DLMF:3.9.E13 (Q1400): Difference between revisions

From testwiki
Jump to navigation Jump to search
imported>Admin
 
imported>Admin
 
(2 intermediate revisions by the same user not shown)
Property / Symbols used
 
Property / Symbols used: Q10754 / rank
 
Normal rank
Property / Symbols used: Q10754 / qualifier
 
test:

( m n ) binomial 𝑚 𝑛 {\displaystyle{\displaystyle\genfrac{(}{)}{0.0pt}{}{\NVar{m}}{\NVar{n}}}}

\binom{\NVar{m}}{\NVar{n}}
Property / Symbols used: Q10754 / qualifier
 
xml-id: C1.S2.SS1.m1aadec
Property / Symbols used
 
Property / Symbols used: Q11201 / rank
 
Normal rank
Property / Symbols used: Q11201 / qualifier
 
test:

s n subscript 𝑠 𝑛 {\displaystyle{\displaystyle s_{n}}}

s_{n}
Property / Symbols used: Q11201 / qualifier
 
xml-id: C3.S9.XMD6.m1dec
Property / Symbols used
 
Property / Symbols used: coefficient (locally) / rank
 
Normal rank
Property / Symbols used: coefficient (locally) / qualifier
 
test:

c j , k , n subscript 𝑐 𝑗 𝑘 𝑛 {\displaystyle{\displaystyle c_{j,k,n}}}

c_{j,k,n}
Property / Symbols used: coefficient (locally) / qualifier
 
xml-id: C3.S9.XMD7.m1dec

Latest revision as of 16:57, 1 January 2020

No description defined
Language Label Description Also known as
English
DLMF:3.9.E13
No description defined

    Statements

    k ( n ) ( s ) = j = 0 k ( - 1 ) j ( k j ) c j , k , n s n + j / a n + j + 1 j = 0 k ( - 1 ) j ( k j ) c j , k , n / a n + j + 1 , superscript subscript 𝑘 𝑛 𝑠 superscript subscript 𝑗 0 𝑘 superscript 1 𝑗 binomial 𝑘 𝑗 subscript 𝑐 𝑗 𝑘 𝑛 subscript 𝑠 𝑛 𝑗 subscript 𝑎 𝑛 𝑗 1 superscript subscript 𝑗 0 𝑘 superscript 1 𝑗 binomial 𝑘 𝑗 subscript 𝑐 𝑗 𝑘 𝑛 subscript 𝑎 𝑛 𝑗 1 {\displaystyle{\displaystyle{\cal L}_{k}^{(n)}(s)=\frac{\sum_{j=0}^{k}(-1)^{j}% \genfrac{(}{)}{0.0pt}{}{k}{j}c_{j,k,n}\ifrac{s_{n+j}}{a_{n+j+1}}}{\sum_{j=0}^{% k}(-1)^{j}\genfrac{(}{)}{0.0pt}{}{k}{j}c_{j,k,n}/a_{n+j+1}},}}
    0 references
    0 references
    ( m n ) binomial 𝑚 𝑛 {\displaystyle{\displaystyle\genfrac{(}{)}{0.0pt}{}{\NVar{m}}{\NVar{n}}}}
    C1.S2.SS1.m1aadec
    0 references
    s n subscript 𝑠 𝑛 {\displaystyle{\displaystyle s_{n}}}
    C3.S9.XMD6.m1dec
    0 references
    c j , k , n subscript 𝑐 𝑗 𝑘 𝑛 {\displaystyle{\displaystyle c_{j,k,n}}}
    C3.S9.XMD7.m1dec
    0 references