28.1: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/28.1#Ex15 28.1#Ex15] || [[Item:Q8138|<math>\mathrm{Se}_{n}(s,z) = \dfrac{\Mathieuce{n}@{z}{q}}{\Mathieuce{n}@{0}{q}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\mathrm{Se}_{n}(s,z) = \dfrac{\Mathieuce{n}@{z}{q}}{\Mathieuce{n}@{0}{q}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>S*exp(1)[n]*(s , z) = (MathieuCE(n, q, z))/(MathieuCE(n, q, 0))</syntaxhighlight> || <syntaxhighlight lang=mathematica>S*Subscript[E, n]*(s , z) == Divide[MathieuC[n, q, z],MathieuC[n, q, 0]]</syntaxhighlight> || Failure || Failure || Error || Error
| [https://dlmf.nist.gov/28.1#Ex15 28.1#Ex15] || <math qid="Q8138">\mathrm{Se}_{n}(s,z) = \dfrac{\Mathieuce{n}@{z}{q}}{\Mathieuce{n}@{0}{q}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\mathrm{Se}_{n}(s,z) = \dfrac{\Mathieuce{n}@{z}{q}}{\Mathieuce{n}@{0}{q}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>S*exp(1)[n]*(s , z) = (MathieuCE(n, q, z))/(MathieuCE(n, q, 0))</syntaxhighlight> || <syntaxhighlight lang=mathematica>S*Subscript[E, n]*(s , z) == Divide[MathieuC[n, q, z],MathieuC[n, q, 0]]</syntaxhighlight> || Failure || Failure || Error || Error
|-  
|-  
| [https://dlmf.nist.gov/28.1#Ex16 28.1#Ex16] || [[Item:Q8139|<math>\mathrm{So}_{n}(s,z) = \dfrac{\Mathieuse{n}@{z}{q}}{\Mathieuse{n}'@{0}{q}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\mathrm{So}_{n}(s,z) = \dfrac{\Mathieuse{n}@{z}{q}}{\Mathieuse{n}'@{0}{q}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>So[n](s , z) = (MathieuSE(n, q, z))/(diff( MathieuSE(n, q, 0), 0$(1) ))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Subscript[So, n][s , z] == Divide[MathieuS[n, q, z],D[MathieuS[n, q, 0], {0, 1}]]</syntaxhighlight> || Error || Failure || - || Error
| [https://dlmf.nist.gov/28.1#Ex16 28.1#Ex16] || <math qid="Q8139">\mathrm{So}_{n}(s,z) = \dfrac{\Mathieuse{n}@{z}{q}}{\Mathieuse{n}'@{0}{q}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\mathrm{So}_{n}(s,z) = \dfrac{\Mathieuse{n}@{z}{q}}{\Mathieuse{n}'@{0}{q}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>So[n](s , z) = (MathieuSE(n, q, z))/(diff( MathieuSE(n, q, 0), 0$(1) ))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Subscript[So, n][s , z] == Divide[MathieuS[n, q, z],D[MathieuS[n, q, 0], {0, 1}]]</syntaxhighlight> || Error || Failure || - || Error
|-  
|-  
| [https://dlmf.nist.gov/28.1#Ex17 28.1#Ex17] || [[Item:Q8140|<math>\mathrm{Se}_{n}(c,z) = \dfrac{\Mathieuce{n}@{z}{q}}{\Mathieuce{n}@{0}{q}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\mathrm{Se}_{n}(c,z) = \dfrac{\Mathieuce{n}@{z}{q}}{\Mathieuce{n}@{0}{q}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>S*exp(1)[n]*(c , z) = (MathieuCE(n, q, z))/(MathieuCE(n, q, 0))</syntaxhighlight> || <syntaxhighlight lang=mathematica>S*Subscript[E, n]*(c , z) == Divide[MathieuC[n, q, z],MathieuC[n, q, 0]]</syntaxhighlight> || Failure || Failure || Error || Error
| [https://dlmf.nist.gov/28.1#Ex17 28.1#Ex17] || <math qid="Q8140">\mathrm{Se}_{n}(c,z) = \dfrac{\Mathieuce{n}@{z}{q}}{\Mathieuce{n}@{0}{q}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\mathrm{Se}_{n}(c,z) = \dfrac{\Mathieuce{n}@{z}{q}}{\Mathieuce{n}@{0}{q}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>S*exp(1)[n]*(c , z) = (MathieuCE(n, q, z))/(MathieuCE(n, q, 0))</syntaxhighlight> || <syntaxhighlight lang=mathematica>S*Subscript[E, n]*(c , z) == Divide[MathieuC[n, q, z],MathieuC[n, q, 0]]</syntaxhighlight> || Failure || Failure || Error || Error
|-  
|-  
| [https://dlmf.nist.gov/28.1#Ex18 28.1#Ex18] || [[Item:Q8141|<math>\mathrm{So}_{n}(c,z) = \dfrac{\Mathieuse{n}@{z}{q}}{\Mathieuse{n}'@{0}{q}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\mathrm{So}_{n}(c,z) = \dfrac{\Mathieuse{n}@{z}{q}}{\Mathieuse{n}'@{0}{q}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>So[n](c , z) = (MathieuSE(n, q, z))/(diff( MathieuSE(n, q, 0), 0$(1) ))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Subscript[So, n][c , z] == Divide[MathieuS[n, q, z],D[MathieuS[n, q, 0], {0, 1}]]</syntaxhighlight> || Error || Failure || - || Error
| [https://dlmf.nist.gov/28.1#Ex18 28.1#Ex18] || <math qid="Q8141">\mathrm{So}_{n}(c,z) = \dfrac{\Mathieuse{n}@{z}{q}}{\Mathieuse{n}'@{0}{q}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\mathrm{So}_{n}(c,z) = \dfrac{\Mathieuse{n}@{z}{q}}{\Mathieuse{n}'@{0}{q}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>So[n](c , z) = (MathieuSE(n, q, z))/(diff( MathieuSE(n, q, 0), 0$(1) ))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Subscript[So, n][c , z] == Divide[MathieuS[n, q, z],D[MathieuS[n, q, 0], {0, 1}]]</syntaxhighlight> || Error || Failure || - || Error
|}
|}
</div>
</div>

