frac{1}{2}}\WhittakerconfhyperW{\kappa}{\mu}@{z}\right) = (-1)^{n}\Pochhammersym{\tfrac{1}{2}+\mu-\kappa}{n}e^{\frac{1}{2}z}z^{-\mu-\frac{1}{2}(n+1)}\*\WhittakerconfhyperW{\kappa-\frac{1}{2}n}{\mu+\frac{1}{2}n}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(exp((1)/(2)*z)*(z)^(- mu -(1)/(2))* WhittakerW(kappa, mu, z), [z$(n)]) = (- 1)^(n)* pochhammer((1)/(2)+ mu - kappa, n)*exp((1)/(2)*z)*(z)^(- mu -(1)/(2)*(n + 1))* WhittakerW(kappa -(1)/(2)*n, mu +(1)/(2)*n, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[Exp[Divide[1,2]*z]*(z)^(- \[Mu]-Divide[1,2])* WhittakerW[\[Kappa], \[Mu], z], {z, n}] == (- 1)^(n)* Pochhammer[Divide[1,2]+ \[Mu]- \[Kappa], n]*Exp[Divide[1,2]*z]*(z)^(- \[Mu]-Divide[1,2]*(n + 1))* WhittakerW[\[Kappa]-Divide[1,2]*n, \[Mu]+Divide[1,2]*n, z]</syntaxhighlight> || Failure || Failure || Skipped - Because timed out || <div class="toccolours mw-collapsible mw-collapsed">Failed [192 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[-2.7003415598242593, -2.135803172450526], DifferenceRoot[Function[{, } | |||
Test Values: {Equal[Plus[Times[Plus[-1, Times[-2, ], Times[2, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Times[-2, -1.5]], []], Times[2, Plus[1, ], Plus[1, , Times[-1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Times[2, -1.5]], [Plus[1, ]]], Times[2, Plus[1, ], Plus[2, ], Power[E, Times[Complex[0, Rational[1, 6]], Pi]], [Plus[2, ]]]], 0], Equal[[0], Times[Power[E, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], Plus[Rational[-1, 2], Times[-1, -1.5]]], WhittakerW[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], -1.5, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], Equal[[1], Times[Rational[1, 2], Power[E, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], Plus[Rational[-3, 2],<syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.8050385267502765, -1.4779965316225212], Times[2.0, DifferenceRoot[Function[{, } | |||
Test Values: {Equal[Plus[Times[Plus[-1, Times[-2, ], Times[2, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Times[-2, -1.5]], []], Times[2, Plus[1, ], Plus[1, , Times[-1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Times[2, -1.5]], [Plus[1, ]]], Times[2, Plus[1, ], Plus[2, ], Power[E, Times[Complex[0, Rational[1, 6]], Pi]], [Plus[2, ]]]], 0], Equal[[0], Times[Power[E, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], Plus[Rational[-1, 2], Times[-1, -1.5]]], WhittakerW[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], -1.5, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], Equal[[1], Times[Rational[1, 2], Power[E, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], Plus[Rational[-3, 2], Times[-1, -1.5]]], Plus[Times[-1, WhittakerW[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], -1.5, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[2, Power[E, Times[Complex[0, Rational[1, 6]], Pi]], WhittakerW[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], -1.5, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-2, Power[E, Times[Complex[0, Rational[1, 6]], Pi]], WhittakerW[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], -1.5, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-2, -1.5, WhittakerW[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], -1.5, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-2, WhittakerW[Plus[1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], -1.5, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]]]]}]][2.0]]], {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, -1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/13.15.E22 13.15.E22] || [[Item:Q4547|<math>\deriv[n]{}{z}\left(e^{\frac{1}{2}z}z^{\mu-\frac{1}{2}}\WhittakerconfhyperW{\kappa}{\mu}@{z}\right) = (-1)^{n}\Pochhammersym{\tfrac{1}{2}-\mu-\kappa}{n}e^{\frac{1}{2}z}z^{\mu-\frac{1}{2}(n+1)}\*\WhittakerconfhyperW{\kappa-\frac{1}{2}n}{\mu-\frac{1}{2}n}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[n]{}{z}\left(e^{\frac{1}{2}z}z^{\mu-\frac{1}{2}}\WhittakerconfhyperW{\kappa}{\mu}@{z}\right) = (-1)^{n}\Pochhammersym{\tfrac{1}{2}-\mu-\kappa}{n}e^{\frac{1}{2}z}z^{\mu-\frac{1}{2}(n+1)}\*\WhittakerconfhyperW{\kappa-\frac{1}{2}n}{\mu-\frac{1}{2}n}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(exp((1)/(2)*z)*(z)^(mu -(1)/(2))* WhittakerW(kappa, mu, z), [z$(n)]) = (- 1)^(n)* pochhammer((1)/(2)- mu - kappa, n)*exp((1)/(2)*z)*(z)^(mu -(1)/(2)*(n + 1))* WhittakerW(kappa -(1)/(2)*n, mu -(1)/(2)*n, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[Exp[Divide[1,2]*z]*(z)^(\[Mu]-Divide[1,2])* WhittakerW[\[Kappa], \[Mu], z], {z, n}] == (- 1)^(n)* Pochhammer[Divide[1,2]- \[Mu]- \[Kappa], n]*Exp[Divide[1,2]*z]*(z)^(\[Mu]-Divide[1,2]*(n + 1))* WhittakerW[\[Kappa]-Divide[1,2]*n, \[Mu]-Divide[1,2]*n, z]</syntaxhighlight> || Failure || Failure || Skipped - Because timed out || <div class="toccolours mw-collapsible mw-collapsed">Failed [192 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[-3.1506729340368813, -11.027912097410434], DifferenceRoot[Function[{, } | |||
Test Values: {Equal[Plus[Times[Plus[-1, Times[-2, ], Times[2, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Times[2, -1.5]], []], Times[2, Plus[1, ], Plus[1, , Times[-1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Times[-2, -1.5]], [Plus[1, ]]], Times[2, Plus[1, ], Plus[2, ], Power[E, Times[Complex[0, Rational[1, 6]], Pi]], [Plus[2, ]]]], 0], Equal[[0], Times[Power[E, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], Plus[Rational[-1, 2], -1.5]], WhittakerW[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], -1.5, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], Equal[[1], Times[Rational[1, 2], Power[E, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], Plus[Rational[-3, 2], -1.5]], P<syntaxhighlight lang=mathematica>Result: Plus[Complex[32.491056912593166, 25.892568815057246], Times[2.0, DifferenceRoot[Function[{, } | |||
Test Values: {Equal[Plus[Times[Plus[-1, Times[-2, ], Times[2, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Times[2, -1.5]], []], Times[2, Plus[1, ], Plus[1, , Times[-1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Times[-2, -1.5]], [Plus[1, ]]], Times[2, Plus[1, ], Plus[2, ], Power[E, Times[Complex[0, Rational[1, 6]], Pi]], [Plus[2, ]]]], 0], Equal[[0], Times[Power[E, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], Plus[Rational[-1, 2], -1.5]], WhittakerW[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], -1.5, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], Equal[[1], Times[Rational[1, 2], Power[E, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], Plus[Rational[-3, 2], -1.5]], Plus[Times[-1, WhittakerW[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], -1.5, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[2, Power[E, Times[Complex[0, Rational[1, 6]], Pi]], WhittakerW[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], -1.5, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-2, Power[E, Times[Complex[0, Rational[1, 6]], Pi]], WhittakerW[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], -1.5, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[2, -1.5, WhittakerW[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], -1.5, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-2, WhittakerW[Plus[1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], -1.5, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]]]]}]][2.0]]], {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, -1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/13.15.E23 13.15.E23] || [[Item:Q4548|<math>\left(z\deriv{}{z}z\right)^{n}\left(e^{\frac{1}{2}z}z^{-\kappa-1}\WhittakerconfhyperW{\kappa}{\mu}@{z}\right) = \Pochhammersym{\tfrac{1}{2}+\mu-\kappa}{n}\Pochhammersym{\tfrac{1}{2}-\mu-\kappa}{n}e^{\frac{1}{2}z}z^{n-\kappa-1}\WhittakerconfhyperW{\kappa-n}{\mu}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\left(z\deriv{}{z}z\right)^{n}\left(e^{\frac{1}{2}z}z^{-\kappa-1}\WhittakerconfhyperW{\kappa}{\mu}@{z}\right) = \Pochhammersym{\tfrac{1}{2}+\mu-\kappa}{n}\Pochhammersym{\tfrac{1}{2}-\mu-\kappa}{n}e^{\frac{1}{2}z}z^{n-\kappa-1}\WhittakerconfhyperW{\kappa-n}{\mu}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(z*diff(z, z))^(n)*(exp((1)/(2)*z)*(z)^(- kappa - 1)* WhittakerW(kappa, mu, z)) = pochhammer((1)/(2)+ mu - kappa, n)*pochhammer((1)/(2)- mu - kappa, n)*exp((1)/(2)*z)*(z)^(n - kappa - 1)* WhittakerW(kappa - n, mu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(z*D[z, z])^(n)*(Exp[Divide[1,2]*z]*(z)^(- \[Kappa]- 1)* WhittakerW[\[Kappa], \[Mu], z]) == Pochhammer[Divide[1,2]+ \[Mu]- \[Kappa], n]*Pochhammer[Divide[1,2]- \[Mu]- \[Kappa], n]*Exp[Divide[1,2]*z]*(z)^(n - \[Kappa]- 1)* WhittakerW[\[Kappa]- n, \[Mu], z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 2.468472246+1.546856952*I | |||
Test Values: {kappa = 1/2*3^(1/2)+1/2*I, mu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.885026449+1.175257266*I | |||
Test Values: {kappa = 1/2*3^(1/2)+1/2*I, mu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, n = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[2.4684722428383408, 1.546856950437671] | |||
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.8850264475606715, 1.175257265810332] | |||
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/13.15.E24 13.15.E24] || [[Item:Q4549|<math>\deriv[n]{}{z}\left(e^{-\frac{1}{2}z}z^{-\mu-\frac{1}{2}}\WhittakerconfhyperW{\kappa}{\mu}@{z}\right) = (-1)^{n}e^{-\frac{1}{2}z}z^{-\mu-\frac{1}{2}(n+1)}\WhittakerconfhyperW{\kappa+\frac{1}{2}n}{\mu+\frac{1}{2}n}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[n]{}{z}\left(e^{-\frac{1}{2}z}z^{-\mu-\frac{1}{2}}\WhittakerconfhyperW{\kappa}{\mu}@{z}\right) = (-1)^{n}e^{-\frac{1}{2}z}z^{-\mu-\frac{1}{2}(n+1)}\WhittakerconfhyperW{\kappa+\frac{1}{2}n}{\mu+\frac{1}{2}n}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(exp(-(1)/(2)*z)*(z)^(- mu -(1)/(2))* WhittakerW(kappa, mu, z), [z$(n)]) = (- 1)^(n)* exp(-(1)/(2)*z)*(z)^(- mu -(1)/(2)*(n + 1))* WhittakerW(kappa +(1)/(2)*n, mu +(1)/(2)*n, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[Exp[-Divide[1,2]*z]*(z)^(- \[Mu]-Divide[1,2])* WhittakerW[\[Kappa], \[Mu], z], {z, n}] == (- 1)^(n)* Exp[-Divide[1,2]*z]*(z)^(- \[Mu]-Divide[1,2]*(n + 1))* WhittakerW[\[Kappa]+Divide[1,2]*n, \[Mu]+Divide[1,2]*n, z]</syntaxhighlight> || Failure || Failure || Skipped - Because timed out || <div class="toccolours mw-collapsible mw-collapsed">Failed [192 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.5001431347806349, -0.3406797899835502], DifferenceRoot[Function[{, } | |||
Test Values: {Equal[Plus[Times[Plus[1, Times[2, ], Times[2, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Times[2, -1.5]], []], Times[2, Plus[1, ], Plus[1, , Power[E, Times[Complex[0, Rational[1, 6]], Pi]], Times[2, -1.5]], [Plus[1, ]]], Times[2, Plus[1, ], Plus[2, ], Power[E, Times[Complex[0, Rational[1, 6]], Pi]], [Plus[2, ]]]], 0], Equal[[0], Times[Power[E, Times[Rational[-1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], Plus[Rational[-1, 2], Times[-1, -1.5]]], WhittakerW[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], -1.5, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], Equal[[1], Times[Rational[-1, 2], Power[E, Times[Rational[-1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], Plus[Rational[-3, 2], Times[-1, <syntaxhighlight lang=mathematica>Result: Plus[Complex[0.332118444019996, 0.20129597063218943], Times[2.0, DifferenceRoot[Function[{, } | |||
Test Values: {Equal[Plus[Times[Plus[1, Times[2, ], Times[2, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Times[2, -1.5]], []], Times[2, Plus[1, ], Plus[1, , Power[E, Times[Complex[0, Rational[1, 6]], Pi]], Times[2, -1.5]], [Plus[1, ]]], Times[2, Plus[1, ], Plus[2, ], Power[E, Times[Complex[0, Rational[1, 6]], Pi]], [Plus[2, ]]]], 0], Equal[[0], Times[Power[E, Times[Rational[-1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], Plus[Rational[-1, 2], Times[-1, -1.5]]], WhittakerW[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], -1.5, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], Equal[[1], Times[Rational[-1, 2], Power[E, Times[Rational[-1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], Plus[Rational[-3, 2], Times[-1, -1.5]]], Plus[WhittakerW[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], -1.5, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Times[2, Power[E, Times[Complex[0, Rational[1, 6]], Pi]], WhittakerW[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], -1.5, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[2, -1.5, WhittakerW[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], -1.5, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[2, WhittakerW[Plus[1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], -1.5, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]]]]}]][2.0]]], {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, -1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/13.15.E25 13.15.E25] || [[Item:Q4550|<math>\deriv[n]{}{z}\left(e^{-\frac{1}{2}z}z^{\mu-\frac{1}{2}}\WhittakerconfhyperW{\kappa}{\mu}@{z}\right) = (-1)^{n}e^{-\frac{1}{2}z}z^{\mu-\frac{1}{2}(n+1)}\WhittakerconfhyperW{\kappa+\frac{1}{2}n}{\mu-\frac{1}{2}n}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[n]{}{z}\left(e^{-\frac{1}{2}z}z^{\mu-\frac{1}{2}}\WhittakerconfhyperW{\kappa}{\mu}@{z}\right) = (-1)^{n}e^{-\frac{1}{2}z}z^{\mu-\frac{1}{2}(n+1)}\WhittakerconfhyperW{\kappa+\frac{1}{2}n}{\mu-\frac{1}{2}n}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(exp(-(1)/(2)*z)*(z)^(mu -(1)/(2))* WhittakerW(kappa, mu, z), [z$(n)]) = (- 1)^(n)* exp(-(1)/(2)*z)*(z)^(mu -(1)/(2)*(n + 1))* WhittakerW(kappa +(1)/(2)*n, mu -(1)/(2)*n, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[Exp[-Divide[1,2]*z]*(z)^(\[Mu]-Divide[1,2])* WhittakerW[\[Kappa], \[Mu], z], {z, n}] == (- 1)^(n)* Exp[-Divide[1,2]*z]*(z)^(\[Mu]-Divide[1,2]*(n + 1))* WhittakerW[\[Kappa]+Divide[1,2]*n, \[Mu]-Divide[1,2]*n, z]</syntaxhighlight> || Failure || Failure || Skipped - Because timed out || <div class="toccolours mw-collapsible mw-collapsed">Failed [192 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[-3.483681927072143, -5.36298237509452], DifferenceRoot[Function[{, } | |||
Test Values: {Equal[Plus[Times[Plus[1, Times[2, ], Times[2, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Times[-2, -1.5]], []], Times[2, Plus[1, ], Plus[1, , Power[E, Times[Complex[0, Rational[1, 6]], Pi]], Times[-2, -1.5]], [Plus[1, ]]], Times[2, Plus[1, ], Plus[2, ], Power[E, Times[Complex[0, Rational[1, 6]], Pi]], [Plus[2, ]]]], 0], Equal[[0], Times[Power[E, Times[Rational[-1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], Plus[Rational[-1, 2], -1.5]], WhittakerW[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], -1.5, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], Equal[[1], Times[Rational[1, 2], Power[E, Times[Rational[-1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], Plus[Rational[-3, 2], -1.5]], Plus[Times[-1,<syntaxhighlight lang=mathematica>Result: Plus[Complex[24.085306751162083, 11.80402713986923], Times[2.0, DifferenceRoot[Function[{, } | |||
Test Values: {Equal[Plus[Times[Plus[1, Times[2, ], Times[2, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Times[-2, -1.5]], []], Times[2, Plus[1, ], Plus[1, , Power[E, Times[Complex[0, Rational[1, 6]], Pi]], Times[-2, -1.5]], [Plus[1, ]]], Times[2, Plus[1, ], Plus[2, ], Power[E, Times[Complex[0, Rational[1, 6]], Pi]], [Plus[2, ]]]], 0], Equal[[0], Times[Power[E, Times[Rational[-1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], Plus[Rational[-1, 2], -1.5]], WhittakerW[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], -1.5, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], Equal[[1], Times[Rational[1, 2], Power[E, Times[Rational[-1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], Plus[Rational[-3, 2], -1.5]], Plus[Times[-1, WhittakerW[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], -1.5, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-2, Power[E, Times[Complex[0, Rational[1, 6]], Pi]], WhittakerW[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], -1.5, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[2, -1.5, WhittakerW[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], -1.5, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-2, WhittakerW[Plus[1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], -1.5, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]]]]}]][2.0]]], {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, -1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/13.15.E26 13.15.E26] || [[Item:Q4551|<math>\left(z\deriv{}{z}z\right)^{n}\left(e^{-\frac{1}{2}z}z^{\kappa-1}\WhittakerconfhyperW{\kappa}{\mu}@{z}\right) = (-1)^{n}e^{-\frac{1}{2}z}z^{\kappa+n-1}\WhittakerconfhyperW{\kappa+n}{\mu}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\left(z\deriv{}{z}z\right)^{n}\left(e^{-\frac{1}{2}z}z^{\kappa-1}\WhittakerconfhyperW{\kappa}{\mu}@{z}\right) = (-1)^{n}e^{-\frac{1}{2}z}z^{\kappa+n-1}\WhittakerconfhyperW{\kappa+n}{\mu}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(z*diff(z, z))^(n)*(exp(-(1)/(2)*z)*(z)^(kappa - 1)* WhittakerW(kappa, mu, z)) = (- 1)^(n)* exp(-(1)/(2)*z)*(z)^(kappa + n - 1)* WhittakerW(kappa + n, mu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(z*D[z, z])^(n)*(Exp[-Divide[1,2]*z]*(z)^(\[Kappa]- 1)* WhittakerW[\[Kappa], \[Mu], z]) == (- 1)^(n)* Exp[-Divide[1,2]*z]*(z)^(\[Kappa]+ n - 1)* WhittakerW[\[Kappa]+ n, \[Mu], z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .2623016537+.1488103823*I | |||
Test Values: {kappa = 1/2*3^(1/2)+1/2*I, mu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .1952811915+.4851862634*I | |||
Test Values: {kappa = 1/2*3^(1/2)+1/2*I, mu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, n = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.26230165366126323, 0.1488103820981603] | |||
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.1952811914323972, 0.4851862632402242] | |||
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/13.16.E1 13.16.E1] || [[Item:Q4552|<math>\WhittakerconfhyperM{\kappa}{\mu}@{z} = \frac{\EulerGamma@{1+2\mu}z^{\mu+\frac{1}{2}}2^{-2\mu}}{\EulerGamma@{\frac{1}{2}+\mu-\kappa}\EulerGamma@{\frac{1}{2}+\mu+\kappa}}\*\int_{-1}^{1}e^{\frac{1}{2}zt}(1+t)^{\mu-\frac{1}{2}-\kappa}(1-t)^{\mu-\frac{1}{2}+\kappa}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperM{\kappa}{\mu}@{z} = \frac{\EulerGamma@{1+2\mu}z^{\mu+\frac{1}{2}}2^{-2\mu}}{\EulerGamma@{\frac{1}{2}+\mu-\kappa}\EulerGamma@{\frac{1}{2}+\mu+\kappa}}\*\int_{-1}^{1}e^{\frac{1}{2}zt}(1+t)^{\mu-\frac{1}{2}-\kappa}(1-t)^{\mu-\frac{1}{2}+\kappa}\diff{t}</syntaxhighlight> || <math>\realpart@@{\mu}+\tfrac{1}{2} > \left|\realpart@@{\kappa}\right|, \realpart@@{(1+2\mu)} > 0, \realpart@@{(\frac{1}{2}+\mu-\kappa)} > 0, \realpart@@{(\frac{1}{2}+\mu+\kappa)} > 0</math> || <syntaxhighlight lang=mathematica>WhittakerM(kappa, mu, z) = (GAMMA(1 + 2*mu)*(z)^(mu +(1)/(2))* (2)^(- 2*mu))/(GAMMA((1)/(2)+ mu - kappa)*GAMMA((1)/(2)+ mu + kappa))* int(exp((1)/(2)*z*t)*(1 + t)^(mu -(1)/(2)- kappa)*(1 - t)^(mu -(1)/(2)+ kappa), t = - 1..1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerM[\[Kappa], \[Mu], z] == Divide[Gamma[1 + 2*\[Mu]]*(z)^(\[Mu]+Divide[1,2])* (2)^(- 2*\[Mu]),Gamma[Divide[1,2]+ \[Mu]- \[Kappa]]*Gamma[Divide[1,2]+ \[Mu]+ \[Kappa]]]* Integrate[Exp[Divide[1,2]*z*t]*(1 + t)^(\[Mu]-Divide[1,2]- \[Kappa])*(1 - t)^(\[Mu]-Divide[1,2]+ \[Kappa]), {t, - 1, 1}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || Skipped - Because timed out || Successful [Tested: 252] | |||
|- | |||
| [https://dlmf.nist.gov/13.16.E2 13.16.E2] || [[Item:Q4553|<math>\WhittakerconfhyperM{\kappa}{\mu}@{z} = \frac{\EulerGamma@{1+2\mu}z^{\lambda}}{\EulerGamma@{1+2\mu-2\lambda}\EulerGamma@{2\lambda}}\*\int_{0}^{1}\WhittakerconfhyperM{\kappa-\lambda}{\mu-\lambda}@{zt}e^{\frac{1}{2}z(t-1)}t^{\mu-\lambda-\frac{1}{2}}{(1-t)^{2\lambda-1}}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperM{\kappa}{\mu}@{z} = \frac{\EulerGamma@{1+2\mu}z^{\lambda}}{\EulerGamma@{1+2\mu-2\lambda}\EulerGamma@{2\lambda}}\*\int_{0}^{1}\WhittakerconfhyperM{\kappa-\lambda}{\mu-\lambda}@{zt}e^{\frac{1}{2}z(t-1)}t^{\mu-\lambda-\frac{1}{2}}{(1-t)^{2\lambda-1}}\diff{t}</syntaxhighlight> || <math>\realpart@@{\mu}+\tfrac{1}{2} > \realpart@@{\lambda}, \realpart@@{\lambda} > 0, \realpart@@{(1+2\mu)} > 0, \realpart@@{(1+2\mu-2\lambda)} > 0, \realpart@@{(2\lambda)} > 0</math> || <syntaxhighlight lang=mathematica>WhittakerM(kappa, mu, z) = (GAMMA(1 + 2*mu)*(z)^(lambda))/(GAMMA(1 + 2*mu - 2*lambda)*GAMMA(2*lambda))* int(WhittakerM(kappa - lambda, mu - lambda, z*t)*exp((1)/(2)*z*(t - 1))*(t)^(mu - lambda -(1)/(2))*(1 - t)^(2*lambda - 1), t = 0..1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerM[\[Kappa], \[Mu], z] == Divide[Gamma[1 + 2*\[Mu]]*(z)^\[Lambda],Gamma[1 + 2*\[Mu]- 2*\[Lambda]]*Gamma[2*\[Lambda]]]* Integrate[WhittakerM[\[Kappa]- \[Lambda], \[Mu]- \[Lambda], z*t]*Exp[Divide[1,2]*z*(t - 1)]*(t)^(\[Mu]- \[Lambda]-Divide[1,2])*(1 - t)^(2*\[Lambda]- 1), {t, 0, 1}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out | |||
|- | |||
| [https://dlmf.nist.gov/13.16.E3 13.16.E3] || [[Item:Q4554|<math>\frac{1}{\EulerGamma@{1+2\mu}}\WhittakerconfhyperM{\kappa}{\mu}@{z} = \frac{\sqrt{z}e^{\frac{1}{2}z}}{\EulerGamma@{\frac{1}{2}+\mu+\kappa}}\int_{0}^{\infty}e^{-t}t^{\kappa-\frac{1}{2}}\BesselJ{2\mu}@{2\sqrt{zt}}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1}{\EulerGamma@{1+2\mu}}\WhittakerconfhyperM{\kappa}{\mu}@{z} = \frac{\sqrt{z}e^{\frac{1}{2}z}}{\EulerGamma@{\frac{1}{2}+\mu+\kappa}}\int_{0}^{\infty}e^{-t}t^{\kappa-\frac{1}{2}}\BesselJ{2\mu}@{2\sqrt{zt}}\diff{t}</syntaxhighlight> || <math>\realpart@{\kappa+\mu}+\tfrac{1}{2} > 0, \realpart@@{((2\mu)+k+1)} > 0, \realpart@@{(1+2\mu)} > 0, \realpart@@{(\frac{1}{2}+\mu+\kappa)} > 0</math> || <syntaxhighlight lang=mathematica>(1)/(GAMMA(1 + 2*mu))*WhittakerM(kappa, mu, z) = (sqrt(z)*exp((1)/(2)*z))/(GAMMA((1)/(2)+ mu + kappa))*int(exp(- t)*(t)^(kappa -(1)/(2))* BesselJ(2*mu, 2*sqrt(z*t)), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,Gamma[1 + 2*\[Mu]]]*WhittakerM[\[Kappa], \[Mu], z] == Divide[Sqrt[z]*Exp[Divide[1,2]*z],Gamma[Divide[1,2]+ \[Mu]+ \[Kappa]]]*Integrate[Exp[- t]*(t)^(\[Kappa]-Divide[1,2])* BesselJ[2*\[Mu], 2*Sqrt[z*t]], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Aborted || - || Skipped - Because timed out | |||
|- | |||
| [https://dlmf.nist.gov/13.16.E4 13.16.E4] || [[Item:Q4555|<math>\frac{1}{\EulerGamma@{1+2\mu}}\WhittakerconfhyperM{\kappa}{\mu}@{z} = \frac{\sqrt{z}e^{-\frac{1}{2}z}}{\EulerGamma@{\frac{1}{2}+\mu-\kappa}}\*\int_{0}^{\infty}e^{-t}t^{-\kappa-\frac{1}{2}}\modBesselI{2\mu}@{2\sqrt{zt}}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1}{\EulerGamma@{1+2\mu}}\WhittakerconfhyperM{\kappa}{\mu}@{z} = \frac{\sqrt{z}e^{-\frac{1}{2}z}}{\EulerGamma@{\frac{1}{2}+\mu-\kappa}}\*\int_{0}^{\infty}e^{-t}t^{-\kappa-\frac{1}{2}}\modBesselI{2\mu}@{2\sqrt{zt}}\diff{t}</syntaxhighlight> || <math>\realpart@@{(\kappa-\mu)-\tfrac{1}{2}} < 0, \realpart@@{(1+2\mu)} > 0, \realpart@@{(\frac{1}{2}+\mu-\kappa)} > 0, \realpart@@{((2\mu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>(1)/(GAMMA(1 + 2*mu))*WhittakerM(kappa, mu, z) = (sqrt(z)*exp(-(1)/(2)*z))/(GAMMA((1)/(2)+ mu - kappa))* int(exp(- t)*(t)^(- kappa -(1)/(2))* BesselI(2*mu, 2*sqrt(z*t)), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,Gamma[1 + 2*\[Mu]]]*WhittakerM[\[Kappa], \[Mu], z] == Divide[Sqrt[z]*Exp[-Divide[1,2]*z],Gamma[Divide[1,2]+ \[Mu]- \[Kappa]]]* Integrate[Exp[- t]*(t)^(- \[Kappa]-Divide[1,2])* BesselI[2*\[Mu], 2*Sqrt[z*t]], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || <div class="toccolours mw-collapsible mw-collapsed">Failed [42 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .5483729950e-2+.5411197480e-1*I | |||
Test Values: {kappa = -3/2, mu = 2, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .2482822497e-1-.2550894001e-1*I | |||
Test Values: {kappa = -3/2, mu = 2, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || Successful [Tested: 300] | |||
|- | |||
| [https://dlmf.nist.gov/13.16.E5 13.16.E5] || [[Item:Q4556|<math>\WhittakerconfhyperW{\kappa}{\mu}@{z} = \frac{z^{\mu+\frac{1}{2}}2^{-2\mu}}{\EulerGamma@{\frac{1}{2}+\mu-\kappa}}\*\int_{1}^{\infty}e^{-\frac{1}{2}zt}(t-1)^{\mu-\frac{1}{2}-\kappa}(t+1)^{\mu-\frac{1}{2}+\kappa}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperW{\kappa}{\mu}@{z} = \frac{z^{\mu+\frac{1}{2}}2^{-2\mu}}{\EulerGamma@{\frac{1}{2}+\mu-\kappa}}\*\int_{1}^{\infty}e^{-\frac{1}{2}zt}(t-1)^{\mu-\frac{1}{2}-\kappa}(t+1)^{\mu-\frac{1}{2}+\kappa}\diff{t}</syntaxhighlight> || <math>\realpart@@{\mu}+\tfrac{1}{2} > \realpart@@{\kappa}, |\phase{z}| < \frac{1}{2}\pi, \realpart@@{(\frac{1}{2}+\mu-\kappa)} > 0</math> || <syntaxhighlight lang=mathematica>WhittakerW(kappa, mu, z) = ((z)^(mu +(1)/(2))* (2)^(- 2*mu))/(GAMMA((1)/(2)+ mu - kappa))* int(exp(-(1)/(2)*z*t)*(t - 1)^(mu -(1)/(2)- kappa)*(t + 1)^(mu -(1)/(2)+ kappa), t = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerW[\[Kappa], \[Mu], z] == Divide[(z)^(\[Mu]+Divide[1,2])* (2)^(- 2*\[Mu]),Gamma[Divide[1,2]+ \[Mu]- \[Kappa]]]* Integrate[Exp[-Divide[1,2]*z*t]*(t - 1)^(\[Mu]-Divide[1,2]- \[Kappa])*(t + 1)^(\[Mu]-Divide[1,2]+ \[Kappa]), {t, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Successful [Tested: 300] | |||
|- | |||
