DLMF:18.7.E9 (Q5577): Difference between revisions

From testwiki
Jump to navigation Jump to search
imported>Admin
 
imported>Admin
 
(4 intermediate revisions by the same user not shown)
Property / Symbols used
 
Property / Symbols used: Q11660 / rank
 
Normal rank
Property / Symbols used: Q11660 / qualifier
 
test:

P n ( α , β ) ( x ) Jacobi-polynomial-P 𝛼 𝛽 𝑛 𝑥 {\displaystyle{\displaystyle P^{(\NVar{\alpha},\NVar{\beta})}_{\NVar{n}}\left(% \NVar{x}\right)}}

\JacobipolyP{\NVar{\alpha}}{\NVar{\beta}}{\NVar{n}}@{\NVar{x}}
Property / Symbols used: Q11660 / qualifier
 
xml-id: C18.S3.T1.t1.r2.m2afdec
Property / Symbols used
 
Property / Symbols used: Q10920 / rank
 
Normal rank
Property / Symbols used: Q10920 / qualifier
 
test:

P n ( x ) Legendre-spherical-polynomial 𝑛 𝑥 {\displaystyle{\displaystyle P_{\NVar{n}}\left(\NVar{x}\right)}}

\LegendrepolyP{\NVar{n}}@{\NVar{x}}
Property / Symbols used: Q10920 / qualifier
 
xml-id: C18.S3.T1.t1.r10.m2adec
Property / Symbols used
 
Property / Symbols used: Q11475 / rank
 
Normal rank
Property / Symbols used: Q11475 / qualifier
 
test:

C n ( λ ) ( x ) ultraspherical-Gegenbauer-polynomial 𝜆 𝑛 𝑥 {\displaystyle{\displaystyle C^{(\NVar{\lambda})}_{\NVar{n}}\left(\NVar{x}% \right)}}

\ultrasphpoly{\NVar{\lambda}}{\NVar{n}}@{\NVar{x}}
Property / Symbols used: Q11475 / qualifier
 
xml-id: C18.S3.T1.t1.r3.m2acdec
Property / Symbols used
 
Property / Symbols used: Q11726 / rank
 
Normal rank
Property / Symbols used: Q11726 / qualifier
 
test:

n 𝑛 {\displaystyle{\displaystyle n}}

n
Property / Symbols used: Q11726 / qualifier
 
xml-id: C18.S1.XMD6.m1hdec
Property / Symbols used
 
Property / Symbols used: Q11727 / rank
 
Normal rank
Property / Symbols used: Q11727 / qualifier
 
test:

x 𝑥 {\displaystyle{\displaystyle x}}

x
Property / Symbols used: Q11727 / qualifier
 
xml-id: C18.S2.XMD3.m1hdec

Latest revision as of 14:20, 2 January 2020

No description defined
Language Label Description Also known as
English
DLMF:18.7.E9
No description defined

    Statements

    P n ( x ) = C n ( 1 2 ) ( x ) = P n ( 0 , 0 ) ( x ) . Legendre-spherical-polynomial 𝑛 𝑥 ultraspherical-Gegenbauer-polynomial 1 2 𝑛 𝑥 Jacobi-polynomial-P 0 0 𝑛 𝑥 {\displaystyle{\displaystyle P_{n}\left(x\right)=C^{(\frac{1}{2})}_{n}\left(x% \right)=P^{(0,0)}_{n}\left(x\right).}}
    0 references
    0 references
    P n ( α , β ) ( x ) Jacobi-polynomial-P 𝛼 𝛽 𝑛 𝑥 {\displaystyle{\displaystyle P^{(\NVar{\alpha},\NVar{\beta})}_{\NVar{n}}\left(% \NVar{x}\right)}}
    C18.S3.T1.t1.r2.m2afdec
    0 references
    P n ( x ) Legendre-spherical-polynomial 𝑛 𝑥 {\displaystyle{\displaystyle P_{\NVar{n}}\left(\NVar{x}\right)}}
    C18.S3.T1.t1.r10.m2adec
    0 references
    C n ( λ ) ( x ) ultraspherical-Gegenbauer-polynomial 𝜆 𝑛 𝑥 {\displaystyle{\displaystyle C^{(\NVar{\lambda})}_{\NVar{n}}\left(\NVar{x}% \right)}}
    C18.S3.T1.t1.r3.m2acdec
    0 references
    n 𝑛 {\displaystyle{\displaystyle n}}
    C18.S1.XMD6.m1hdec
    0 references
    x 𝑥 {\displaystyle{\displaystyle x}}
    C18.S2.XMD3.m1hdec
    0 references