10.53: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/10.53.E1 10.53.E1] || [[Item:Q3755|<math>\sphBesselJ{n}@{z} = z^{n}\sum_{k=0}^{\infty}\frac{(-\frac{1}{2}z^{2})^{k}}{k!(2n+2k+1)!!}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sphBesselJ{n}@{z} = z^{n}\sum_{k=0}^{\infty}\frac{(-\frac{1}{2}z^{2})^{k}}{k!(2n+2k+1)!!}</syntaxhighlight> || <math>|z| < \infty, \realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-n-\frac{1}{2}))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>SphericalBesselJ[n, z] == (z)^(n)* Sum[Divide[(-Divide[1,2]*(z)^(2))^(k),(k)!*(2*n + 2*k + 1)!!], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || Successful [Tested: 21]
| [https://dlmf.nist.gov/10.53.E1 10.53.E1] || <math qid="Q3755">\sphBesselJ{n}@{z} = z^{n}\sum_{k=0}^{\infty}\frac{(-\frac{1}{2}z^{2})^{k}}{k!(2n+2k+1)!!}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sphBesselJ{n}@{z} = z^{n}\sum_{k=0}^{\infty}\frac{(-\frac{1}{2}z^{2})^{k}}{k!(2n+2k+1)!!}</syntaxhighlight> || <math>|z| < \infty, \realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-n-\frac{1}{2}))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>SphericalBesselJ[n, z] == (z)^(n)* Sum[Divide[(-Divide[1,2]*(z)^(2))^(k),(k)!*(2*n + 2*k + 1)!!], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || Successful [Tested: 21]
|-  
|-  
| [https://dlmf.nist.gov/10.53.E2 10.53.E2] || [[Item:Q3756|<math>\sphBesselY{n}@{z} = -\frac{1}{z^{n+1}}\sum_{k=0}^{n}\frac{(2n-2k-1)!!(\frac{1}{2}z^{2})^{k}}{k!}+\frac{(-1)^{n+1}}{z^{n+1}}\sum_{k=n+1}^{\infty}\frac{(-\frac{1}{2}z^{2})^{k}}{k!(2k-2n-1)!!}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sphBesselY{n}@{z} = -\frac{1}{z^{n+1}}\sum_{k=0}^{n}\frac{(2n-2k-1)!!(\frac{1}{2}z^{2})^{k}}{k!}+\frac{(-1)^{n+1}}{z^{n+1}}\sum_{k=n+1}^{\infty}\frac{(-\frac{1}{2}z^{2})^{k}}{k!(2k-2n-1)!!}</syntaxhighlight> || <math>0 < |z|, |z| < \infty., \realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-(n+\frac{1}{2}))+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>SphericalBesselY[n, z] == -Divide[1,(z)^(n + 1)]*Sum[Divide[(2*n - 2*k - 1)!!*(Divide[1,2]*(z)^(2))^(k),(k)!], {k, 0, n}, GenerateConditions->None]+Divide[(- 1)^(n + 1),(z)^(n + 1)]*Sum[Divide[(-Divide[1,2]*(z)^(2))^(k),(k)!*(2*k - 2*n - 1)!!], {k, n + 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || Successful [Tested: 21]
| [https://dlmf.nist.gov/10.53.E2 10.53.E2] || <math qid="Q3756">\sphBesselY{n}@{z} = -\frac{1}{z^{n+1}}\sum_{k=0}^{n}\frac{(2n-2k-1)!!(\frac{1}{2}z^{2})^{k}}{k!}+\frac{(-1)^{n+1}}{z^{n+1}}\sum_{k=n+1}^{\infty}\frac{(-\frac{1}{2}z^{2})^{k}}{k!(2k-2n-1)!!}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sphBesselY{n}@{z} = -\frac{1}{z^{n+1}}\sum_{k=0}^{n}\frac{(2n-2k-1)!!(\frac{1}{2}z^{2})^{k}}{k!}+\frac{(-1)^{n+1}}{z^{n+1}}\sum_{k=n+1}^{\infty}\frac{(-\frac{1}{2}z^{2})^{k}}{k!(2k-2n-1)!!}</syntaxhighlight> || <math>0 < |z|, |z| < \infty., \realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-(n+\frac{1}{2}))+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>SphericalBesselY[n, z] == -Divide[1,(z)^(n + 1)]*Sum[Divide[(2*n - 2*k - 1)!!*(Divide[1,2]*(z)^(2))^(k),(k)!], {k, 0, n}, GenerateConditions->None]+Divide[(- 1)^(n + 1),(z)^(n + 1)]*Sum[Divide[(-Divide[1,2]*(z)^(2))^(k),(k)!*(2*k - 2*n - 1)!!], {k, n + 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || Successful [Tested: 21]