| [https://dlmf.nist.gov/13.16.E6 13.16.E6] || [[Item:Q4557|<math>\WhittakerconfhyperW{\kappa}{\mu}@{z} = \frac{e^{-\frac{1}{2}z}z^{\kappa+1}}{\EulerGamma@{\frac{1}{2}+\mu-\kappa}\EulerGamma@{\frac{1}{2}-\mu-\kappa}}\*\int_{0}^{\infty}\frac{\WhittakerconfhyperW{-\kappa}{\mu}@{t}e^{-\frac{1}{2}t}t^{-\kappa-1}}{t+z}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperW{\kappa}{\mu}@{z} = \frac{e^{-\frac{1}{2}z}z^{\kappa+1}}{\EulerGamma@{\frac{1}{2}+\mu-\kappa}\EulerGamma@{\frac{1}{2}-\mu-\kappa}}\*\int_{0}^{\infty}\frac{\WhittakerconfhyperW{-\kappa}{\mu}@{t}e^{-\frac{1}{2}t}t^{-\kappa-1}}{t+z}\diff{t}</syntaxhighlight> || <math>|\phase{z}| < \pi, \realpart@{\frac{1}{2}+\mu-\kappa} > \max\left(2\realpart@@{\mu}, \realpart@@{(\frac{1}{2}+\mu-\kappa)} > 0, \realpart@@{(\frac{1}{2}-\mu-\kappa)} > 0</math> || <syntaxhighlight lang=mathematica>WhittakerW(kappa, mu, z) = (exp(-(1)/(2)*z)*(z)^(kappa + 1))/(GAMMA((1)/(2)+ mu - kappa)*GAMMA((1)/(2)- mu - kappa))* int((WhittakerW(- kappa, mu, t)*exp(-(1)/(2)*t)*(t)^(- kappa - 1))/(t + z), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerW[\[Kappa], \[Mu], z] == Divide[Exp[-Divide[1,2]*z]*(z)^(\[Kappa]+ 1),Gamma[Divide[1,2]+ \[Mu]- \[Kappa]]*Gamma[Divide[1,2]- \[Mu]- \[Kappa]]]* Integrate[Divide[WhittakerW[- \[Kappa], \[Mu], t]*Exp[-Divide[1,2]*t]*(t)^(- \[Kappa]- 1),t + z], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Manual Skip! || Successful [Tested: 300] | |||
|- | |||
| [https://dlmf.nist.gov/13.16.E7 13.16.E7] || [[Item:Q4558|<math>\WhittakerconfhyperW{\kappa}{\mu}@{z} = \frac{(-1)^{n}e^{-\frac{1}{2}z}z^{\frac{1}{2}-\mu-n}}{\EulerGamma@{1+2\mu}\EulerGamma@{\frac{1}{2}-\mu-\kappa}}\*\int_{0}^{\infty}\frac{\WhittakerconfhyperM{-\kappa}{\mu}@{t}e^{-\frac{1}{2}t}t^{n+\mu-\frac{1}{2}}}{t+z}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperW{\kappa}{\mu}@{z} = \frac{(-1)^{n}e^{-\frac{1}{2}z}z^{\frac{1}{2}-\mu-n}}{\EulerGamma@{1+2\mu}\EulerGamma@{\frac{1}{2}-\mu-\kappa}}\*\int_{0}^{\infty}\frac{\WhittakerconfhyperM{-\kappa}{\mu}@{t}e^{-\frac{1}{2}t}t^{n+\mu-\frac{1}{2}}}{t+z}\diff{t}</syntaxhighlight> || <math>|\phase@@{z}| < \pi, -\realpart@{1+2\mu} < n, n < \abs{\realpart@@{\mu}}+\realpart@@{\kappa}, \abs{\realpart@@{\mu}}+\realpart@@{\kappa} < \tfrac{1}{2}, \realpart@@{(1+2\mu)} > 0, \realpart@@{(\frac{1}{2}-\mu-\kappa)} > 0</math> || <syntaxhighlight lang=mathematica>WhittakerW(kappa, mu, z) = ((- 1)^(n)* exp(-(1)/(2)*z)*(z)^((1)/(2)- mu - n))/(GAMMA(1 + 2*mu)*GAMMA((1)/(2)- mu - kappa))* int((WhittakerM(- kappa, mu, t)*exp(-(1)/(2)*t)*(t)^(n + mu -(1)/(2)))/(t + z), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerW[\[Kappa], \[Mu], z] == Divide[(- 1)^(n)* Exp[-Divide[1,2]*z]*(z)^(Divide[1,2]- \[Mu]- n),Gamma[1 + 2*\[Mu]]*Gamma[Divide[1,2]- \[Mu]- \[Kappa]]]* Integrate[Divide[WhittakerM[- \[Kappa], \[Mu], t]*Exp[-Divide[1,2]*t]*(t)^(n + \[Mu]-Divide[1,2]),t + z], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Manual Skip! || Skipped - Because timed out | |||
|- | |||
| [https://dlmf.nist.gov/13.16.E8 13.16.E8] || [[Item:Q4559|<math>\WhittakerconfhyperW{\kappa}{\mu}@{z} = \frac{2\sqrt{z}e^{-\frac{1}{2}z}}{\EulerGamma@{\frac{1}{2}+\mu-\kappa}\EulerGamma@{\frac{1}{2}-\mu-\kappa}}\*\int_{0}^{\infty}e^{-t}t^{-\kappa-\frac{1}{2}}\modBesselK{2\mu}@{2\sqrt{zt}}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperW{\kappa}{\mu}@{z} = \frac{2\sqrt{z}e^{-\frac{1}{2}z}}{\EulerGamma@{\frac{1}{2}+\mu-\kappa}\EulerGamma@{\frac{1}{2}-\mu-\kappa}}\*\int_{0}^{\infty}e^{-t}t^{-\kappa-\frac{1}{2}}\modBesselK{2\mu}@{2\sqrt{zt}}\diff{t}</syntaxhighlight> || <math>\realpart@{\mu-\kappa}+\tfrac{1}{2} > 0, \realpart@@{(\frac{1}{2}+\mu-\kappa)} > 0, \realpart@@{(\frac{1}{2}-\mu-\kappa)} > 0</math> || <syntaxhighlight lang=mathematica>WhittakerW(kappa, mu, z) = (2*sqrt(z)*exp(-(1)/(2)*z))/(GAMMA((1)/(2)+ mu - kappa)*GAMMA((1)/(2)- mu - kappa))* int(exp(- t)*(t)^(- kappa -(1)/(2))* BesselK(2*mu, 2*sqrt(z*t)), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerW[\[Kappa], \[Mu], z] == Divide[2*Sqrt[z]*Exp[-Divide[1,2]*z],Gamma[Divide[1,2]+ \[Mu]- \[Kappa]]*Gamma[Divide[1,2]- \[Mu]- \[Kappa]]]* Integrate[Exp[- t]*(t)^(- \[Kappa]-Divide[1,2])* BesselK[2*\[Mu], 2*Sqrt[z*t]], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Aborted || - || Successful [Tested: 252] | |||
|- | |||
| [https://dlmf.nist.gov/13.16.E9 13.16.E9] || [[Item:Q4560|<math>\WhittakerconfhyperW{\kappa}{\mu}@{z} = e^{-\frac{1}{2}z}z^{\kappa+c}\*\int_{0}^{\infty}e^{-zt}t^{c-1}\genhyperOlverF{2}{1}@@{\tfrac{1}{2}+\mu-\kappa,\tfrac{1}{2}-\mu-\kappa}{c}{-t}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperW{\kappa}{\mu}@{z} = e^{-\frac{1}{2}z}z^{\kappa+c}\*\int_{0}^{\infty}e^{-zt}t^{c-1}\genhyperOlverF{2}{1}@@{\tfrac{1}{2}+\mu-\kappa,\tfrac{1}{2}-\mu-\kappa}{c}{-t}\diff{t}</syntaxhighlight> || <math>|\phase{z}| < \frac{1}{2}\pi</math> || <syntaxhighlight lang=mathematica>WhittakerW(kappa, mu, z) = exp(-(1)/(2)*z)*(z)^(kappa + c)* int(exp(- z*t)*(t)^(c - 1)* hypergeom([(1)/(2)+ mu - kappa ,(1)/(2)- mu - kappa], [c], - t), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerW[\[Kappa], \[Mu], z] == Exp[-Divide[1,2]*z]*(z)^(\[Kappa]+ c)* Integrate[Exp[- z*t]*(t)^(c - 1)* HypergeometricPFQRegularized[{Divide[1,2]+ \[Mu]- \[Kappa],Divide[1,2]- \[Mu]- \[Kappa]}, {c}, - t], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Manual Skip! || Skipped - Because timed out | |||
|- | |||
| [https://dlmf.nist.gov/13.16.E10 13.16.E10] || [[Item:Q4561|<math>\frac{1}{\EulerGamma@{1+2\mu}}\WhittakerconfhyperM{\kappa}{\mu}@{e^{+\pi\iunit}z} = \frac{e^{\frac{1}{2}z+(\frac{1}{2}+\mu)\pi\iunit}}{2\pi\iunit\EulerGamma@{\frac{1}{2}+\mu-\kappa}}\*\int_{-\iunit\infty}^{\iunit\infty}\frac{\EulerGamma@{t-\kappa}\EulerGamma@{\frac{1}{2}+\mu-t}}{\EulerGamma@{\frac{1}{2}+\mu+t}}z^{t}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1}{\EulerGamma@{1+2\mu}}\WhittakerconfhyperM{\kappa}{\mu}@{e^{+\pi\iunit}z} = \frac{e^{\frac{1}{2}z+(\frac{1}{2}+\mu)\pi\iunit}}{2\pi\iunit\EulerGamma@{\frac{1}{2}+\mu-\kappa}}\*\int_{-\iunit\infty}^{\iunit\infty}\frac{\EulerGamma@{t-\kappa}\EulerGamma@{\frac{1}{2}+\mu-t}}{\EulerGamma@{\frac{1}{2}+\mu+t}}z^{t}\diff{t}</syntaxhighlight> || <math>|\phase{z}| < \tfrac{1}{2}\pi, \realpart@@{(1+2\mu)} > 0, \realpart@@{(\frac{1}{2}+\mu-\kappa)} > 0, \realpart@@{(t-\kappa)} > 0, \realpart@@{(\frac{1}{2}+\mu-t)} > 0, \realpart@@{(\frac{1}{2}+\mu+t)} > 0</math> || <syntaxhighlight lang=mathematica>(1)/(GAMMA(1 + 2*mu))*WhittakerM(kappa, mu, exp(+ Pi*I)*z) = (exp((1)/(2)*z +((1)/(2)+ mu)*Pi*I))/(2*Pi*I*GAMMA((1)/(2)+ mu - kappa))* int((GAMMA(t - kappa)*GAMMA((1)/(2)+ mu - t))/(GAMMA((1)/(2)+ mu + t))*(z)^(t), t = - I*infinity..I*infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,Gamma[1 + 2*\[Mu]]]*WhittakerM[\[Kappa], \[Mu], Exp[+ Pi*I]*z] == Divide[Exp[Divide[1,2]*z +(Divide[1,2]+ \[Mu])*Pi*I],2*Pi*I*Gamma[Divide[1,2]+ \[Mu]- \[Kappa]]]* Integrate[Divide[Gamma[t - \[Kappa]]*Gamma[Divide[1,2]+ \[Mu]- t],Gamma[Divide[1,2]+ \[Mu]+ t]]*(z)^(t), {t, - I*Infinity, I*Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out | |||
|- | |||
| [https://dlmf.nist.gov/13.16.E10 13.16.E10] || [[Item:Q4561|<math>\frac{1}{\EulerGamma@{1+2\mu}}\WhittakerconfhyperM{\kappa}{\mu}@{e^{-\pi\iunit}z} = \frac{e^{\frac{1}{2}z-(\frac{1}{2}+\mu)\pi\iunit}}{2\pi\iunit\EulerGamma@{\frac{1}{2}+\mu-\kappa}}\*\int_{-\iunit\infty}^{\iunit\infty}\frac{\EulerGamma@{t-\kappa}\EulerGamma@{\frac{1}{2}+\mu-t}}{\EulerGamma@{\frac{1}{2}+\mu+t}}z^{t}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1}{\EulerGamma@{1+2\mu}}\WhittakerconfhyperM{\kappa}{\mu}@{e^{-\pi\iunit}z} = \frac{e^{\frac{1}{2}z-(\frac{1}{2}+\mu)\pi\iunit}}{2\pi\iunit\EulerGamma@{\frac{1}{2}+\mu-\kappa}}\*\int_{-\iunit\infty}^{\iunit\infty}\frac{\EulerGamma@{t-\kappa}\EulerGamma@{\frac{1}{2}+\mu-t}}{\EulerGamma@{\frac{1}{2}+\mu+t}}z^{t}\diff{t}</syntaxhighlight> || <math>|\phase{z}| < \tfrac{1}{2}\pi, \realpart@@{(1+2\mu)} > 0, \realpart@@{(\frac{1}{2}+\mu-\kappa)} > 0, \realpart@@{(t-\kappa)} > 0, \realpart@@{(\frac{1}{2}+\mu-t)} > 0, \realpart@@{(\frac{1}{2}+\mu+t)} > 0</math> || <syntaxhighlight lang=mathematica>(1)/(GAMMA(1 + 2*mu))*WhittakerM(kappa, mu, exp(- Pi*I)*z) = (exp((1)/(2)*z -((1)/(2)+ mu)*Pi*I))/(2*Pi*I*GAMMA((1)/(2)+ mu - kappa))* int((GAMMA(t - kappa)*GAMMA((1)/(2)+ mu - t))/(GAMMA((1)/(2)+ mu + t))*(z)^(t), t = - I*infinity..I*infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,Gamma[1 + 2*\[Mu]]]*WhittakerM[\[Kappa], \[Mu], Exp[- Pi*I]*z] == Divide[Exp[Divide[1,2]*z -(Divide[1,2]+ \[Mu])*Pi*I],2*Pi*I*Gamma[Divide[1,2]+ \[Mu]- \[Kappa]]]* Integrate[Divide[Gamma[t - \[Kappa]]*Gamma[Divide[1,2]+ \[Mu]- t],Gamma[Divide[1,2]+ \[Mu]+ t]]*(z)^(t), {t, - I*Infinity, I*Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out | |||
|- | |||
| [https://dlmf.nist.gov/13.16.E11 13.16.E11] || [[Item:Q4562|<math>\WhittakerconfhyperW{\kappa}{\mu}@{z} = \frac{e^{-\frac{1}{2}z}}{2\pi\iunit}\*\int_{-\iunit\infty}^{\iunit\infty}\frac{\EulerGamma@{\frac{1}{2}+\mu+t}\EulerGamma@{\frac{1}{2}-\mu+t}\EulerGamma@{-\kappa-t}}{\EulerGamma@{\frac{1}{2}+\mu-\kappa}\EulerGamma@{\frac{1}{2}-\mu-\kappa}}z^{-t}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperW{\kappa}{\mu}@{z} = \frac{e^{-\frac{1}{2}z}}{2\pi\iunit}\*\int_{-\iunit\infty}^{\iunit\infty}\frac{\EulerGamma@{\frac{1}{2}+\mu+t}\EulerGamma@{\frac{1}{2}-\mu+t}\EulerGamma@{-\kappa-t}}{\EulerGamma@{\frac{1}{2}+\mu-\kappa}\EulerGamma@{\frac{1}{2}-\mu-\kappa}}z^{-t}\diff{t}</syntaxhighlight> || <math>|\phase{z}| < \tfrac{3}{2}\pi, \realpart@@{(\frac{1}{2}+\mu+t)} > 0, \realpart@@{(\frac{1}{2}-\mu+t)} > 0, \realpart@@{(-\kappa-t)} > 0, \realpart@@{(\frac{1}{2}+\mu-\kappa)} > 0, \realpart@@{(\frac{1}{2}-\mu-\kappa)} > 0</math> || <syntaxhighlight lang=mathematica>WhittakerW(kappa, mu, z) = (exp(-(1)/(2)*z))/(2*Pi*I)* int((GAMMA((1)/(2)+ mu + t)*GAMMA((1)/(2)- mu + t)*GAMMA(- kappa - t))/(GAMMA((1)/(2)+ mu - kappa)*GAMMA((1)/(2)- mu - kappa))*(z)^(- t), t = - I*infinity..I*infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerW[\[Kappa], \[Mu], z] == Divide[Exp[-Divide[1,2]*z],2*Pi*I]* Integrate[Divide[Gamma[Divide[1,2]+ \[Mu]+ t]*Gamma[Divide[1,2]- \[Mu]+ t]*Gamma[- \[Kappa]- t],Gamma[Divide[1,2]+ \[Mu]- \[Kappa]]*Gamma[Divide[1,2]- \[Mu]- \[Kappa]]]*(z)^(- t), {t, - I*Infinity, I*Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out | |||
|- | |||
| [https://dlmf.nist.gov/13.16.E12 13.16.E12] || [[Item:Q4563|<math>\WhittakerconfhyperW{\kappa}{\mu}@{z} = \frac{e^{\frac{1}{2}z}}{2\pi\iunit}\int_{-\iunit\infty}^{\iunit\infty}\frac{\EulerGamma@{\frac{1}{2}+\mu+t}\EulerGamma@{\frac{1}{2}-\mu+t}}{\EulerGamma@{1-\kappa+t}}z^{-t}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperW{\kappa}{\mu}@{z} = \frac{e^{\frac{1}{2}z}}{2\pi\iunit}\int_{-\iunit\infty}^{\iunit\infty}\frac{\EulerGamma@{\frac{1}{2}+\mu+t}\EulerGamma@{\frac{1}{2}-\mu+t}}{\EulerGamma@{1-\kappa+t}}z^{-t}\diff{t}</syntaxhighlight> || <math>|\phase{z}| < \tfrac{1}{2}\pi, \realpart@@{(\frac{1}{2}+\mu+t)} > 0, \realpart@@{(\frac{1}{2}-\mu+t)} > 0, \realpart@@{(1-\kappa+t)} > 0</math> || <syntaxhighlight lang=mathematica>WhittakerW(kappa, mu, z) = (exp((1)/(2)*z))/(2*Pi*I)*int((GAMMA((1)/(2)+ mu + t)*GAMMA((1)/(2)- mu + t))/(GAMMA(1 - kappa + t))*(z)^(- t), t = - I*infinity..I*infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerW[\[Kappa], \[Mu], z] == Divide[Exp[Divide[1,2]*z],2*Pi*I]*Integrate[Divide[Gamma[Divide[1,2]+ \[Mu]+ t]*Gamma[Divide[1,2]- \[Mu]+ t],Gamma[1 - \[Kappa]+ t]]*(z)^(- t), {t, - I*Infinity, I*Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out | |||
|- | |||
| [https://dlmf.nist.gov/13.18.E1 13.18.E1] || [[Item:Q4570|<math>\WhittakerconfhyperM{0}{\frac{1}{2}}@{2z} = 2\sinh@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperM{0}{\frac{1}{2}}@{2z} = 2\sinh@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>WhittakerM(0, (1)/(2), 2*z) = 2*sinh(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerM[0, Divide[1,2], 2*z] == 2*Sinh[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | |||
|- | |||
| [https://dlmf.nist.gov/13.18.E2 13.18.E2] || [[Item:Q4571|<math>\WhittakerconfhyperM{\kappa}{\kappa-\frac{1}{2}}@{z} = \WhittakerconfhyperW{\kappa}{\kappa-\frac{1}{2}}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperM{\kappa}{\kappa-\frac{1}{2}}@{z} = \WhittakerconfhyperW{\kappa}{\kappa-\frac{1}{2}}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>WhittakerM(kappa, kappa -(1)/(2), z) = WhittakerW(kappa, kappa -(1)/(2), z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerM[\[Kappa], \[Kappa]-Divide[1,2], z] == WhittakerW[\[Kappa], \[Kappa]-Divide[1,2], z]</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || Successful [Tested: 70] | |||
|- | |||
| [https://dlmf.nist.gov/13.18.E2 13.18.E2] || [[Item:Q4571|<math>\WhittakerconfhyperW{\kappa}{\kappa-\frac{1}{2}}@{z} = \WhittakerconfhyperW{\kappa}{-\kappa+\frac{1}{2}}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperW{\kappa}{\kappa-\frac{1}{2}}@{z} = \WhittakerconfhyperW{\kappa}{-\kappa+\frac{1}{2}}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>WhittakerW(kappa, kappa -(1)/(2), z) = WhittakerW(kappa, - kappa +(1)/(2), z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerW[\[Kappa], \[Kappa]-Divide[1,2], z] == WhittakerW[\[Kappa], - \[Kappa]+Divide[1,2], z]</syntaxhighlight> || Failure || Successful || Successful [Tested: 70] || Successful [Tested: 70] | |||
|- | |||
| [https://dlmf.nist.gov/13.18.E2 13.18.E2] || [[Item:Q4571|<math>\WhittakerconfhyperW{\kappa}{-\kappa+\frac{1}{2}}@{z} = e^{-\frac{1}{2}z}z^{\kappa}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperW{\kappa}{-\kappa+\frac{1}{2}}@{z} = e^{-\frac{1}{2}z}z^{\kappa}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>WhittakerW(kappa, - kappa +(1)/(2), z) = exp(-(1)/(2)*z)*(z)^(kappa)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerW[\[Kappa], - \[Kappa]+Divide[1,2], z] == Exp[-Divide[1,2]*z]*(z)^\[Kappa]</syntaxhighlight> || Failure || Successful || Successful [Tested: 70] || Successful [Tested: 70] | |||
|- | |||
| [https://dlmf.nist.gov/13.18.E3 13.18.E3] || [[Item:Q4572|<math>\WhittakerconfhyperM{\kappa}{-\kappa-\frac{1}{2}}@{z} = e^{\frac{1}{2}z}z^{-\kappa}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperM{\kappa}{-\kappa-\frac{1}{2}}@{z} = e^{\frac{1}{2}z}z^{-\kappa}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>WhittakerM(kappa, - kappa -(1)/(2), z) = exp((1)/(2)*z)*(z)^(- kappa)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerM[\[Kappa], - \[Kappa]-Divide[1,2], z] == Exp[Divide[1,2]*z]*(z)^(- \[Kappa])</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [20 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.012581208495203278, -0.029801099144953658] | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.32783156414330006, -0.2917810845255237] | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/13.18.E4 13.18.E4] || [[Item:Q4573|<math>\WhittakerconfhyperM{\mu-\frac{1}{2}}{\mu}@{z} = 2\mu e^{\frac{1}{2}z}z^{\frac{1}{2}-\mu}\incgamma@{2\mu}{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperM{\mu-\frac{1}{2}}{\mu}@{z} = 2\mu e^{\frac{1}{2}z}z^{\frac{1}{2}-\mu}\incgamma@{2\mu}{z}</syntaxhighlight> || <math>\realpart@@{(2\mu)} > 0</math> || <syntaxhighlight lang=mathematica>WhittakerM(mu -(1)/(2), mu, z) = 2*mu*exp((1)/(2)*z)*(z)^((1)/(2)- mu)* GAMMA(2*mu)-GAMMA(2*mu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerM[\[Mu]-Divide[1,2], \[Mu], z] == 2*\[Mu]*Exp[Divide[1,2]*z]*(z)^(Divide[1,2]- \[Mu])* Gamma[2*\[Mu], 0, z]</syntaxhighlight> || Failure || Successful || <div class="toccolours mw-collapsible mw-collapsed">Failed [35 / 35]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.5507089801-1.429327526*I | |||
Test Values: {mu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -2.178955063-1.073512810*I | |||
Test Values: {mu = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || Successful [Tested: 35] | |||
|- | |||
| [https://dlmf.nist.gov/13.18.E5 13.18.E5] || [[Item:Q4574|<math>\WhittakerconfhyperW{\mu-\frac{1}{2}}{\mu}@{z} = e^{\frac{1}{2}z}z^{\frac{1}{2}-\mu}\incGamma@{2\mu}{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperW{\mu-\frac{1}{2}}{\mu}@{z} = e^{\frac{1}{2}z}z^{\frac{1}{2}-\mu}\incGamma@{2\mu}{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>WhittakerW(mu -(1)/(2), mu, z) = exp((1)/(2)*z)*(z)^((1)/(2)- mu)* GAMMA(2*mu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerW[\[Mu]-Divide[1,2], \[Mu], z] == Exp[Divide[1,2]*z]*(z)^(Divide[1,2]- \[Mu])* Gamma[2*\[Mu], z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 70] | |||
|- | |||
| [https://dlmf.nist.gov/13.18.E6 13.18.E6] || [[Item:Q4575|<math>\WhittakerconfhyperM{-\frac{1}{4}}{\frac{1}{4}}@{z^{2}} = \tfrac{1}{2}e^{\frac{1}{2}z^{2}}\sqrt{\pi z}\erf@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperM{-\frac{1}{4}}{\frac{1}{4}}@{z^{2}} = \tfrac{1}{2}e^{\frac{1}{2}z^{2}}\sqrt{\pi z}\erf@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>WhittakerM(-(1)/(4), (1)/(4), (z)^(2)) = (1)/(2)*exp((1)/(2)*(z)^(2))*sqrt(Pi*z)*erf(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerM[-Divide[1,4], Divide[1,4], (z)^(2)] == Divide[1,2]*Exp[Divide[1,2]*(z)^(2)]*Sqrt[Pi*z]*Erf[z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .7978557562-.9869289445*I | |||
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.482664004+.2744150982*I | |||
Test Values: {z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.7978557563768727, -0.986928944338508] | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.4826640039189691, 0.2744150979001404] | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br></div></div> | |||
|- | |||
| [https://dlmf.nist.gov/13.18.E7 13.18.E7] || [[Item:Q4576|<math>\WhittakerconfhyperW{-\frac{1}{4}}{+\frac{1}{4}}@{z^{2}} = e^{\frac{1}{2}z^{2}}\sqrt{\pi z}\erfc@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperW{-\frac{1}{4}}{+\frac{1}{4}}@{z^{2}} = e^{\frac{1}{2}z^{2}}\sqrt{\pi z}\erfc@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>WhittakerW(-(1)/(4), +(1)/(4), (z)^(2)) = exp((1)/(2)*(z)^(2))*sqrt(Pi*z)*erfc(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerW[-Divide[1,4], +Divide[1,4], (z)^(2)] == Exp[Divide[1,2]*(z)^(2)]*Sqrt[Pi*z]*Erfc[z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -1.928317415+.502368653e-1*I | |||
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -2.674168572+2.656547698*I | |||
Test Values: {z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-1.9283174154667808, 0.050236864945780724] | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-2.6741685713500765, 2.656547698651725] | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br></div></div> | |||
|- | |||
| [https://dlmf.nist.gov/13.18.E7 13.18.E7] || [[Item:Q4576|<math>\WhittakerconfhyperW{-\frac{1}{4}}{-\frac{1}{4}}@{z^{2}} = e^{\frac{1}{2}z^{2}}\sqrt{\pi z}\erfc@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperW{-\frac{1}{4}}{-\frac{1}{4}}@{z^{2}} = e^{\frac{1}{2}z^{2}}\sqrt{\pi z}\erfc@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>WhittakerW(-(1)/(4), -(1)/(4), (z)^(2)) = exp((1)/(2)*(z)^(2))*sqrt(Pi*z)*erfc(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerW[-Divide[1,4], -Divide[1,4], (z)^(2)] == Exp[Divide[1,2]*(z)^(2)]*Sqrt[Pi*z]*Erfc[z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -1.928317415+.502368653e-1*I | |||
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -2.674168572+2.656547698*I | |||
Test Values: {z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-1.928317415466781, 0.05023686494578061] | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-2.674168571350077, 2.6565476986517247] | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br></div></div> | |||
|- | |||
| [https://dlmf.nist.gov/13.18.E8 13.18.E8] || [[Item:Q4577|<math>\WhittakerconfhyperM{0}{\nu}@{2z} = 2^{2\nu+\frac{1}{2}}\EulerGamma@{1+\nu}\sqrt{z}\modBesselI{\nu}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperM{0}{\nu}@{2z} = 2^{2\nu+\frac{1}{2}}\EulerGamma@{1+\nu}\sqrt{z}\modBesselI{\nu}@{z}</syntaxhighlight> || <math>\realpart@@{(1+\nu)} > 0, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>WhittakerM(0, nu, 2*z) = (2)^(2*nu +(1)/(2))* GAMMA(1 + nu)*sqrt(z)*BesselI(nu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerM[0, \[Nu], 2*z] == (2)^(2*\[Nu]+Divide[1,2])* Gamma[1 + \[Nu]]*Sqrt[z]*BesselI[\[Nu], z]</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 56]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.8586367168171446, -0.6707313588072118] | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -0.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.33759646322286985, -0.8589803343001376] | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[ν, -0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/13.18.E9 13.18.E9] || [[Item:Q4578|<math>\WhittakerconfhyperW{0}{\nu}@{2z} = \sqrt{\ifrac{2z}{\pi}}\modBesselK{\nu}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperW{0}{\nu}@{2z} = \sqrt{\ifrac{2z}{\pi}}\modBesselK{\nu}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>WhittakerW(0, nu, 2*z) = sqrt((2*z)/(Pi))*BesselK(nu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerW[0, \[Nu], 2*z] == Sqrt[Divide[2*z,Pi]]*BesselK[\[Nu], z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 70] | |||
|- | |||
| [https://dlmf.nist.gov/13.18.E10 13.18.E10] || [[Item:Q4579|<math>\WhittakerconfhyperW{0}{\frac{1}{3}}@{\tfrac{4}{3}z^{\frac{3}{2}}} = 2\sqrt{\pi}z^{\frac{1}{4}}\AiryAi@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperW{0}{\frac{1}{3}}@{\tfrac{4}{3}z^{\frac{3}{2}}} = 2\sqrt{\pi}z^{\frac{1}{4}}\AiryAi@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>WhittakerW(0, (1)/(3), (4)/(3)*(z)^((3)/(2))) = 2*sqrt(Pi)*(z)^((1)/(4))* AiryAi(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerW[0, Divide[1,3], Divide[4,3]*(z)^(Divide[3,2])] == 2*Sqrt[Pi]*(z)^(Divide[1,4])* AiryAi[z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.246840478+.5335590044*I | |||
Test Values: {z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.24684047859323988, 0.533559004293784] | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br></div></div> | |||
|- | |||
| [https://dlmf.nist.gov/13.18.E12 13.18.E12] || [[Item:Q4581|<math>\WhittakerconfhyperM{-\frac{1}{2}a}{-\frac{1}{4}}@{\tfrac{1}{2}z^{2}} = 2^{\frac{1}{2}a-1}\EulerGamma@{\tfrac{1}{2}a+\tfrac{3}{4}}\sqrt{\ifrac{z}{\pi}}\*\left(\paraU@{a}{z}+\paraU@{a}{-z}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperM{-\frac{1}{2}a}{-\frac{1}{4}}@{\tfrac{1}{2}z^{2}} = 2^{\frac{1}{2}a-1}\EulerGamma@{\tfrac{1}{2}a+\tfrac{3}{4}}\sqrt{\ifrac{z}{\pi}}\*\left(\paraU@{a}{z}+\paraU@{a}{-z}\right)</syntaxhighlight> || <math>\realpart@@{(\tfrac{1}{2}a+\tfrac{3}{4})} > 0</math> || <syntaxhighlight lang=mathematica>WhittakerM(-(1)/(2)*a, -(1)/(4), (1)/(2)*(z)^(2)) = (2)^((1)/(2)*a - 1)* GAMMA((1)/(2)*a +(3)/(4))*sqrt((z)/(Pi))*(CylinderU(a, z)+ CylinderU(a, - z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerM[-Divide[1,2]*a, -Divide[1,4], Divide[1,2]*(z)^(2)] == (2)^(Divide[1,2]*a - 1)* Gamma[Divide[1,2]*a +Divide[3,4]]*Sqrt[Divide[z,Pi]]*(ParabolicCylinderD[- 1/2 -(a), z]+ ParabolicCylinderD[- 1/2 -(a), - z])</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [8 / 28]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.4546011384-.8349579092*I | |||
Test Values: {a = 3/2, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .58169427e-2+1.789104086*I | |||
Test Values: {a = 3/2, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [8 / 28]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.454601138107828, -0.8349579095614801] | |||
Test Values: {Rule[a, 1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.005816942543956816, 1.7891040854776739] | |||
Test Values: {Rule[a, 1.5], Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/13.18.E13 13.18.E13] || [[Item:Q4582|<math>\WhittakerconfhyperM{-\frac{1}{2}a}{\frac{1}{4}}@{\tfrac{1}{2}z^{2}} = 2^{\frac{1}{2}a-2}\EulerGamma@{\tfrac{1}{2}a+\tfrac{1}{4}}\sqrt{\ifrac{z}{\pi}}\*\left(\paraU@{a}{-z}-\paraU@{a}{z}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperM{-\frac{1}{2}a}{\frac{1}{4}}@{\tfrac{1}{2}z^{2}} = 2^{\frac{1}{2}a-2}\EulerGamma@{\tfrac{1}{2}a+\tfrac{1}{4}}\sqrt{\ifrac{z}{\pi}}\*\left(\paraU@{a}{-z}-\paraU@{a}{z}\right)</syntaxhighlight> || <math>\realpart@@{(\tfrac{1}{2}a+\tfrac{1}{4})} > 0</math> || <syntaxhighlight lang=mathematica>WhittakerM(-(1)/(2)*a, (1)/(4), (1)/(2)*(z)^(2)) = (2)^((1)/(2)*a - 2)* GAMMA((1)/(2)*a +(1)/(4))*sqrt((z)/(Pi))*(CylinderU(a, - z)- CylinderU(a, z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerM[-Divide[1,2]*a, Divide[1,4], Divide[1,2]*(z)^(2)] == (2)^(Divide[1,2]*a - 2)* Gamma[Divide[1,2]*a +Divide[1,4]]*Sqrt[Divide[z,Pi]]*(ParabolicCylinderD[- 1/2 -(a), - z]- ParabolicCylinderD[- 1/2 -(a), z])</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .3997621251-.6252084121*I | |||
Test Values: {a = 3/2, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .9306149059+.2046923958*I | |||
Test Values: {a = 3/2, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.3997621252402044, -0.6252084117529283] | |||
Test Values: {Rule[a, 1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.9306149056064967, 0.20469239560568858] | |||
Test Values: {Rule[a, 1.5], Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/13.18.E14 13.18.E14] || [[Item:Q4583|<math>\WhittakerconfhyperM{\frac{1}{4}+n}{-\frac{1}{4}}@{z^{2}} = (-1)^{n}\frac{n!}{(2n)!}e^{-\frac{1}{2}z^{2}}\sqrt{z}\HermitepolyH{2n}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperM{\frac{1}{4}+n}{-\frac{1}{4}}@{z^{2}} = (-1)^{n}\frac{n!}{(2n)!}e^{-\frac{1}{2}z^{2}}\sqrt{z}\HermitepolyH{2n}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>WhittakerM((1)/(4)+ n, -(1)/(4), (z)^(2)) = (- 1)^(n)*(factorial(n))/(factorial(2*n))*exp(-(1)/(2)*(z)^(2))*sqrt(z)*HermiteH(2*n, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerM[Divide[1,4]+ n, -Divide[1,4], (z)^(2)] == (- 1)^(n)*Divide[(n)!,(2*n)!]*Exp[-Divide[1,2]*(z)^(2)]*Sqrt[z]*HermiteH[2*n, z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 4.741276300-.776142297*I | |||
Test Values: {z = -1/2+1/2*I*3^(1/2), n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 9.155588595+2.115036937*I | |||
Test Values: {z = -1/2+1/2*I*3^(1/2), n = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[4.741276296912009, -0.7761422976118018] | |||
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[9.15558858680754, 2.115036935310196] | |||