Latest revision as of 12:07, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
28.1#Ex15 Se n ( s , z ) = ce n ( z , q ) ce n ( 0 , q ) subscript Se 𝑛 𝑠 𝑧 Mathieu-ce 𝑛 𝑧 𝑞 Mathieu-ce 𝑛 0 𝑞 {\displaystyle{\displaystyle\mathrm{Se}_{n}(s,z)=\dfrac{\mathrm{ce}_{n}\left(z% ,q\right)}{\mathrm{ce}_{n}\left(0,q\right)}}}
\mathrm{Se}_{n}(s,z) = \dfrac{\Mathieuce{n}@{z}{q}}{\Mathieuce{n}@{0}{q}}

S*exp(1)[n]*(s , z) = (MathieuCE(n, q, z))/(MathieuCE(n, q, 0))
S*Subscript[E, n]*(s , z) == Divide[MathieuC[n, q, z],MathieuC[n, q, 0]]
Failure Failure Error Error
28.1#Ex16 So n ( s , z ) = se n ( z , q ) se n ( 0 , q ) subscript So 𝑛 𝑠 𝑧 Mathieu-se 𝑛 𝑧 𝑞 diffop Mathieu-se 𝑛 1 0 𝑞 {\displaystyle{\displaystyle\mathrm{So}_{n}(s,z)=\dfrac{\mathrm{se}_{n}\left(z% ,q\right)}{\mathrm{se}_{n}'\left(0,q\right)}}}
\mathrm{So}_{n}(s,z) = \dfrac{\Mathieuse{n}@{z}{q}}{\Mathieuse{n}'@{0}{q}}

So[n](s , z) = (MathieuSE(n, q, z))/(diff( MathieuSE(n, q, 0), 0$(1) ))
Subscript[So, n][s , z] == Divide[MathieuS[n, q, z],D[MathieuS[n, q, 0], {0, 1}]]
Error Failure - Error
28.1#Ex17 Se n ( c , z ) = ce n ( z , q ) ce n ( 0 , q ) subscript Se 𝑛 𝑐 𝑧 Mathieu-ce 𝑛 𝑧 𝑞 Mathieu-ce 𝑛 0 𝑞 {\displaystyle{\displaystyle\mathrm{Se}_{n}(c,z)=\dfrac{\mathrm{ce}_{n}\left(z% ,q\right)}{\mathrm{ce}_{n}\left(0,q\right)}}}
\mathrm{Se}_{n}(c,z) = \dfrac{\Mathieuce{n}@{z}{q}}{\Mathieuce{n}@{0}{q}}

S*exp(1)[n]*(c , z) = (MathieuCE(n, q, z))/(MathieuCE(n, q, 0))
S*Subscript[E, n]*(c , z) == Divide[MathieuC[n, q, z],MathieuC[n, q, 0]]
Failure Failure Error Error
28.1#Ex18 So n ( c , z ) = se n ( z , q ) se n ( 0 , q ) subscript So 𝑛 𝑐 𝑧 Mathieu-se 𝑛 𝑧 𝑞 diffop Mathieu-se 𝑛 1 0 𝑞 {\displaystyle{\displaystyle\mathrm{So}_{n}(c,z)=\dfrac{\mathrm{se}_{n}\left(z% ,q\right)}{\mathrm{se}_{n}'\left(0,q\right)}}}
\mathrm{So}_{n}(c,z) = \dfrac{\Mathieuse{n}@{z}{q}}{\Mathieuse{n}'@{0}{q}}

So[n](c , z) = (MathieuSE(n, q, z))/(diff( MathieuSE(n, q, 0), 0$(1) ))
Subscript[So, n][c , z] == Divide[MathieuS[n, q, z],D[MathieuS[n, q, 0], {0, 1}]]
Error Failure - Error