|-  
|-  
| [https://dlmf.nist.gov/10.53.E3 10.53.E3] || [[Item:Q3757|<math>\modsphBesseli{1}{n}@{z} = z^{n}\sum_{k=0}^{\infty}\frac{(\frac{1}{2}z^{2})^{k}}{k!(2n+2k+1)!!}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modsphBesseli{1}{n}@{z} = z^{n}\sum_{k=0}^{\infty}\frac{(\frac{1}{2}z^{2})^{k}}{k!(2n+2k+1)!!}</syntaxhighlight> || <math>|z| < \infty, \realpart@@{((n+\frac{1}{2})+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(1-1)*(n + 1/2), n] == (z)^(n)* Sum[Divide[(Divide[1,2]*(z)^(2))^(k),(k)!*(2*n + 2*k + 1)!!], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [20 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.06771919180965624, -0.29579816936516184]
| [https://dlmf.nist.gov/10.53.E3 10.53.E3] || <math qid="Q3757">\modsphBesseli{1}{n}@{z} = z^{n}\sum_{k=0}^{\infty}\frac{(\frac{1}{2}z^{2})^{k}}{k!(2n+2k+1)!!}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modsphBesseli{1}{n}@{z} = z^{n}\sum_{k=0}^{\infty}\frac{(\frac{1}{2}z^{2})^{k}}{k!(2n+2k+1)!!}</syntaxhighlight> || <math>|z| < \infty, \realpart@@{((n+\frac{1}{2})+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(1-1)*(n + 1/2), n] == (z)^(n)* Sum[Divide[(Divide[1,2]*(z)^(2))^(k),(k)!*(2*n + 2*k + 1)!!], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [20 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.06771919180965624, -0.29579816936516184]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.4498252419402129, -0.19064547195046921]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.4498252419402129, -0.19064547195046921]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/10.53.E4 10.53.E4] || [[Item:Q3758|<math>\modsphBesseli{2}{n}@{z} = \frac{(-1)^{n}}{z^{n+1}}\sum_{k=0}^{n}\frac{(2n-2k-1)!!(-\frac{1}{2}z^{2})^{k}}{k!}+\frac{1}{z^{n+1}}\sum_{k=n+1}^{\infty}\frac{(\frac{1}{2}z^{2})^{k}}{k!(2k-2n-1)!!}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modsphBesseli{2}{n}@{z} = \frac{(-1)^{n}}{z^{n+1}}\sum_{k=0}^{n}\frac{(2n-2k-1)!!(-\frac{1}{2}z^{2})^{k}}{k!}+\frac{1}{z^{n+1}}\sum_{k=n+1}^{\infty}\frac{(\frac{1}{2}z^{2})^{k}}{k!(2k-2n-1)!!}</syntaxhighlight> || <math>0 < |z|, |z| < \infty., \realpart@@{((-n-\frac{1}{2})+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(2-1)*(n + 1/2), n] == Divide[(- 1)^(n),(z)^(n + 1)]*Sum[Divide[(2*n - 2*k - 1)!!*(-Divide[1,2]*(z)^(2))^(k),(k)!], {k, 0, n}, GenerateConditions->None]+Divide[1,(z)^(n + 1)]*Sum[Divide[(Divide[1,2]*(z)^(2))^(k),(k)!*(2*k - 2*n - 1)!!], {k, n + 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [20 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.4141971914072808, -0.8850762711170854]