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/13.18.E15 13.18.E15] || [[Item:Q4584|<math>\WhittakerconfhyperM{\frac{3}{4}+n}{\frac{1}{4}}@{z^{2}} = (-1)^{n}\frac{n!}{(2n+1)!}\frac{e^{-\frac{1}{2}z^{2}}\sqrt{z}}{2}\HermitepolyH{2n+1}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperM{\frac{3}{4}+n}{\frac{1}{4}}@{z^{2}} = (-1)^{n}\frac{n!}{(2n+1)!}\frac{e^{-\frac{1}{2}z^{2}}\sqrt{z}}{2}\HermitepolyH{2n+1}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>WhittakerM((3)/(4)+ n, (1)/(4), (z)^(2)) = (- 1)^(n)*(factorial(n))/(factorial(2*n + 1))*(exp(-(1)/(2)*(z)^(2))*sqrt(z))/(2)*HermiteH(2*n + 1, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerM[Divide[3,4]+ n, Divide[1,4], (z)^(2)] == (- 1)^(n)*Divide[(n)!,(2*n + 1)!]*Divide[Exp[-Divide[1,2]*(z)^(2)]*Sqrt[z],2]*HermiteH[2*n + 1, z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 2.634248102+.148339259*I | |||
Test Values: {z = -1/2+1/2*I*3^(1/2), n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 3.481689250+1.400565410*I | |||
Test Values: {z = -1/2+1/2*I*3^(1/2), n = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[2.6342480998741933, 0.14833925882834587] | |||
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[3.4816892469231746, 1.4005654089276338] | |||
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/13.18.E16 13.18.E16] || [[Item:Q4585|<math>\WhittakerconfhyperW{\frac{1}{4}+\frac{1}{2}n}{\frac{1}{4}}@{z^{2}} = 2^{-n}e^{-\frac{1}{2}z^{2}}\sqrt{z}\HermitepolyH{n}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperW{\frac{1}{4}+\frac{1}{2}n}{\frac{1}{4}}@{z^{2}} = 2^{-n}e^{-\frac{1}{2}z^{2}}\sqrt{z}\HermitepolyH{n}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>WhittakerW((1)/(4)+(1)/(2)*n, (1)/(4), (z)^(2)) = (2)^(- n)* exp(-(1)/(2)*(z)^(2))*sqrt(z)*HermiteH(n, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerW[Divide[1,4]+Divide[1,2]*n, Divide[1,4], (z)^(2)] == (2)^(- n)* Exp[-Divide[1,2]*(z)^(2)]*Sqrt[z]*HermiteH[n, z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.704303716-.6267307130*I | |||
Test Values: {z = -1/2+1/2*I*3^(1/2), n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -2.370638149+.3880711488*I | |||
Test Values: {z = -1/2+1/2*I*3^(1/2), n = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.7043037156649337, -0.6267307126437623] | |||
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-2.370638148456005, 0.388071148805901] | |||
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/13.18.E17 13.18.E17] || [[Item:Q4586|<math>\WhittakerconfhyperW{\frac{1}{2}\alpha+\frac{1}{2}+n}{\frac{1}{2}\alpha}@{z} = (-1)^{n}\Pochhammersym{\alpha+1}{n}\WhittakerconfhyperM{\frac{1}{2}\alpha+\frac{1}{2}+n}{\frac{1}{2}\alpha}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperW{\frac{1}{2}\alpha+\frac{1}{2}+n}{\frac{1}{2}\alpha}@{z} = (-1)^{n}\Pochhammersym{\alpha+1}{n}\WhittakerconfhyperM{\frac{1}{2}\alpha+\frac{1}{2}+n}{\frac{1}{2}\alpha}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>WhittakerW((1)/(2)*alpha +(1)/(2)+ n, (1)/(2)*alpha, z) = (- 1)^(n)* pochhammer(alpha + 1, n)*WhittakerM((1)/(2)*alpha +(1)/(2)+ n, (1)/(2)*alpha, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerW[Divide[1,2]*\[Alpha]+Divide[1,2]+ n, Divide[1,2]*\[Alpha], z] == (- 1)^(n)* Pochhammer[\[Alpha]+ 1, n]*WhittakerM[Divide[1,2]*\[Alpha]+Divide[1,2]+ n, Divide[1,2]*\[Alpha], z]</syntaxhighlight> || Failure || Failure || Successful [Tested: 63] || Successful [Tested: 63] | |||
|- | |||
| [https://dlmf.nist.gov/13.18.E17 13.18.E17] || [[Item:Q4586|<math>(-1)^{n}\Pochhammersym{\alpha+1}{n}\WhittakerconfhyperM{\frac{1}{2}\alpha+\frac{1}{2}+n}{\frac{1}{2}\alpha}@{z} = (-1)^{n}n!e^{-\frac{1}{2}z}z^{\frac{1}{2}\alpha+\frac{1}{2}}\LaguerrepolyL[\alpha]{n}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>(-1)^{n}\Pochhammersym{\alpha+1}{n}\WhittakerconfhyperM{\frac{1}{2}\alpha+\frac{1}{2}+n}{\frac{1}{2}\alpha}@{z} = (-1)^{n}n!e^{-\frac{1}{2}z}z^{\frac{1}{2}\alpha+\frac{1}{2}}\LaguerrepolyL[\alpha]{n}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(- 1)^(n)* pochhammer(alpha + 1, n)*WhittakerM((1)/(2)*alpha +(1)/(2)+ n, (1)/(2)*alpha, z) = (- 1)^(n)* factorial(n)*exp(-(1)/(2)*z)*(z)^((1)/(2)*alpha +(1)/(2))* LaguerreL(n, alpha, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(- 1)^(n)* Pochhammer[\[Alpha]+ 1, n]*WhittakerM[Divide[1,2]*\[Alpha]+Divide[1,2]+ n, Divide[1,2]*\[Alpha], z] == (- 1)^(n)* (n)!*Exp[-Divide[1,2]*z]*(z)^(Divide[1,2]*\[Alpha]+Divide[1,2])* LaguerreL[n, \[Alpha], z]</syntaxhighlight> || Missing Macro Error || Successful || Skip - symbolical successful subtest || Successful [Tested: 63] | |||
|- | |||
| [https://dlmf.nist.gov/13.20.E10 13.20.E10] || [[Item:Q4599|<math>\zeta = +\sqrt{\frac{x}{\mu}-2-2\ln@{\frac{x}{2\mu}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\zeta = +\sqrt{\frac{x}{\mu}-2-2\ln@{\frac{x}{2\mu}}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>zeta = +sqrt((x)/(mu)- 2 - 2*ln((x)/(2*mu)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>\[Zeta] == +Sqrt[Divide[x,\[Mu]]- 2 - 2*Log[Divide[x,2*\[Mu]]]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .5521389640+.265842778e-1*I | |||
Test Values: {mu = 1/2*3^(1/2)+1/2*I, x = 3/2, zeta = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.8138864400+.3926096818*I | |||
Test Values: {mu = 1/2*3^(1/2)+1/2*I, x = 3/2, zeta = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.552138964202831, 0.026584277433671977] | |||
Test Values: {Rule[x, 1.5], Rule[ζ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.016922323883714174, -1.2016497569691986] | |||
Test Values: {Rule[x, 1.5], Rule[ζ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/13.20.E10 13.20.E10] || [[Item:Q4599|<math>\zeta = -\sqrt{\frac{x}{\mu}-2-2\ln@{\frac{x}{2\mu}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\zeta = -\sqrt{\frac{x}{\mu}-2-2\ln@{\frac{x}{2\mu}}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>zeta = -sqrt((x)/(mu)- 2 - 2*ln((x)/(2*mu)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>\[Zeta] == -Sqrt[Divide[x,\[Mu]]- 2 - 2*Log[Divide[x,2*\[Mu]]]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.179911844+.9734157222*I | |||
Test Values: {mu = 1/2*3^(1/2)+1/2*I, x = 3/2, zeta = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.1861135600+1.339441126*I | |||
Test Values: {mu = 1/2*3^(1/2)+1/2*I, x = 3/2, zeta = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.1799118433660465, 0.9734157225663279] | |||
Test Values: {Rule[x, 1.5], Rule[ζ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.7151284836851632, 2.2016497569691986] | |||
Test Values: {Rule[x, 1.5], Rule[ζ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/13.21.E5 13.21.E5] || [[Item:Q4613|<math>2\sqrt{\zeta} = \sqrt{x+x^{2}}+\ln@{\sqrt{x}+\sqrt{1+x}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>2\sqrt{\zeta} = \sqrt{x+x^{2}}+\ln@{\sqrt{x}+\sqrt{1+x}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>2*sqrt(zeta) = sqrt(x + (x)^(2))+ ln(sqrt(x)+sqrt(1 + x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>2*Sqrt[\[Zeta]] == Sqrt[x + (x)^(2)]+ Log[Sqrt[x]+Sqrt[1 + x]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [30 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -1.036358555+.5176380902*I | |||
Test Values: {x = 3/2, zeta = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.968210208+1.732050808*I | |||
Test Values: {x = 3/2, zeta = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [30 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-1.0363585549733523, 0.5176380902050415] | |||
Test Values: {Rule[x, 1.5], Rule[ζ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-1.9682102075514887, 1.7320508075688772] | |||
Test Values: {Rule[x, 1.5], Rule[ζ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/13.23.E1 13.23.E1] || [[Item:Q4635|<math>\int_{0}^{\infty}e^{-zt}t^{\nu-1}\WhittakerconfhyperM{\kappa}{\mu}@{t}\diff{t} = \frac{\EulerGamma@{\mu+\nu+\tfrac{1}{2}}}{\left(z+\frac{1}{2}\right)^{\mu+\nu+\frac{1}{2}}}\*\genhyperF{2}{1}@@{\tfrac{1}{2}+\mu-\kappa,\tfrac{1}{2}+\mu+\nu}{1+2\mu}{\frac{1}{z+\frac{1}{2}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}e^{-zt}t^{\nu-1}\WhittakerconfhyperM{\kappa}{\mu}@{t}\diff{t} = \frac{\EulerGamma@{\mu+\nu+\tfrac{1}{2}}}{\left(z+\frac{1}{2}\right)^{\mu+\nu+\frac{1}{2}}}\*\genhyperF{2}{1}@@{\tfrac{1}{2}+\mu-\kappa,\tfrac{1}{2}+\mu+\nu}{1+2\mu}{\frac{1}{z+\frac{1}{2}}}</syntaxhighlight> || <math>\realpart@@{\mu+\nu+\tfrac{1}{2}} > 0, \realpart@@{z} > \tfrac{1}{2}, \realpart@@{(\mu+\nu+\tfrac{1}{2})} > 0</math> || <syntaxhighlight lang=mathematica>int(exp(- z*t)*(t)^(nu - 1)* WhittakerM(kappa, mu, t), t = 0..infinity) = (GAMMA(mu + nu +(1)/(2)))/((z +(1)/(2))^(mu + nu +(1)/(2)))* hypergeom([(1)/(2)+ mu - kappa ,(1)/(2)+ mu + nu], [1 + 2*mu], (1)/(z +(1)/(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[- z*t]*(t)^(\[Nu]- 1)* WhittakerM[\[Kappa], \[Mu], t], {t, 0, Infinity}, GenerateConditions->None] == Divide[Gamma[\[Mu]+ \[Nu]+Divide[1,2]],(z +Divide[1,2])^(\[Mu]+ \[Nu]+Divide[1,2])]* HypergeometricPFQ[{Divide[1,2]+ \[Mu]- \[Kappa],Divide[1,2]+ \[Mu]+ \[Nu]}, {1 + 2*\[Mu]}, Divide[1,z +Divide[1,2]]]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out | |||
|- | |||
| [https://dlmf.nist.gov/13.23.E2 13.23.E2] || [[Item:Q4636|<math>\int_{0}^{\infty}e^{-zt}t^{\mu-\frac{1}{2}}\WhittakerconfhyperM{\kappa}{\mu}@{t}\diff{t} = \EulerGamma@{2\mu+1}\left(z+\tfrac{1}{2}\right)^{-\kappa-\mu-\frac{1}{2}}\*\left(z-\tfrac{1}{2}\right)^{\kappa-\mu-\frac{1}{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}e^{-zt}t^{\mu-\frac{1}{2}}\WhittakerconfhyperM{\kappa}{\mu}@{t}\diff{t} = \EulerGamma@{2\mu+1}\left(z+\tfrac{1}{2}\right)^{-\kappa-\mu-\frac{1}{2}}\*\left(z-\tfrac{1}{2}\right)^{\kappa-\mu-\frac{1}{2}}</syntaxhighlight> || <math>\realpart@@{\mu} > -\tfrac{1}{2}, \realpart@@{z} > \tfrac{1}{2}, \realpart@@{(2\mu+1)} > 0</math> || <syntaxhighlight lang=mathematica>int(exp(- z*t)*(t)^(mu -(1)/(2))* WhittakerM(kappa, mu, t), t = 0..infinity) = GAMMA(2*mu + 1)*(z +(1)/(2))^(- kappa - mu -(1)/(2))*(z -(1)/(2))^(kappa - mu -(1)/(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[- z*t]*(t)^(\[Mu]-Divide[1,2])* WhittakerM[\[Kappa], \[Mu], t], {t, 0, Infinity}, GenerateConditions->None] == Gamma[2*\[Mu]+ 1]*(z +Divide[1,2])^(- \[Kappa]- \[Mu]-Divide[1,2])*(z -Divide[1,2])^(\[Kappa]- \[Mu]-Divide[1,2])</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out | |||
|- | |||
| [https://dlmf.nist.gov/13.23.E3 13.23.E3] || [[Item:Q4637|<math>\frac{1}{\EulerGamma@{1+2\mu}}\int_{0}^{\infty}e^{-\frac{1}{2}t}t^{\nu-1}\WhittakerconfhyperM{\kappa}{\mu}@{t}\diff{t} = \frac{\EulerGamma@{\mu+\nu+\frac{1}{2}}\EulerGamma@{\kappa-\nu}}{\EulerGamma@{\frac{1}{2}+\mu+\kappa}\EulerGamma@{\frac{1}{2}+\mu-\nu}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1}{\EulerGamma@{1+2\mu}}\int_{0}^{\infty}e^{-\frac{1}{2}t}t^{\nu-1}\WhittakerconfhyperM{\kappa}{\mu}@{t}\diff{t} = \frac{\EulerGamma@{\mu+\nu+\frac{1}{2}}\EulerGamma@{\kappa-\nu}}{\EulerGamma@{\frac{1}{2}+\mu+\kappa}\EulerGamma@{\frac{1}{2}+\mu-\nu}}</syntaxhighlight> || <math>-\tfrac{1}{2}-\realpart@@{\mu} < \realpart@@{\nu}, \realpart@@{\nu} < \realpart@@{\kappa}, \realpart@@{(1+2\mu)} > 0, \realpart@@{(\mu+\nu+\frac{1}{2})} > 0, \realpart@@{(\kappa-\nu)} > 0, \realpart@@{(\frac{1}{2}+\mu+\kappa)} > 0, \realpart@@{(\frac{1}{2}+\mu-\nu)} > 0</math> || <syntaxhighlight lang=mathematica>(1)/(GAMMA(1 + 2*mu))*int(exp(-(1)/(2)*t)*(t)^(nu - 1)* WhittakerM(kappa, mu, t), t = 0..infinity) = (GAMMA(mu + nu +(1)/(2))*GAMMA(kappa - nu))/(GAMMA((1)/(2)+ mu + kappa)*GAMMA((1)/(2)+ mu - nu))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,Gamma[1 + 2*\[Mu]]]*Integrate[Exp[-Divide[1,2]*t]*(t)^(\[Nu]- 1)* WhittakerM[\[Kappa], \[Mu], t], {t, 0, Infinity}, GenerateConditions->None] == Divide[Gamma[\[Mu]+ \[Nu]+Divide[1,2]]*Gamma[\[Kappa]- \[Nu]],Gamma[Divide[1,2]+ \[Mu]+ \[Kappa]]*Gamma[Divide[1,2]+ \[Mu]- \[Nu]]]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out | |||
|- | |||
| [https://dlmf.nist.gov/13.23.E4 13.23.E4] || [[Item:Q4638|<math>\int_{0}^{\infty}e^{-zt}t^{\nu-1}\WhittakerconfhyperW{\kappa}{\mu}@{t}\diff{t} = \EulerGamma@{\tfrac{1}{2}+\mu+\nu}\EulerGamma@{\tfrac{1}{2}-\mu+\nu}\*\genhyperOlverF{2}{1}@@{\tfrac{1}{2}-\mu+\nu,\tfrac{1}{2}+\mu+\nu}{\nu-\kappa+1}{\tfrac{1}{2}-z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}e^{-zt}t^{\nu-1}\WhittakerconfhyperW{\kappa}{\mu}@{t}\diff{t} = \EulerGamma@{\tfrac{1}{2}+\mu+\nu}\EulerGamma@{\tfrac{1}{2}-\mu+\nu}\*\genhyperOlverF{2}{1}@@{\tfrac{1}{2}-\mu+\nu,\tfrac{1}{2}+\mu+\nu}{\nu-\kappa+1}{\tfrac{1}{2}-z}</syntaxhighlight> || <math>\realpart@{\nu+\tfrac{1}{2}} > |\realpart@@{\mu}|, \realpart@@{z} > -\tfrac{1}{2}, \realpart@@{(\tfrac{1}{2}+\mu+\nu)} > 0, \realpart@@{(\tfrac{1}{2}-\mu+\nu)} > 0</math> || <syntaxhighlight lang=mathematica>int(exp(- z*t)*(t)^(nu - 1)* WhittakerW(kappa, mu, t), t = 0..infinity) = GAMMA((1)/(2)+ mu + nu)*GAMMA((1)/(2)- mu + nu)* hypergeom([(1)/(2)- mu + nu ,(1)/(2)+ mu + nu], [nu - kappa + 1], (1)/(2)- z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[- z*t]*(t)^(\[Nu]- 1)* WhittakerW[\[Kappa], \[Mu], t], {t, 0, Infinity}, GenerateConditions->None] == Gamma[Divide[1,2]+ \[Mu]+ \[Nu]]*Gamma[Divide[1,2]- \[Mu]+ \[Nu]]* HypergeometricPFQRegularized[{Divide[1,2]- \[Mu]+ \[Nu],Divide[1,2]+ \[Mu]+ \[Nu]}, {\[Nu]- \[Kappa]+ 1}, Divide[1,2]- z]</syntaxhighlight> || Failure || Aborted || <div class="toccolours mw-collapsible mw-collapsed">Failed [276 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Float(infinity)+Float(infinity)*I | |||
Test Values: {kappa = 1/2*3^(1/2)+1/2*I, mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, z = 1/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .2394973555+.5504747838e-1*I | |||
Test Values: {kappa = 1/2*3^(1/2)+1/2*I, mu = 1/2*3^(1/2)+1/2*I, nu = 1/2-1/2*I*3^(1/2), z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || Skipped - Because timed out | |||
|- | |||
| [https://dlmf.nist.gov/13.23.E5 13.23.E5] || [[Item:Q4639|<math>\int_{0}^{\infty}e^{\frac{1}{2}t}t^{\nu-1}\WhittakerconfhyperW{\kappa}{\mu}@{t}\diff{t} = \frac{\EulerGamma@{\frac{1}{2}+\mu+\nu}\EulerGamma@{\frac{1}{2}-\mu+\nu}\EulerGamma@{-\kappa-\nu}}{\EulerGamma@{\frac{1}{2}+\mu-\kappa}\EulerGamma@{\frac{1}{2}-\mu-\kappa}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}e^{\frac{1}{2}t}t^{\nu-1}\WhittakerconfhyperW{\kappa}{\mu}@{t}\diff{t} = \frac{\EulerGamma@{\frac{1}{2}+\mu+\nu}\EulerGamma@{\frac{1}{2}-\mu+\nu}\EulerGamma@{-\kappa-\nu}}{\EulerGamma@{\frac{1}{2}+\mu-\kappa}\EulerGamma@{\frac{1}{2}-\mu-\kappa}}</syntaxhighlight> || <math>|\realpart@@{\mu}|-\tfrac{1}{2} < \realpart@@{\nu}, \realpart@@{\nu} < -\realpart@@{\kappa}, \realpart@@{(\frac{1}{2}+\mu+\nu)} > 0, \realpart@@{(\frac{1}{2}-\mu+\nu)} > 0, \realpart@@{(-\kappa-\nu)} > 0, \realpart@@{(\frac{1}{2}+\mu-\kappa)} > 0, \realpart@@{(\frac{1}{2}-\mu-\kappa)} > 0</math> || <syntaxhighlight lang=mathematica>int(exp((1)/(2)*t)*(t)^(nu - 1)* WhittakerW(kappa, mu, t), t = 0..infinity) = (GAMMA((1)/(2)+ mu + nu)*GAMMA((1)/(2)- mu + nu)*GAMMA(- kappa - nu))/(GAMMA((1)/(2)+ mu - kappa)*GAMMA((1)/(2)- mu - kappa))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[Divide[1,2]*t]*(t)^(\[Nu]- 1)* WhittakerW[\[Kappa], \[Mu], t], {t, 0, Infinity}, GenerateConditions->None] == Divide[Gamma[Divide[1,2]+ \[Mu]+ \[Nu]]*Gamma[Divide[1,2]- \[Mu]+ \[Nu]]*Gamma[- \[Kappa]- \[Nu]],Gamma[Divide[1,2]+ \[Mu]- \[Kappa]]*Gamma[Divide[1,2]- \[Mu]- \[Kappa]]]</syntaxhighlight> || Failure || Aborted || Manual Skip! || Successful [Tested: 56] | |||
|- | |||
| [https://dlmf.nist.gov/13.23.E6 13.23.E6] || [[Item:Q4640|<math>\frac{1}{\EulerGamma@{1+2\mu}2\pi\iunit}\int_{-\infty}^{(0+)}e^{zt+\frac{1}{2}t^{-1}}t^{\kappa}\WhittakerconfhyperM{\kappa}{\mu}@{t^{-1}}\diff{t} = \frac{z^{-\kappa-\frac{1}{2}}}{\EulerGamma@{\frac{1}{2}+\mu-\kappa}}\modBesselI{2\mu}@{2\sqrt{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1}{\EulerGamma@{1+2\mu}2\pi\iunit}\int_{-\infty}^{(0+)}e^{zt+\frac{1}{2}t^{-1}}t^{\kappa}\WhittakerconfhyperM{\kappa}{\mu}@{t^{-1}}\diff{t} = \frac{z^{-\kappa-\frac{1}{2}}}{\EulerGamma@{\frac{1}{2}+\mu-\kappa}}\modBesselI{2\mu}@{2\sqrt{z}}</syntaxhighlight> || <math>\realpart@@{z} > 0, \realpart@@{(1+2\mu)} > 0, \realpart@@{(\frac{1}{2}+\mu-\kappa)} > 0, \realpart@@{((2\mu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>(1)/(GAMMA(1 + 2*mu)*2*Pi*I)*int(exp(z*t +(1)/(2)*(t)^(- 1))*(t)^(kappa)* WhittakerM(kappa, mu, (t)^(- 1)), t = - infinity..(0 +)) = ((z)^(- kappa -(1)/(2)))/(GAMMA((1)/(2)+ mu - kappa))*BesselI(2*mu, 2*sqrt(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,Gamma[1 + 2*\[Mu]]*2*Pi*I]*Integrate[Exp[z*t +Divide[1,2]*(t)^(- 1)]*(t)^\[Kappa]* WhittakerM[\[Kappa], \[Mu], (t)^(- 1)], {t, - Infinity, (0 +)}, GenerateConditions->None] == Divide[(z)^(- \[Kappa]-Divide[1,2]),Gamma[Divide[1,2]+ \[Mu]- \[Kappa]]]*BesselI[2*\[Mu], 2*Sqrt[z]]</syntaxhighlight> || Error || Failure || - || Error | |||
|- | |||
| [https://dlmf.nist.gov/13.23.E7 13.23.E7] || [[Item:Q4641|<math>\frac{1}{2\pi\iunit}\int_{-\infty}^{(0+)}e^{zt+\frac{1}{2}t^{-1}}t^{\kappa}\WhittakerconfhyperW{\kappa}{\mu}@{t^{-1}}\diff{t} = \frac{2z^{-\kappa-\frac{1}{2}}}{\EulerGamma@{\frac{1}{2}+\mu-\kappa}\EulerGamma@{\frac{1}{2}-\mu-\kappa}}\modBesselK{2\mu}@{2\sqrt{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1}{2\pi\iunit}\int_{-\infty}^{(0+)}e^{zt+\frac{1}{2}t^{-1}}t^{\kappa}\WhittakerconfhyperW{\kappa}{\mu}@{t^{-1}}\diff{t} = \frac{2z^{-\kappa-\frac{1}{2}}}{\EulerGamma@{\frac{1}{2}+\mu-\kappa}\EulerGamma@{\frac{1}{2}-\mu-\kappa}}\modBesselK{2\mu}@{2\sqrt{z}}</syntaxhighlight> || <math>\realpart@@{z} > 0, \realpart@@{(\frac{1}{2}+\mu-\kappa)} > 0, \realpart@@{(\frac{1}{2}-\mu-\kappa)} > 0</math> || <syntaxhighlight lang=mathematica>(1)/(2*Pi*I)*int(exp(z*t +(1)/(2)*(t)^(- 1))*(t)^(kappa)* WhittakerW(kappa, mu, (t)^(- 1)), t = - infinity..(0 +)) = (2*(z)^(- kappa -(1)/(2)))/(GAMMA((1)/(2)+ mu - kappa)*GAMMA((1)/(2)- mu - kappa))*BesselK(2*mu, 2*sqrt(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,2*Pi*I]*Integrate[Exp[z*t +Divide[1,2]*(t)^(- 1)]*(t)^\[Kappa]* WhittakerW[\[Kappa], \[Mu], (t)^(- 1)], {t, - Infinity, (0 +)}, GenerateConditions->None] == Divide[2*(z)^(- \[Kappa]-Divide[1,2]),Gamma[Divide[1,2]+ \[Mu]- \[Kappa]]*Gamma[Divide[1,2]- \[Mu]- \[Kappa]]]*BesselK[2*\[Mu], 2*Sqrt[z]]</syntaxhighlight> || Error || Failure || - || Error | |||
|- | |||
| [https://dlmf.nist.gov/13.23.E8 13.23.E8] || [[Item:Q4642|<math>\frac{1}{\EulerGamma@{1+2\mu}}\int_{0}^{\infty}\cos@{2xt}e^{-\frac{1}{2}t^{2}}t^{-2\mu-1}\WhittakerconfhyperM{\kappa}{\mu}@{t^{2}}\diff{t} = \frac{\sqrt{\pi}e^{-\frac{1}{2}x^{2}}x^{\mu+\kappa-1}}{2\EulerGamma@{\frac{1}{2}+\mu+\kappa}}\WhittakerconfhyperW{\frac{1}{2}\kappa-\frac{3}{2}\mu}{\frac{1}{2}\kappa+\frac{1}{2}\mu}@{x^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1}{\EulerGamma@{1+2\mu}}\int_{0}^{\infty}\cos@{2xt}e^{-\frac{1}{2}t^{2}}t^{-2\mu-1}\WhittakerconfhyperM{\kappa}{\mu}@{t^{2}}\diff{t} = \frac{\sqrt{\pi}e^{-\frac{1}{2}x^{2}}x^{\mu+\kappa-1}}{2\EulerGamma@{\frac{1}{2}+\mu+\kappa}}\WhittakerconfhyperW{\frac{1}{2}\kappa-\frac{3}{2}\mu}{\frac{1}{2}\kappa+\frac{1}{2}\mu}@{x^{2}}</syntaxhighlight> || <math>\realpart@{\kappa+\mu} > -\tfrac{1}{2}, \realpart@@{(1+2\mu)} > 0, \realpart@@{(\frac{1}{2}+\mu+\kappa)} > 0</math> || <syntaxhighlight lang=mathematica>(1)/(GAMMA(1 + 2*mu))*int(cos(2*x*t)*exp(-(1)/(2)*(t)^(2))*(t)^(- 2*mu - 1)* WhittakerM(kappa, mu, (t)^(2)), t = 0..infinity) = (sqrt(Pi)*exp(-(1)/(2)*(x)^(2))*(x)^(mu + kappa - 1))/(2*GAMMA((1)/(2)+ mu + kappa))*WhittakerW((1)/(2)*kappa -(3)/(2)*mu, (1)/(2)*kappa +(1)/(2)*mu, (x)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,Gamma[1 + 2*\[Mu]]]*Integrate[Cos[2*x*t]*Exp[-Divide[1,2]*(t)^(2)]*(t)^(- 2*\[Mu]- 1)* WhittakerM[\[Kappa], \[Mu], (t)^(2)], {t, 0, Infinity}, GenerateConditions->None] == Divide[Sqrt[Pi]*Exp[-Divide[1,2]*(x)^(2)]*(x)^(\[Mu]+ \[Kappa]- 1),2*Gamma[Divide[1,2]+ \[Mu]+ \[Kappa]]]*WhittakerW[Divide[1,2]*\[Kappa]-Divide[3,2]*\[Mu], Divide[1,2]*\[Kappa]+Divide[1,2]*\[Mu], (x)^(2)]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out | |||
|- | |||
| [https://dlmf.nist.gov/13.23.E9 13.23.E9] || [[Item:Q4643|<math>\int_{0}^{\infty}e^{-\frac{1}{2}t}t^{\mu-\frac{1}{2}(\nu+1)}\WhittakerconfhyperM{\kappa}{\mu}@{t}\BesselJ{\nu}@{2\sqrt{xt}}\diff{t} = \frac{\EulerGamma@{1+2\mu}}{\EulerGamma@{\frac{1}{2}-\mu+\kappa+\nu}}\*e^{-\frac{1}{2}x}x^{\frac{1}{2}(\kappa-\mu-\frac{3}{2})}\*\WhittakerconfhyperM{\frac{1}{2}(\kappa+3\mu-\nu+\frac{1}{2})}{\frac{1}{2}(\kappa-\mu+\nu-\frac{1}{2})}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}e^{-\frac{1}{2}t}t^{\mu-\frac{1}{2}(\nu+1)}\WhittakerconfhyperM{\kappa}{\mu}@{t}\BesselJ{\nu}@{2\sqrt{xt}}\diff{t} = \frac{\EulerGamma@{1+2\mu}}{\EulerGamma@{\frac{1}{2}-\mu+\kappa+\nu}}\*e^{-\frac{1}{2}x}x^{\frac{1}{2}(\kappa-\mu-\frac{3}{2})}\*\WhittakerconfhyperM{\frac{1}{2}(\kappa+3\mu-\nu+\frac{1}{2})}{\frac{1}{2}(\kappa-\mu+\nu-\frac{1}{2})}@{x}</syntaxhighlight> || <math>x > 0, -\tfrac{1}{2} < \realpart@@{\mu}, \realpart@@{\mu} < \realpart@{\kappa+\tfrac{1}{2}\nu}+\tfrac{3}{4}, \realpart@@{(\nu+k+1)} > 0, \realpart@@{(1+2\mu)} > 0, \realpart@@{(\frac{1}{2}-\mu+\kappa+\nu)} > 0</math> || <syntaxhighlight lang=mathematica>int(exp(-(1)/(2)*t)*(t)^(mu -(1)/(2)*(nu + 1))* WhittakerM(kappa, mu, t)*BesselJ(nu, 2*sqrt(x*t)), t = 0..infinity) = (GAMMA(1 + 2*mu))/(GAMMA((1)/(2)- mu + kappa + nu))* exp(-(1)/(2)*x)*(x)^((1)/(2)*(kappa - mu -(3)/(2)))* WhittakerM((1)/(2)*(kappa + 3*mu - nu +(1)/(2)), (1)/(2)*(kappa - mu + nu -(1)/(2)), x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[-Divide[1,2]*t]*(t)^(\[Mu]-Divide[1,2]*(\[Nu]+ 1))* WhittakerM[\[Kappa], \[Mu], t]*BesselJ[\[Nu], 2*Sqrt[x*t]], {t, 0, Infinity}, GenerateConditions->None] == Divide[Gamma[1 + 2*\[Mu]],Gamma[Divide[1,2]- \[Mu]+ \[Kappa]+ \[Nu]]]* Exp[-Divide[1,2]*x]*(x)^(Divide[1,2]*(\[Kappa]- \[Mu]-Divide[3,2]))* WhittakerM[Divide[1,2]*(\[Kappa]+ 3*\[Mu]- \[Nu]+Divide[1,2]), Divide[1,2]*(\[Kappa]- \[Mu]+ \[Nu]-Divide[1,2]), x]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out | |||
|- | |||
| [https://dlmf.nist.gov/13.23.E10 13.23.E10] || [[Item:Q4644|<math>\frac{1}{\EulerGamma@{1+2\mu}}\int_{0}^{\infty}e^{-\frac{1}{2}t}t^{\frac{1}{2}(\nu-1)-\mu}\WhittakerconfhyperM{\kappa}{\mu}@{t}\BesselJ{\nu}@{2\sqrt{xt}}\diff{t} = \frac{e^{-\frac{1}{2}x}x^{\frac{1}{2}(\kappa+\mu-\frac{3}{2})}}{\EulerGamma@{\frac{1}{2}+\mu+\kappa}}\*\WhittakerconfhyperW{\frac{1}{2}(\kappa-3\mu+\nu+\frac{1}{2})}{\frac{1}{2}(\kappa+\mu-\nu-\frac{1}{2})}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1}{\EulerGamma@{1+2\mu}}\int_{0}^{\infty}e^{-\frac{1}{2}t}t^{\frac{1}{2}(\nu-1)-\mu}\WhittakerconfhyperM{\kappa}{\mu}@{t}\BesselJ{\nu}@{2\sqrt{xt}}\diff{t} = \frac{e^{-\frac{1}{2}x}x^{\frac{1}{2}(\kappa+\mu-\frac{3}{2})}}{\EulerGamma@{\frac{1}{2}+\mu+\kappa}}\*\WhittakerconfhyperW{\frac{1}{2}(\kappa-3\mu+\nu+\frac{1}{2})}{\frac{1}{2}(\kappa+\mu-\nu-\frac{1}{2})}@{x}</syntaxhighlight> || <math>x > 0, -1 < \realpart@@{\nu}, \realpart@@{\nu} < 2\realpart@{\mu+\kappa}+\tfrac{1}{2}, \realpart@@{(\nu+k+1)} > 0, \realpart@@{(1+2\mu)} > 0, \realpart@@{(\frac{1}{2}+\mu+\kappa)} > 0</math> || <syntaxhighlight lang=mathematica>(1)/(GAMMA(1 + 2*mu))*int(exp(-(1)/(2)*t)*(t)^((1)/(2)*(nu - 1)- mu)* WhittakerM(kappa, mu, t)*BesselJ(nu, 2*sqrt(x*t)), t = 0..infinity) = (exp(-(1)/(2)*x)*(x)^((1)/(2)*(kappa + mu -(3)/(2))))/(GAMMA((1)/(2)+ mu + kappa))* WhittakerW((1)/(2)*(kappa - 3*mu + nu +(1)/(2)), (1)/(2)*(kappa + mu - nu -(1)/(2)), x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,Gamma[1 + 2*\[Mu]]]*Integrate[Exp[-Divide[1,2]*t]*(t)^(Divide[1,2]*(\[Nu]- 1)- \[Mu])* WhittakerM[\[Kappa], \[Mu], t]*BesselJ[\[Nu], 2*Sqrt[x*t]], {t, 0, Infinity}, GenerateConditions->None] == Divide[Exp[-Divide[1,2]*x]*(x)^(Divide[1,2]*(\[Kappa]+ \[Mu]-Divide[3,2])),Gamma[Divide[1,2]+ \[Mu]+ \[Kappa]]]* WhittakerW[Divide[1,2]*(\[Kappa]- 3*\[Mu]+ \[Nu]+Divide[1,2]), Divide[1,2]*(\[Kappa]+ \[Mu]- \[Nu]-Divide[1,2]), x]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out | |||
|- | |||
| [https://dlmf.nist.gov/13.23.E11 13.23.E11] || [[Item:Q4645|<math>\int_{0}^{\infty}e^{\frac{1}{2}t}t^{\frac{1}{2}(\nu-1)-\mu}\WhittakerconfhyperW{\kappa}{\mu}@{t}\BesselJ{\nu}@{2\sqrt{xt}}\diff{t} = \frac{\EulerGamma@{\nu-2\mu+1}}{\EulerGamma@{\frac{1}{2}+\mu-\kappa}}\*e^{\frac{1}{2}x}x^{\frac{1}{2}(\mu-\kappa-\frac{3}{2})}\*\WhittakerconfhyperW{\frac{1}{2}(\kappa+3\mu-\nu-\frac{1}{2})}{\frac{1}{2}(\kappa-\mu+\nu+\frac{1}{2})}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}e^{\frac{1}{2}t}t^{\frac{1}{2}(\nu-1)-\mu}\WhittakerconfhyperW{\kappa}{\mu}@{t}\BesselJ{\nu}@{2\sqrt{xt}}\diff{t} = \frac{\EulerGamma@{\nu-2\mu+1}}{\EulerGamma@{\frac{1}{2}+\mu-\kappa}}\*e^{\frac{1}{2}x}x^{\frac{1}{2}(\mu-\kappa-\frac{3}{2})}\*\WhittakerconfhyperW{\frac{1}{2}(\kappa+3\mu-\nu-\frac{1}{2})}{\frac{1}{2}(\kappa-\mu+\nu+\frac{1}{2})}@{x}</syntaxhighlight> || <math>x > 0, \max(2\realpart@@{\mu}-1 < \realpart@@{\nu}, -1) < \realpart@@{\nu}, \realpart@@{\nu} < 2\realpart@@{\mu-\kappa}+\tfrac{3}{2}, \realpart@@{(\nu+k+1)} > 0, \realpart@@{(\nu-2\mu+1)} > 0, \realpart@@{(\frac{1}{2}+\mu-\kappa)} > 0</math> || <syntaxhighlight lang=mathematica>int(exp((1)/(2)*t)*(t)^((1)/(2)*(nu - 1)- mu)* WhittakerW(kappa, mu, t)*BesselJ(nu, 2*sqrt(x*t)), t = 0..infinity) = (GAMMA(nu - 2*mu + 1))/(GAMMA((1)/(2)+ mu - kappa))* exp((1)/(2)*x)*(x)^((1)/(2)*(mu - kappa -(3)/(2)))* WhittakerW((1)/(2)*(kappa + 3*mu - nu -(1)/(2)), (1)/(2)*(kappa - mu + nu +(1)/(2)), x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[Divide[1,2]*t]*(t)^(Divide[1,2]*(\[Nu]- 1)- \[Mu])* WhittakerW[\[Kappa], \[Mu], t]*BesselJ[\[Nu], 2*Sqrt[x*t]], {t, 0, Infinity}, GenerateConditions->None] == Divide[Gamma[\[Nu]- 2*\[Mu]+ 1],Gamma[Divide[1,2]+ \[Mu]- \[Kappa]]]* Exp[Divide[1,2]*x]*(x)^(Divide[1,2]*(\[Mu]- \[Kappa]-Divide[3,2]))* WhittakerW[Divide[1,2]*(\[Kappa]+ 3*\[Mu]- \[Nu]-Divide[1,2]), Divide[1,2]*(\[Kappa]- \[Mu]+ \[Nu]+Divide[1,2]), x]</syntaxhighlight> || Failure || Aborted || Manual Skip! || Skipped - Because timed out | |||
