DLMF:1.17.E13 (Q672): Difference between revisions

From testwiki
Jump to navigation Jump to search
imported>Admin
imported>Admin
 
(3 intermediate revisions by the same user not shown)
Property / Symbols used
 
Property / Symbols used: Q10915 / rank
 
Normal rank
Property / Symbols used: Q10915 / qualifier
 
test:

δ ( x - a ) Dirac-delta 𝑥 𝑎 {\displaystyle{\displaystyle\delta\left(\NVar{x-a}\right)}}

\Diracdelta@{\NVar{x-a}}
Property / Symbols used: Q10915 / qualifier
 
xml-id: C1.S17.SS1.p1.m2addec
Property / Symbols used
 
Property / Symbols used: Q10770 / rank
 
Normal rank
Property / Symbols used: Q10770 / qualifier
 
test:

d x 𝑥 {\displaystyle{\displaystyle\mathrm{d}\NVar{x}}}

\diff{\NVar{x}}
Property / Symbols used: Q10770 / qualifier
 
xml-id: C1.S4.SS4.m1aidec
Property / Symbols used
 
Property / Symbols used: Q10771 / rank
 
Normal rank
Property / Symbols used: Q10771 / qualifier
 
test:

{\displaystyle{\displaystyle\int}}

\int
Property / Symbols used: Q10771 / qualifier
 
xml-id: C1.S4.SS4.m3aidec
Property / Symbols used
 
Property / Symbols used: Q10811 / rank
 
Normal rank
Property / Symbols used: Q10811 / qualifier
 
test:

absent {\displaystyle{\displaystyle\Re}}

\realpart@@
Property / Symbols used: Q10811 / qualifier
 
xml-id: C1.S9.E2.m1adec

Latest revision as of 15:44, 1 January 2020

No description defined
Language Label Description Also known as
English
DLMF:1.17.E13
No description defined

    Statements

    δ ( x - a ) = x 0 t J ν ( x t ) J ν ( a t ) d t , Dirac-delta 𝑥 𝑎 𝑥 superscript subscript 0 𝑡 Bessel-J 𝜈 𝑥 𝑡 Bessel-J 𝜈 𝑎 𝑡 𝑡 {\displaystyle{\displaystyle\delta\left(x-a\right)=x\int_{0}^{\infty}tJ_{\nu}% \left(xt\right)J_{\nu}\left(at\right)\mathrm{d}t,}}
    0 references
    0 references
    ν > - 1 𝜈 1 {\displaystyle{\displaystyle\Re\nu>-1}}
    0 references
    x > 0 𝑥 0 {\displaystyle{\displaystyle x>0}}
    0 references
    a > 0 𝑎 0 {\displaystyle{\displaystyle a>0}}
    0 references
    J ν ( z ) Bessel-J 𝜈 𝑧 {\displaystyle{\displaystyle J_{\NVar{\nu}}\left(\NVar{z}\right)}}
    C10.S2.E2.m2adec
    0 references
    δ ( x - a ) Dirac-delta 𝑥 𝑎 {\displaystyle{\displaystyle\delta\left(\NVar{x-a}\right)}}
    C1.S17.SS1.p1.m2addec
    0 references
    d x 𝑥 {\displaystyle{\displaystyle\mathrm{d}\NVar{x}}}
    C1.S4.SS4.m1aidec
    0 references
    {\displaystyle{\displaystyle\int}}
    C1.S4.SS4.m3aidec
    0 references
    absent {\displaystyle{\displaystyle\Re}}
    C1.S9.E2.m1adec
    0 references