| [https://dlmf.nist.gov/10.53.E4 10.53.E4] || <math qid="Q3758">\modsphBesseli{2}{n}@{z} = \frac{(-1)^{n}}{z^{n+1}}\sum_{k=0}^{n}\frac{(2n-2k-1)!!(-\frac{1}{2}z^{2})^{k}}{k!}+\frac{1}{z^{n+1}}\sum_{k=n+1}^{\infty}\frac{(\frac{1}{2}z^{2})^{k}}{k!(2k-2n-1)!!}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modsphBesseli{2}{n}@{z} = \frac{(-1)^{n}}{z^{n+1}}\sum_{k=0}^{n}\frac{(2n-2k-1)!!(-\frac{1}{2}z^{2})^{k}}{k!}+\frac{1}{z^{n+1}}\sum_{k=n+1}^{\infty}\frac{(\frac{1}{2}z^{2})^{k}}{k!(2k-2n-1)!!}</syntaxhighlight> || <math>0 < |z|, |z| < \infty., \realpart@@{((-n-\frac{1}{2})+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(2-1)*(n + 1/2), n] == Divide[(- 1)^(n),(z)^(n + 1)]*Sum[Divide[(2*n - 2*k - 1)!!*(-Divide[1,2]*(z)^(2))^(k),(k)!], {k, 0, n}, GenerateConditions->None]+Divide[1,(z)^(n + 1)]*Sum[Divide[(Divide[1,2]*(z)^(2))^(k),(k)!*(2*k - 2*n - 1)!!], {k, n + 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [20 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.4141971914072808, -0.8850762711170854]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.1065867555175597, 2.456957013551954]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.1065867555175597, 2.456957013551954]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|}
|}
</div>
</div>

Latest revision as of 11:27, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
10.53.E1 𝗃 n ( z ) = z n k = 0 ( - 1 2 z 2 ) k k ! ( 2 n + 2 k + 1 ) !! spherical-Bessel-J 𝑛 𝑧 superscript 𝑧 𝑛 superscript subscript 𝑘 0 superscript 1 2 superscript 𝑧 2 𝑘 𝑘 double-factorial 2 𝑛 2 𝑘 1 {\displaystyle{\displaystyle\mathsf{j}_{n}\left(z\right)=z^{n}\sum_{k=0}^{% \infty}\frac{(-\frac{1}{2}z^{2})^{k}}{k!(2n+2k+1)!!}}}
\sphBesselJ{n}@{z} = z^{n}\sum_{k=0}^{\infty}\frac{(-\frac{1}{2}z^{2})^{k}}{k!(2n+2k+1)!!}
| z | < , ( ( n + 1 2 ) + k + 1 ) > 0 , ( ( - n - 1 2 ) + k + 1 ) > 0 , ( ( - ( - n - 1 2 ) ) + k + 1 ) > 0 formulae-sequence 𝑧 formulae-sequence 𝑛 1 2 𝑘 1 0 formulae-sequence 𝑛 1 2 𝑘 1 0 𝑛 1 2 𝑘 1 0 {\displaystyle{\displaystyle|z|<\infty,\Re((n+\frac{1}{2})+k+1)>0,\Re((-n-% \frac{1}{2})+k+1)>0,\Re((-(-n-\frac{1}{2}))+k+1)>0}}
Error
SphericalBesselJ[n, z] == (z)^(n)* Sum[Divide[(-Divide[1,2]*(z)^(2))^(k),(k)!*(2*n + 2*k + 1)!!], {k, 0, Infinity}, GenerateConditions->None]
Missing Macro Error Failure - Successful [Tested: 21]
10.53.E2 𝗒 n ( z ) = - 1 z n + 1 k = 0 n ( 2 n - 2 k - 1 ) !! ( 1 2 z 2 ) k k ! + ( - 1 ) n + 1 z n + 1 k = n + 1 ( - 1 2 z 2 ) k k ! ( 2 k - 2 n - 1 ) !! spherical-Bessel-Y 𝑛 𝑧 1 superscript 𝑧 𝑛 1 superscript subscript 𝑘 0 𝑛 double-factorial 2 𝑛 2 𝑘 1 superscript 1 2 superscript 𝑧 2 𝑘 𝑘 superscript 1 𝑛 1 superscript 𝑧 𝑛 1 superscript subscript 𝑘 𝑛 1 superscript 1 2 superscript 𝑧 2 𝑘 𝑘 double-factorial 2 𝑘 2 𝑛 1 {\displaystyle{\displaystyle\mathsf{y}_{n}\left(z\right)=-\frac{1}{z^{n+1}}% \sum_{k=0}^{n}\frac{(2n-2k-1)!!(\frac{1}{2}z^{2})^{k}}{k!}+\frac{(-1)^{n+1}}{z% ^{n+1}}\sum_{k=n+1}^{\infty}\frac{(-\frac{1}{2}z^{2})^{k}}{k!(2k-2n-1)!!}}}
\sphBesselY{n}@{z} = -\frac{1}{z^{n+1}}\sum_{k=0}^{n}\frac{(2n-2k-1)!!(\frac{1}{2}z^{2})^{k}}{k!}+\frac{(-1)^{n+1}}{z^{n+1}}\sum_{k=n+1}^{\infty}\frac{(-\frac{1}{2}z^{2})^{k}}{k!(2k-2n-1)!!}
0 < | z | , | z | < . , ( ( n + 1 2 ) + k + 1 ) > 0 , ( ( - ( n + 1 2 ) ) + k + 1 ) > 0 , ( ( - n - 1 2 ) + k + 1 ) > 0 fragments 0 | z | , | z | . , 𝑛 1 2 𝑘 1 0 , 𝑛 1 2 𝑘 1 0 , 𝑛 1 2 𝑘 1 0 {\displaystyle{\displaystyle 0<|z|,|z|<\infty.,\Re((n+\frac{1}{2})+k+1)>0,\Re(% (-(n+\frac{1}{2}))+k+1)>0,\Re((-n-\frac{1}{2})+k+1)>0}}