|- | |||
| [https://dlmf.nist.gov/13.23.E12 13.23.E12] || [[Item:Q4646|<math>\int_{0}^{\infty}e^{-\frac{1}{2}t}t^{\frac{1}{2}(\nu-1)-\mu}\WhittakerconfhyperW{\kappa}{\mu}@{t}\BesselJ{\nu}@{2\sqrt{xt}}\diff{t} = \frac{\EulerGamma@{\nu-2\mu+1}}{\EulerGamma@{\frac{3}{2}-\mu-\kappa+\nu}}\*e^{-\frac{1}{2}x}x^{\frac{1}{2}(\mu+\kappa-\frac{3}{2})}\*\WhittakerconfhyperM{\frac{1}{2}(\kappa-3\mu+\nu+\frac{1}{2})}{\frac{1}{2}(\nu-\mu-\kappa+\frac{1}{2})}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}e^{-\frac{1}{2}t}t^{\frac{1}{2}(\nu-1)-\mu}\WhittakerconfhyperW{\kappa}{\mu}@{t}\BesselJ{\nu}@{2\sqrt{xt}}\diff{t} = \frac{\EulerGamma@{\nu-2\mu+1}}{\EulerGamma@{\frac{3}{2}-\mu-\kappa+\nu}}\*e^{-\frac{1}{2}x}x^{\frac{1}{2}(\mu+\kappa-\frac{3}{2})}\*\WhittakerconfhyperM{\frac{1}{2}(\kappa-3\mu+\nu+\frac{1}{2})}{\frac{1}{2}(\nu-\mu-\kappa+\frac{1}{2})}@{x}</syntaxhighlight> || <math>x > 0, \max(2\realpart@@{\mu}-1 < \realpart@@{\nu}, -1) < \realpart@@{\nu}, \realpart@@{(\nu+k+1)} > 0, \realpart@@{(\nu-2\mu+1)} > 0, \realpart@@{(\frac{3}{2}-\mu-\kappa+\nu)} > 0</math> || <syntaxhighlight lang=mathematica>int(exp(-(1)/(2)*t)*(t)^((1)/(2)*(nu - 1)- mu)* WhittakerW(kappa, mu, t)*BesselJ(nu, 2*sqrt(x*t)), t = 0..infinity) = (GAMMA(nu - 2*mu + 1))/(GAMMA((3)/(2)- mu - kappa + nu))* exp(-(1)/(2)*x)*(x)^((1)/(2)*(mu + kappa -(3)/(2)))* WhittakerM((1)/(2)*(kappa - 3*mu + nu +(1)/(2)), (1)/(2)*(nu - mu - kappa +(1)/(2)), x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[-Divide[1,2]*t]*(t)^(Divide[1,2]*(\[Nu]- 1)- \[Mu])* WhittakerW[\[Kappa], \[Mu], t]*BesselJ[\[Nu], 2*Sqrt[x*t]], {t, 0, Infinity}, GenerateConditions->None] == Divide[Gamma[\[Nu]- 2*\[Mu]+ 1],Gamma[Divide[3,2]- \[Mu]- \[Kappa]+ \[Nu]]]* Exp[-Divide[1,2]*x]*(x)^(Divide[1,2]*(\[Mu]+ \[Kappa]-Divide[3,2]))* WhittakerM[Divide[1,2]*(\[Kappa]- 3*\[Mu]+ \[Nu]+Divide[1,2]), Divide[1,2]*(\[Nu]- \[Mu]- \[Kappa]+Divide[1,2]), x]</syntaxhighlight> || Failure || Aborted || Manual Skip! || Skipped - Because timed out | |||
|- | |||
| [https://dlmf.nist.gov/13.24.E1 13.24.E1] || [[Item:Q4649|<math>\WhittakerconfhyperM{\kappa}{\mu}@{z} = \EulerGamma@{\kappa+\mu}2^{2\kappa+2\mu}z^{\frac{1}{2}-\kappa}\*\sum_{s=0}^{\infty}(-1)^{s}\frac{\Pochhammersym{2\kappa+2\mu}{s}\Pochhammersym{2\kappa}{s}}{\Pochhammersym{1+2\mu}{s}s!}\*\left(\kappa+\mu+s\right)\modBesselI{\kappa+\mu+s}@{\tfrac{1}{2}z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperM{\kappa}{\mu}@{z} = \EulerGamma@{\kappa+\mu}2^{2\kappa+2\mu}z^{\frac{1}{2}-\kappa}\*\sum_{s=0}^{\infty}(-1)^{s}\frac{\Pochhammersym{2\kappa+2\mu}{s}\Pochhammersym{2\kappa}{s}}{\Pochhammersym{1+2\mu}{s}s!}\*\left(\kappa+\mu+s\right)\modBesselI{\kappa+\mu+s}@{\tfrac{1}{2}z}</syntaxhighlight> || <math>\realpart@@{(\kappa+\mu)} > 0, \realpart@@{((\kappa+\mu+s)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>WhittakerM(kappa, mu, z) = GAMMA(kappa + mu)*(2)^(2*kappa + 2*mu)* (z)^((1)/(2)- kappa)* sum((- 1)^(s)*(pochhammer(2*kappa + 2*mu, s)*pochhammer(2*kappa, s))/(pochhammer(1 + 2*mu, s)*factorial(s))*(kappa + mu + s)*BesselI(kappa + mu + s, (1)/(2)*z), s = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerM[\[Kappa], \[Mu], z] == Gamma[\[Kappa]+ \[Mu]]*(2)^(2*\[Kappa]+ 2*\[Mu])* (z)^(Divide[1,2]- \[Kappa])* Sum[(- 1)^(s)*Divide[Pochhammer[2*\[Kappa]+ 2*\[Mu], s]*Pochhammer[2*\[Kappa], s],Pochhammer[1 + 2*\[Mu], s]*(s)!]*(\[Kappa]+ \[Mu]+ s)*BesselI[\[Kappa]+ \[Mu]+ s, Divide[1,2]*z], {s, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Manual Skip! || Skipped - Because timed out | |||
|- | |||
| [https://dlmf.nist.gov/13.24.E2 13.24.E2] || [[Item:Q4650|<math>\frac{1}{\EulerGamma@{1+2\mu}}\WhittakerconfhyperM{\kappa}{\mu}@{z} = 2^{2\mu}z^{\mu+\frac{1}{2}}\sum_{s=0}^{\infty}p_{s}^{(\mu)}(z)\left(2\sqrt{\kappa z}\right)^{-2\mu-s}\BesselJ{2\mu+s}@{2\sqrt{\kappa z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1}{\EulerGamma@{1+2\mu}}\WhittakerconfhyperM{\kappa}{\mu}@{z} = 2^{2\mu}z^{\mu+\frac{1}{2}}\sum_{s=0}^{\infty}p_{s}^{(\mu)}(z)\left(2\sqrt{\kappa z}\right)^{-2\mu-s}\BesselJ{2\mu+s}@{2\sqrt{\kappa z}}</syntaxhighlight> || <math>\realpart@@{((2\mu+s)+k+1)} > 0, \realpart@@{(1+2\mu)} > 0</math> || <syntaxhighlight lang=mathematica>(1)/(GAMMA(1 + 2*mu))*WhittakerM(kappa, mu, z) = (2)^(2*mu)* (z)^(mu +(1)/(2))* sum((p[s])^(mu)(z)*(2*sqrt(kappa*z))^(- 2*mu - s)* BesselJ(2*mu + s, 2*sqrt(kappa*z)), s = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,Gamma[1 + 2*\[Mu]]]*WhittakerM[\[Kappa], \[Mu], z] == (2)^(2*\[Mu])* (z)^(\[Mu]+Divide[1,2])* Sum[(Subscript[p, s])^(\[Mu])[z]*(2*Sqrt[\[Kappa]*z])^(- 2*\[Mu]- s)* BesselJ[2*\[Mu]+ s, 2*Sqrt[\[Kappa]*z]], {s, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Skipped - Because timed out || Skipped - Because timed out | |||
|- | |||
| [https://dlmf.nist.gov/13.24.E3 13.24.E3] || [[Item:Q4651|<math>\exp@{-\tfrac{1}{2}z\left(\coth@@{t}-\frac{1}{t}\right)}\left(\frac{t}{\sinh@@{t}}\right)^{1-2\mu} = \sum_{s=0}^{\infty}p_{s}^{(\mu)}(z)\left(-\frac{t}{z}\right)^{s}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\exp@{-\tfrac{1}{2}z\left(\coth@@{t}-\frac{1}{t}\right)}\left(\frac{t}{\sinh@@{t}}\right)^{1-2\mu} = \sum_{s=0}^{\infty}p_{s}^{(\mu)}(z)\left(-\frac{t}{z}\right)^{s}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(-(1)/(2)*z*(coth(t)-(1)/(t)))*((t)/(sinh(t)))^(1 - 2*mu) = sum((p[s])^(mu)(z)*(-(t)/(z))^(s), s = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[-Divide[1,2]*z*(Coth[t]-Divide[1,t])]*(Divide[t,Sinh[t]])^(1 - 2*\[Mu]) == Sum[(Subscript[p, s])^(\[Mu])[z]*(-Divide[t,z])^(s), {s, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Skipped - Because timed out || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[1.4000146541353637, 0.6933735030866136], Times[-1.0, NSum[Times[Power[Complex[1.299038105676658, -0.7499999999999999], s], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], Plus[1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], p] | |||
Test Values: {s, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[t, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[p, s], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[1.4000146541353637, 0.6933735030866136], Times[-1.0, NSum[Times[Power[Complex[1.299038105676658, -0.7499999999999999], s], Power[E, Times[Complex[0, Rational[1, 6]], Pi]], Power[Power[E, Times[Complex[0, Rational[2, 3]], Pi]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], p] | |||
Test Values: {s, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[t, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[p, s], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/13.25.E1 13.25.E1] || [[Item:Q4652|<math>\WhittakerconfhyperM{\kappa}{\mu}@{z}\WhittakerconfhyperM{\kappa}{-\mu-1}@{z}+\frac{(\frac{1}{2}+\mu+\kappa)(\frac{1}{2}+\mu-\kappa)}{4\mu(1+\mu)(1+2\mu)^{2}}\WhittakerconfhyperM{\kappa}{\mu+1}@{z}\WhittakerconfhyperM{\kappa}{-\mu}@{z} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperM{\kappa}{\mu}@{z}\WhittakerconfhyperM{\kappa}{-\mu-1}@{z}+\frac{(\frac{1}{2}+\mu+\kappa)(\frac{1}{2}+\mu-\kappa)}{4\mu(1+\mu)(1+2\mu)^{2}}\WhittakerconfhyperM{\kappa}{\mu+1}@{z}\WhittakerconfhyperM{\kappa}{-\mu}@{z} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>WhittakerM(kappa, mu, z)*WhittakerM(kappa, - mu - 1, z)+(((1)/(2)+ mu + kappa)*((1)/(2)+ mu - kappa))/(4*mu*(1 + mu)*(1 + 2*mu)^(2))*WhittakerM(kappa, mu + 1, z)*WhittakerM(kappa, - mu, z) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerM[\[Kappa], \[Mu], z]*WhittakerM[\[Kappa], - \[Mu]- 1, z]+Divide[(Divide[1,2]+ \[Mu]+ \[Kappa])*(Divide[1,2]+ \[Mu]- \[Kappa]),4*\[Mu]*(1 + \[Mu])*(1 + 2*\[Mu])^(2)]*WhittakerM[\[Kappa], \[Mu]+ 1, z]*WhittakerM[\[Kappa], - \[Mu], z] == 1</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [168 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Float(infinity)+Float(infinity)*I | |||
Test Values: {kappa = 1/2*3^(1/2)+1/2*I, mu = -3/2, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Float(infinity)+Float(infinity)*I | |||
Test Values: {kappa = 1/2*3^(1/2)+1/2*I, mu = -3/2, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [162 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, -1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | |||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/13.28#Ex1 13.28#Ex1] || [[Item:Q4666|<math>f_{1}(\xi) = \xi^{-\frac{1}{2}}V_{\kappa,\frac{1}{2}p}^{(1)}(2\iunit k\xi)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>f_{1}(\xi) = \xi^{-\frac{1}{2}}V_{\kappa,\frac{1}{2}p}^{(1)}(2\iunit k\xi)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>f[1](xi) = (xi)^(-(1)/(2))* (V[kappa ,(1)/(2)*p])^(1)(2*I*k*xi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Subscript[f, 1][\[Xi]] == \[Xi]^(-Divide[1,2])* (Subscript[V, \[Kappa],Divide[1,2]*p])^(1)[2*I*k*\[Xi]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.914213563-.5481881590*I | |||
Test Values: {kappa = 1/2*3^(1/2)+1/2*I, p = 1/2*3^(1/2)+1/2*I, xi = 1/2*3^(1/2)+1/2*I, V[kappa,1/2*p] = 1/2*3^(1/2)+1/2*I, f[1] = 1/2*3^(1/2)+1/2*I, k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 3.328427125-1.962401722*I | |||
Test Values: {kappa = 1/2*3^(1/2)+1/2*I, p = 1/2*3^(1/2)+1/2*I, xi = 1/2*3^(1/2)+1/2*I, V[kappa,1/2*p] = 1/2*3^(1/2)+1/2*I, f[1] = 1/2*3^(1/2)+1/2*I, k = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.914213562373095, -0.5481881585886565] | |||
Test Values: {Rule[k, 1], Rule[p, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ξ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[f, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[V, κ, Times[Rational[1, 2], p]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[3.32842712474619, -1.9624017209617517] | |||
Test Values: {Rule[k, 2], Rule[p, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ξ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[f, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[V, κ, Times[Rational[1, 2], p]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/13.28#Ex2 13.28#Ex2] || [[Item:Q4667|<math>f_{2}(\eta) = \eta^{-\frac{1}{2}}V_{\kappa,\frac{1}{2}p}^{(2)}(-2\iunit k\eta)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>f_{2}(\eta) = \eta^{-\frac{1}{2}}V_{\kappa,\frac{1}{2}p}^{(2)}(-2\iunit k\eta)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>f[2](eta) = (eta)^(-(1)/(2))* (V[kappa ,(1)/(2)*p])^(2)(- 2*I*k*eta)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Subscript[f, 2][\[Eta]] == \[Eta]^(-Divide[1,2])* (Subscript[V, \[Kappa],Divide[1,2]*p])^(2)[- 2*I*k*\[Eta]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -1.431851653+1.383663495*I | |||
Test Values: {eta = 1/2*3^(1/2)+1/2*I, kappa = 1/2*3^(1/2)+1/2*I, p = 1/2*3^(1/2)+1/2*I, V[kappa,1/2*p] = 1/2*3^(1/2)+1/2*I, f[2] = 1/2*3^(1/2)+1/2*I, k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -3.363703307+1.901301586*I | |||
Test Values: {eta = 1/2*3^(1/2)+1/2*I, kappa = 1/2*3^(1/2)+1/2*I, p = 1/2*3^(1/2)+1/2*I, V[kappa,1/2*p] = 1/2*3^(1/2)+1/2*I, f[2] = 1/2*3^(1/2)+1/2*I, k = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-1.4318516525781364, 1.3836634939894803] | |||
Test Values: {Rule[k, 1], Rule[p, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[η, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[f, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[V, κ, Times[Rational[1, 2], p]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-3.363703305156273, 1.9013015841945222] | |||
Test Values: {Rule[k, 2], Rule[p, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[η, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[f, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[V, κ, Times[Rational[1, 2], p]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- style="background: #dfe6e9;" | |||
| [https://dlmf.nist.gov/13.29.E1 13.29.E1] || [[Item:Q4668|<math>\frac{z^{2}(n+\mu-\tfrac{1}{2})\left((n+\mu+\tfrac{1}{2})^{2}-\kappa^{2}\right)}{(n+\mu)(n+\mu+\tfrac{1}{2})(n+\mu+1)}{y(n+1)}+16\left((n+\mu)^{2}-\tfrac{1}{2}\kappa z-\tfrac{1}{4}\right)y(n)\\ -16\left((n+\mu)^{2}-\tfrac{1}{4}\right)y(n-1) = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\frac{z^{2}(n+\mu-\tfrac{1}{2})\left((n+\mu+\tfrac{1}{2})^{2}-\kappa^{2}\right)}{(n+\mu)(n+\mu+\tfrac{1}{2})(n+\mu+1)}{y(n+1)}+16\left((n+\mu)^{2}-\tfrac{1}{2}\kappa z-\tfrac{1}{4}\right)y(n)\\ -16\left((n+\mu)^{2}-\tfrac{1}{4}\right)y(n-1) = 0</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">((x + y*I)^(2)*(n + mu -(1)/(2))*((n + mu +(1)/(2))^(2)- (kappa)^(2)))/((n + mu)*(n + mu +(1)/(2))*(n + mu + 1))*y*(n + 1)+ 16*((n + mu)^(2)-(1)/(2)*kappa*(x + y*I)-(1)/(4))*((x + y*I)^(- n - mu -(1)/(2))* WhittakerM(kappa, n + mu, x + y*I))*; - 16*((n + mu)^(2)-(1)/(4))*y*(n - 1) = 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Divide[(x + y*I)^(2)*(n + \[Mu]-Divide[1,2])*((n + \[Mu]+Divide[1,2])^(2)- \[Kappa]^(2)),(n + \[Mu])*(n + \[Mu]+Divide[1,2])*(n + \[Mu]+ 1)]*y*(n + 1)+ 16*((n + \[Mu])^(2)-Divide[1,2]*\[Kappa]*(x + y*I)-Divide[1,4])*((x + y*I)^(- n - \[Mu]-Divide[1,2])* WhittakerM[\[Kappa], n + \[Mu], x + y*I])*- 16*((n + \[Mu])^(2)-Divide[1,4])*y*(n - 1) == 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | |||
|- | |||
| [https://dlmf.nist.gov/13.29.E3 13.29.E3] || [[Item:Q4670|<math>e^{-\frac{1}{2}z} = \sum_{s=0}^{\infty}\frac{\Pochhammersym{2\mu}{s}\Pochhammersym{\frac{1}{2}+\mu-\kappa}{s}}{\Pochhammersym{2\mu}{2s}s!}(-z)^{s}y(s)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{-\frac{1}{2}z} = \sum_{s=0}^{\infty}\frac{\Pochhammersym{2\mu}{s}\Pochhammersym{\frac{1}{2}+\mu-\kappa}{s}}{\Pochhammersym{2\mu}{2s}s!}(-z)^{s}y(s)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(-(1)/(2)*(x + y(I))) = sum((pochhammer(2*mu, s)*pochhammer((1)/(2)+ mu - kappa, s))/(pochhammer(2*mu, 2*s)*factorial(s))*(-(x + y(I)))^(s)* y(s), s = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[-Divide[1,2]*(x + y[I])] == Sum[Divide[Pochhammer[2*\[Mu], s]*Pochhammer[Divide[1,2]+ \[Mu]- \[Kappa], s],Pochhammer[2*\[Mu], 2*s]*(s)!]*(-(x + y[I]))^(s)* y[s], {s, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .505394540e-1+.5994002652*I | |||
Test Values: {kappa = 1/2*3^(1/2)+1/2*I, mu = 1/2*3^(1/2)+1/2*I, x = 3/2, y = -3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .7100232023-.2722368431*I | |||
Test Values: {kappa = 1/2*3^(1/2)+1/2*I, mu = 1/2*3^(1/2)+1/2*I, x = 3/2, y = 3/2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.0505394539002913, 0.5994002653939074] | |||
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.9437946777348876, -0.07485124664222054] | |||
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- style="background: #dfe6e9;" | |||
| [https://dlmf.nist.gov/13.29.E5 13.29.E5] || [[Item:Q4672|<math>(n+a)w(n)-\left(2(n+a+1)+z-b\right)w(n+1)+(n+a-b+2)w(n+2) = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>(n+a)w(n)-\left(2(n+a+1)+z-b\right)w(n+1)+(n+a-b+2)w(n+2) = 0</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(n + a)*w(n)-(2*(n + a + 1)+ z - b)*w(n + 1)+(n + a - b + 2)*w(n + 2) = 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(n + a)*w[n]-(2*(n + a + 1)+ z - b)*w[n + 1]+(n + a - b + 2)*w[n + 2] == 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | |||
|- | |||
| [https://dlmf.nist.gov/13.29.E6 13.29.E6] || [[Item:Q4673|<math>w(n) = \Pochhammersym{a}{n}\KummerconfhyperU@{n+a}{b}{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>w(n) = \Pochhammersym{a}{n}\KummerconfhyperU@{n+a}{b}{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>w(n) = pochhammer(a, n)*KummerU(n + a, b, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>w[n] == Pochhammer[a, n]*HypergeometricU[n + a, b, z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 3.350777422+.7382256467*I | |||
Test Values: {a = -3/2, b = -3/2, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.327538097+1.034245119*I | |||
Test Values: {a = -3/2, b = -3/2, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, n = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[3.3507774204902745, 0.7382256467588033] | |||
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[n, 1], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.3275380963595516, 1.0342451193960447] | |||
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[n, 2], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/13.29.E7 13.29.E7] || [[Item:Q4674|<math>z^{-a} = \sum_{s=0}^{\infty}\frac{\Pochhammersym{a-b+1}{s}}{s!}w(s)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>z^{-a} = \sum_{s=0}^{\infty}\frac{\Pochhammersym{a-b+1}{s}}{s!}w(s)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(z)^(- a) = sum((pochhammer(a - b + 1, s))/(factorial(s))*w(s), s = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(z)^(- a) == Sum[Divide[Pochhammer[a - b + 1, s],(s)!]*w[s], {s, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Float(infinity)+Float(infinity)*I | |||
Test Values: {a = -3/2, b = -3/2, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Float(infinity)+Float(infinity)*I | |||
Test Values: {a = -3/2, b = -3/2, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: DirectedInfinity[] | |||
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: DirectedInfinity[] | |||
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | |||
|- | |||
| [https://dlmf.nist.gov/13.31.E3 13.31.E3] || [[Item:Q4678|<math>z^{a}\KummerconfhyperU@{a}{1+a-b}{z} = \lim_{n\to\infty}\frac{A_{n}(z)}{B_{n}(z)}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>z^{a}\KummerconfhyperU@{a}{1+a-b}{z} = \lim_{n\to\infty}\frac{A_{n}(z)}{B_{n}(z)}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(z)^(a)* KummerU(a, 1 + a - b, z) = limit((sum((pochhammer(- n, s)*pochhammer(n + 1, s)*pochhammer(a, s)*pochhammer(b, s))/(pochhammer(a + 1, s)*pochhammer(b + 1, s)*(factorial(n))^(2))* hypergeom([- n + s , n + 1 + s , 1], [1 + s , a + 1 + s , b + 1 + s], - z), s = 0..n))/(hypergeom([- n , n + 1], [a + 1 , b + 1], - z)), n = infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(z)^(a)* HypergeometricU[a, 1 + a - b, z] == Limit[Divide[Sum[Divide[Pochhammer[- n, s]*Pochhammer[n + 1, s]*Pochhammer[a, s]*Pochhammer[b, s],Pochhammer[a + 1, s]*Pochhammer[b + 1, s]*((n)!)^(2)]* HypergeometricPFQ[{- n + s , n + 1 + s , 1}, {1 + s , a + 1 + s , b + 1 + s}, - z], {s, 0, n}, GenerateConditions->None],HypergeometricPFQ[{- n , n + 1}, {a + 1 , b + 1}, - z]], n -> Infinity, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out | |||
|} | |||
</div> |
Latest revision as of 13:01, 22 May 2021
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
13.14.E1 | \deriv[2]{W}{z}+\left(-\frac{1}{4}+\frac{\kappa}{z}+\frac{\frac{1}{4}-\mu^{2}}{z^{2}}\right)W = 0 |
|
diff(W, [z$(2)])+(-(1)/(4)+(kappa)/(z)+((1)/(4)- (mu)^(2))/((z)^(2)))*W = 0
|
D[W, {z, 2}]+(-Divide[1,4]+Divide[\[Kappa],z]+Divide[Divide[1,4]- \[Mu]^(2),(z)^(2)])*W == 0
|
Failure | Failure | Failed [300 / 300] Result: -.1000000000e-9-.2499999999*I
Test Values: {W = 1/2*3^(1/2)+1/2*I, kappa = 1/2*3^(1/2)+1/2*I, mu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}
Result: .9330127021-.3660254041*I
Test Values: {W = 1/2*3^(1/2)+1/2*I, kappa = 1/2*3^(1/2)+1/2*I, mu = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [300 / 300]
Result: Complex[-1.3877787807814457*^-17, -0.25]
Test Values: {Rule[W, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[1.7320508075688772, 0.7500000000000002]
Test Values: {Rule[W, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
13.14.E2 | \WhittakerconfhyperM{\kappa}{\mu}@{z} = e^{-\frac{1}{2}z}z^{\frac{1}{2}+\mu}\KummerconfhyperM@{\tfrac{1}{2}+\mu-\kappa}{1+2\mu}{z} |
|
WhittakerM(kappa, mu, z) = exp(-(1)/(2)*z)*(z)^((1)/(2)+ mu)* KummerM((1)/(2)+ mu - kappa, 1 + 2*mu, z)
|
WhittakerM[\[Kappa], \[Mu], z] == Exp[-Divide[1,2]*z]*(z)^(Divide[1,2]+ \[Mu])* Hypergeometric1F1[Divide[1,2]+ \[Mu]- \[Kappa], 1 + 2*\[Mu], z]
|
Successful | Successful | - | Failed [78 / 300]
Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, -1.5]}
Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, -0.5]}
... skip entries to safe data |
13.14.E3 | \WhittakerconfhyperW{\kappa}{\mu}@{z} = e^{-\frac{1}{2}z}z^{\frac{1}{2}+\mu}\KummerconfhyperU@{\tfrac{1}{2}+\mu-\kappa}{1+2\mu}{z} |
|
WhittakerW(kappa, mu, z) = exp(-(1)/(2)*z)*(z)^((1)/(2)+ mu)* KummerU((1)/(2)+ mu - kappa, 1 + 2*mu, z)
|
WhittakerW[\[Kappa], \[Mu], z] == Exp[-Divide[1,2]*z]*(z)^(Divide[1,2]+ \[Mu])* HypergeometricU[Divide[1,2]+ \[Mu]- \[Kappa], 1 + 2*\[Mu], z]
|
Successful | Successful | - | Successful [Tested: 300] |
13.14.E4 | \KummerconfhyperM@{a}{b}{z} = e^{\frac{1}{2}z}z^{-\frac{1}{2}b}\WhittakerconfhyperM{\frac{1}{2}b-a}{\frac{1}{2}b-\frac{1}{2}}@{z} |
|
KummerM(a, b, z) = exp((1)/(2)*z)*(z)^(-(1)/(2)*b)* WhittakerM((1)/(2)*b - a, (1)/(2)*b -(1)/(2), z)
|
Hypergeometric1F1[a, b, z] == Exp[Divide[1,2]*z]*(z)^(-Divide[1,2]*b)* WhittakerM[Divide[1,2]*b - a, Divide[1,2]*b -Divide[1,2], z]
|
Successful | Successful | - | Failed [35 / 252]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
13.14.E5 | \KummerconfhyperU@{a}{b}{z} = e^{\frac{1}{2}z}z^{-\frac{1}{2}b}\WhittakerconfhyperW{\frac{1}{2}b-a}{\frac{1}{2}b-\frac{1}{2}}@{z} |
|
KummerU(a, b, z) = exp((1)/(2)*z)*(z)^(-(1)/(2)*b)* WhittakerW((1)/(2)*b - a, (1)/(2)*b -(1)/(2), z)
|
HypergeometricU[a, b, z] == Exp[Divide[1,2]*z]*(z)^(-Divide[1,2]*b)* WhittakerW[Divide[1,2]*b - a, Divide[1,2]*b -Divide[1,2], z]
|
Successful | Successful | - | Successful [Tested: 252] |
13.14.E6 | \WhittakerconfhyperM{\kappa}{\mu}@{z} = e^{-\frac{1}{2}z}z^{\frac{1}{2}+\mu}\sum_{s=0}^{\infty}\frac{\Pochhammersym{\frac{1}{2}+\mu-\kappa}{s}}{\Pochhammersym{1+2\mu}{s}s!}z^{s} |
|
WhittakerM(kappa, mu, z) = exp(-(1)/(2)*z)*(z)^((1)/(2)+ mu)* sum((pochhammer((1)/(2)+ mu - kappa, s))/(pochhammer(1 + 2*mu, s)*factorial(s))*(z)^(s), s = 0..infinity)
|
WhittakerM[\[Kappa], \[Mu], z] == Exp[-Divide[1,2]*z]*(z)^(Divide[1,2]+ \[Mu])* Sum[Divide[Pochhammer[Divide[1,2]+ \[Mu]- \[Kappa], s],Pochhammer[1 + 2*\[Mu], s]*(s)!]*(z)^(s), {s, 0, Infinity}, GenerateConditions->None]
|
Successful | Successful | Skip - symbolical successful subtest | Successful [Tested: 70] |
13.14.E6 | e^{-\frac{1}{2}z}z^{\frac{1}{2}+\mu}\sum_{s=0}^{\infty}\frac{\Pochhammersym{\frac{1}{2}+\mu-\kappa}{s}}{\Pochhammersym{1+2\mu}{s}s!}z^{s} = z^{\frac{1}{2}+\mu}\sum_{n=0}^{\infty}\genhyperF{2}{1}@@{-n,\tfrac{1}{2}+\mu-\kappa}{1+2\mu}{2}\frac{\left(-\tfrac{1}{2}z\right)^{n}}{n!} |
|
exp(-(1)/(2)*z)*(z)^((1)/(2)+ mu)* sum((pochhammer((1)/(2)+ mu - kappa, s))/(pochhammer(1 + 2*mu, s)*factorial(s))*(z)^(s), s = 0..infinity) = (z)^((1)/(2)+ mu)* sum(hypergeom([- n ,(1)/(2)+ mu - kappa], [1 + 2*mu], 2)*((-(1)/(2)*z)^(n))/(factorial(n)), n = 0..infinity)
|
Exp[-Divide[1,2]*z]*(z)^(Divide[1,2]+ \[Mu])* Sum[Divide[Pochhammer[Divide[1,2]+ \[Mu]- \[Kappa], s],Pochhammer[1 + 2*\[Mu], s]*(s)!]*(z)^(s), {s, 0, Infinity}, GenerateConditions->None] == (z)^(Divide[1,2]+ \[Mu])* Sum[HypergeometricPFQ[{- n ,Divide[1,2]+ \[Mu]- \[Kappa]}, {1 + 2*\[Mu]}, 2]*Divide[(-Divide[1,2]*z)^(n),(n)!], {n, 0, Infinity}, GenerateConditions->None]
|
Failure | Failure | Successful [Tested: 70] | Failed [70 / 70]
Result: Plus[Complex[0.7625032651803492, -0.1563764235133353], Times[Complex[-0.9238795325112867, -0.3826834323650898], NSum[Times[Power[Times[Rational[-1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], n], Power[Factorial[n], -1], HypergeometricPFQ[{Plus[Rational[3, 4], Times[-1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, n]}
Test Values: {Rational[3, 2]}, 2]], {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Rational[1, 4]]}
Result: Plus[Complex[1.7168297866655773, 0.2697440808837949], Times[Complex[-0.9238795325112867, -0.3826834323650898], NSum[Times[Power[Times[Rational[-1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], n], Power[Factorial[n], -1], HypergeometricPFQ[{Plus[Rational[3, 4], Times[-1, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]], Times[-1, n]}
Test Values: {Rational[3, 2]}, 2]], {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[μ, Rational[1, 4]]}
... skip entries to safe data |
13.14.E7 | \frac{\Pochhammersym{-\frac{1}{2}n-\kappa}{n+1}}{(n+1)!}\WhittakerconfhyperM{\kappa}{\frac{1}{2}(n+1)}@{z} = e^{-\frac{1}{2}z}z^{-\frac{1}{2}n}\sum_{s=n+1}^{\infty}\frac{\Pochhammersym{-\frac{1}{2}n-\kappa}{s}}{\EulerGamma@{s-n}s!}z^{s} |
(pochhammer(-(1)/(2)*n - kappa, n + 1))/(factorial(n + 1))*WhittakerM(kappa, (1)/(2)*(n + 1), z) = exp(-(1)/(2)*z)*(z)^(-(1)/(2)*n)* sum((pochhammer(-(1)/(2)*n - kappa, s))/(GAMMA(s - n)*factorial(s))*(z)^(s), s = n + 1..infinity)
|
Divide[Pochhammer[-Divide[1,2]*n - \[Kappa], n + 1],(n + 1)!]*WhittakerM[\[Kappa], Divide[1,2]*(n + 1), z] == Exp[-Divide[1,2]*z]*(z)^(-Divide[1,2]*n)* Sum[Divide[Pochhammer[-Divide[1,2]*n - \[Kappa], s],Gamma[s - n]*(s)!]*(z)^(s), {s, n + 1, Infinity}, GenerateConditions->None]
|
Failure | Successful | Skipped - Because timed out | Successful [Tested: 210] | |
13.14.E8 | \WhittakerconfhyperW{\kappa}{+\frac{1}{2}n}@{z} = \frac{(-1)^{n}e^{-\frac{1}{2}z}z^{\frac{1}{2}n+\frac{1}{2}}}{n!\EulerGamma@{\frac{1}{2}-\frac{1}{2}n-\kappa}}\left(\sum_{k=1}^{n}\frac{n!(k-1)!}{(n-k)!\Pochhammersym{\kappa+\frac{1}{2}-\frac{1}{2}n}{k}}z^{-k}-\sum_{k=0}^{\infty}\frac{\Pochhammersym{\frac{1}{2}n+\frac{1}{2}-\kappa}{k}}{\Pochhammersym{n+1}{k}k!}z^{k}\left(\ln@@{z}+\digamma@{\tfrac{1}{2}n+\tfrac{1}{2}-\kappa+k}-\digamma@{1+k}-\digamma@{n+1+k}\right)\right) |
WhittakerW(kappa, +(1)/(2)*n, z) = ((- 1)^(n)* exp(-(1)/(2)*z)*(z)^((1)/(2)*n +(1)/(2)))/(factorial(n)*GAMMA((1)/(2)-(1)/(2)*n - kappa))*(sum((factorial(n)*factorial(k - 1))/(factorial(n - k)*pochhammer(kappa +(1)/(2)-(1)/(2)*n, k))*(z)^(- k), k = 1..n)- sum((pochhammer((1)/(2)*n +(1)/(2)- kappa, k))/(pochhammer(n + 1, k)*factorial(k))*(z)^(k)*(ln(z)+ Psi((1)/(2)*n +(1)/(2)- kappa + k)- Psi(1 + k)- Psi(n + 1 + k)), k = 0..infinity))
