DLMF:26.12.E26 (Q7943): Difference between revisions
Jump to navigation
Jump to search
imported>Admin Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
imported>Admin Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
||
(2 intermediate revisions by the same user not shown) | |||
Property / Symbols used | |||
Property / Symbols used: asymptotic equality / rank | |||
Normal rank | |||
Property / Symbols used: asymptotic equality / qualifier | |||
test: Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \asympeq}\asympeq | |||
Property / Symbols used: asymptotic equality / qualifier | |||
xml-id: C2.S1.E1.m2adec | |||
Property / Symbols used | |||
Property / Symbols used: exponential function / rank | |||
Normal rank | |||
Property / Symbols used: exponential function / qualifier | |||
test: Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \exp@@{\NVar{z}}}\exp@@{\NVar{z}} | |||
Property / Symbols used: exponential function / qualifier | |||
xml-id: C4.S2.E19.m2adec | |||
Property / Symbols used | |||
Property / Symbols used: Q12211 / rank | |||
Normal rank | |||
Property / Symbols used: Q12211 / qualifier | |||
test: Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \nplanepartitions@{\NVar{n}}}\nplanepartitions@{\NVar{n}} | |||
Property / Symbols used: Q12211 / qualifier | |||
xml-id: C26.S12.SS1.p4.m4abdec |
Latest revision as of 14:06, 2 January 2020
No description defined
Language | Label | Description | Also known as |
---|---|---|---|
English | DLMF:26.12.E26 |
No description defined |
Statements
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \nplanepartitions@{n}\asympeq\frac{\left(\Riemannzeta@{3}\right)^{7/36}}{2^{11/36}(3\pi)^{1/2}n^{25/36}}\exp\left(3\left(\Riemannzeta@{3}\right)^{1/3}\left(\tfrac{1}{2}n\right)^{2/3}+\Riemannzeta'@{-1}\right),}
0 references
0 references
0 references
0 references