2.1: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
{{DISPLAYTITLE:Algebraic and Analytic Methods - 2.1 Definitions and Elementary Properties}}
<div style="width: 100%; height: 75vh; overflow: auto;">
<div style="width: 100%; height: 75vh; overflow: auto;">
{| class="wikitable sortable" style="margin: 0;"
{| class="wikitable sortable" style="margin: 0;"
Line 12: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/2.1.E12 2.1.E12] || [[Item:Q697|<math>-1,\\ \ln@@{x},&\phantom{\realpart@@}\nu = -1,\\ x^{\nu+1}/(\nu+1),&\realpart@@{\nu}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>-1,\\ \ln@@{x},&\phantom{\realpart@@}\nu = -1,\\ x^{\nu+1}/(\nu+1),&\realpart@@{\nu}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>- 1 , ;*ln(x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>- 1 ,  
| [https://dlmf.nist.gov/2.1.E12 2.1.E12] || <math qid="Q697">-1,\\ \ln@@{x},&\phantom{\realpart@@}\nu = -1,\\ x^{\nu+1}/(\nu+1),&\realpart@@{\nu}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>-1,\\ \ln@@{x},&\phantom{\realpart@@}\nu = -1,\\ x^{\nu+1}/(\nu+1),&\realpart@@{\nu}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>- 1 , ;*ln(x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>- 1 ,  
*Log[x]</syntaxhighlight> || Error || Failure || - || Error
*Log[x]</syntaxhighlight> || Error || Failure || - || Error
|}
|}
</div>
</div>

Latest revision as of 11:01, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
2.1.E12 - 1 , ln x , & ν = - 1 , x ν + 1 / ( ν + 1 ) , & ν formulae-sequence 1 𝑥 & 𝜈 1 superscript 𝑥 𝜈 1 𝜈 1 & 𝜈 {\displaystyle{\displaystyle-1,\\ \ln x,&\phantom{\Re missing}\nu=-1,\\ x^{\nu+1}/(\nu+1),&\Re\nu}}
-1,\\ \ln@@{x},&\phantom{\realpart@@}\nu = -1,\\ x^{\nu+1}/(\nu+1),&\realpart@@{\nu}

- 1 , ;*ln(x)
- 1 , 
*Log[x]
Error Failure - Error