|
WhittakerW[\[Kappa], +Divide[1,2]*n, z] == Divide[(- 1)^(n)* Exp[-Divide[1,2]*z]*(z)^(Divide[1,2]*n +Divide[1,2]),(n)!*Gamma[Divide[1,2]-Divide[1,2]*n - \[Kappa]]]*(Sum[Divide[(n)!*(k - 1)!,(n - k)!*Pochhammer[\[Kappa]+Divide[1,2]-Divide[1,2]*n, k]]*(z)^(- k), {k, 1, n}, GenerateConditions->None]- Sum[Divide[Pochhammer[Divide[1,2]*n +Divide[1,2]- \[Kappa], k],Pochhammer[n + 1, k]*(k)!]*(z)^(k)*(Log[z]+ PolyGamma[Divide[1,2]*n +Divide[1,2]- \[Kappa]+ k]- PolyGamma[1 + k]- PolyGamma[n + 1 + k]), {k, 0, Infinity}, GenerateConditions->None])
|
Aborted | Aborted | Skipped - Because timed out | Skipped - Because timed out | |
13.14.E8 | \WhittakerconfhyperW{\kappa}{-\frac{1}{2}n}@{z} = \frac{(-1)^{n}e^{-\frac{1}{2}z}z^{\frac{1}{2}n+\frac{1}{2}}}{n!\EulerGamma@{\frac{1}{2}-\frac{1}{2}n-\kappa}}\left(\sum_{k=1}^{n}\frac{n!(k-1)!}{(n-k)!\Pochhammersym{\kappa+\frac{1}{2}-\frac{1}{2}n}{k}}z^{-k}-\sum_{k=0}^{\infty}\frac{\Pochhammersym{\frac{1}{2}n+\frac{1}{2}-\kappa}{k}}{\Pochhammersym{n+1}{k}k!}z^{k}\left(\ln@@{z}+\digamma@{\tfrac{1}{2}n+\tfrac{1}{2}-\kappa+k}-\digamma@{1+k}-\digamma@{n+1+k}\right)\right) |
WhittakerW(kappa, -(1)/(2)*n, z) = ((- 1)^(n)* exp(-(1)/(2)*z)*(z)^((1)/(2)*n +(1)/(2)))/(factorial(n)*GAMMA((1)/(2)-(1)/(2)*n - kappa))*(sum((factorial(n)*factorial(k - 1))/(factorial(n - k)*pochhammer(kappa +(1)/(2)-(1)/(2)*n, k))*(z)^(- k), k = 1..n)- sum((pochhammer((1)/(2)*n +(1)/(2)- kappa, k))/(pochhammer(n + 1, k)*factorial(k))*(z)^(k)*(ln(z)+ Psi((1)/(2)*n +(1)/(2)- kappa + k)- Psi(1 + k)- Psi(n + 1 + k)), k = 0..infinity))
|
WhittakerW[\[Kappa], -Divide[1,2]*n, z] == Divide[(- 1)^(n)* Exp[-Divide[1,2]*z]*(z)^(Divide[1,2]*n +Divide[1,2]),(n)!*Gamma[Divide[1,2]-Divide[1,2]*n - \[Kappa]]]*(Sum[Divide[(n)!*(k - 1)!,(n - k)!*Pochhammer[\[Kappa]+Divide[1,2]-Divide[1,2]*n, k]]*(z)^(- k), {k, 1, n}, GenerateConditions->None]- Sum[Divide[Pochhammer[Divide[1,2]*n +Divide[1,2]- \[Kappa], k],Pochhammer[n + 1, k]*(k)!]*(z)^(k)*(Log[z]+ PolyGamma[Divide[1,2]*n +Divide[1,2]- \[Kappa]+ k]- PolyGamma[1 + k]- PolyGamma[n + 1 + k]), {k, 0, Infinity}, GenerateConditions->None])
|
Aborted | Aborted | Skipped - Because timed out | Skipped - Because timed out | |
13.14.E9 | \WhittakerconfhyperW{\kappa}{+\frac{1}{2}n}@{z} = (-1)^{\kappa-\frac{1}{2}n-\frac{1}{2}}e^{-\frac{1}{2}z}z^{\frac{1}{2}n+\frac{1}{2}}\sum_{k=0}^{\kappa-\frac{1}{2}n-\frac{1}{2}}\binom{\kappa-\frac{1}{2}n-\frac{1}{2}}{k}\Pochhammersym{n+1+k}{\kappa-k-\frac{1}{2}n-\frac{1}{2}}(-z)^{k} |
|
WhittakerW(kappa, +(1)/(2)*n, z) = (- 1)^(kappa -(1)/(2)*n -(1)/(2))* exp(-(1)/(2)*z)*(z)^((1)/(2)*n +(1)/(2))* sum(binomial(kappa -(1)/(2)*n -(1)/(2),k)*pochhammer(n + 1 + k, kappa - k -(1)/(2)*n -(1)/(2))*(- z)^(k), k = 0..kappa -(1)/(2)*n -(1)/(2))
|
WhittakerW[\[Kappa], +Divide[1,2]*n, z] == (- 1)^(\[Kappa]-Divide[1,2]*n -Divide[1,2])* Exp[-Divide[1,2]*z]*(z)^(Divide[1,2]*n +Divide[1,2])* Sum[Binomial[\[Kappa]-Divide[1,2]*n -Divide[1,2],k]*Pochhammer[n + 1 + k, \[Kappa]- k -Divide[1,2]*n -Divide[1,2]]*(- z)^(k), {k, 0, \[Kappa]-Divide[1,2]*n -Divide[1,2]}, GenerateConditions->None]
|
Failure | Failure | Successful [Tested: 7] | Failed [189 / 210]
Result: Complex[0.5169913326612593, -0.09737869271758438]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[1.1703866965609513, -0.19101907289178782]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |
13.14.E9 | \WhittakerconfhyperW{\kappa}{-\frac{1}{2}n}@{z} = (-1)^{\kappa-\frac{1}{2}n-\frac{1}{2}}e^{-\frac{1}{2}z}z^{\frac{1}{2}n+\frac{1}{2}}\sum_{k=0}^{\kappa-\frac{1}{2}n-\frac{1}{2}}\binom{\kappa-\frac{1}{2}n-\frac{1}{2}}{k}\Pochhammersym{n+1+k}{\kappa-k-\frac{1}{2}n-\frac{1}{2}}(-z)^{k} |
|
WhittakerW(kappa, -(1)/(2)*n, z) = (- 1)^(kappa -(1)/(2)*n -(1)/(2))* exp(-(1)/(2)*z)*(z)^((1)/(2)*n +(1)/(2))* sum(binomial(kappa -(1)/(2)*n -(1)/(2),k)*pochhammer(n + 1 + k, kappa - k -(1)/(2)*n -(1)/(2))*(- z)^(k), k = 0..kappa -(1)/(2)*n -(1)/(2))
|
WhittakerW[\[Kappa], -Divide[1,2]*n, z] == (- 1)^(\[Kappa]-Divide[1,2]*n -Divide[1,2])* Exp[-Divide[1,2]*z]*(z)^(Divide[1,2]*n +Divide[1,2])* Sum[Binomial[\[Kappa]-Divide[1,2]*n -Divide[1,2],k]*Pochhammer[n + 1 + k, \[Kappa]- k -Divide[1,2]*n -Divide[1,2]]*(- z)^(k), {k, 0, \[Kappa]-Divide[1,2]*n -Divide[1,2]}, GenerateConditions->None]
|
Failure | Failure | Successful [Tested: 7] | Failed [189 / 210]
Result: Complex[0.5169913326612593, -0.09737869271758438]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[1.1703866965609513, -0.19101907289178816]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |
13.14.E10 | \WhittakerconfhyperM{\kappa}{\mu}@{ze^{+\pi\iunit}} = +\iunit e^{+\mu\pi\iunit}\WhittakerconfhyperM{-\kappa}{\mu}@{z} |
|
WhittakerM(kappa, mu, z*exp(+ Pi*I)) = + I*exp(+ mu*Pi*I)*WhittakerM(- kappa, mu, z)
|
WhittakerM[\[Kappa], \[Mu], z*Exp[+ Pi*I]] == + I*Exp[+ \[Mu]*Pi*I]*WhittakerM[- \[Kappa], \[Mu], z]
|
Failure | Failure | Failed [130 / 300] Result: -4.895892966+1.186871174*I
Test Values: {kappa = 1/2*3^(1/2)+1/2*I, mu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}
Result: .4883444919-1.278994596*I
Test Values: {kappa = 1/2*3^(1/2)+1/2*I, mu = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [190 / 300]
Result: Complex[-4.89589296422639, 1.1868711700759136]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[16.701326575973276, -3.4860202275194005]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
13.14.E10 | \WhittakerconfhyperM{\kappa}{\mu}@{ze^{-\pi\iunit}} = -\iunit e^{-\mu\pi\iunit}\WhittakerconfhyperM{-\kappa}{\mu}@{z} |
|
WhittakerM(kappa, mu, z*exp(- Pi*I)) = - I*exp(- mu*Pi*I)*WhittakerM(- kappa, mu, z)
|
WhittakerM[\[Kappa], \[Mu], z*Exp[- Pi*I]] == - I*Exp[- \[Mu]*Pi*I]*WhittakerM[- \[Kappa], \[Mu], z]
|
Failure | Failure | Failed [198 / 300] Result: -9.930599690-2.602006174*I
Test Values: {kappa = 1/2*3^(1/2)+1/2*I, mu = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}
Result: 3.613026945+13.86544735*I
Test Values: {kappa = 1/2*3^(1/2)+1/2*I, mu = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}
... skip entries to safe data |
Failed [140 / 300]
Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, -1.5]}
Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, -0.5]}
... skip entries to safe data |
13.14.E11 | \WhittakerconfhyperM{\kappa}{\mu}@{ze^{2m\pi\iunit}} = (-1)^{m}e^{2m\mu\pi\iunit}\WhittakerconfhyperM{\kappa}{\mu}@{z} |
|
WhittakerM(kappa, mu, z*exp(2*m*Pi*I)) = (- 1)^(m)* exp(2*m*mu*Pi*I)*WhittakerM(kappa, mu, z)
|
WhittakerM[\[Kappa], \[Mu], z*Exp[2*m*Pi*I]] == (- 1)^(m)* Exp[2*m*\[Mu]*Pi*I]*WhittakerM[\[Kappa], \[Mu], z]
|
Failure | Failure | Failed [251 / 300] Result: .5508945958+.2826830659*I
Test Values: {kappa = 1/2*3^(1/2)+1/2*I, mu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 1}
Result: .5259254704+.2923012958*I
Test Values: {kappa = 1/2*3^(1/2)+1/2*I, mu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 2}
... skip entries to safe data |
Failed [220 / 300]
Result: Complex[0.5508945961174277, 0.2826830653610755]
Test Values: {Rule[m, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[0.5259254730625326, 0.2923012928351815]
Test Values: {Rule[m, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |
13.14.E12 | \WhittakerconfhyperW{\kappa}{\mu}@{ze^{2m\pi\iunit}} = \frac{(-1)^{m+1}2\pi\iunit\sin@{2\pi\mu m}}{\EulerGamma@{\frac{1}{2}-\mu-\kappa}\EulerGamma@{1+2\mu}\sin@{2\pi\mu}}\WhittakerconfhyperM{\kappa}{\mu}@{z}+(-1)^{m}e^{-2m\mu\pi\iunit}\WhittakerconfhyperW{\kappa}{\mu}@{z} |
WhittakerW(kappa, mu, z*exp(2*m*Pi*I)) = ((- 1)^(m + 1)* 2*Pi*I*sin(2*Pi*mu*m))/(GAMMA((1)/(2)- mu - kappa)*GAMMA(1 + 2*mu)*sin(2*Pi*mu))*WhittakerM(kappa, mu, z)+(- 1)^(m)* exp(- 2*m*mu*Pi*I)*WhittakerW(kappa, mu, z)
|
WhittakerW[\[Kappa], \[Mu], z*Exp[2*m*Pi*I]] == Divide[(- 1)^(m + 1)* 2*Pi*I*Sin[2*Pi*\[Mu]*m],Gamma[Divide[1,2]- \[Mu]- \[Kappa]]*Gamma[1 + 2*\[Mu]]*Sin[2*Pi*\[Mu]]]*WhittakerM[\[Kappa], \[Mu], z]+(- 1)^(m)* Exp[- 2*m*\[Mu]*Pi*I]*WhittakerW[\[Kappa], \[Mu], z]
|
Failure | Failure | Failed [300 / 300] Result: -18.11244228+18.74801506*I
Test Values: {kappa = -1/2+1/2*I*3^(1/2), mu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 1}
Result: 602.4607544+35.9074468*I
Test Values: {kappa = -1/2+1/2*I*3^(1/2), mu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 2}
... skip entries to safe data |
Failed [300 / 300]
Result: Complex[-18.112442291727014, 18.74801503541069]
Test Values: {Rule[m, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[602.4607532493621, 35.9074491081993]
Test Values: {Rule[m, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data | |
13.14.E13 | (-1)^{m}\WhittakerconfhyperW{\kappa}{\mu}@{ze^{2m\pi\iunit}} = -\frac{e^{2\kappa\pi\iunit}\sin@{2m\mu\pi}+\sin@{(2m-2)\mu\pi}}{\sin@{2\mu\pi}}\WhittakerconfhyperW{\kappa}{\mu}@{z}-\frac{\sin@{2m\mu\pi}2\pi\iunit e^{\kappa\pi\iunit}}{\sin@{2\mu\pi}\EulerGamma@{\frac{1}{2}+\mu-\kappa}\EulerGamma@{\frac{1}{2}-\mu-\kappa}}\WhittakerconfhyperW{-\kappa}{\mu}@{ze^{\pi\iunit}} |
(- 1)^(m)* WhittakerW(kappa, mu, z*exp(2*m*Pi*I)) = -(exp(2*kappa*Pi*I)*sin(2*m*mu*Pi)+ sin((2*m - 2)*mu*Pi))/(sin(2*mu*Pi))*WhittakerW(kappa, mu, z)-(sin(2*m*mu*Pi)*2*Pi*I*exp(kappa*Pi*I))/(sin(2*mu*Pi)*GAMMA((1)/(2)+ mu - kappa)*GAMMA((1)/(2)- mu - kappa))*WhittakerW(- kappa, mu, z*exp(Pi*I))
|
(- 1)^(m)* WhittakerW[\[Kappa], \[Mu], z*Exp[2*m*Pi*I]] == -Divide[Exp[2*\[Kappa]*Pi*I]*Sin[2*m*\[Mu]*Pi]+ Sin[(2*m - 2)*\[Mu]*Pi],Sin[2*\[Mu]*Pi]]*WhittakerW[\[Kappa], \[Mu], z]-Divide[Sin[2*m*\[Mu]*Pi]*2*Pi*I*Exp[\[Kappa]*Pi*I],Sin[2*\[Mu]*Pi]*Gamma[Divide[1,2]+ \[Mu]- \[Kappa]]*Gamma[Divide[1,2]- \[Mu]- \[Kappa]]]*WhittakerW[- \[Kappa], \[Mu], z*Exp[Pi*I]]
|
Failure | Failure | Failed [300 / 300] Result: -.774951075e-1+.230823188e-1*I
Test Values: {kappa = -1/2+1/2*I*3^(1/2), mu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 1}
Result: -1.823749563+12.44290473*I
Test Values: {kappa = -1/2+1/2*I*3^(1/2), mu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 2}
... skip entries to safe data |
Failed [300 / 300]
Result: Complex[-0.07749510760596677, 0.023082318493995446]
Test Values: {Rule[m, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-1.823749593471332, 12.442904704149905]
Test Values: {Rule[m, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data | |
13.14.E25 | \Wronskian@{\WhittakerconfhyperM{\kappa}{\mu}@{z},\WhittakerconfhyperM{\kappa}{-\mu}@{z}} = -2\mu |
|
(WhittakerM(kappa, mu, z))*diff(WhittakerM(kappa, - mu, z), z)-diff(WhittakerM(kappa, mu, z), z)*(WhittakerM(kappa, - mu, z)) = - 2*mu
|
Wronskian[{WhittakerM[\[Kappa], \[Mu], z], WhittakerM[\[Kappa], - \[Mu], z]}, z] == - 2*\[Mu]
|
Failure | Failure | Failed [168 / 300] Result: Float(infinity)+Float(infinity)*I
Test Values: {kappa = 1/2*3^(1/2)+1/2*I, mu = -3/2, z = 1/2*3^(1/2)+1/2*I}
Result: Float(infinity)+Float(infinity)*I
Test Values: {kappa = 1/2*3^(1/2)+1/2*I, mu = -3/2, z = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [162 / 300]
Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, -1.5]}
Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, 1.5]}
... skip entries to safe data |
13.14.E26 | \Wronskian@{\WhittakerconfhyperM{\kappa}{\mu}@{z},\WhittakerconfhyperW{\kappa}{\mu}@{z}} = -\frac{\EulerGamma@{1+2\mu}}{\EulerGamma@{\frac{1}{2}+\mu-\kappa}} |
(WhittakerM(kappa, mu, z))*diff(WhittakerW(kappa, mu, z), z)-diff(WhittakerM(kappa, mu, z), z)*(WhittakerW(kappa, mu, z)) = -(GAMMA(1 + 2*mu))/(GAMMA((1)/(2)+ mu - kappa))
|
Wronskian[{WhittakerM[\[Kappa], \[Mu], z], WhittakerW[\[Kappa], \[Mu], z]}, z] == -Divide[Gamma[1 + 2*\[Mu]],Gamma[Divide[1,2]+ \[Mu]- \[Kappa]]]
|
Failure | Failure | Manual Skip! | Successful [Tested: 300] | |
13.14.E27 | \Wronskian@{\WhittakerconfhyperM{\kappa}{\mu}@{z},\WhittakerconfhyperW{-\kappa}{\mu}@{e^{+\pi\iunit}z}} = \frac{\EulerGamma@{1+2\mu}}{\EulerGamma@{\frac{1}{2}+\mu+\kappa}}e^{-(\frac{1}{2}+\mu)\pi\iunit} |
(WhittakerM(kappa, mu, z))*diff(WhittakerW(- kappa, mu, exp(+ Pi*I)*z), z)-diff(WhittakerM(kappa, mu, z), z)*(WhittakerW(- kappa, mu, exp(+ Pi*I)*z)) = (GAMMA(1 + 2*mu))/(GAMMA((1)/(2)+ mu + kappa))*exp(-((1)/(2)+ mu)*Pi*I)
|
Wronskian[{WhittakerM[\[Kappa], \[Mu], z], WhittakerW[- \[Kappa], \[Mu], Exp[+ Pi*I]*z]}, z] == Divide[Gamma[1 + 2*\[Mu]],Gamma[Divide[1,2]+ \[Mu]+ \[Kappa]]]*Exp[-(Divide[1,2]+ \[Mu])*Pi*I]
|
Failure | Failure | Manual Skip! | Failed [52 / 300]
Result: Complex[4.299229486082212, -6.012569912273703]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-4.626622324464266, 5.570319989341637]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}
... skip entries to safe data | |
13.14.E27 | \Wronskian@{\WhittakerconfhyperM{\kappa}{\mu}@{z},\WhittakerconfhyperW{-\kappa}{\mu}@{e^{-\pi\iunit}z}} = \frac{\EulerGamma@{1+2\mu}}{\EulerGamma@{\frac{1}{2}+\mu+\kappa}}e^{+(\frac{1}{2}+\mu)\pi\iunit} |
(WhittakerM(kappa, mu, z))*diff(WhittakerW(- kappa, mu, exp(- Pi*I)*z), z)-diff(WhittakerM(kappa, mu, z), z)*(WhittakerW(- kappa, mu, exp(- Pi*I)*z)) = (GAMMA(1 + 2*mu))/(GAMMA((1)/(2)+ mu + kappa))*exp(+((1)/(2)+ mu)*Pi*I) |
Wronskian[{WhittakerM[\[Kappa], \[Mu], z], WhittakerW[- \[Kappa], \[Mu], Exp[- Pi*I]*z]}, z] == Divide[Gamma[1 + 2*\[Mu]],Gamma[Divide[1,2]+ \[Mu]+ \[Kappa]]]*Exp[+(Divide[1,2]+ \[Mu])*Pi*I] |
Failure | Failure | Manual Skip! | Failed [129 / 300]
Result: Complex[-4.299229486082214, 6.012569912273712]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[4.626622324464252, -5.570319989341608]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]} ... skip entries to safe data | |
13.14.E28 | \Wronskian@{\WhittakerconfhyperM{\kappa}{-\mu}@{z},\WhittakerconfhyperW{\kappa}{\mu}@{z}} = -\frac{\EulerGamma@{1-2\mu}}{\EulerGamma@{\frac{1}{2}-\mu-\kappa}} |
(WhittakerM(kappa, - mu, z))*diff(WhittakerW(kappa, mu, z), z)-diff(WhittakerM(kappa, - mu, z), z)*(WhittakerW(kappa, mu, z)) = -(GAMMA(1 - 2*mu))/(GAMMA((1)/(2)- mu - kappa)) |
Wronskian[{WhittakerM[\[Kappa], - \[Mu], z], WhittakerW[\[Kappa], \[Mu], z]}, z] == -Divide[Gamma[1 - 2*\[Mu]],Gamma[Divide[1,2]- \[Mu]- \[Kappa]]] |
Failure | Failure | Manual Skip! | Successful [Tested: 300] | |
13.14.E29 | \Wronskian@{\WhittakerconfhyperM{\kappa}{-\mu}@{z},\WhittakerconfhyperW{-\kappa}{\mu}@{e^{+\pi\iunit}z}} = \frac{\EulerGamma@{1-2\mu}}{\EulerGamma@{\frac{1}{2}-\mu+\kappa}}e^{-(\frac{1}{2}-\mu)\pi\iunit} |
(WhittakerM(kappa, - mu, z))*diff(WhittakerW(- kappa, mu, exp(+ Pi*I)*z), z)-diff(WhittakerM(kappa, - mu, z), z)*(WhittakerW(- kappa, mu, exp(+ Pi*I)*z)) = (GAMMA(1 - 2*mu))/(GAMMA((1)/(2)- mu + kappa))*exp(-((1)/(2)- mu)*Pi*I) |
Wronskian[{WhittakerM[\[Kappa], - \[Mu], z], WhittakerW[- \[Kappa], \[Mu], Exp[+ Pi*I]*z]}, z] == Divide[Gamma[1 - 2*\[Mu]],Gamma[Divide[1,2]- \[Mu]+ \[Kappa]]]*Exp[-(Divide[1,2]- \[Mu])*Pi*I] |
Failure | Failure | Manual Skip! | Failed [52 / 300]
Result: Complex[-4.626622324464262, 5.570319989341637]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} Result: Complex[4.299229486082212, -6.012569912273703]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]} ... skip entries to safe data | |
13.14.E29 | \Wronskian@{\WhittakerconfhyperM{\kappa}{-\mu}@{z},\WhittakerconfhyperW{-\kappa}{\mu}@{e^{-\pi\iunit}z}} = \frac{\EulerGamma@{1-2\mu}}{\EulerGamma@{\frac{1}{2}-\mu+\kappa}}e^{+(\frac{1}{2}-\mu)\pi\iunit} |
(WhittakerM(kappa, - mu, z))*diff(WhittakerW(- kappa, mu, exp(- Pi*I)*z), z)-diff(WhittakerM(kappa, - mu, z), z)*(WhittakerW(- kappa, mu, exp(- Pi*I)*z)) = (GAMMA(1 - 2*mu))/(GAMMA((1)/(2)- mu + kappa))*exp(+((1)/(2)- mu)*Pi*I) |
Wronskian[{WhittakerM[\[Kappa], - \[Mu], z], WhittakerW[- \[Kappa], \[Mu], Exp[- Pi*I]*z]}, z] == Divide[Gamma[1 - 2*\[Mu]],Gamma[Divide[1,2]- \[Mu]+ \[Kappa]]]*Exp[+(Divide[1,2]- \[Mu])*Pi*I] |
Failure | Failure | Manual Skip! | Failed [129 / 300]
Result: Complex[4.626622324464292, -5.570319989341681]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} Result: Complex[-4.299229486082212, 6.012569912273712]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]} ... skip entries to safe data | |
13.14.E30 | \Wronskian@{\WhittakerconfhyperW{\kappa}{\mu}@{z},\WhittakerconfhyperW{-\kappa}{\mu}@{e^{+\pi\iunit}z}} = e^{-\kappa\pi\iunit} |
|
(WhittakerW(kappa, mu, z))*diff(WhittakerW(- kappa, mu, exp(+ Pi*I)*z), z)-diff(WhittakerW(kappa, mu, z), z)*(WhittakerW(- kappa, mu, exp(+ Pi*I)*z)) = exp(- kappa*Pi*I) |
Wronskian[{WhittakerW[\[Kappa], \[Mu], z], WhittakerW[- \[Kappa], \[Mu], Exp[+ Pi*I]*z]}, z] == Exp[- \[Kappa]*Pi*I] |
Failure | Failure | Manual Skip! | Failed [160 / 300]
Result: Complex[4.200902390403695, 2.050381381630863]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[4.200902390403695, 2.0503813816308636]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |
13.14.E30 | \Wronskian@{\WhittakerconfhyperW{\kappa}{\mu}@{z},\WhittakerconfhyperW{-\kappa}{\mu}@{e^{-\pi\iunit}z}} = e^{+\kappa\pi\iunit} |
|
(WhittakerW(kappa, mu, z))*diff(WhittakerW(- kappa, mu, exp(- Pi*I)*z), z)-diff(WhittakerW(kappa, mu, z), z)*(WhittakerW(- kappa, mu, exp(- Pi*I)*z)) = exp(+ kappa*Pi*I) |
Wronskian[{WhittakerW[\[Kappa], \[Mu], z], WhittakerW[- \[Kappa], \[Mu], Exp[- Pi*I]*z]}, z] == Exp[+ \[Kappa]*Pi*I] |
Failure | Failure | Manual Skip! | Failed [80 / 300]
Result: Complex[-4.200902390403696, -2.050381381630864]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[-4.200902390403694, -2.050381381630864]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |
13.14.E31 | \WhittakerconfhyperW{\kappa}{\mu}@{z} = \WhittakerconfhyperW{\kappa}{-\mu}@{z} |
|
WhittakerW(kappa, mu, z) = WhittakerW(kappa, - mu, z) |
WhittakerW[\[Kappa], \[Mu], z] == WhittakerW[\[Kappa], - \[Mu], z] |
Successful | Successful | - | Successful [Tested: 300] |
13.14.E32 | \frac{1}{\EulerGamma@{1+2\mu}}\WhittakerconfhyperM{\kappa}{\mu}@{z} = \frac{e^{+(\kappa-\mu-\frac{1}{2})\pi\iunit}}{\EulerGamma@{\frac{1}{2}+\mu+\kappa}}\WhittakerconfhyperW{\kappa}{\mu}@{z}+\frac{e^{+\kappa\pi\iunit}}{\EulerGamma@{\frac{1}{2}+\mu-\kappa}}\WhittakerconfhyperW{-\kappa}{\mu}@{e^{+\pi\iunit}z} |
(1)/(GAMMA(1 + 2*mu))*WhittakerM(kappa, mu, z) = (exp(+(kappa - mu -(1)/(2))*Pi*I))/(GAMMA((1)/(2)+ mu + kappa))*WhittakerW(kappa, mu, z)+(exp(+ kappa*Pi*I))/(GAMMA((1)/(2)+ mu - kappa))*WhittakerW(- kappa, mu, exp(+ Pi*I)*z) |
Divide[1,Gamma[1 + 2*\[Mu]]]*WhittakerM[\[Kappa], \[Mu], z] == Divide[Exp[+(\[Kappa]- \[Mu]-Divide[1,2])*Pi*I],Gamma[Divide[1,2]+ \[Mu]+ \[Kappa]]]*WhittakerW[\[Kappa], \[Mu], z]+Divide[Exp[+ \[Kappa]*Pi*I],Gamma[Divide[1,2]+ \[Mu]- \[Kappa]]]*WhittakerW[- \[Kappa], \[Mu], Exp[+ Pi*I]*z] |
Failure | Failure | Manual Skip! | Failed [72 / 252]
Result: Complex[0.5728285416311911, 0.99341853424812]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[1.537549923135155, 2.4049195501566403]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]} ... skip entries to safe data | |
13.14.E32 | \frac{1}{\EulerGamma@{1+2\mu}}\WhittakerconfhyperM{\kappa}{\mu}@{z} = \frac{e^{-(\kappa-\mu-\frac{1}{2})\pi\iunit}}{\EulerGamma@{\frac{1}{2}+\mu+\kappa}}\WhittakerconfhyperW{\kappa}{\mu}@{z}+\frac{e^{-\kappa\pi\iunit}}{\EulerGamma@{\frac{1}{2}+\mu-\kappa}}\WhittakerconfhyperW{-\kappa}{\mu}@{e^{-\pi\iunit}z} |
(1)/(GAMMA(1 + 2*mu))*WhittakerM(kappa, mu, z) = (exp(-(kappa - mu -(1)/(2))*Pi*I))/(GAMMA((1)/(2)+ mu + kappa))*WhittakerW(kappa, mu, z)+(exp(- kappa*Pi*I))/(GAMMA((1)/(2)+ mu - kappa))*WhittakerW(- kappa, mu, exp(- Pi*I)*z) |
Divide[1,Gamma[1 + 2*\[Mu]]]*WhittakerM[\[Kappa], \[Mu], z] == Divide[Exp[-(\[Kappa]- \[Mu]-Divide[1,2])*Pi*I],Gamma[Divide[1,2]+ \[Mu]+ \[Kappa]]]*WhittakerW[\[Kappa], \[Mu], z]+Divide[Exp[- \[Kappa]*Pi*I],Gamma[Divide[1,2]+ \[Mu]- \[Kappa]]]*WhittakerW[- \[Kappa], \[Mu], Exp[- Pi*I]*z] |
Failure | Failure | Manual Skip! | Failed [180 / 252]
Result: Complex[0.6446478863068316, -8.276809691598643]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[-188.39316140446167, 86.36502083726177]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]} ... skip entries to safe data | |
13.14.E33 | \WhittakerconfhyperW{\kappa}{\mu}@{z} = \frac{\EulerGamma@{-2\mu}}{\EulerGamma@{\frac{1}{2}-\mu-\kappa}}\WhittakerconfhyperM{\kappa}{\mu}@{z}+\frac{\EulerGamma@{2\mu}}{\EulerGamma@{\frac{1}{2}+\mu-\kappa}}\WhittakerconfhyperM{\kappa}{-\mu}@{z} |
WhittakerW(kappa, mu, z) = (GAMMA(- 2*mu))/(GAMMA((1)/(2)- mu - kappa))*WhittakerM(kappa, mu, z)+(GAMMA(2*mu))/(GAMMA((1)/(2)+ mu - kappa))*WhittakerM(kappa, - mu, z) |
WhittakerW[\[Kappa], \[Mu], z] == Divide[Gamma[- 2*\[Mu]],Gamma[Divide[1,2]- \[Mu]- \[Kappa]]]*WhittakerM[\[Kappa], \[Mu], z]+Divide[Gamma[2*\[Mu]],Gamma[Divide[1,2]+ \[Mu]- \[Kappa]]]*WhittakerM[\[Kappa], - \[Mu], z] |
Successful | Failure | - | Skip - No test values generated | |
13.15.E1 | (\kappa-\mu-\tfrac{1}{2})\WhittakerconfhyperM{\kappa-1}{\mu}@{z}+(z-2\kappa)\WhittakerconfhyperM{\kappa}{\mu}@{z}+(\kappa+\mu+\tfrac{1}{2})\WhittakerconfhyperM{\kappa+1}{\mu}@{z} = 0 |
|
(kappa - mu -(1)/(2))*WhittakerM(kappa - 1, mu, z)+(z - 2*kappa)*WhittakerM(kappa, mu, z)+(kappa + mu +(1)/(2))*WhittakerM(kappa + 1, mu, z) = 0 |
(\[Kappa]- \[Mu]-Divide[1,2])*WhittakerM[\[Kappa]- 1, \[Mu], z]+(z - 2*\[Kappa])*WhittakerM[\[Kappa], \[Mu], z]+(\[Kappa]+ \[Mu]+Divide[1,2])*WhittakerM[\[Kappa]+ 1, \[Mu], z] == 0 |
Successful | Successful | - | Failed [84 / 300]
Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, -1.5]} Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, -0.5]} ... skip entries to safe data |
13.15.E2 | 2\mu(1+2\mu)\sqrt{z}\WhittakerconfhyperM{\kappa-\frac{1}{2}}{\mu-\frac{1}{2}}@{z}-(z+2\mu)(1+2\mu)\WhittakerconfhyperM{\kappa}{\mu}@{z}+(\kappa+\mu+\tfrac{1}{2})\sqrt{z}\WhittakerconfhyperM{\kappa+\frac{1}{2}}{\mu+\frac{1}{2}}@{z} = 0 |
|
2*mu*(1 + 2*mu)*sqrt(z)*WhittakerM(kappa -(1)/(2), mu -(1)/(2), z)-(z + 2*mu)*(1 + 2*mu)*WhittakerM(kappa, mu, z)+(kappa + mu +(1)/(2))*sqrt(z)*WhittakerM(kappa +(1)/(2), mu +(1)/(2), z) = 0 |
2*\[Mu]*(1 + 2*\[Mu])*Sqrt[z]*WhittakerM[\[Kappa]-Divide[1,2], \[Mu]-Divide[1,2], z]-(z + 2*\[Mu])*(1 + 2*\[Mu])*WhittakerM[\[Kappa], \[Mu], z]+(\[Kappa]+ \[Mu]+Divide[1,2])*Sqrt[z]*WhittakerM[\[Kappa]+Divide[1,2], \[Mu]+Divide[1,2], z] == 0 |
Successful | Failure | - | Failed [81 / 300]
Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, -1.5]} Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, -0.5]} ... skip entries to safe data |
13.15.E3 | (\kappa-\mu-\tfrac{1}{2})\WhittakerconfhyperM{\kappa-\frac{1}{2}}{\mu+\frac{1}{2}}@{z}+(1+2\mu)\sqrt{z}\WhittakerconfhyperM{\kappa}{\mu}@{z}-(\kappa+\mu+\tfrac{1}{2})\WhittakerconfhyperM{\kappa+\frac{1}{2}}{\mu+\frac{1}{2}}@{z} = 0 |
|
(kappa - mu -(1)/(2))*WhittakerM(kappa -(1)/(2), mu +(1)/(2), z)+(1 + 2*mu)*sqrt(z)*WhittakerM(kappa, mu, z)-(kappa + mu +(1)/(2))*WhittakerM(kappa +(1)/(2), mu +(1)/(2), z) = 0 |
(\[Kappa]- \[Mu]-Divide[1,2])*WhittakerM[\[Kappa]-Divide[1,2], \[Mu]+Divide[1,2], z]+(1 + 2*\[Mu])*Sqrt[z]*WhittakerM[\[Kappa], \[Mu], z]-(\[Kappa]+ \[Mu]+Divide[1,2])*WhittakerM[\[Kappa]+Divide[1,2], \[Mu]+Divide[1,2], z] == 0 |
Successful | Failure | - | Failed [84 / 300]
Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, -1.5]} Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, -0.5]} ... skip entries to safe data |
13.15.E4 | 2\mu\WhittakerconfhyperM{\kappa-\frac{1}{2}}{\mu-\frac{1}{2}}@{z}-2\mu\WhittakerconfhyperM{\kappa+\frac{1}{2}}{\mu-\frac{1}{2}}@{z}-\sqrt{z}\WhittakerconfhyperM{\kappa}{\mu}@{z} = 0 |
|
2*mu*WhittakerM(kappa -(1)/(2), mu -(1)/(2), z)- 2*mu*WhittakerM(kappa +(1)/(2), mu -(1)/(2), z)-sqrt(z)*WhittakerM(kappa, mu, z) = 0 |
2*\[Mu]*WhittakerM[\[Kappa]-Divide[1,2], \[Mu]-Divide[1,2], z]- 2*\[Mu]*WhittakerM[\[Kappa]+Divide[1,2], \[Mu]-Divide[1,2], z]-Sqrt[z]*WhittakerM[\[Kappa], \[Mu], z] == 0 |
Successful | Failure | - | Failed [78 / 300]
Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, -1.5]} Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, -0.5]} ... skip entries to safe data |
13.15.E5 | 2\mu(1+2\mu)\WhittakerconfhyperM{\kappa}{\mu}@{z}-2\mu(1+2\mu)\sqrt{z}\WhittakerconfhyperM{\kappa-\frac{1}{2}}{\mu-\frac{1}{2}}@{z}-(\kappa-\mu-\tfrac{1}{2})\sqrt{z}\WhittakerconfhyperM{\kappa-\frac{1}{2}}{\mu+\frac{1}{2}}@{z} = 0 |
|
2*mu*(1 + 2*mu)*WhittakerM(kappa, mu, z)- 2*mu*(1 + 2*mu)*sqrt(z)*WhittakerM(kappa -(1)/(2), mu -(1)/(2), z)-(kappa - mu -(1)/(2))*sqrt(z)*WhittakerM(kappa -(1)/(2), mu +(1)/(2), z) = 0 |
2*\[Mu]*(1 + 2*\[Mu])*WhittakerM[\[Kappa], \[Mu], z]- 2*\[Mu]*(1 + 2*\[Mu])*Sqrt[z]*WhittakerM[\[Kappa]-Divide[1,2], \[Mu]-Divide[1,2], z]-(\[Kappa]- \[Mu]-Divide[1,2])*Sqrt[z]*WhittakerM[\[Kappa]-Divide[1,2], \[Mu]+Divide[1,2], z] == 0 |
Successful | Failure | - | Failed [81 / 300]
Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, -1.5]} Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, -0.5]} ... skip entries to safe data |
13.15.E6 | 2\mu(1+2\mu)\sqrt{z}\WhittakerconfhyperM{\kappa+\frac{1}{2}}{\mu-\frac{1}{2}}@{z}+(z-2\mu)(1+2\mu)\WhittakerconfhyperM{\kappa}{\mu}@{z}+(\kappa-\mu-\tfrac{1}{2})\sqrt{z}\WhittakerconfhyperM{\kappa-\frac{1}{2}}{\mu+\frac{1}{2}}@{z} = 0 |
|
2*mu*(1 + 2*mu)*sqrt(z)*WhittakerM(kappa +(1)/(2), mu -(1)/(2), z)+(z - 2*mu)*(1 + 2*mu)*WhittakerM(kappa, mu, z)+(kappa - mu -(1)/(2))*sqrt(z)*WhittakerM(kappa -(1)/(2), mu +(1)/(2), z) = 0 |
2*\[Mu]*(1 + 2*\[Mu])*Sqrt[z]*WhittakerM[\[Kappa]+Divide[1,2], \[Mu]-Divide[1,2], z]+(z - 2*\[Mu])*(1 + 2*\[Mu])*WhittakerM[\[Kappa], \[Mu], z]+(\[Kappa]- \[Mu]-Divide[1,2])*Sqrt[z]*WhittakerM[\[Kappa]-Divide[1,2], \[Mu]+Divide[1,2], z] == 0 |
Successful | Failure | - | Failed [81 / 300]
Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, -1.5]} Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, -0.5]} ... skip entries to safe data |
13.15.E7 | 2\mu(1+2\mu)\sqrt{z}\WhittakerconfhyperM{\kappa+\frac{1}{2}}{\mu-\frac{1}{2}}@{z}-2\mu(1+2\mu)\WhittakerconfhyperM{\kappa}{\mu}@{z}+(\kappa+\mu+\tfrac{1}{2})\sqrt{z}\WhittakerconfhyperM{\kappa+\frac{1}{2}}{\mu+\frac{1}{2}}@{z} = 0 |
|
2*mu*(1 + 2*mu)*sqrt(z)*WhittakerM(kappa +(1)/(2), mu -(1)/(2), z)- 2*mu*(1 + 2*mu)*WhittakerM(kappa, mu, z)+(kappa + mu +(1)/(2))*sqrt(z)*WhittakerM(kappa +(1)/(2), mu +(1)/(2), z) = 0 |