Error
SphericalBesselY[n, z] == -Divide[1,(z)^(n + 1)]*Sum[Divide[(2*n - 2*k - 1)!!*(Divide[1,2]*(z)^(2))^(k),(k)!], {k, 0, n}, GenerateConditions->None]+Divide[(- 1)^(n + 1),(z)^(n + 1)]*Sum[Divide[(-Divide[1,2]*(z)^(2))^(k),(k)!*(2*k - 2*n - 1)!!], {k, n + 1, Infinity}, GenerateConditions->None]
Missing Macro Error Failure - Successful [Tested: 21]
10.53.E3 𝗂 n ( 1 ) ( z ) = z n k = 0 ( 1 2 z 2 ) k k ! ( 2 n + 2 k + 1 ) !! spherical-Bessel-I-1 𝑛 𝑧 superscript 𝑧 𝑛 superscript subscript 𝑘 0 superscript 1 2 superscript 𝑧 2 𝑘 𝑘 double-factorial 2 𝑛 2 𝑘 1 {\displaystyle{\displaystyle{\mathsf{i}^{(1)}_{n}}\left(z\right)=z^{n}\sum_{k=% 0}^{\infty}\frac{(\frac{1}{2}z^{2})^{k}}{k!(2n+2k+1)!!}}}
\modsphBesseli{1}{n}@{z} = z^{n}\sum_{k=0}^{\infty}\frac{(\frac{1}{2}z^{2})^{k}}{k!(2n+2k+1)!!}
| z | < , ( ( n + 1 2 ) + k + 1 ) > 0 formulae-sequence 𝑧 𝑛 1 2 𝑘 1 0 {\displaystyle{\displaystyle|z|<\infty,\Re((n+\frac{1}{2})+k+1)>0}}
Error
Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(1-1)*(n + 1/2), n] == (z)^(n)* Sum[Divide[(Divide[1,2]*(z)^(2))^(k),(k)!*(2*n + 2*k + 1)!!], {k, 0, Infinity}, GenerateConditions->None]
Missing Macro Error Failure -
Failed [20 / 21]
Result: Complex[0.06771919180965624, -0.29579816936516184]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.4498252419402129, -0.19064547195046921]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.53.E4 𝗂 n ( 2 ) ( z ) = ( - 1 ) n z n + 1 k = 0 n ( 2 n - 2 k - 1 ) !! ( - 1 2 z 2 ) k k ! + 1 z n + 1 k = n + 1 ( 1 2 z 2 ) k k ! ( 2 k - 2 n - 1 ) !! spherical-Bessel-I-2 𝑛 𝑧 superscript 1 𝑛 superscript 𝑧 𝑛 1 superscript subscript 𝑘 0 𝑛 double-factorial 2 𝑛 2 𝑘 1 superscript 1 2 superscript 𝑧 2 𝑘 𝑘 1 superscript 𝑧 𝑛 1 superscript subscript 𝑘 𝑛 1 superscript 1 2 superscript 𝑧 2 𝑘 𝑘 double-factorial 2 𝑘 2 𝑛 1 {\displaystyle{\displaystyle{\mathsf{i}^{(2)}_{n}}\left(z\right)=\frac{(-1)^{n% }}{z^{n+1}}\sum_{k=0}^{n}\frac{(2n-2k-1)!!(-\frac{1}{2}z^{2})^{k}}{k!}+\frac{1% }{z^{n+1}}\sum_{k=n+1}^{\infty}\frac{(\frac{1}{2}z^{2})^{k}}{k!(2k-2n-1)!!}}}
\modsphBesseli{2}{n}@{z} = \frac{(-1)^{n}}{z^{n+1}}\sum_{k=0}^{n}\frac{(2n-2k-1)!!(-\frac{1}{2}z^{2})^{k}}{k!}+\frac{1}{z^{n+1}}\sum_{k=n+1}^{\infty}\frac{(\frac{1}{2}z^{2})^{k}}{k!(2k-2n-1)!!}
0 < | z | , | z | < . , ( ( - n - 1 2 ) + k + 1 ) > 0 fragments 0 | z | , | z | . , 𝑛 1 2 𝑘 1 0 {\displaystyle{\displaystyle 0<|z|,|z|<\infty.,\Re((-n-\frac{1}{2})+k+1)>0}}
Error
Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(2-1)*(n + 1/2), n] == Divide[(- 1)^(n),(z)^(n + 1)]*Sum[Divide[(2*n - 2*k - 1)!!*(-Divide[1,2]*(z)^(2))^(k),(k)!], {k, 0, n}, GenerateConditions->None]+Divide[1,(z)^(n + 1)]*Sum[Divide[(Divide[1,2]*(z)^(2))^(k),(k)!*(2*k - 2*n - 1)!!], {k, n + 1, Infinity}, GenerateConditions->None]
Missing Macro Error Failure -
Failed [20 / 21]
Result: Complex[-0.4141971914072808, -0.8850762711170854]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[1.1065867555175597, 2.456957013551954]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data