34.1: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/34.1.E1 34.1.E1] || [[Item:Q9709|<math>\ClebschGordan{j_{1}}{m_{1}}{j_{2}}{m_{2}}{j_{3}}{m_{3}} = (-1)^{j_{1}-j_{2}+m_{3}}(2j_{3}+1)^{\frac{1}{2}}\Wignerthreejsym{j_{1}}{j_{2}}{j_{3}}{m_{1}}{m_{2}}{-m_{3}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ClebschGordan{j_{1}}{m_{1}}{j_{2}}{m_{2}}{j_{3}}{m_{3}} = (-1)^{j_{1}-j_{2}+m_{3}}(2j_{3}+1)^{\frac{1}{2}}\Wignerthreejsym{j_{1}}{j_{2}}{j_{3}}{m_{1}}{m_{2}}{-m_{3}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ClebschGordan[{Subscript[j, 1], Subscript[m, 1]}, {Subscript[j, 2], Subscript[m, 2]}, {Subscript[j, 3], Subscript[m, 3]}] == (- 1)^(Subscript[j, 1]- Subscript[j, 2]+ Subscript[m, 3])*(2*Subscript[j, 3]+ 1)^(Divide[1,2])* ThreeJSymbol[{Subscript[j, 1], Subscript[m, 1]}, {Subscript[j, 2], Subscript[m, 2]}, {Subscript[m, 1], - Subscript[m, 3]}]</syntaxhighlight> || Missing Macro Error || Failure || - || Successful [Tested: 300]
| [https://dlmf.nist.gov/34.1.E1 34.1.E1] || <math qid="Q9709">\ClebschGordan{j_{1}}{m_{1}}{j_{2}}{m_{2}}{j_{3}}{m_{3}} = (-1)^{j_{1}-j_{2}+m_{3}}(2j_{3}+1)^{\frac{1}{2}}\Wignerthreejsym{j_{1}}{j_{2}}{j_{3}}{m_{1}}{m_{2}}{-m_{3}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ClebschGordan{j_{1}}{m_{1}}{j_{2}}{m_{2}}{j_{3}}{m_{3}} = (-1)^{j_{1}-j_{2}+m_{3}}(2j_{3}+1)^{\frac{1}{2}}\Wignerthreejsym{j_{1}}{j_{2}}{j_{3}}{m_{1}}{m_{2}}{-m_{3}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ClebschGordan[{Subscript[j, 1], Subscript[m, 1]}, {Subscript[j, 2], Subscript[m, 2]}, {Subscript[j, 3], Subscript[m, 3]}] == (- 1)^(Subscript[j, 1]- Subscript[j, 2]+ Subscript[m, 3])*(2*Subscript[j, 3]+ 1)^(Divide[1,2])* ThreeJSymbol[{Subscript[j, 1], Subscript[m, 1]}, {Subscript[j, 2], Subscript[m, 2]}, {Subscript[m, 1], - Subscript[m, 3]}]</syntaxhighlight> || Missing Macro Error || Failure || - || Successful [Tested: 300]
|}
|}
</div>
</div>

Latest revision as of 12:14, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
34.1.E1 ( j 1 m 1 j 2 m 2 | j 1 j 2 j 3 m 3 ) = ( - 1 ) j 1 - j 2 + m 3 ( 2 j 3 + 1 ) 1 2 3 j j 1 j 2 j 3 m 1 m 2 - m 3 clebsch-gordan subscript 𝑗 1 subscript 𝑚 1 subscript 𝑗 2 subscript 𝑚 2 subscript 𝑗 3 subscript 𝑚 3 superscript 1 subscript 𝑗 1 subscript 𝑗 2 subscript 𝑚 3 superscript 2 subscript 𝑗 3 1 1 2 threej subscript 𝑗 1 subscript 𝑗 2 subscript 𝑗 3 subscript 𝑚 1 subscript 𝑚 2 subscript 𝑚 3 {\displaystyle{\displaystyle\left(j_{1}\;m_{1}\;j_{2}\;m_{2}|j_{1}\;j_{2}\;j_{% 3}\,\,m_{3}\right)=(-1)^{j_{1}-j_{2}+m_{3}}(2j_{3}+1)^{\frac{1}{2}}\mathit{3j}% {j_{1}}{j_{2}}{j_{3}}{m_{1}}{m_{2}}{-m_{3}}}}
\ClebschGordan{j_{1}}{m_{1}}{j_{2}}{m_{2}}{j_{3}}{m_{3}} = (-1)^{j_{1}-j_{2}+m_{3}}(2j_{3}+1)^{\frac{1}{2}}\Wignerthreejsym{j_{1}}{j_{2}}{j_{3}}{m_{1}}{m_{2}}{-m_{3}}

Error
ClebschGordan[{Subscript[j, 1], Subscript[m, 1]}, {Subscript[j, 2], Subscript[m, 2]}, {Subscript[j, 3], Subscript[m, 3]}] == (- 1)^(Subscript[j, 1]- Subscript[j, 2]+ Subscript[m, 3])*(2*Subscript[j, 3]+ 1)^(Divide[1,2])* ThreeJSymbol[{Subscript[j, 1], Subscript[m, 1]}, {Subscript[j, 2], Subscript[m, 2]}, {Subscript[m, 1], - Subscript[m, 3]}]
Missing Macro Error Failure - Successful [Tested: 300]