2*\[Mu]*(1 + 2*\[Mu])*Sqrt[z]*WhittakerM[\[Kappa]+Divide[1,2], \[Mu]-Divide[1,2], z]- 2*\[Mu]*(1 + 2*\[Mu])*WhittakerM[\[Kappa], \[Mu], z]+(\[Kappa]+ \[Mu]+Divide[1,2])*Sqrt[z]*WhittakerM[\[Kappa]+Divide[1,2], \[Mu]+Divide[1,2], z] == 0 |
Successful | Failure | - | Failed [81 / 300]
Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, -1.5]} Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, -0.5]} ... skip entries to safe data |
13.15.E8 | \WhittakerconfhyperW{\kappa+\frac{1}{2}}{\mu+\frac{1}{2}}@{z}-\sqrt{z}\WhittakerconfhyperW{\kappa}{\mu}@{z}+(\kappa-\mu-\tfrac{1}{2})\WhittakerconfhyperW{\kappa-\frac{1}{2}}{\mu+\frac{1}{2}}@{z} = 0 |
|
WhittakerW(kappa +(1)/(2), mu +(1)/(2), z)-sqrt(z)*WhittakerW(kappa, mu, z)+(kappa - mu -(1)/(2))*WhittakerW(kappa -(1)/(2), mu +(1)/(2), z) = 0 |
WhittakerW[\[Kappa]+Divide[1,2], \[Mu]+Divide[1,2], z]-Sqrt[z]*WhittakerW[\[Kappa], \[Mu], z]+(\[Kappa]- \[Mu]-Divide[1,2])*WhittakerW[\[Kappa]-Divide[1,2], \[Mu]+Divide[1,2], z] == 0 |
Successful | Failure | - | Successful [Tested: 300] |
13.15.E9 | \WhittakerconfhyperW{\kappa+\frac{1}{2}}{\mu-\frac{1}{2}}@{z}-\sqrt{z}\WhittakerconfhyperW{\kappa}{\mu}@{z}+(\kappa+\mu-\tfrac{1}{2})\WhittakerconfhyperW{\kappa-\frac{1}{2}}{\mu-\frac{1}{2}}@{z} = 0 |
|
WhittakerW(kappa +(1)/(2), mu -(1)/(2), z)-sqrt(z)*WhittakerW(kappa, mu, z)+(kappa + mu -(1)/(2))*WhittakerW(kappa -(1)/(2), mu -(1)/(2), z) = 0 |
WhittakerW[\[Kappa]+Divide[1,2], \[Mu]-Divide[1,2], z]-Sqrt[z]*WhittakerW[\[Kappa], \[Mu], z]+(\[Kappa]+ \[Mu]-Divide[1,2])*WhittakerW[\[Kappa]-Divide[1,2], \[Mu]-Divide[1,2], z] == 0 |
Successful | Failure | - | Successful [Tested: 300] |
13.15.E10 | 2\mu\WhittakerconfhyperW{\kappa}{\mu}@{z}-\sqrt{z}\WhittakerconfhyperW{\kappa+\frac{1}{2}}{\mu+\frac{1}{2}}@{z}+\sqrt{z}\WhittakerconfhyperW{\kappa+\frac{1}{2}}{\mu-\frac{1}{2}}@{z} = 0 |
|
2*mu*WhittakerW(kappa, mu, z)-sqrt(z)*WhittakerW(kappa +(1)/(2), mu +(1)/(2), z)+sqrt(z)*WhittakerW(kappa +(1)/(2), mu -(1)/(2), z) = 0 |
2*\[Mu]*WhittakerW[\[Kappa], \[Mu], z]-Sqrt[z]*WhittakerW[\[Kappa]+Divide[1,2], \[Mu]+Divide[1,2], z]+Sqrt[z]*WhittakerW[\[Kappa]+Divide[1,2], \[Mu]-Divide[1,2], z] == 0 |
Successful | Failure | - | Successful [Tested: 300] |
13.15.E11 | \WhittakerconfhyperW{\kappa+1}{\mu}@{z}+(2\kappa-z)\WhittakerconfhyperW{\kappa}{\mu}@{z}+(\kappa-\mu-\tfrac{1}{2})(\kappa+\mu-\tfrac{1}{2})\WhittakerconfhyperW{\kappa-1}{\mu}@{z} = 0 |
|
WhittakerW(kappa + 1, mu, z)+(2*kappa - z)*WhittakerW(kappa, mu, z)+(kappa - mu -(1)/(2))*(kappa + mu -(1)/(2))*WhittakerW(kappa - 1, mu, z) = 0 |
WhittakerW[\[Kappa]+ 1, \[Mu], z]+(2*\[Kappa]- z)*WhittakerW[\[Kappa], \[Mu], z]+(\[Kappa]- \[Mu]-Divide[1,2])*(\[Kappa]+ \[Mu]-Divide[1,2])*WhittakerW[\[Kappa]- 1, \[Mu], z] == 0 |
Successful | Successful | - | Successful [Tested: 300] |
13.15.E12 | (\kappa-\mu-\tfrac{1}{2})\sqrt{z}\WhittakerconfhyperW{\kappa-\frac{1}{2}}{\mu+\frac{1}{2}}@{z}+2\mu\WhittakerconfhyperW{\kappa}{\mu}@{z}-(\kappa+\mu-\tfrac{1}{2})\sqrt{z}\WhittakerconfhyperW{\kappa-\frac{1}{2}}{\mu-\frac{1}{2}}@{z} = 0 |
|
(kappa - mu -(1)/(2))*sqrt(z)*WhittakerW(kappa -(1)/(2), mu +(1)/(2), z)+ 2*mu*WhittakerW(kappa, mu, z)-(kappa + mu -(1)/(2))*sqrt(z)*WhittakerW(kappa -(1)/(2), mu -(1)/(2), z) = 0 |
(\[Kappa]- \[Mu]-Divide[1,2])*Sqrt[z]*WhittakerW[\[Kappa]-Divide[1,2], \[Mu]+Divide[1,2], z]+ 2*\[Mu]*WhittakerW[\[Kappa], \[Mu], z]-(\[Kappa]+ \[Mu]-Divide[1,2])*Sqrt[z]*WhittakerW[\[Kappa]-Divide[1,2], \[Mu]-Divide[1,2], z] == 0 |
Successful | Failure | - | Successful [Tested: 300] |
13.15.E13 | (\kappa+\mu-\tfrac{1}{2})\sqrt{z}\WhittakerconfhyperW{\kappa-\frac{1}{2}}{\mu-\frac{1}{2}}@{z}-(z+2\mu)\WhittakerconfhyperW{\kappa}{\mu}@{z}+\sqrt{z}\WhittakerconfhyperW{\kappa+\frac{1}{2}}{\mu+\frac{1}{2}}@{z} = 0 |
|
(kappa + mu -(1)/(2))*sqrt(z)*WhittakerW(kappa -(1)/(2), mu -(1)/(2), z)-(z + 2*mu)*WhittakerW(kappa, mu, z)+sqrt(z)*WhittakerW(kappa +(1)/(2), mu +(1)/(2), z) = 0 |
(\[Kappa]+ \[Mu]-Divide[1,2])*Sqrt[z]*WhittakerW[\[Kappa]-Divide[1,2], \[Mu]-Divide[1,2], z]-(z + 2*\[Mu])*WhittakerW[\[Kappa], \[Mu], z]+Sqrt[z]*WhittakerW[\[Kappa]+Divide[1,2], \[Mu]+Divide[1,2], z] == 0 |
Successful | Failure | - | Successful [Tested: 300] |
13.15.E14 | (\kappa-\mu-\tfrac{1}{2})\sqrt{z}\WhittakerconfhyperW{\kappa-\frac{1}{2}}{\mu+\frac{1}{2}}@{z}-(z-2\mu)\WhittakerconfhyperW{\kappa}{\mu}@{z}+\sqrt{z}\WhittakerconfhyperW{\kappa+\frac{1}{2}}{\mu-\frac{1}{2}}@{z} = 0 |
|
(kappa - mu -(1)/(2))*sqrt(z)*WhittakerW(kappa -(1)/(2), mu +(1)/(2), z)-(z - 2*mu)*WhittakerW(kappa, mu, z)+sqrt(z)*WhittakerW(kappa +(1)/(2), mu -(1)/(2), z) = 0 |
(\[Kappa]- \[Mu]-Divide[1,2])*Sqrt[z]*WhittakerW[\[Kappa]-Divide[1,2], \[Mu]+Divide[1,2], z]-(z - 2*\[Mu])*WhittakerW[\[Kappa], \[Mu], z]+Sqrt[z]*WhittakerW[\[Kappa]+Divide[1,2], \[Mu]-Divide[1,2], z] == 0 |
Successful | Failure | - | Successful [Tested: 300] |
13.15.E15 | \deriv[n]{}{z}\left(e^{\frac{1}{2}z}z^{\mu-\frac{1}{2}}\WhittakerconfhyperM{\kappa}{\mu}@{z}\right) = (-1)^{n}\Pochhammersym{-2\mu}{n}e^{\frac{1}{2}z}z^{\mu-\frac{1}{2}(n+1)}\WhittakerconfhyperM{\kappa-\frac{1}{2}n}{\mu-\frac{1}{2}n}@{z} |
|
diff(exp((1)/(2)*z)*(z)^(mu -(1)/(2))* WhittakerM(kappa, mu, z), [z$(n)]) = (- 1)^(n)* pochhammer(- 2*mu, n)*exp((1)/(2)*z)*(z)^(mu -(1)/(2)*(n + 1))* WhittakerM(kappa -(1)/(2)*n, mu -(1)/(2)*n, z) |
D[Exp[Divide[1,2]*z]*(z)^(\[Mu]-Divide[1,2])* WhittakerM[\[Kappa], \[Mu], z], {z, n}] == (- 1)^(n)* Pochhammer[- 2*\[Mu], n]*Exp[Divide[1,2]*z]*(z)^(\[Mu]-Divide[1,2]*(n + 1))* WhittakerM[\[Kappa]-Divide[1,2]*n, \[Mu]-Divide[1,2]*n, z] |
Failure | Failure | Skipped - Because timed out | Failed [210 / 300]
Result: DirectedInfinity[]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, -1.5]} Result: DirectedInfinity[]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, -1.5]} ... skip entries to safe data |
13.15.E16 | \deriv[n]{}{z}\left(e^{\frac{1}{2}z}z^{-\mu-\frac{1}{2}}\WhittakerconfhyperM{\kappa}{\mu}@{z}\right) = \frac{\Pochhammersym{\frac{1}{2}+\mu-\kappa}{n}}{\Pochhammersym{1+2\mu}{n}}e^{\frac{1}{2}z}z^{-\mu-\frac{1}{2}(n+1)}\WhittakerconfhyperM{\kappa-\frac{1}{2}n}{\mu+\frac{1}{2}n}@{z} |
|
diff(exp((1)/(2)*z)*(z)^(- mu -(1)/(2))* WhittakerM(kappa, mu, z), [z$(n)]) = (pochhammer((1)/(2)+ mu - kappa, n))/(pochhammer(1 + 2*mu, n))*exp((1)/(2)*z)*(z)^(- mu -(1)/(2)*(n + 1))* WhittakerM(kappa -(1)/(2)*n, mu +(1)/(2)*n, z) |
D[Exp[Divide[1,2]*z]*(z)^(- \[Mu]-Divide[1,2])* WhittakerM[\[Kappa], \[Mu], z], {z, n}] == Divide[Pochhammer[Divide[1,2]+ \[Mu]- \[Kappa], n],Pochhammer[1 + 2*\[Mu], n]]*Exp[Divide[1,2]*z]*(z)^(- \[Mu]-Divide[1,2]*(n + 1))* WhittakerM[\[Kappa]-Divide[1,2]*n, \[Mu]+Divide[1,2]*n, z] |
Failure | Failure | Skipped - Because timed out | Failed [210 / 300]
Result: DirectedInfinity[]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, -1.5]} Result: DirectedInfinity[]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, -1.5]} ... skip entries to safe data |
13.15.E17 | \left(z\deriv{}{z}z\right)^{n}\left(e^{\frac{1}{2}z}z^{-\kappa-1}\WhittakerconfhyperM{\kappa}{\mu}@{z}\right) = \Pochhammersym{\tfrac{1}{2}+\mu-\kappa}{n}e^{\frac{1}{2}z}z^{n-\kappa-1}\WhittakerconfhyperM{\kappa-n}{\mu}@{z} |
|
(z*diff(z, z))^(n)*(exp((1)/(2)*z)*(z)^(- kappa - 1)* WhittakerM(kappa, mu, z)) = pochhammer((1)/(2)+ mu - kappa, n)*exp((1)/(2)*z)*(z)^(n - kappa - 1)* WhittakerM(kappa - n, mu, z) |
(z*D[z, z])^(n)*(Exp[Divide[1,2]*z]*(z)^(- \[Kappa]- 1)* WhittakerM[\[Kappa], \[Mu], z]) == Pochhammer[Divide[1,2]+ \[Mu]- \[Kappa], n]*Exp[Divide[1,2]*z]*(z)^(n - \[Kappa]- 1)* WhittakerM[\[Kappa]- n, \[Mu], z] |
Failure | Failure | Failed [300 / 300] Result: .3585110760+.454218427e-1*I
Test Values: {kappa = 1/2*3^(1/2)+1/2*I, mu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, n = 1} Result: -.1773224730-.5602797385*I
Test Values: {kappa = 1/2*3^(1/2)+1/2*I, mu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, n = 2} ... skip entries to safe data |
Failed [300 / 300]
Result: Complex[0.35851107533499493, 0.045421842889073805]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[-0.1773224737195902, -0.560279739303586]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} ... skip entries to safe data |
13.15.E18 | \deriv[n]{}{z}\left(e^{-\frac{1}{2}z}z^{\mu-\frac{1}{2}}\WhittakerconfhyperM{\kappa}{\mu}@{z}\right) = (-1)^{n}\Pochhammersym{-2\mu}{n}e^{-\frac{1}{2}z}z^{\mu-\frac{1}{2}(n+1)}\WhittakerconfhyperM{\kappa+\frac{1}{2}n}{\mu-\frac{1}{2}n}@{z} |
|
diff(exp(-(1)/(2)*z)*(z)^(mu -(1)/(2))* WhittakerM(kappa, mu, z), [z$(n)]) = (- 1)^(n)* pochhammer(- 2*mu, n)*exp(-(1)/(2)*z)*(z)^(mu -(1)/(2)*(n + 1))* WhittakerM(kappa +(1)/(2)*n, mu -(1)/(2)*n, z) |
D[Exp[-Divide[1,2]*z]*(z)^(\[Mu]-Divide[1,2])* WhittakerM[\[Kappa], \[Mu], z], {z, n}] == (- 1)^(n)* Pochhammer[- 2*\[Mu], n]*Exp[-Divide[1,2]*z]*(z)^(\[Mu]-Divide[1,2]*(n + 1))* WhittakerM[\[Kappa]+Divide[1,2]*n, \[Mu]-Divide[1,2]*n, z] |
Failure | Failure | Skipped - Because timed out | Failed [210 / 300]
Result: DirectedInfinity[]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, -1.5]} Result: DirectedInfinity[]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, -1.5]} ... skip entries to safe data |
13.15.E19 | \deriv[n]{}{z}\left(e^{-\frac{1}{2}z}z^{-\mu-\frac{1}{2}}\WhittakerconfhyperM{\kappa}{\mu}@{z}\right) = (-1)^{n}\frac{\Pochhammersym{\frac{1}{2}+\mu+\kappa}{n}}{\Pochhammersym{1+2\mu}{n}}e^{-\frac{1}{2}z}z^{-\mu-\frac{1}{2}(n+1)}\*\WhittakerconfhyperM{\kappa+\frac{1}{2}n}{\mu+\frac{1}{2}n}@{z} |
|
diff(exp(-(1)/(2)*z)*(z)^(- mu -(1)/(2))* WhittakerM(kappa, mu, z), [z$(n)]) = (- 1)^(n)*(pochhammer((1)/(2)+ mu + kappa, n))/(pochhammer(1 + 2*mu, n))*exp(-(1)/(2)*z)*(z)^(- mu -(1)/(2)*(n + 1))* WhittakerM(kappa +(1)/(2)*n, mu +(1)/(2)*n, z) |
D[Exp[-Divide[1,2]*z]*(z)^(- \[Mu]-Divide[1,2])* WhittakerM[\[Kappa], \[Mu], z], {z, n}] == (- 1)^(n)*Divide[Pochhammer[Divide[1,2]+ \[Mu]+ \[Kappa], n],Pochhammer[1 + 2*\[Mu], n]]*Exp[-Divide[1,2]*z]*(z)^(- \[Mu]-Divide[1,2]*(n + 1))* WhittakerM[\[Kappa]+Divide[1,2]*n, \[Mu]+Divide[1,2]*n, z] |
Failure | Failure | Skipped - Because timed out | Failed [210 / 300]
Result: DirectedInfinity[]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, -1.5]} Result: DirectedInfinity[]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, -1.5]} ... skip entries to safe data |
13.15.E20 | \left(z\deriv{}{z}z\right)^{n}\left(e^{-\frac{1}{2}z}z^{\kappa-1}\WhittakerconfhyperM{\kappa}{\mu}@{z}\right) = \Pochhammersym{\tfrac{1}{2}+\mu+\kappa}{n}e^{-\frac{1}{2}z}z^{\kappa+n-1}\*\WhittakerconfhyperM{\kappa+n}{\mu}@{z} |
|
(z*diff(z, z))^(n)*(exp(-(1)/(2)*z)*(z)^(kappa - 1)* WhittakerM(kappa, mu, z)) = pochhammer((1)/(2)+ mu + kappa, n)*exp(-(1)/(2)*z)*(z)^(kappa + n - 1)* WhittakerM(kappa + n, mu, z) |
(z*D[z, z])^(n)*(Exp[-Divide[1,2]*z]*(z)^(\[Kappa]- 1)* WhittakerM[\[Kappa], \[Mu], z]) == Pochhammer[Divide[1,2]+ \[Mu]+ \[Kappa], n]*Exp[-Divide[1,2]*z]*(z)^(\[Kappa]+ n - 1)* WhittakerM[\[Kappa]+ n, \[Mu], z] |
Failure | Failure | Failed [300 / 300] Result: -.221105652e-1-.2375136134*I
Test Values: {kappa = 1/2*3^(1/2)+1/2*I, mu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, n = 1} Result: .3191037849-.7838469226*I
Test Values: {kappa = 1/2*3^(1/2)+1/2*I, mu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, n = 2} ... skip entries to safe data |
Failed [300 / 300]
Result: Complex[-0.02211056528532032, -0.23751361332195844]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[0.31910378464483535, -0.7838469223028885]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} ... skip entries to safe data |
13.15.E21 | \deriv[n]{}{z}\left(e^{\frac{1}{2}z}z^{-\mu-\frac{1}{2}}\WhittakerconfhyperW{\kappa}{\mu}@{z}\right) = (-1)^{n}\Pochhammersym{\tfrac{1}{2}+\mu-\kappa}{n}e^{\frac{1}{2}z}z^{-\mu-\frac{1}{2}(n+1)}\*\WhittakerconfhyperW{\kappa-\frac{1}{2}n}{\mu+\frac{1}{2}n}@{z} |
|
diff(exp((1)/(2)*z)*(z)^(- mu -(1)/(2))* WhittakerW(kappa, mu, z), [z$(n)]) = (- 1)^(n)* pochhammer((1)/(2)+ mu - kappa, n)*exp((1)/(2)*z)*(z)^(- mu -(1)/(2)*(n + 1))* WhittakerW(kappa -(1)/(2)*n, mu +(1)/(2)*n, z) |
D[Exp[Divide[1,2]*z]*(z)^(- \[Mu]-Divide[1,2])* WhittakerW[\[Kappa], \[Mu], z], {z, n}] == (- 1)^(n)* Pochhammer[Divide[1,2]+ \[Mu]- \[Kappa], n]*Exp[Divide[1,2]*z]*(z)^(- \[Mu]-Divide[1,2]*(n + 1))* WhittakerW[\[Kappa]-Divide[1,2]*n, \[Mu]+Divide[1,2]*n, z] |
Failure | Failure | Skipped - Because timed out | Failed [192 / 300]
Result: Plus[Complex[-2.7003415598242593, -2.135803172450526], DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[Plus[-1, Times[-2, ], Times[2, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Times[-2, -1.5]], []], Times[2, Plus[1, ], Plus[1, , Times[-1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Times[2, -1.5]], [Plus[1, ]]], Times[2, Plus[1, ], Plus[2, ], Power[E, Times[Complex[0, Rational[1, 6]], Pi]], [Plus[2, ]]]], 0], Equal[[0], Times[Power[E, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], Plus[Rational[-1, 2], Times[-1, -1.5]]], WhittakerW[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], -1.5, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], Equal[[1], Times[Rational[1, 2], Power[E, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], Plus[Rational[-3, 2],<syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.8050385267502765, -1.4779965316225212], Times[2.0, DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[Plus[-1, Times[-2, ], Times[2, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Times[-2, -1.5]], []], Times[2, Plus[1, ], Plus[1, , Times[-1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Times[2, -1.5]], [Plus[1, ]]], Times[2, Plus[1, ], Plus[2, ], Power[E, Times[Complex[0, Rational[1, 6]], Pi]], [Plus[2, ]]]], 0], Equal[[0], Times[Power[E, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], Plus[Rational[-1, 2], Times[-1, -1.5]]], WhittakerW[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], -1.5, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], Equal[[1], Times[Rational[1, 2], Power[E, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], Plus[Rational[-3, 2], Times[-1, -1.5]]], Plus[Times[-1, WhittakerW[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], -1.5, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[2, Power[E, Times[Complex[0, Rational[1, 6]], Pi]], WhittakerW[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], -1.5, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-2, Power[E, Times[Complex[0, Rational[1, 6]], Pi]], WhittakerW[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], -1.5, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-2, -1.5, WhittakerW[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], -1.5, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-2, WhittakerW[Plus[1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], -1.5, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]]]]}]][2.0]]], {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, -1.5]} ... skip entries to safe data |
13.15.E22 | \deriv[n]{}{z}\left(e^{\frac{1}{2}z}z^{\mu-\frac{1}{2}}\WhittakerconfhyperW{\kappa}{\mu}@{z}\right) = (-1)^{n}\Pochhammersym{\tfrac{1}{2}-\mu-\kappa}{n}e^{\frac{1}{2}z}z^{\mu-\frac{1}{2}(n+1)}\*\WhittakerconfhyperW{\kappa-\frac{1}{2}n}{\mu-\frac{1}{2}n}@{z} |
|
diff(exp((1)/(2)*z)*(z)^(mu -(1)/(2))* WhittakerW(kappa, mu, z), [z$(n)]) = (- 1)^(n)* pochhammer((1)/(2)- mu - kappa, n)*exp((1)/(2)*z)*(z)^(mu -(1)/(2)*(n + 1))* WhittakerW(kappa -(1)/(2)*n, mu -(1)/(2)*n, z) |
D[Exp[Divide[1,2]*z]*(z)^(\[Mu]-Divide[1,2])* WhittakerW[\[Kappa], \[Mu], z], {z, n}] == (- 1)^(n)* Pochhammer[Divide[1,2]- \[Mu]- \[Kappa], n]*Exp[Divide[1,2]*z]*(z)^(\[Mu]-Divide[1,2]*(n + 1))* WhittakerW[\[Kappa]-Divide[1,2]*n, \[Mu]-Divide[1,2]*n, z] |
Failure | Failure | Skipped - Because timed out | Failed [192 / 300]
Result: Plus[Complex[-3.1506729340368813, -11.027912097410434], DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[Plus[-1, Times[-2, ], Times[2, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Times[2, -1.5]], []], Times[2, Plus[1, ], Plus[1, , Times[-1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Times[-2, -1.5]], [Plus[1, ]]], Times[2, Plus[1, ], Plus[2, ], Power[E, Times[Complex[0, Rational[1, 6]], Pi]], [Plus[2, ]]]], 0], Equal[[0], Times[Power[E, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], Plus[Rational[-1, 2], -1.5]], WhittakerW[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], -1.5, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], Equal[[1], Times[Rational[1, 2], Power[E, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], Plus[Rational[-3, 2], -1.5]], P<syntaxhighlight lang=mathematica>Result: Plus[Complex[32.491056912593166, 25.892568815057246], Times[2.0, DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[Plus[-1, Times[-2, ], Times[2, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Times[2, -1.5]], []], Times[2, Plus[1, ], Plus[1, , Times[-1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Times[-2, -1.5]], [Plus[1, ]]], Times[2, Plus[1, ], Plus[2, ], Power[E, Times[Complex[0, Rational[1, 6]], Pi]], [Plus[2, ]]]], 0], Equal[[0], Times[Power[E, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], Plus[Rational[-1, 2], -1.5]], WhittakerW[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], -1.5, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], Equal[[1], Times[Rational[1, 2], Power[E, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], Plus[Rational[-3, 2], -1.5]], Plus[Times[-1, WhittakerW[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], -1.5, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[2, Power[E, Times[Complex[0, Rational[1, 6]], Pi]], WhittakerW[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], -1.5, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-2, Power[E, Times[Complex[0, Rational[1, 6]], Pi]], WhittakerW[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], -1.5, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[2, -1.5, WhittakerW[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], -1.5, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-2, WhittakerW[Plus[1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], -1.5, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]]]]}]][2.0]]], {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, -1.5]} ... skip entries to safe data |
13.15.E23 | \left(z\deriv{}{z}z\right)^{n}\left(e^{\frac{1}{2}z}z^{-\kappa-1}\WhittakerconfhyperW{\kappa}{\mu}@{z}\right) = \Pochhammersym{\tfrac{1}{2}+\mu-\kappa}{n}\Pochhammersym{\tfrac{1}{2}-\mu-\kappa}{n}e^{\frac{1}{2}z}z^{n-\kappa-1}\WhittakerconfhyperW{\kappa-n}{\mu}@{z} |
|
(z*diff(z, z))^(n)*(exp((1)/(2)*z)*(z)^(- kappa - 1)* WhittakerW(kappa, mu, z)) = pochhammer((1)/(2)+ mu - kappa, n)*pochhammer((1)/(2)- mu - kappa, n)*exp((1)/(2)*z)*(z)^(n - kappa - 1)* WhittakerW(kappa - n, mu, z) |
(z*D[z, z])^(n)*(Exp[Divide[1,2]*z]*(z)^(- \[Kappa]- 1)* WhittakerW[\[Kappa], \[Mu], z]) == Pochhammer[Divide[1,2]+ \[Mu]- \[Kappa], n]*Pochhammer[Divide[1,2]- \[Mu]- \[Kappa], n]*Exp[Divide[1,2]*z]*(z)^(n - \[Kappa]- 1)* WhittakerW[\[Kappa]- n, \[Mu], z] |
Failure | Failure | Failed [300 / 300] Result: 2.468472246+1.546856952*I
Test Values: {kappa = 1/2*3^(1/2)+1/2*I, mu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, n = 1} Result: 1.885026449+1.175257266*I
Test Values: {kappa = 1/2*3^(1/2)+1/2*I, mu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, n = 2} ... skip entries to safe data |
Failed [300 / 300]
Result: Complex[2.4684722428383408, 1.546856950437671]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[1.8850264475606715, 1.175257265810332]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} ... skip entries to safe data |
13.15.E24 | \deriv[n]{}{z}\left(e^{-\frac{1}{2}z}z^{-\mu-\frac{1}{2}}\WhittakerconfhyperW{\kappa}{\mu}@{z}\right) = (-1)^{n}e^{-\frac{1}{2}z}z^{-\mu-\frac{1}{2}(n+1)}\WhittakerconfhyperW{\kappa+\frac{1}{2}n}{\mu+\frac{1}{2}n}@{z} |
|
diff(exp(-(1)/(2)*z)*(z)^(- mu -(1)/(2))* WhittakerW(kappa, mu, z), [z$(n)]) = (- 1)^(n)* exp(-(1)/(2)*z)*(z)^(- mu -(1)/(2)*(n + 1))* WhittakerW(kappa +(1)/(2)*n, mu +(1)/(2)*n, z) |
D[Exp[-Divide[1,2]*z]*(z)^(- \[Mu]-Divide[1,2])* WhittakerW[\[Kappa], \[Mu], z], {z, n}] == (- 1)^(n)* Exp[-Divide[1,2]*z]*(z)^(- \[Mu]-Divide[1,2]*(n + 1))* WhittakerW[\[Kappa]+Divide[1,2]*n, \[Mu]+Divide[1,2]*n, z] |
Failure | Failure | Skipped - Because timed out | Failed [192 / 300]
Result: Plus[Complex[0.5001431347806349, -0.3406797899835502], DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[Plus[1, Times[2, ], Times[2, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Times[2, -1.5]], []], Times[2, Plus[1, ], Plus[1, , Power[E, Times[Complex[0, Rational[1, 6]], Pi]], Times[2, -1.5]], [Plus[1, ]]], Times[2, Plus[1, ], Plus[2, ], Power[E, Times[Complex[0, Rational[1, 6]], Pi]], [Plus[2, ]]]], 0], Equal[[0], Times[Power[E, Times[Rational[-1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], Plus[Rational[-1, 2], Times[-1, -1.5]]], WhittakerW[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], -1.5, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], Equal[[1], Times[Rational[-1, 2], Power[E, Times[Rational[-1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], Plus[Rational[-3, 2], Times[-1, <syntaxhighlight lang=mathematica>Result: Plus[Complex[0.332118444019996, 0.20129597063218943], Times[2.0, DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[Plus[1, Times[2, ], Times[2, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Times[2, -1.5]], []], Times[2, Plus[1, ], Plus[1, , Power[E, Times[Complex[0, Rational[1, 6]], Pi]], Times[2, -1.5]], [Plus[1, ]]], Times[2, Plus[1, ], Plus[2, ], Power[E, Times[Complex[0, Rational[1, 6]], Pi]], [Plus[2, ]]]], 0], Equal[[0], Times[Power[E, Times[Rational[-1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], Plus[Rational[-1, 2], Times[-1, -1.5]]], WhittakerW[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], -1.5, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], Equal[[1], Times[Rational[-1, 2], Power[E, Times[Rational[-1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], Plus[Rational[-3, 2], Times[-1, -1.5]]], Plus[WhittakerW[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], -1.5, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Times[2, Power[E, Times[Complex[0, Rational[1, 6]], Pi]], WhittakerW[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], -1.5, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[2, -1.5, WhittakerW[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], -1.5, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[2, WhittakerW[Plus[1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], -1.5, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]]]]}]][2.0]]], {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, -1.5]} ... skip entries to safe data |
13.15.E25 | \deriv[n]{}{z}\left(e^{-\frac{1}{2}z}z^{\mu-\frac{1}{2}}\WhittakerconfhyperW{\kappa}{\mu}@{z}\right) = (-1)^{n}e^{-\frac{1}{2}z}z^{\mu-\frac{1}{2}(n+1)}\WhittakerconfhyperW{\kappa+\frac{1}{2}n}{\mu-\frac{1}{2}n}@{z} |
|
diff(exp(-(1)/(2)*z)*(z)^(mu -(1)/(2))* WhittakerW(kappa, mu, z), [z$(n)]) = (- 1)^(n)* exp(-(1)/(2)*z)*(z)^(mu -(1)/(2)*(n + 1))* WhittakerW(kappa +(1)/(2)*n, mu -(1)/(2)*n, z) |
D[Exp[-Divide[1,2]*z]*(z)^(\[Mu]-Divide[1,2])* WhittakerW[\[Kappa], \[Mu], z], {z, n}] == (- 1)^(n)* Exp[-Divide[1,2]*z]*(z)^(\[Mu]-Divide[1,2]*(n + 1))* WhittakerW[\[Kappa]+Divide[1,2]*n, \[Mu]-Divide[1,2]*n, z] |
Failure | Failure | Skipped - Because timed out | Failed [192 / 300]
Result: Plus[Complex[-3.483681927072143, -5.36298237509452], DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[Plus[1, Times[2, ], Times[2, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Times[-2, -1.5]], []], Times[2, Plus[1, ], Plus[1, , Power[E, Times[Complex[0, Rational[1, 6]], Pi]], Times[-2, -1.5]], [Plus[1, ]]], Times[2, Plus[1, ], Plus[2, ], Power[E, Times[Complex[0, Rational[1, 6]], Pi]], [Plus[2, ]]]], 0], Equal[[0], Times[Power[E, Times[Rational[-1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], Plus[Rational[-1, 2], -1.5]], WhittakerW[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], -1.5, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], Equal[[1], Times[Rational[1, 2], Power[E, Times[Rational[-1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], Plus[Rational[-3, 2], -1.5]], Plus[Times[-1,<syntaxhighlight lang=mathematica>Result: Plus[Complex[24.085306751162083, 11.80402713986923], Times[2.0, DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[Plus[1, Times[2, ], Times[2, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Times[-2, -1.5]], []], Times[2, Plus[1, ], Plus[1, , Power[E, Times[Complex[0, Rational[1, 6]], Pi]], Times[-2, -1.5]], [Plus[1, ]]], Times[2, Plus[1, ], Plus[2, ], Power[E, Times[Complex[0, Rational[1, 6]], Pi]], [Plus[2, ]]]], 0], Equal[[0], Times[Power[E, Times[Rational[-1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], Plus[Rational[-1, 2], -1.5]], WhittakerW[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], -1.5, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], Equal[[1], Times[Rational[1, 2], Power[E, Times[Rational[-1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], Plus[Rational[-3, 2], -1.5]], Plus[Times[-1, WhittakerW[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], -1.5, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-2, Power[E, Times[Complex[0, Rational[1, 6]], Pi]], WhittakerW[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], -1.5, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[2, -1.5, WhittakerW[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], -1.5, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-2, WhittakerW[Plus[1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], -1.5, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]]]]}]][2.0]]], {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, -1.5]} ... skip entries to safe data |
13.15.E26 | \left(z\deriv{}{z}z\right)^{n}\left(e^{-\frac{1}{2}z}z^{\kappa-1}\WhittakerconfhyperW{\kappa}{\mu}@{z}\right) = (-1)^{n}e^{-\frac{1}{2}z}z^{\kappa+n-1}\WhittakerconfhyperW{\kappa+n}{\mu}@{z} |
|
(z*diff(z, z))^(n)*(exp(-(1)/(2)*z)*(z)^(kappa - 1)* WhittakerW(kappa, mu, z)) = (- 1)^(n)* exp(-(1)/(2)*z)*(z)^(kappa + n - 1)* WhittakerW(kappa + n, mu, z) |
(z*D[z, z])^(n)*(Exp[-Divide[1,2]*z]*(z)^(\[Kappa]- 1)* WhittakerW[\[Kappa], \[Mu], z]) == (- 1)^(n)* Exp[-Divide[1,2]*z]*(z)^(\[Kappa]+ n - 1)* WhittakerW[\[Kappa]+ n, \[Mu], z] |
Failure | Failure | Failed [300 / 300] Result: .2623016537+.1488103823*I
Test Values: {kappa = 1/2*3^(1/2)+1/2*I, mu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, n = 1} Result: .1952811915+.4851862634*I
Test Values: {kappa = 1/2*3^(1/2)+1/2*I, mu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, n = 2} ... skip entries to safe data |
Failed [300 / 300]
Result: Complex[0.26230165366126323, 0.1488103820981603]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[0.1952811914323972, 0.4851862632402242]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} ... skip entries to safe data |
13.16.E1 | \WhittakerconfhyperM{\kappa}{\mu}@{z} = \frac{\EulerGamma@{1+2\mu}z^{\mu+\frac{1}{2}}2^{-2\mu}}{\EulerGamma@{\frac{1}{2}+\mu-\kappa}\EulerGamma@{\frac{1}{2}+\mu+\kappa}}\*\int_{-1}^{1}e^{\frac{1}{2}zt}(1+t)^{\mu-\frac{1}{2}-\kappa}(1-t)^{\mu-\frac{1}{2}+\kappa}\diff{t} |
WhittakerM(kappa, mu, z) = (GAMMA(1 + 2*mu)*(z)^(mu +(1)/(2))* (2)^(- 2*mu))/(GAMMA((1)/(2)+ mu - kappa)*GAMMA((1)/(2)+ mu + kappa))* int(exp((1)/(2)*z*t)*(1 + t)^(mu -(1)/(2)- kappa)*(1 - t)^(mu -(1)/(2)+ kappa), t = - 1..1) |
WhittakerM[\[Kappa], \[Mu], z] == Divide[Gamma[1 + 2*\[Mu]]*(z)^(\[Mu]+Divide[1,2])* (2)^(- 2*\[Mu]),Gamma[Divide[1,2]+ \[Mu]- \[Kappa]]*Gamma[Divide[1,2]+ \[Mu]+ \[Kappa]]]* Integrate[Exp[Divide[1,2]*z*t]*(1 + t)^(\[Mu]-Divide[1,2]- \[Kappa])*(1 - t)^(\[Mu]-Divide[1,2]+ \[Kappa]), {t, - 1, 1}, GenerateConditions->None] |
Failure | Successful | Skipped - Because timed out | Successful [Tested: 252] | |
13.16.E2 | \WhittakerconfhyperM{\kappa}{\mu}@{z} = \frac{\EulerGamma@{1+2\mu}z^{\lambda}}{\EulerGamma@{1+2\mu-2\lambda}\EulerGamma@{2\lambda}}\*\int_{0}^{1}\WhittakerconfhyperM{\kappa-\lambda}{\mu-\lambda}@{zt}e^{\frac{1}{2}z(t-1)}t^{\mu-\lambda-\frac{1}{2}}{(1-t)^{2\lambda-1}}\diff{t} |
WhittakerM(kappa, mu, z) = (GAMMA(1 + 2*mu)*(z)^(lambda))/(GAMMA(1 + 2*mu - 2*lambda)*GAMMA(2*lambda))* int(WhittakerM(kappa - lambda, mu - lambda, z*t)*exp((1)/(2)*z*(t - 1))*(t)^(mu - lambda -(1)/(2))*(1 - t)^(2*lambda - 1), t = 0..1) |
WhittakerM[\[Kappa], \[Mu], z] == Divide[Gamma[1 + 2*\[Mu]]*(z)^\[Lambda],Gamma[1 + 2*\[Mu]- 2*\[Lambda]]*Gamma[2*\[Lambda]]]* Integrate[WhittakerM[\[Kappa]- \[Lambda], \[Mu]- \[Lambda], z*t]*Exp[Divide[1,2]*z*(t - 1)]*(t)^(\[Mu]- \[Lambda]-Divide[1,2])*(1 - t)^(2*\[Lambda]- 1), {t, 0, 1}, GenerateConditions->None] |
Failure | Aborted | Skipped - Because timed out | Skipped - Because timed out | |
13.16.E3 | \frac{1}{\EulerGamma@{1+2\mu}}\WhittakerconfhyperM{\kappa}{\mu}@{z} = \frac{\sqrt{z}e^{\frac{1}{2}z}}{\EulerGamma@{\frac{1}{2}+\mu+\kappa}}\int_{0}^{\infty}e^{-t}t^{\kappa-\frac{1}{2}}\BesselJ{2\mu}@{2\sqrt{zt}}\diff{t} |
(1)/(GAMMA(1 + 2*mu))*WhittakerM(kappa, mu, z) = (sqrt(z)*exp((1)/(2)*z))/(GAMMA((1)/(2)+ mu + kappa))*int(exp(- t)*(t)^(kappa -(1)/(2))* BesselJ(2*mu, 2*sqrt(z*t)), t = 0..infinity) |
Divide[1,Gamma[1 + 2*\[Mu]]]*WhittakerM[\[Kappa], \[Mu], z] == Divide[Sqrt[z]*Exp[Divide[1,2]*z],Gamma[Divide[1,2]+ \[Mu]+ \[Kappa]]]*Integrate[Exp[- t]*(t)^(\[Kappa]-Divide[1,2])* BesselJ[2*\[Mu], 2*Sqrt[z*t]], {t, 0, Infinity}, GenerateConditions->None] |
Successful | Aborted | - | Skipped - Because timed out | |
13.16.E4 | \frac{1}{\EulerGamma@{1+2\mu}}\WhittakerconfhyperM{\kappa}{\mu}@{z} = \frac{\sqrt{z}e^{-\frac{1}{2}z}}{\EulerGamma@{\frac{1}{2}+\mu-\kappa}}\*\int_{0}^{\infty}e^{-t}t^{-\kappa-\frac{1}{2}}\modBesselI{2\mu}@{2\sqrt{zt}}\diff{t} |
(1)/(GAMMA(1 + 2*mu))*WhittakerM(kappa, mu, z) = (sqrt(z)*exp(-(1)/(2)*z))/(GAMMA((1)/(2)+ mu - kappa))* int(exp(- t)*(t)^(- kappa -(1)/(2))* BesselI(2*mu, 2*sqrt(z*t)), t = 0..infinity) |
Divide[1,Gamma[1 + 2*\[Mu]]]*WhittakerM[\[Kappa], \[Mu], z] == Divide[Sqrt[z]*Exp[-Divide[1,2]*z],Gamma[Divide[1,2]+ \[Mu]- \[Kappa]]]* Integrate[Exp[- t]*(t)^(- \[Kappa]-Divide[1,2])* BesselI[2*\[Mu], 2*Sqrt[z*t]], {t, 0, Infinity}, GenerateConditions->None] |
Failure | Successful | Failed [42 / 300] Result: .5483729950e-2+.5411197480e-1*I
Test Values: {kappa = -3/2, mu = 2, z = 1/2*3^(1/2)+1/2*I} Result: .2482822497e-1-.2550894001e-1*I
Test Values: {kappa = -3/2, mu = 2, z = -1/2+1/2*I*3^(1/2)} ... skip entries to safe data |
Successful [Tested: 300] | |
13.16.E5 | \WhittakerconfhyperW{\kappa}{\mu}@{z} = \frac{z^{\mu+\frac{1}{2}}2^{-2\mu}}{\EulerGamma@{\frac{1}{2}+\mu-\kappa}}\*\int_{1}^{\infty}e^{-\frac{1}{2}zt}(t-1)^{\mu-\frac{1}{2}-\kappa}(t+1)^{\mu-\frac{1}{2}+\kappa}\diff{t} |
WhittakerW(kappa, mu, z) = ((z)^(mu +(1)/(2))* (2)^(- 2*mu))/(GAMMA((1)/(2)+ mu - kappa))* int(exp(-(1)/(2)*z*t)*(t - 1)^(mu -(1)/(2)- kappa)*(t + 1)^(mu -(1)/(2)+ kappa), t = 1..infinity) |
WhittakerW[\[Kappa], \[Mu], z] == Divide[(z)^(\[Mu]+Divide[1,2])* (2)^(- 2*\[Mu]),Gamma[Divide[1,2]+ \[Mu]- \[Kappa]]]* Integrate[Exp[-Divide[1,2]*z*t]*(t - 1)^(\[Mu]-Divide[1,2]- \[Kappa])*(t + 1)^(\[Mu]-Divide[1,2]+ \[Kappa]), {t, 1, Infinity}, GenerateConditions->None] |
Failure | Aborted | Skipped - Because timed out | Successful [Tested: 300] | |
13.16.E6 | \WhittakerconfhyperW{\kappa}{\mu}@{z} = \frac{e^{-\frac{1}{2}z}z^{\kappa+1}}{\EulerGamma@{\frac{1}{2}+\mu-\kappa}\EulerGamma@{\frac{1}{2}-\mu-\kappa}}\*\int_{0}^{\infty}\frac{\WhittakerconfhyperW{-\kappa}{\mu}@{t}e^{-\frac{1}{2}t}t^{-\kappa-1}}{t+z}\diff{t} |
WhittakerW(kappa, mu, z) = (exp(-(1)/(2)*z)*(z)^(kappa + 1))/(GAMMA((1)/(2)+ mu - kappa)*GAMMA((1)/(2)- mu - kappa))* int((WhittakerW(- kappa, mu, t)*exp(-(1)/(2)*t)*(t)^(- kappa - 1))/(t + z), t = 0..infinity) |
WhittakerW[\[Kappa], \[Mu], z] == Divide[Exp[-Divide[1,2]*z]*(z)^(\[Kappa]+ 1),Gamma[Divide[1,2]+ \[Mu]- \[Kappa]]*Gamma[Divide[1,2]- \[Mu]- \[Kappa]]]* Integrate[Divide[WhittakerW[- \[Kappa], \[Mu], t]*Exp[-Divide[1,2]*t]*(t)^(- \[Kappa]- 1),t + z], {t, 0, Infinity}, GenerateConditions->None] |
Failure | Aborted | Manual Skip! | Successful [Tested: 300] | |
13.16.E7 | \WhittakerconfhyperW{\kappa}{\mu}@{z} = \frac{(-1)^{n}e^{-\frac{1}{2}z}z^{\frac{1}{2}-\mu-n}}{\EulerGamma@{1+2\mu}\EulerGamma@{\frac{1}{2}-\mu-\kappa}}\*\int_{0}^{\infty}\frac{\WhittakerconfhyperM{-\kappa}{\mu}@{t}e^{-\frac{1}{2}t}t^{n+\mu-\frac{1}{2}}}{t+z}\diff{t} |
WhittakerW(kappa, mu, z) = ((- 1)^(n)* exp(-(1)/(2)*z)*(z)^((1)/(2)- mu - n))/(GAMMA(1 + 2*mu)*GAMMA((1)/(2)- mu - kappa))* int((WhittakerM(- kappa, mu, t)*exp(-(1)/(2)*t)*(t)^(n + mu -(1)/(2)))/(t + z), t = 0..infinity) |
WhittakerW[\[Kappa], \[Mu], z] == Divide[(- 1)^(n)* Exp[-Divide[1,2]*z]*(z)^(Divide[1,2]- \[Mu]- n),Gamma[1 + 2*\[Mu]]*Gamma[Divide[1,2]- \[Mu]- \[Kappa]]]* Integrate[Divide[WhittakerM[- \[Kappa], \[Mu], t]*Exp[-Divide[1,2]*t]*(t)^(n + \[Mu]-Divide[1,2]),t + z], {t, 0, Infinity}, GenerateConditions->None] |
Failure | Aborted | Manual Skip! | Skipped - Because timed out | |
13.16.E8 | \WhittakerconfhyperW{\kappa}{\mu}@{z} = \frac{2\sqrt{z}e^{-\frac{1}{2}z}}{\EulerGamma@{\frac{1}{2}+\mu-\kappa}\EulerGamma@{\frac{1}{2}-\mu-\kappa}}\*\int_{0}^{\infty}e^{-t}t^{-\kappa-\frac{1}{2}}\modBesselK{2\mu}@{2\sqrt{zt}}\diff{t} |
WhittakerW(kappa, mu, z) = (2*sqrt(z)*exp(-(1)/(2)*z))/(GAMMA((1)/(2)+ mu - kappa)*GAMMA((1)/(2)- mu - kappa))* int(exp(- t)*(t)^(- kappa -(1)/(2))* BesselK(2*mu, 2*sqrt(z*t)), t = 0..infinity) |
WhittakerW[\[Kappa], \[Mu], z] == Divide[2*Sqrt[z]*Exp[-Divide[1,2]*z],Gamma[Divide[1,2]+ \[Mu]- \[Kappa]]*Gamma[Divide[1,2]- \[Mu]- \[Kappa]]]* Integrate[Exp[- t]*(t)^(- \[Kappa]-Divide[1,2])* BesselK[2*\[Mu], 2*Sqrt[z*t]], {t, 0, Infinity}, GenerateConditions->None] |
Successful | Aborted | - | Successful [Tested: 252] | |
13.16.E9 | \WhittakerconfhyperW{\kappa}{\mu}@{z} = e^{-\frac{1}{2}z}z^{\kappa+c}\*\int_{0}^{\infty}e^{-zt}t^{c-1}\genhyperOlverF{2}{1}@@{\tfrac{1}{2}+\mu-\kappa,\tfrac{1}{2}-\mu-\kappa}{c}{-t}\diff{t} |
WhittakerW(kappa, mu, z) = exp(-(1)/(2)*z)*(z)^(kappa + c)* int(exp(- z*t)*(t)^(c - 1)* hypergeom([(1)/(2)+ mu - kappa ,(1)/(2)- mu - kappa], [c], - t), t = 0..infinity) |
WhittakerW[\[Kappa], \[Mu], z] == Exp[-Divide[1,2]*z]*(z)^(\[Kappa]+ c)* Integrate[Exp[- z*t]*(t)^(c - 1)* HypergeometricPFQRegularized[{Divide[1,2]+ \[Mu]- \[Kappa],Divide[1,2]- \[Mu]- \[Kappa]}, {c}, - t], {t, 0, Infinity}, GenerateConditions->None] |
Failure | Aborted | Manual Skip! | Skipped - Because timed out | |
13.16.E10 | \frac{1}{\EulerGamma@{1+2\mu}}\WhittakerconfhyperM{\kappa}{\mu}@{e^{+\pi\iunit}z} = \frac{e^{\frac{1}{2}z+(\frac{1}{2}+\mu)\pi\iunit}}{2\pi\iunit\EulerGamma@{\frac{1}{2}+\mu-\kappa}}\*\int_{-\iunit\infty}^{\iunit\infty}\frac{\EulerGamma@{t-\kappa}\EulerGamma@{\frac{1}{2}+\mu-t}}{\EulerGamma@{\frac{1}{2}+\mu+t}}z^{t}\diff{t} |
(1)/(GAMMA(1 + 2*mu))*WhittakerM(kappa, mu, exp(+ Pi*I)*z) = (exp((1)/(2)*z +((1)/(2)+ mu)*Pi*I))/(2*Pi*I*GAMMA((1)/(2)+ mu - kappa))* int((GAMMA(t - kappa)*GAMMA((1)/(2)+ mu - t))/(GAMMA((1)/(2)+ mu + t))*(z)^(t), t = - I*infinity..I*infinity) |
Divide[1,Gamma[1 + 2*\[Mu]]]*WhittakerM[\[Kappa], \[Mu], Exp[+ Pi*I]*z] == Divide[Exp[Divide[1,2]*z +(Divide[1,2]+ \[Mu])*Pi*I],2*Pi*I*Gamma[Divide[1,2]+ \[Mu]- \[Kappa]]]* Integrate[Divide[Gamma[t - \[Kappa]]*Gamma[Divide[1,2]+ \[Mu]- t],Gamma[Divide[1,2]+ \[Mu]+ t]]*(z)^(t), {t, - I*Infinity, I*Infinity}, GenerateConditions->None] |
Failure | Aborted | Skipped - Because timed out | Skipped - Because timed out | |
13.16.E10 | \frac{1}{\EulerGamma@{1+2\mu}}\WhittakerconfhyperM{\kappa}{\mu}@{e^{-\pi\iunit}z} = \frac{e^{\frac{1}{2}z-(\frac{1}{2}+\mu)\pi\iunit}}{2\pi\iunit\EulerGamma@{\frac{1}{2}+\mu-\kappa}}\*\int_{-\iunit\infty}^{\iunit\infty}\frac{\EulerGamma@{t-\kappa}\EulerGamma@{\frac{1}{2}+\mu-t}}{\EulerGamma@{\frac{1}{2}+\mu+t}}z^{t}\diff{t} |
(1)/(GAMMA(1 + 2*mu))*WhittakerM(kappa, mu, exp(- Pi*I)*z) = (exp((1)/(2)*z -((1)/(2)+ mu)*Pi*I))/(2*Pi*I*GAMMA((1)/(2)+ mu - kappa))* int((GAMMA(t - kappa)*GAMMA((1)/(2)+ mu - t))/(GAMMA((1)/(2)+ mu + t))*(z)^(t), t = - I*infinity..I*infinity) |
Divide[1,Gamma[1 + 2*\[Mu]]]*WhittakerM[\[Kappa], \[Mu], Exp[- Pi*I]*z] == Divide[Exp[Divide[1,2]*z -(Divide[1,2]+ \[Mu])*Pi*I],2*Pi*I*Gamma[Divide[1,2]+ \[Mu]- \[Kappa]]]* Integrate[Divide[Gamma[t - \[Kappa]]*Gamma[Divide[1,2]+ \[Mu]- t],Gamma[Divide[1,2]+ \[Mu]+ t]]*(z)^(t), {t, - I*Infinity, I*Infinity}, GenerateConditions->None] |
Failure | Aborted | Skipped - Because timed out | Skipped - Because timed out | |
13.16.E11 | \WhittakerconfhyperW{\kappa}{\mu}@{z} = \frac{e^{-\frac{1}{2}z}}{2\pi\iunit}\*\int_{-\iunit\infty}^{\iunit\infty}\frac{\EulerGamma@{\frac{1}{2}+\mu+t}\EulerGamma@{\frac{1}{2}-\mu+t}\EulerGamma@{-\kappa-t}}{\EulerGamma@{\frac{1}{2}+\mu-\kappa}\EulerGamma@{\frac{1}{2}-\mu-\kappa}}z^{-t}\diff{t} |
WhittakerW(kappa, mu, z) = (exp(-(1)/(2)*z))/(2*Pi*I)* int((GAMMA((1)/(2)+ mu + t)*GAMMA((1)/(2)- mu + t)*GAMMA(- kappa - t))/(GAMMA((1)/(2)+ mu - kappa)*GAMMA((1)/(2)- mu - kappa))*(z)^(- t), t = - I*infinity..I*infinity) |
WhittakerW[\[Kappa], \[Mu], z] == Divide[Exp[-Divide[1,2]*z],2*Pi*I]* Integrate[Divide[Gamma[Divide[1,2]+ \[Mu]+ t]*Gamma[Divide[1,2]- \[Mu]+ t]*Gamma[- \[Kappa]- t],Gamma[Divide[1,2]+ \[Mu]- \[Kappa]]*Gamma[Divide[1,2]- \[Mu]- \[Kappa]]]*(z)^(- t), {t, - I*Infinity, I*Infinity}, GenerateConditions->None] |
Failure | Aborted | Skipped - Because timed out | Skipped - Because timed out | |
13.16.E12 | \WhittakerconfhyperW{\kappa}{\mu}@{z} = \frac{e^{\frac{1}{2}z}}{2\pi\iunit}\int_{-\iunit\infty}^{\iunit\infty}\frac{\EulerGamma@{\frac{1}{2}+\mu+t}\EulerGamma@{\frac{1}{2}-\mu+t}}{\EulerGamma@{1-\kappa+t}}z^{-t}\diff{t} |
WhittakerW(kappa, mu, z) = (exp((1)/(2)*z))/(2*Pi*I)*int((GAMMA((1)/(2)+ mu + t)*GAMMA((1)/(2)- mu + t))/(GAMMA(1 - kappa + t))*(z)^(- t), t = - I*infinity..I*infinity) |
WhittakerW[\[Kappa], \[Mu], z] == Divide[Exp[Divide[1,2]*z],2*Pi*I]*Integrate[Divide[Gamma[Divide[1,2]+ \[Mu]+ t]*Gamma[Divide[1,2]- \[Mu]+ t],Gamma[1 - \[Kappa]+ t]]*(z)^(- t), {t, - I*Infinity, I*Infinity}, GenerateConditions->None] |
Failure | Aborted | Skipped - Because timed out | Skipped - Because timed out | |
13.18.E1 | \WhittakerconfhyperM{0}{\frac{1}{2}}@{2z} = 2\sinh@@{z} |
|
WhittakerM(0, (1)/(2), 2*z) = 2*sinh(z) |
WhittakerM[0, Divide[1,2], 2*z] == 2*Sinh[z] |
Successful | Successful | - | Successful [Tested: 7] |
13.18.E2 | \WhittakerconfhyperM{\kappa}{\kappa-\frac{1}{2}}@{z} = \WhittakerconfhyperW{\kappa}{\kappa-\frac{1}{2}}@{z} |
|
WhittakerM(kappa, kappa -(1)/(2), z) = WhittakerW(kappa, kappa -(1)/(2), z) |
WhittakerM[\[Kappa], \[Kappa]-Divide[1,2], z] == WhittakerW[\[Kappa], \[Kappa]-Divide[1,2], z] |
Successful | Successful | Skip - symbolical successful subtest | Successful [Tested: 70] |
13.18.E2 | \WhittakerconfhyperW{\kappa}{\kappa-\frac{1}{2}}@{z} = \WhittakerconfhyperW{\kappa}{-\kappa+\frac{1}{2}}@{z} |
|
WhittakerW(kappa, kappa -(1)/(2), z) = WhittakerW(kappa, - kappa +(1)/(2), z) |
WhittakerW[\[Kappa], \[Kappa]-Divide[1,2], z] == WhittakerW[\[Kappa], - \[Kappa]+Divide[1,2], z] |
Failure | Successful | Successful [Tested: 70] | Successful [Tested: 70] |
13.18.E2 | \WhittakerconfhyperW{\kappa}{-\kappa+\frac{1}{2}}@{z} = e^{-\frac{1}{2}z}z^{\kappa} |
|
WhittakerW(kappa, - kappa +(1)/(2), z) = exp(-(1)/(2)*z)*(z)^(kappa) |
WhittakerW[\[Kappa], - \[Kappa]+Divide[1,2], z] == Exp[-Divide[1,2]*z]*(z)^\[Kappa] |
Failure | Successful | Successful [Tested: 70] | Successful [Tested: 70] |
13.18.E3 | \WhittakerconfhyperM{\kappa}{-\kappa-\frac{1}{2}}@{z} = e^{\frac{1}{2}z}z^{-\kappa} |
|
WhittakerM(kappa, - kappa -(1)/(2), z) = exp((1)/(2)*z)*(z)^(- kappa) |
WhittakerM[\[Kappa], - \[Kappa]-Divide[1,2], z] == Exp[Divide[1,2]*z]*(z)^(- \[Kappa]) |
Successful | Successful | - | Failed [20 / 70]
Result: Complex[-0.012581208495203278, -0.029801099144953658]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, 1.5]} Result: Complex[-0.32783156414330006, -0.2917810845255237]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, 0.5]} ... skip entries to safe data |
13.18.E4 | \WhittakerconfhyperM{\mu-\frac{1}{2}}{\mu}@{z} = 2\mu e^{\frac{1}{2}z}z^{\frac{1}{2}-\mu}\incgamma@{2\mu}{z} |
WhittakerM(mu -(1)/(2), mu, z) = 2*mu*exp((1)/(2)*z)*(z)^((1)/(2)- mu)* GAMMA(2*mu)-GAMMA(2*mu, z) |
WhittakerM[\[Mu]-Divide[1,2], \[Mu], z] == 2*\[Mu]*Exp[Divide[1,2]*z]*(z)^(Divide[1,2]- \[Mu])* Gamma[2*\[Mu], 0, z] |
Failure | Successful | Failed [35 / 35] Result: -.5507089801-1.429327526*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I} Result: -2.178955063-1.073512810*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)} ... skip entries to safe data |
Successful [Tested: 35] | |
13.18.E5 | \WhittakerconfhyperW{\mu-\frac{1}{2}}{\mu}@{z} = e^{\frac{1}{2}z}z^{\frac{1}{2}-\mu}\incGamma@{2\mu}{z} |
|
WhittakerW(mu -(1)/(2), mu, z) = exp((1)/(2)*z)*(z)^((1)/(2)- mu)* GAMMA(2*mu, z) |
WhittakerW[\[Mu]-Divide[1,2], \[Mu], z] == Exp[Divide[1,2]*z]*(z)^(Divide[1,2]- \[Mu])* Gamma[2*\[Mu], z] |
Successful | Successful | - | Successful [Tested: 70] |
13.18.E6 | \WhittakerconfhyperM{-\frac{1}{4}}{\frac{1}{4}}@{z^{2}} = \tfrac{1}{2}e^{\frac{1}{2}z^{2}}\sqrt{\pi z}\erf@{z} |
|
WhittakerM(-(1)/(4), (1)/(4), (z)^(2)) = (1)/(2)*exp((1)/(2)*(z)^(2))*sqrt(Pi*z)*erf(z) |
WhittakerM[-Divide[1,4], Divide[1,4], (z)^(2)] == Divide[1,2]*Exp[Divide[1,2]*(z)^(2)]*Sqrt[Pi*z]*Erf[z] |
Failure | Failure | Failed [2 / 7] Result: .7978557562-.9869289445*I
Test Values: {z = -1/2+1/2*I*3^(1/2)} Result: 1.482664004+.2744150982*I
Test Values: {z = -1/2*3^(1/2)-1/2*I} |
Failed [2 / 7]
Result: Complex[0.7978557563768727, -0.986928944338508]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} Result: Complex[1.4826640039189691, 0.2744150979001404]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]} |
13.18.E7 | \WhittakerconfhyperW{-\frac{1}{4}}{+\frac{1}{4}}@{z^{2}} = e^{\frac{1}{2}z^{2}}\sqrt{\pi z}\erfc@{z} |
|
WhittakerW(-(1)/(4), +(1)/(4), (z)^(2)) = exp((1)/(2)*(z)^(2))*sqrt(Pi*z)*erfc(z) |
WhittakerW[-Divide[1,4], +Divide[1,4], (z)^(2)] == Exp[Divide[1,2]*(z)^(2)]*Sqrt[Pi*z]*Erfc[z] |
Failure | Failure | Failed [2 / 7] Result: -1.928317415+.502368653e-1*I
Test Values: {z = -1/2+1/2*I*3^(1/2)} Result: -2.674168572+2.656547698*I
Test Values: {z = -1/2*3^(1/2)-1/2*I} |
Failed [2 / 7]
Result: Complex[-1.9283174154667808, 0.050236864945780724]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} Result: Complex[-2.6741685713500765, 2.656547698651725]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]} |
13.18.E7 | \WhittakerconfhyperW{-\frac{1}{4}}{-\frac{1}{4}}@{z^{2}} = e^{\frac{1}{2}z^{2}}\sqrt{\pi z}\erfc@{z} |
|
WhittakerW(-(1)/(4), -(1)/(4), (z)^(2)) = exp((1)/(2)*(z)^(2))*sqrt(Pi*z)*erfc(z) |
WhittakerW[-Divide[1,4], -Divide[1,4], (z)^(2)] == Exp[Divide[1,2]*(z)^(2)]*Sqrt[Pi*z]*Erfc[z] |
Failure | Failure | Failed [2 / 7] Result: -1.928317415+.502368653e-1*I
Test Values: {z = -1/2+1/2*I*3^(1/2)} Result: -2.674168572+2.656547698*I
Test Values: {z = -1/2*3^(1/2)-1/2*I} |
Failed [2 / 7]
Result: Complex[-1.928317415466781, 0.05023686494578061]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} Result: Complex[-2.674168571350077, 2.6565476986517247]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]} |
13.18.E8 | \WhittakerconfhyperM{0}{\nu}@{2z} = 2^{2\nu+\frac{1}{2}}\EulerGamma@{1+\nu}\sqrt{z}\modBesselI{\nu}@{z} |
WhittakerM(0, nu, 2*z) = (2)^(2*nu +(1)/(2))* GAMMA(1 + nu)*sqrt(z)*BesselI(nu, z) |
WhittakerM[0, \[Nu], 2*z] == (2)^(2*\[Nu]+Divide[1,2])* Gamma[1 + \[Nu]]*Sqrt[z]*BesselI[\[Nu], z] |
Successful | Successful | - | Failed [7 / 56]
Result: Complex[-0.8586367168171446, -0.6707313588072118]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -0.5]} Result: Complex[0.33759646322286985, -0.8589803343001376]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[ν, -0.5]} ... skip entries to safe data | |
13.18.E9 | \WhittakerconfhyperW{0}{\nu}@{2z} = \sqrt{\ifrac{2z}{\pi}}\modBesselK{\nu}@{z} |
|
WhittakerW(0, nu, 2*z) = sqrt((2*z)/(Pi))*BesselK(nu, z) |
WhittakerW[0, \[Nu], 2*z] == Sqrt[Divide[2*z,Pi]]*BesselK[\[Nu], z] |
Successful | Successful | - | Successful [Tested: 70] |
13.18.E10 | \WhittakerconfhyperW{0}{\frac{1}{3}}@{\tfrac{4}{3}z^{\frac{3}{2}}} = 2\sqrt{\pi}z^{\frac{1}{4}}\AiryAi@{z} |
|
WhittakerW(0, (1)/(3), (4)/(3)*(z)^((3)/(2))) = 2*sqrt(Pi)*(z)^((1)/(4))* AiryAi(z) |
WhittakerW[0, Divide[1,3], Divide[4,3]*(z)^(Divide[3,2])] == 2*Sqrt[Pi]*(z)^(Divide[1,4])* AiryAi[z] |
Failure | Failure | Failed [1 / 7] Result: -.246840478+.5335590044*I
Test Values: {z = -1/2*3^(1/2)-1/2*I} |
Failed [1 / 7]
Result: Complex[-0.24684047859323988, 0.533559004293784]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]} |
13.18.E12 | \WhittakerconfhyperM{-\frac{1}{2}a}{-\frac{1}{4}}@{\tfrac{1}{2}z^{2}} = 2^{\frac{1}{2}a-1}\EulerGamma@{\tfrac{1}{2}a+\tfrac{3}{4}}\sqrt{\ifrac{z}{\pi}}\*\left(\paraU@{a}{z}+\paraU@{a}{-z}\right) |
WhittakerM(-(1)/(2)*a, -(1)/(4), (1)/(2)*(z)^(2)) = (2)^((1)/(2)*a - 1)* GAMMA((1)/(2)*a +(3)/(4))*sqrt((z)/(Pi))*(CylinderU(a, z)+ CylinderU(a, - z)) |
WhittakerM[-Divide[1,2]*a, -Divide[1,4], Divide[1,2]*(z)^(2)] == (2)^(Divide[1,2]*a - 1)* Gamma[Divide[1,2]*a +Divide[3,4]]*Sqrt[Divide[z,Pi]]*(ParabolicCylinderD[- 1/2 -(a), z]+ ParabolicCylinderD[- 1/2 -(a), - z]) |
Failure | Failure | Failed [8 / 28] Result: -.4546011384-.8349579092*I
Test Values: {a = 3/2, z = -1/2+1/2*I*3^(1/2)} Result: .58169427e-2+1.789104086*I
Test Values: {a = 3/2, z = -1/2*3^(1/2)-1/2*I} ... skip entries to safe data |
Failed [8 / 28]
Result: Complex[-0.454601138107828, -0.8349579095614801]
Test Values: {Rule[a, 1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} Result: Complex[0.005816942543956816, 1.7891040854776739]
Test Values: {Rule[a, 1.5], Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]} ... skip entries to safe data | |
13.18.E13 | \WhittakerconfhyperM{-\frac{1}{2}a}{\frac{1}{4}}@{\tfrac{1}{2}z^{2}} = 2^{\frac{1}{2}a-2}\EulerGamma@{\tfrac{1}{2}a+\tfrac{1}{4}}\sqrt{\ifrac{z}{\pi}}\*\left(\paraU@{a}{-z}-\paraU@{a}{z}\right) |
WhittakerM(-(1)/(2)*a, (1)/(4), (1)/(2)*(z)^(2)) = (2)^((1)/(2)*a - 2)* GAMMA((1)/(2)*a +(1)/(4))*sqrt((z)/(Pi))*(CylinderU(a, - z)- CylinderU(a, z)) |
WhittakerM[-Divide[1,2]*a, Divide[1,4], Divide[1,2]*(z)^(2)] == (2)^(Divide[1,2]*a - 2)* Gamma[Divide[1,2]*a +Divide[1,4]]*Sqrt[Divide[z,Pi]]*(ParabolicCylinderD[- 1/2 -(a), - z]- ParabolicCylinderD[- 1/2 -(a), z]) |
Failure | Failure | Failed [6 / 21] Result: .3997621251-.6252084121*I
Test Values: {a = 3/2, z = -1/2+1/2*I*3^(1/2)} Result: .9306149059+.2046923958*I
Test Values: {a = 3/2, z = -1/2*3^(1/2)-1/2*I} ... skip entries to safe data |
Failed [6 / 21]
Result: Complex[0.3997621252402044, -0.6252084117529283]
Test Values: {Rule[a, 1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} Result: Complex[0.9306149056064967, 0.20469239560568858]
Test Values: {Rule[a, 1.5], Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]} ... skip entries to safe data | |
13.18.E14 | \WhittakerconfhyperM{\frac{1}{4}+n}{-\frac{1}{4}}@{z^{2}} = (-1)^{n}\frac{n!}{(2n)!}e^{-\frac{1}{2}z^{2}}\sqrt{z}\HermitepolyH{2n}@{z} |
|
WhittakerM((1)/(4)+ n, -(1)/(4), (z)^(2)) = (- 1)^(n)*(factorial(n))/(factorial(2*n))*exp(-(1)/(2)*(z)^(2))*sqrt(z)*HermiteH(2*n, z) |
WhittakerM[Divide[1,4]+ n, -Divide[1,4], (z)^(2)] == (- 1)^(n)*Divide[(n)!,(2*n)!]*Exp[-Divide[1,2]*(z)^(2)]*Sqrt[z]*HermiteH[2*n, z] |
Failure | Failure | Failed [6 / 21] Result: 4.741276300-.776142297*I
Test Values: {z = -1/2+1/2*I*3^(1/2), n = 1} Result: 9.155588595+2.115036937*I
Test Values: {z = -1/2+1/2*I*3^(1/2), n = 2} ... skip entries to safe data |
Failed [6 / 21]
Result: Complex[4.741276296912009, -0.7761422976118018]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} Result: Complex[9.15558858680754, 2.115036935310196]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |
13.18.E15 | \WhittakerconfhyperM{\frac{3}{4}+n}{\frac{1}{4}}@{z^{2}} = (-1)^{n}\frac{n!}{(2n+1)!}\frac{e^{-\frac{1}{2}z^{2}}\sqrt{z}}{2}\HermitepolyH{2n+1}@{z} |
|
WhittakerM((3)/(4)+ n, (1)/(4), (z)^(2)) = (- 1)^(n)*(factorial(n))/(factorial(2*n + 1))*(exp(-(1)/(2)*(z)^(2))*sqrt(z))/(2)*HermiteH(2*n + 1, z) |
WhittakerM[Divide[3,4]+ n, Divide[1,4], (z)^(2)] == (- 1)^(n)*Divide[(n)!,(2*n + 1)!]*Divide[Exp[-Divide[1,2]*(z)^(2)]*Sqrt[z],2]*HermiteH[2*n + 1, z] |
Failure | Failure | Failed [6 / 21] Result: 2.634248102+.148339259*I
Test Values: {z = -1/2+1/2*I*3^(1/2), n = 1} Result: 3.481689250+1.400565410*I
Test Values: {z = -1/2+1/2*I*3^(1/2), n = 2} ... skip entries to safe data |
Failed [6 / 21]
Result: Complex[2.6342480998741933, 0.14833925882834587]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} Result: Complex[3.4816892469231746, 1.4005654089276338]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |
13.18.E16 | \WhittakerconfhyperW{\frac{1}{4}+\frac{1}{2}n}{\frac{1}{4}}@{z^{2}} = 2^{-n}e^{-\frac{1}{2}z^{2}}\sqrt{z}\HermitepolyH{n}@{z} |
|
WhittakerW((1)/(4)+(1)/(2)*n, (1)/(4), (z)^(2)) = (2)^(- n)* exp(-(1)/(2)*(z)^(2))*sqrt(z)*HermiteH(n, z) |
WhittakerW[Divide[1,4]+Divide[1,2]*n, Divide[1,4], (z)^(2)] == (2)^(- n)* Exp[-Divide[1,2]*(z)^(2)]*Sqrt[z]*HermiteH[n, z] |
Failure | Failure | Failed [6 / 21] Result: 1.704303716-.6267307130*I
Test Values: {z = -1/2+1/2*I*3^(1/2), n = 1} Result: -2.370638149+.3880711488*I
Test Values: {z = -1/2+1/2*I*3^(1/2), n = 2} ... skip entries to safe data |
Failed [6 / 21]
Result: Complex[1.7043037156649337, -0.6267307126437623]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} Result: Complex[-2.370638148456005, 0.388071148805901]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |
13.18.E17 | \WhittakerconfhyperW{\frac{1}{2}\alpha+\frac{1}{2}+n}{\frac{1}{2}\alpha}@{z} = (-1)^{n}\Pochhammersym{\alpha+1}{n}\WhittakerconfhyperM{\frac{1}{2}\alpha+\frac{1}{2}+n}{\frac{1}{2}\alpha}@{z} |
|
WhittakerW((1)/(2)*alpha +(1)/(2)+ n, (1)/(2)*alpha, z) = (- 1)^(n)* pochhammer(alpha + 1, n)*WhittakerM((1)/(2)*alpha +(1)/(2)+ n, (1)/(2)*alpha, z) |
WhittakerW[Divide[1,2]*\[Alpha]+Divide[1,2]+ n, Divide[1,2]*\[Alpha], z] == (- 1)^(n)* Pochhammer[\[Alpha]+ 1, n]*WhittakerM[Divide[1,2]*\[Alpha]+Divide[1,2]+ n, Divide[1,2]*\[Alpha], z] |
Failure | Failure | Successful [Tested: 63] | Successful [Tested: 63] |
13.18.E17 | (-1)^{n}\Pochhammersym{\alpha+1}{n}\WhittakerconfhyperM{\frac{1}{2}\alpha+\frac{1}{2}+n}{\frac{1}{2}\alpha}@{z} = (-1)^{n}n!e^{-\frac{1}{2}z}z^{\frac{1}{2}\alpha+\frac{1}{2}}\LaguerrepolyL[\alpha]{n}@{z} |
|
(- 1)^(n)* pochhammer(alpha + 1, n)*WhittakerM((1)/(2)*alpha +(1)/(2)+ n, (1)/(2)*alpha, z) = (- 1)^(n)* factorial(n)*exp(-(1)/(2)*z)*(z)^((1)/(2)*alpha +(1)/(2))* LaguerreL(n, alpha, z) |
(- 1)^(n)* Pochhammer[\[Alpha]+ 1, n]*WhittakerM[Divide[1,2]*\[Alpha]+Divide[1,2]+ n, Divide[1,2]*\[Alpha], z] == (- 1)^(n)* (n)!*Exp[-Divide[1,2]*z]*(z)^(Divide[1,2]*\[Alpha]+Divide[1,2])* LaguerreL[n, \[Alpha], z] |
Missing Macro Error | Successful | Skip - symbolical successful subtest | Successful [Tested: 63] |
13.20.E10 | \zeta = +\sqrt{\frac{x}{\mu}-2-2\ln@{\frac{x}{2\mu}}} |
|
zeta = +sqrt((x)/(mu)- 2 - 2*ln((x)/(2*mu))) |
\[Zeta] == +Sqrt[Divide[x,\[Mu]]- 2 - 2*Log[Divide[x,2*\[Mu]]]] |
Failure | Failure | Failed [300 / 300] Result: .5521389640+.265842778e-1*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, x = 3/2, zeta = 1/2*3^(1/2)+1/2*I} Result: -.8138864400+.3926096818*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, x = 3/2, zeta = -1/2+1/2*I*3^(1/2)} ... skip entries to safe data |
Failed [300 / 300]
Result: Complex[0.552138964202831, 0.026584277433671977]
Test Values: {Rule[x, 1.5], Rule[ζ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[0.016922323883714174, -1.2016497569691986]
Test Values: {Rule[x, 1.5], Rule[ζ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |
13.20.E10 | \zeta = -\sqrt{\frac{x}{\mu}-2-2\ln@{\frac{x}{2\mu}}} |
|
zeta = -sqrt((x)/(mu)- 2 - 2*ln((x)/(2*mu))) |
\[Zeta] == -Sqrt[Divide[x,\[Mu]]- 2 - 2*Log[Divide[x,2*\[Mu]]]] |
Failure | Failure | Failed [300 / 300] Result: 1.179911844+.9734157222*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, x = 3/2, zeta = 1/2*3^(1/2)+1/2*I} Result: -.1861135600+1.339441126*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, x = 3/2, zeta = -1/2+1/2*I*3^(1/2)} ... skip entries to safe data |
Failed [300 / 300]
Result: Complex[1.1799118433660465, 0.9734157225663279]
Test Values: {Rule[x, 1.5], Rule[ζ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[1.7151284836851632, 2.2016497569691986]
Test Values: {Rule[x, 1.5], Rule[ζ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |
13.21.E5 | 2\sqrt{\zeta} = \sqrt{x+x^{2}}+\ln@{\sqrt{x}+\sqrt{1+x}} |
|
2*sqrt(zeta) = sqrt(x + (x)^(2))+ ln(sqrt(x)+sqrt(1 + x)) |
2*Sqrt[\[Zeta]] == Sqrt[x + (x)^(2)]+ Log[Sqrt[x]+Sqrt[1 + x]] |
Failure | Failure | Failed [30 / 30] Result: -1.036358555+.5176380902*I
Test Values: {x = 3/2, zeta = 1/2*3^(1/2)+1/2*I} Result: -1.968210208+1.732050808*I
Test Values: {x = 3/2, zeta = -1/2+1/2*I*3^(1/2)} ... skip entries to safe data |
Failed [30 / 30]
Result: Complex[-1.0363585549733523, 0.5176380902050415]
Test Values: {Rule[x, 1.5], Rule[ζ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[-1.9682102075514887, 1.7320508075688772]
Test Values: {Rule[x, 1.5], Rule[ζ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |
13.23.E1 | \int_{0}^{\infty}e^{-zt}t^{\nu-1}\WhittakerconfhyperM{\kappa}{\mu}@{t}\diff{t} = \frac{\EulerGamma@{\mu+\nu+\tfrac{1}{2}}}{\left(z+\frac{1}{2}\right)^{\mu+\nu+\frac{1}{2}}}\*\genhyperF{2}{1}@@{\tfrac{1}{2}+\mu-\kappa,\tfrac{1}{2}+\mu+\nu}{1+2\mu}{\frac{1}{z+\frac{1}{2}}} |
int(exp(- z*t)*(t)^(nu - 1)* WhittakerM(kappa, mu, t), t = 0..infinity) = (GAMMA(mu + nu +(1)/(2)))/((z +(1)/(2))^(mu + nu +(1)/(2)))* hypergeom([(1)/(2)+ mu - kappa ,(1)/(2)+ mu + nu], [1 + 2*mu], (1)/(z +(1)/(2))) |
Integrate[Exp[- z*t]*(t)^(\[Nu]- 1)* WhittakerM[\[Kappa], \[Mu], t], {t, 0, Infinity}, GenerateConditions->None] == Divide[Gamma[\[Mu]+ \[Nu]+Divide[1,2]],(z +Divide[1,2])^(\[Mu]+ \[Nu]+Divide[1,2])]* HypergeometricPFQ[{Divide[1,2]+ \[Mu]- \[Kappa],Divide[1,2]+ \[Mu]+ \[Nu]}, {1 + 2*\[Mu]}, Divide[1,z +Divide[1,2]]] |
Failure | Aborted | Skipped - Because timed out | Skipped - Because timed out | |
13.23.E2 | \int_{0}^{\infty}e^{-zt}t^{\mu-\frac{1}{2}}\WhittakerconfhyperM{\kappa}{\mu}@{t}\diff{t} = \EulerGamma@{2\mu+1}\left(z+\tfrac{1}{2}\right)^{-\kappa-\mu-\frac{1}{2}}\*\left(z-\tfrac{1}{2}\right)^{\kappa-\mu-\frac{1}{2}} |
int(exp(- z*t)*(t)^(mu -(1)/(2))* WhittakerM(kappa, mu, t), t = 0..infinity) = GAMMA(2*mu + 1)*(z +(1)/(2))^(- kappa - mu -(1)/(2))*(z -(1)/(2))^(kappa - mu -(1)/(2)) |
Integrate[Exp[- z*t]*(t)^(\[Mu]-Divide[1,2])* WhittakerM[\[Kappa], \[Mu], t], {t, 0, Infinity}, GenerateConditions->None] == Gamma[2*\[Mu]+ 1]*(z +Divide[1,2])^(- \[Kappa]- \[Mu]-Divide[1,2])*(z -Divide[1,2])^(\[Kappa]- \[Mu]-Divide[1,2]) |
Failure | Aborted | Skipped - Because timed out | Skipped - Because timed out | |
13.23.E3 | \frac{1}{\EulerGamma@{1+2\mu}}\int_{0}^{\infty}e^{-\frac{1}{2}t}t^{\nu-1}\WhittakerconfhyperM{\kappa}{\mu}@{t}\diff{t} = \frac{\EulerGamma@{\mu+\nu+\frac{1}{2}}\EulerGamma@{\kappa-\nu}}{\EulerGamma@{\frac{1}{2}+\mu+\kappa}\EulerGamma@{\frac{1}{2}+\mu-\nu}} |
(1)/(GAMMA(1 + 2*mu))*int(exp(-(1)/(2)*t)*(t)^(nu - 1)* WhittakerM(kappa, mu, t), t = 0..infinity) = (GAMMA(mu + nu +(1)/(2))*GAMMA(kappa - nu))/(GAMMA((1)/(2)+ mu + kappa)*GAMMA((1)/(2)+ mu - nu)) |
Divide[1,Gamma[1 + 2*\[Mu]]]*Integrate[Exp[-Divide[1,2]*t]*(t)^(\[Nu]- 1)* WhittakerM[\[Kappa], \[Mu], t], {t, 0, Infinity}, GenerateConditions->None] == Divide[Gamma[\[Mu]+ \[Nu]+Divide[1,2]]*Gamma[\[Kappa]- \[Nu]],Gamma[Divide[1,2]+ \[Mu]+ \[Kappa]]*Gamma[Divide[1,2]+ \[Mu]- \[Nu]]] |
Failure | Aborted | Skipped - Because timed out | Skipped - Because timed out | |
13.23.E4 | \int_{0}^{\infty}e^{-zt}t^{\nu-1}\WhittakerconfhyperW{\kappa}{\mu}@{t}\diff{t} = \EulerGamma@{\tfrac{1}{2}+\mu+\nu}\EulerGamma@{\tfrac{1}{2}-\mu+\nu}\*\genhyperOlverF{2}{1}@@{\tfrac{1}{2}-\mu+\nu,\tfrac{1}{2}+\mu+\nu}{\nu-\kappa+1}{\tfrac{1}{2}-z} |
int(exp(- z*t)*(t)^(nu - 1)* WhittakerW(kappa, mu, t), t = 0..infinity) = GAMMA((1)/(2)+ mu + nu)*GAMMA((1)/(2)- mu + nu)* hypergeom([(1)/(2)- mu + nu ,(1)/(2)+ mu + nu], [nu - kappa + 1], (1)/(2)- z) |
Integrate[Exp[- z*t]*(t)^(\[Nu]- 1)* WhittakerW[\[Kappa], \[Mu], t], {t, 0, Infinity}, GenerateConditions->None] == Gamma[Divide[1,2]+ \[Mu]+ \[Nu]]*Gamma[Divide[1,2]- \[Mu]+ \[Nu]]* HypergeometricPFQRegularized[{Divide[1,2]- \[Mu]+ \[Nu],Divide[1,2]+ \[Mu]+ \[Nu]}, {\[Nu]- \[Kappa]+ 1}, Divide[1,2]- z] |
Failure | Aborted | Failed [276 / 300] Result: Float(infinity)+Float(infinity)*I
Test Values: {kappa = 1/2*3^(1/2)+1/2*I, mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, z = 1/2} Result: .2394973555+.5504747838e-1*I
Test Values: {kappa = 1/2*3^(1/2)+1/2*I, mu = 1/2*3^(1/2)+1/2*I, nu = 1/2-1/2*I*3^(1/2), z = 1/2*3^(1/2)+1/2*I} ... skip entries to safe data |
Skipped - Because timed out | |
13.23.E5 | \int_{0}^{\infty}e^{\frac{1}{2}t}t^{\nu-1}\WhittakerconfhyperW{\kappa}{\mu}@{t}\diff{t} = \frac{\EulerGamma@{\frac{1}{2}+\mu+\nu}\EulerGamma@{\frac{1}{2}-\mu+\nu}\EulerGamma@{-\kappa-\nu}}{\EulerGamma@{\frac{1}{2}+\mu-\kappa}\EulerGamma@{\frac{1}{2}-\mu-\kappa}} |
int(exp((1)/(2)*t)*(t)^(nu - 1)* WhittakerW(kappa, mu, t), t = 0..infinity) = (GAMMA((1)/(2)+ mu + nu)*GAMMA((1)/(2)- mu + nu)*GAMMA(- kappa - nu))/(GAMMA((1)/(2)+ mu - kappa)*GAMMA((1)/(2)- mu - kappa)) |
Integrate[Exp[Divide[1,2]*t]*(t)^(\[Nu]- 1)* WhittakerW[\[Kappa], \[Mu], t], {t, 0, Infinity}, GenerateConditions->None] == Divide[Gamma[Divide[1,2]+ \[Mu]+ \[Nu]]*Gamma[Divide[1,2]- \[Mu]+ \[Nu]]*Gamma[- \[Kappa]- \[Nu]],Gamma[Divide[1,2]+ \[Mu]- \[Kappa]]*Gamma[Divide[1,2]- \[Mu]- \[Kappa]]] |
Failure | Aborted | Manual Skip! | Successful [Tested: 56] | |
13.23.E6 | \frac{1}{\EulerGamma@{1+2\mu}2\pi\iunit}\int_{-\infty}^{(0+)}e^{zt+\frac{1}{2}t^{-1}}t^{\kappa}\WhittakerconfhyperM{\kappa}{\mu}@{t^{-1}}\diff{t} = \frac{z^{-\kappa-\frac{1}{2}}}{\EulerGamma@{\frac{1}{2}+\mu-\kappa}}\modBesselI{2\mu}@{2\sqrt{z}} |
(1)/(GAMMA(1 + 2*mu)*2*Pi*I)*int(exp(z*t +(1)/(2)*(t)^(- 1))*(t)^(kappa)* WhittakerM(kappa, mu, (t)^(- 1)), t = - infinity..(0 +)) = ((z)^(- kappa -(1)/(2)))/(GAMMA((1)/(2)+ mu - kappa))*BesselI(2*mu, 2*sqrt(z)) |
Divide[1,Gamma[1 + 2*\[Mu]]*2*Pi*I]*Integrate[Exp[z*t +Divide[1,2]*(t)^(- 1)]*(t)^\[Kappa]* WhittakerM[\[Kappa], \[Mu], (t)^(- 1)], {t, - Infinity, (0 +)}, GenerateConditions->None] == Divide[(z)^(- \[Kappa]-Divide[1,2]),Gamma[Divide[1,2]+ \[Mu]- \[Kappa]]]*BesselI[2*\[Mu], 2*Sqrt[z]] |
Error | Failure | - | Error | |
13.23.E7 | \frac{1}{2\pi\iunit}\int_{-\infty}^{(0+)}e^{zt+\frac{1}{2}t^{-1}}t^{\kappa}\WhittakerconfhyperW{\kappa}{\mu}@{t^{-1}}\diff{t} = \frac{2z^{-\kappa-\frac{1}{2}}}{\EulerGamma@{\frac{1}{2}+\mu-\kappa}\EulerGamma@{\frac{1}{2}-\mu-\kappa}}\modBesselK{2\mu}@{2\sqrt{z}} |
(1)/(2*Pi*I)*int(exp(z*t +(1)/(2)*(t)^(- 1))*(t)^(kappa)* WhittakerW(kappa, mu, (t)^(- 1)), t = - infinity..(0 +)) = (2*(z)^(- kappa -(1)/(2)))/(GAMMA((1)/(2)+ mu - kappa)*GAMMA((1)/(2)- mu - kappa))*BesselK(2*mu, 2*sqrt(z)) |
Divide[1,2*Pi*I]*Integrate[Exp[z*t +Divide[1,2]*(t)^(- 1)]*(t)^\[Kappa]* WhittakerW[\[Kappa], \[Mu], (t)^(- 1)], {t, - Infinity, (0 +)}, GenerateConditions->None] == Divide[2*(z)^(- \[Kappa]-Divide[1,2]),Gamma[Divide[1,2]+ \[Mu]- \[Kappa]]*Gamma[Divide[1,2]- \[Mu]- \[Kappa]]]*BesselK[2*\[Mu], 2*Sqrt[z]] |
Error | Failure | - | Error | |
13.23.E8 | \frac{1}{\EulerGamma@{1+2\mu}}\int_{0}^{\infty}\cos@{2xt}e^{-\frac{1}{2}t^{2}}t^{-2\mu-1}\WhittakerconfhyperM{\kappa}{\mu}@{t^{2}}\diff{t} = \frac{\sqrt{\pi}e^{-\frac{1}{2}x^{2}}x^{\mu+\kappa-1}}{2\EulerGamma@{\frac{1}{2}+\mu+\kappa}}\WhittakerconfhyperW{\frac{1}{2}\kappa-\frac{3}{2}\mu}{\frac{1}{2}\kappa+\frac{1}{2}\mu}@{x^{2}} |
(1)/(GAMMA(1 + 2*mu))*int(cos(2*x*t)*exp(-(1)/(2)*(t)^(2))*(t)^(- 2*mu - 1)* WhittakerM(kappa, mu, (t)^(2)), t = 0..infinity) = (sqrt(Pi)*exp(-(1)/(2)*(x)^(2))*(x)^(mu + kappa - 1))/(2*GAMMA((1)/(2)+ mu + kappa))*WhittakerW((1)/(2)*kappa -(3)/(2)*mu, (1)/(2)*kappa +(1)/(2)*mu, (x)^(2)) |
Divide[1,Gamma[1 + 2*\[Mu]]]*Integrate[Cos[2*x*t]*Exp[-Divide[1,2]*(t)^(2)]*(t)^(- 2*\[Mu]- 1)* WhittakerM[\[Kappa], \[Mu], (t)^(2)], {t, 0, Infinity}, GenerateConditions->None] == Divide[Sqrt[Pi]*Exp[-Divide[1,2]*(x)^(2)]*(x)^(\[Mu]+ \[Kappa]- 1),2*Gamma[Divide[1,2]+ \[Mu]+ \[Kappa]]]*WhittakerW[Divide[1,2]*\[Kappa]-Divide[3,2]*\[Mu], Divide[1,2]*\[Kappa]+Divide[1,2]*\[Mu], (x)^(2)] |
Failure | Aborted | Skipped - Because timed out | Skipped - Because timed out | |
13.23.E9 | \int_{0}^{\infty}e^{-\frac{1}{2}t}t^{\mu-\frac{1}{2}(\nu+1)}\WhittakerconfhyperM{\kappa}{\mu}@{t}\BesselJ{\nu}@{2\sqrt{xt}}\diff{t} = \frac{\EulerGamma@{1+2\mu}}{\EulerGamma@{\frac{1}{2}-\mu+\kappa+\nu}}\*e^{-\frac{1}{2}x}x^{\frac{1}{2}(\kappa-\mu-\frac{3}{2})}\*\WhittakerconfhyperM{\frac{1}{2}(\kappa+3\mu-\nu+\frac{1}{2})}{\frac{1}{2}(\kappa-\mu+\nu-\frac{1}{2})}@{x} |
int(exp(-(1)/(2)*t)*(t)^(mu -(1)/(2)*(nu + 1))* WhittakerM(kappa, mu, t)*BesselJ(nu, 2*sqrt(x*t)), t = 0..infinity) = (GAMMA(1 + 2*mu))/(GAMMA((1)/(2)- mu + kappa + nu))* exp(-(1)/(2)*x)*(x)^((1)/(2)*(kappa - mu -(3)/(2)))* WhittakerM((1)/(2)*(kappa + 3*mu - nu +(1)/(2)), (1)/(2)*(kappa - mu + nu -(1)/(2)), x) |
Integrate[Exp[-Divide[1,2]*t]*(t)^(\[Mu]-Divide[1,2]*(\[Nu]+ 1))* WhittakerM[\[Kappa], \[Mu], t]*BesselJ[\[Nu], 2*Sqrt[x*t]], {t, 0, Infinity}, GenerateConditions->None] == Divide[Gamma[1 + 2*\[Mu]],Gamma[Divide[1,2]- \[Mu]+ \[Kappa]+ \[Nu]]]* Exp[-Divide[1,2]*x]*(x)^(Divide[1,2]*(\[Kappa]- \[Mu]-Divide[3,2]))* WhittakerM[Divide[1,2]*(\[Kappa]+ 3*\[Mu]- \[Nu]+Divide[1,2]), Divide[1,2]*(\[Kappa]- \[Mu]+ \[Nu]-Divide[1,2]), x] |
Failure | Aborted | Skipped - Because timed out | Skipped - Because timed out | |
13.23.E10 | \frac{1}{\EulerGamma@{1+2\mu}}\int_{0}^{\infty}e^{-\frac{1}{2}t}t^{\frac{1}{2}(\nu-1)-\mu}\WhittakerconfhyperM{\kappa}{\mu}@{t}\BesselJ{\nu}@{2\sqrt{xt}}\diff{t} = \frac{e^{-\frac{1}{2}x}x^{\frac{1}{2}(\kappa+\mu-\frac{3}{2})}}{\EulerGamma@{\frac{1}{2}+\mu+\kappa}}\*\WhittakerconfhyperW{\frac{1}{2}(\kappa-3\mu+\nu+\frac{1}{2})}{\frac{1}{2}(\kappa+\mu-\nu-\frac{1}{2})}@{x} |
(1)/(GAMMA(1 + 2*mu))*int(exp(-(1)/(2)*t)*(t)^((1)/(2)*(nu - 1)- mu)* WhittakerM(kappa, mu, t)*BesselJ(nu, 2*sqrt(x*t)), t = 0..infinity) = (exp(-(1)/(2)*x)*(x)^((1)/(2)*(kappa + mu -(3)/(2))))/(GAMMA((1)/(2)+ mu + kappa))* WhittakerW((1)/(2)*(kappa - 3*mu + nu +(1)/(2)), (1)/(2)*(kappa + mu - nu -(1)/(2)), x) |
Divide[1,Gamma[1 + 2*\[Mu]]]*Integrate[Exp[-Divide[1,2]*t]*(t)^(Divide[1,2]*(\[Nu]- 1)- \[Mu])* WhittakerM[\[Kappa], \[Mu], t]*BesselJ[\[Nu], 2*Sqrt[x*t]], {t, 0, Infinity}, GenerateConditions->None] == Divide[Exp[-Divide[1,2]*x]*(x)^(Divide[1,2]*(\[Kappa]+ \[Mu]-Divide[3,2])),Gamma[Divide[1,2]+ \[Mu]+ \[Kappa]]]* WhittakerW[Divide[1,2]*(\[Kappa]- 3*\[Mu]+ \[Nu]+Divide[1,2]), Divide[1,2]*(\[Kappa]+ \[Mu]- \[Nu]-Divide[1,2]), x] |
Failure | Aborted | Skipped - Because timed out | Skipped - Because timed out | |
13.23.E11 | \int_{0}^{\infty}e^{\frac{1}{2}t}t^{\frac{1}{2}(\nu-1)-\mu}\WhittakerconfhyperW{\kappa}{\mu}@{t}\BesselJ{\nu}@{2\sqrt{xt}}\diff{t} = \frac{\EulerGamma@{\nu-2\mu+1}}{\EulerGamma@{\frac{1}{2}+\mu-\kappa}}\*e^{\frac{1}{2}x}x^{\frac{1}{2}(\mu-\kappa-\frac{3}{2})}\*\WhittakerconfhyperW{\frac{1}{2}(\kappa+3\mu-\nu-\frac{1}{2})}{\frac{1}{2}(\kappa-\mu+\nu+\frac{1}{2})}@{x} |
int(exp((1)/(2)*t)*(t)^((1)/(2)*(nu - 1)- mu)* WhittakerW(kappa, mu, t)*BesselJ(nu, 2*sqrt(x*t)), t = 0..infinity) = (GAMMA(nu - 2*mu + 1))/(GAMMA((1)/(2)+ mu - kappa))* exp((1)/(2)*x)*(x)^((1)/(2)*(mu - kappa -(3)/(2)))* WhittakerW((1)/(2)*(kappa + 3*mu - nu -(1)/(2)), (1)/(2)*(kappa - mu + nu +(1)/(2)), x) |
Integrate[Exp[Divide[1,2]*t]*(t)^(Divide[1,2]*(\[Nu]- 1)- \[Mu])* WhittakerW[\[Kappa], \[Mu], t]*BesselJ[\[Nu], 2*Sqrt[x*t]], {t, 0, Infinity}, GenerateConditions->None] == Divide[Gamma[\[Nu]- 2*\[Mu]+ 1],Gamma[Divide[1,2]+ \[Mu]- \[Kappa]]]* Exp[Divide[1,2]*x]*(x)^(Divide[1,2]*(\[Mu]- \[Kappa]-Divide[3,2]))* WhittakerW[Divide[1,2]*(\[Kappa]+ 3*\[Mu]- \[Nu]-Divide[1,2]), Divide[1,2]*(\[Kappa]- \[Mu]+ \[Nu]+Divide[1,2]), x] |
Failure | Aborted | Manual Skip! | Skipped - Because timed out | |
13.23.E12 | \int_{0}^{\infty}e^{-\frac{1}{2}t}t^{\frac{1}{2}(\nu-1)-\mu}\WhittakerconfhyperW{\kappa}{\mu}@{t}\BesselJ{\nu}@{2\sqrt{xt}}\diff{t} = \frac{\EulerGamma@{\nu-2\mu+1}}{\EulerGamma@{\frac{3}{2}-\mu-\kappa+\nu}}\*e^{-\frac{1}{2}x}x^{\frac{1}{2}(\mu+\kappa-\frac{3}{2})}\*\WhittakerconfhyperM{\frac{1}{2}(\kappa-3\mu+\nu+\frac{1}{2})}{\frac{1}{2}(\nu-\mu-\kappa+\frac{1}{2})}@{x} |
int(exp(-(1)/(2)*t)*(t)^((1)/(2)*(nu - 1)- mu)* WhittakerW(kappa, mu, t)*BesselJ(nu, 2*sqrt(x*t)), t = 0..infinity) = (GAMMA(nu - 2*mu + 1))/(GAMMA((3)/(2)- mu - kappa + nu))* exp(-(1)/(2)*x)*(x)^((1)/(2)*(mu + kappa -(3)/(2)))* WhittakerM((1)/(2)*(kappa - 3*mu + nu +(1)/(2)), (1)/(2)*(nu - mu - kappa +(1)/(2)), x) |
Integrate[Exp[-Divide[1,2]*t]*(t)^(Divide[1,2]*(\[Nu]- 1)- \[Mu])* WhittakerW[\[Kappa], \[Mu], t]*BesselJ[\[Nu], 2*Sqrt[x*t]], {t, 0, Infinity}, GenerateConditions->None] == Divide[Gamma[\[Nu]- 2*\[Mu]+ 1],Gamma[Divide[3,2]- \[Mu]- \[Kappa]+ \[Nu]]]* Exp[-Divide[1,2]*x]*(x)^(Divide[1,2]*(\[Mu]+ \[Kappa]-Divide[3,2]))* WhittakerM[Divide[1,2]*(\[Kappa]- 3*\[Mu]+ \[Nu]+Divide[1,2]), Divide[1,2]*(\[Nu]- \[Mu]- \[Kappa]+Divide[1,2]), x] |
Failure | Aborted | Manual Skip! | Skipped - Because timed out | |
13.24.E1 | \WhittakerconfhyperM{\kappa}{\mu}@{z} = \EulerGamma@{\kappa+\mu}2^{2\kappa+2\mu}z^{\frac{1}{2}-\kappa}\*\sum_{s=0}^{\infty}(-1)^{s}\frac{\Pochhammersym{2\kappa+2\mu}{s}\Pochhammersym{2\kappa}{s}}{\Pochhammersym{1+2\mu}{s}s!}\*\left(\kappa+\mu+s\right)\modBesselI{\kappa+\mu+s}@{\tfrac{1}{2}z} |
WhittakerM(kappa, mu, z) = GAMMA(kappa + mu)*(2)^(2*kappa + 2*mu)* (z)^((1)/(2)- kappa)* sum((- 1)^(s)*(pochhammer(2*kappa + 2*mu, s)*pochhammer(2*kappa, s))/(pochhammer(1 + 2*mu, s)*factorial(s))*(kappa + mu + s)*BesselI(kappa + mu + s, (1)/(2)*z), s = 0..infinity) |
WhittakerM[\[Kappa], \[Mu], z] == Gamma[\[Kappa]+ \[Mu]]*(2)^(2*\[Kappa]+ 2*\[Mu])* (z)^(Divide[1,2]- \[Kappa])* Sum[(- 1)^(s)*Divide[Pochhammer[2*\[Kappa]+ 2*\[Mu], s]*Pochhammer[2*\[Kappa], s],Pochhammer[1 + 2*\[Mu], s]*(s)!]*(\[Kappa]+ \[Mu]+ s)*BesselI[\[Kappa]+ \[Mu]+ s, Divide[1,2]*z], {s, 0, Infinity}, GenerateConditions->None] |
Failure | Failure | Manual Skip! | Skipped - Because timed out | |
13.24.E2 | \frac{1}{\EulerGamma@{1+2\mu}}\WhittakerconfhyperM{\kappa}{\mu}@{z} = 2^{2\mu}z^{\mu+\frac{1}{2}}\sum_{s=0}^{\infty}p_{s}^{(\mu)}(z)\left(2\sqrt{\kappa z}\right)^{-2\mu-s}\BesselJ{2\mu+s}@{2\sqrt{\kappa z}} |
(1)/(GAMMA(1 + 2*mu))*WhittakerM(kappa, mu, z) = (2)^(2*mu)* (z)^(mu +(1)/(2))* sum((p[s])^(mu)(z)*(2*sqrt(kappa*z))^(- 2*mu - s)* BesselJ(2*mu + s, 2*sqrt(kappa*z)), s = 0..infinity) |
Divide[1,Gamma[1 + 2*\[Mu]]]*WhittakerM[\[Kappa], \[Mu], z] == (2)^(2*\[Mu])* (z)^(\[Mu]+Divide[1,2])* Sum[(Subscript[p, s])^(\[Mu])[z]*(2*Sqrt[\[Kappa]*z])^(- 2*\[Mu]- s)* BesselJ[2*\[Mu]+ s, 2*Sqrt[\[Kappa]*z]], {s, 0, Infinity}, GenerateConditions->None] |
Failure | Failure | Skipped - Because timed out | Skipped - Because timed out | |
13.24.E3 | \exp@{-\tfrac{1}{2}z\left(\coth@@{t}-\frac{1}{t}\right)}\left(\frac{t}{\sinh@@{t}}\right)^{1-2\mu} = \sum_{s=0}^{\infty}p_{s}^{(\mu)}(z)\left(-\frac{t}{z}\right)^{s} |
|
exp(-(1)/(2)*z*(coth(t)-(1)/(t)))*((t)/(sinh(t)))^(1 - 2*mu) = sum((p[s])^(mu)(z)*(-(t)/(z))^(s), s = 0..infinity) |
Exp[-Divide[1,2]*z*(Coth[t]-Divide[1,t])]*(Divide[t,Sinh[t]])^(1 - 2*\[Mu]) == Sum[(Subscript[p, s])^(\[Mu])[z]*(-Divide[t,z])^(s), {s, 0, Infinity}, GenerateConditions->None] |
Failure | Failure | Skipped - Because timed out | Failed [300 / 300]
Result: Plus[Complex[1.4000146541353637, 0.6933735030866136], Times[-1.0, NSum[Times[Power[Complex[1.299038105676658, -0.7499999999999999], s], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], Plus[1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], p]
Test Values: {s, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[t, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[p, s], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Plus[Complex[1.4000146541353637, 0.6933735030866136], Times[-1.0, NSum[Times[Power[Complex[1.299038105676658, -0.7499999999999999], s], Power[E, Times[Complex[0, Rational[1, 6]], Pi]], Power[Power[E, Times[Complex[0, Rational[2, 3]], Pi]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], p]
Test Values: {s, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[t, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[p, s], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |
13.25.E1 | \WhittakerconfhyperM{\kappa}{\mu}@{z}\WhittakerconfhyperM{\kappa}{-\mu-1}@{z}+\frac{(\frac{1}{2}+\mu+\kappa)(\frac{1}{2}+\mu-\kappa)}{4\mu(1+\mu)(1+2\mu)^{2}}\WhittakerconfhyperM{\kappa}{\mu+1}@{z}\WhittakerconfhyperM{\kappa}{-\mu}@{z} = 1 |
|
WhittakerM(kappa, mu, z)*WhittakerM(kappa, - mu - 1, z)+(((1)/(2)+ mu + kappa)*((1)/(2)+ mu - kappa))/(4*mu*(1 + mu)*(1 + 2*mu)^(2))*WhittakerM(kappa, mu + 1, z)*WhittakerM(kappa, - mu, z) = 1 |
WhittakerM[\[Kappa], \[Mu], z]*WhittakerM[\[Kappa], - \[Mu]- 1, z]+Divide[(Divide[1,2]+ \[Mu]+ \[Kappa])*(Divide[1,2]+ \[Mu]- \[Kappa]),4*\[Mu]*(1 + \[Mu])*(1 + 2*\[Mu])^(2)]*WhittakerM[\[Kappa], \[Mu]+ 1, z]*WhittakerM[\[Kappa], - \[Mu], z] == 1 |
Failure | Failure | Failed [168 / 300] Result: Float(infinity)+Float(infinity)*I
Test Values: {kappa = 1/2*3^(1/2)+1/2*I, mu = -3/2, z = 1/2*3^(1/2)+1/2*I} Result: Float(infinity)+Float(infinity)*I
Test Values: {kappa = 1/2*3^(1/2)+1/2*I, mu = -3/2, z = -1/2+1/2*I*3^(1/2)} ... skip entries to safe data |
Failed [162 / 300]
Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, -1.5]} Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, 1.5]} ... skip entries to safe data |
13.28#Ex1 | f_{1}(\xi) = \xi^{-\frac{1}{2}}V_{\kappa,\frac{1}{2}p}^{(1)}(2\iunit k\xi) |
|
f[1](xi) = (xi)^(-(1)/(2))* (V[kappa ,(1)/(2)*p])^(1)(2*I*k*xi) |
Subscript[f, 1][\[Xi]] == \[Xi]^(-Divide[1,2])* (Subscript[V, \[Kappa],Divide[1,2]*p])^(1)[2*I*k*\[Xi]] |
Failure | Failure | Failed [300 / 300] Result: 1.914213563-.5481881590*I
Test Values: {kappa = 1/2*3^(1/2)+1/2*I, p = 1/2*3^(1/2)+1/2*I, xi = 1/2*3^(1/2)+1/2*I, V[kappa,1/2*p] = 1/2*3^(1/2)+1/2*I, f[1] = 1/2*3^(1/2)+1/2*I, k = 1} Result: 3.328427125-1.962401722*I
Test Values: {kappa = 1/2*3^(1/2)+1/2*I, p = 1/2*3^(1/2)+1/2*I, xi = 1/2*3^(1/2)+1/2*I, V[kappa,1/2*p] = 1/2*3^(1/2)+1/2*I, f[1] = 1/2*3^(1/2)+1/2*I, k = 2} ... skip entries to safe data |
Failed [300 / 300]
Result: Complex[1.914213562373095, -0.5481881585886565]
Test Values: {Rule[k, 1], Rule[p, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ξ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[f, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[V, κ, Times[Rational[1, 2], p]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[3.32842712474619, -1.9624017209617517]
Test Values: {Rule[k, 2], Rule[p, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ξ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[f, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[V, κ, Times[Rational[1, 2], p]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} ... skip entries to safe data |
13.28#Ex2 | f_{2}(\eta) = \eta^{-\frac{1}{2}}V_{\kappa,\frac{1}{2}p}^{(2)}(-2\iunit k\eta) |
|
f[2](eta) = (eta)^(-(1)/(2))* (V[kappa ,(1)/(2)*p])^(2)(- 2*I*k*eta) |
Subscript[f, 2][\[Eta]] == \[Eta]^(-Divide[1,2])* (Subscript[V, \[Kappa],Divide[1,2]*p])^(2)[- 2*I*k*\[Eta]] |
Failure | Failure | Failed [300 / 300] Result: -1.431851653+1.383663495*I
Test Values: {eta = 1/2*3^(1/2)+1/2*I, kappa = 1/2*3^(1/2)+1/2*I, p = 1/2*3^(1/2)+1/2*I, V[kappa,1/2*p] = 1/2*3^(1/2)+1/2*I, f[2] = 1/2*3^(1/2)+1/2*I, k = 1} Result: -3.363703307+1.901301586*I
Test Values: {eta = 1/2*3^(1/2)+1/2*I, kappa = 1/2*3^(1/2)+1/2*I, p = 1/2*3^(1/2)+1/2*I, V[kappa,1/2*p] = 1/2*3^(1/2)+1/2*I, f[2] = 1/2*3^(1/2)+1/2*I, k = 2} ... skip entries to safe data |
Failed [300 / 300]
Result: Complex[-1.4318516525781364, 1.3836634939894803]
Test Values: {Rule[k, 1], Rule[p, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[η, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[f, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[V, κ, Times[Rational[1, 2], p]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[-3.363703305156273, 1.9013015841945222]
Test Values: {Rule[k, 2], Rule[p, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[η, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[f, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[V, κ, Times[Rational[1, 2], p]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} ... skip entries to safe data |
13.29.E1 | \frac{z^{2}(n+\mu-\tfrac{1}{2})\left((n+\mu+\tfrac{1}{2})^{2}-\kappa^{2}\right)}{(n+\mu)(n+\mu+\tfrac{1}{2})(n+\mu+1)}{y(n+1)}+16\left((n+\mu)^{2}-\tfrac{1}{2}\kappa z-\tfrac{1}{4}\right)y(n)\\ -16\left((n+\mu)^{2}-\tfrac{1}{4}\right)y(n-1) = 0 |
|
((x + y*I)^(2)*(n + mu -(1)/(2))*((n + mu +(1)/(2))^(2)- (kappa)^(2)))/((n + mu)*(n + mu +(1)/(2))*(n + mu + 1))*y*(n + 1)+ 16*((n + mu)^(2)-(1)/(2)*kappa*(x + y*I)-(1)/(4))*((x + y*I)^(- n - mu -(1)/(2))* WhittakerM(kappa, n + mu, x + y*I))*; - 16*((n + mu)^(2)-(1)/(4))*y*(n - 1) = 0 |
Divide[(x + y*I)^(2)*(n + \[Mu]-Divide[1,2])*((n + \[Mu]+Divide[1,2])^(2)- \[Kappa]^(2)),(n + \[Mu])*(n + \[Mu]+Divide[1,2])*(n + \[Mu]+ 1)]*y*(n + 1)+ 16*((n + \[Mu])^(2)-Divide[1,2]*\[Kappa]*(x + y*I)-Divide[1,4])*((x + y*I)^(- n - \[Mu]-Divide[1,2])* WhittakerM[\[Kappa], n + \[Mu], x + y*I])*- 16*((n + \[Mu])^(2)-Divide[1,4])*y*(n - 1) == 0 |
Skipped - no semantic math | Skipped - no semantic math | - | - |
13.29.E3 | e^{-\frac{1}{2}z} = \sum_{s=0}^{\infty}\frac{\Pochhammersym{2\mu}{s}\Pochhammersym{\frac{1}{2}+\mu-\kappa}{s}}{\Pochhammersym{2\mu}{2s}s!}(-z)^{s}y(s) |
|
exp(-(1)/(2)*(x + y(I))) = sum((pochhammer(2*mu, s)*pochhammer((1)/(2)+ mu - kappa, s))/(pochhammer(2*mu, 2*s)*factorial(s))*(-(x + y(I)))^(s)* y(s), s = 0..infinity) |
Exp[-Divide[1,2]*(x + y[I])] == Sum[Divide[Pochhammer[2*\[Mu], s]*Pochhammer[Divide[1,2]+ \[Mu]- \[Kappa], s],Pochhammer[2*\[Mu], 2*s]*(s)!]*(-(x + y[I]))^(s)* y[s], {s, 0, Infinity}, GenerateConditions->None] |
Failure | Failure | Failed [300 / 300] Result: .505394540e-1+.5994002652*I
Test Values: {kappa = 1/2*3^(1/2)+1/2*I, mu = 1/2*3^(1/2)+1/2*I, x = 3/2, y = -3/2} Result: .7100232023-.2722368431*I
Test Values: {kappa = 1/2*3^(1/2)+1/2*I, mu = 1/2*3^(1/2)+1/2*I, x = 3/2, y = 3/2} ... skip entries to safe data |
Failed [300 / 300]
Result: Complex[0.0505394539002913, 0.5994002653939074]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[-0.9437946777348876, -0.07485124664222054]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |
13.29.E5 | (n+a)w(n)-\left(2(n+a+1)+z-b\right)w(n+1)+(n+a-b+2)w(n+2) = 0 |
|
(n + a)*w(n)-(2*(n + a + 1)+ z - b)*w(n + 1)+(n + a - b + 2)*w(n + 2) = 0 |
(n + a)*w[n]-(2*(n + a + 1)+ z - b)*w[n + 1]+(n + a - b + 2)*w[n + 2] == 0 |
Skipped - no semantic math | Skipped - no semantic math | - | - |
13.29.E6 | w(n) = \Pochhammersym{a}{n}\KummerconfhyperU@{n+a}{b}{z} |
|
w(n) = pochhammer(a, n)*KummerU(n + a, b, z) |
w[n] == Pochhammer[a, n]*HypergeometricU[n + a, b, z] |
Failure | Failure | Failed [300 / 300] Result: 3.350777422+.7382256467*I
Test Values: {a = -3/2, b = -3/2, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, n = 1} Result: 1.327538097+1.034245119*I
Test Values: {a = -3/2, b = -3/2, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, n = 2} ... skip entries to safe data |
Failed [300 / 300]
Result: Complex[3.3507774204902745, 0.7382256467588033]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[n, 1], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[1.3275380963595516, 1.0342451193960447]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[n, 2], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} ... skip entries to safe data |
13.29.E7 | z^{-a} = \sum_{s=0}^{\infty}\frac{\Pochhammersym{a-b+1}{s}}{s!}w(s) |
|
(z)^(- a) = sum((pochhammer(a - b + 1, s))/(factorial(s))*w(s), s = 0..infinity) |
(z)^(- a) == Sum[Divide[Pochhammer[a - b + 1, s],(s)!]*w[s], {s, 0, Infinity}, GenerateConditions->None] |
Failure | Failure | Failed [300 / 300] Result: Float(infinity)+Float(infinity)*I
Test Values: {a = -3/2, b = -3/2, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I} Result: Float(infinity)+Float(infinity)*I
Test Values: {a = -3/2, b = -3/2, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)} ... skip entries to safe data |
Failed [300 / 300]
Result: DirectedInfinity[]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: DirectedInfinity[]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |
13.31.E3 | z^{a}\KummerconfhyperU@{a}{1+a-b}{z} = \lim_{n\to\infty}\frac{A_{n}(z)}{B_{n}(z)} |
|
(z)^(a)* KummerU(a, 1 + a - b, z) = limit((sum((pochhammer(- n, s)*pochhammer(n + 1, s)*pochhammer(a, s)*pochhammer(b, s))/(pochhammer(a + 1, s)*pochhammer(b + 1, s)*(factorial(n))^(2))* hypergeom([- n + s , n + 1 + s , 1], [1 + s , a + 1 + s , b + 1 + s], - z), s = 0..n))/(hypergeom([- n , n + 1], [a + 1 , b + 1], - z)), n = infinity) |
(z)^(a)* HypergeometricU[a, 1 + a - b, z] == Limit[Divide[Sum[Divide[Pochhammer[- n, s]*Pochhammer[n + 1, s]*Pochhammer[a, s]*Pochhammer[b, s],Pochhammer[a + 1, s]*Pochhammer[b + 1, s]*((n)!)^(2)]* HypergeometricPFQ[{- n + s , n + 1 + s , 1}, {1 + s , a + 1 + s , b + 1 + s}, - z], {s, 0, n}, GenerateConditions->None],HypergeometricPFQ[{- n , n + 1}, {a + 1 , b + 1}, - z]], n -> Infinity, GenerateConditions->None] |
Failure | Aborted | Skipped - Because timed out | Skipped - Because timed out |