DLMF:12.10.E33 (Q4197): Difference between revisions

From testwiki
Jump to navigation Jump to search
imported>Admin
imported>Admin
 
(5 intermediate revisions by the same user not shown)
Property / constraint
 

s = 0 , 1 , 2 , 𝑠 0 1 2 {\displaystyle{\displaystyle s=0,1,2,\dots}}

s=0,1,2,\dots
Property / constraint: s = 0 , 1 , 2 , 𝑠 0 1 2 {\displaystyle{\displaystyle s=0,1,2,\dots}} / rank
 
Normal rank
Property / Symbols used
 
Property / Symbols used: derivative of $$f$$ with respect to $$x$$ / rank
 
Normal rank
Property / Symbols used: derivative of $$f$$ with respect to $$x$$ / qualifier
 
test:

d f d x derivative 𝑓 𝑥 {\displaystyle{\displaystyle\frac{\mathrm{d}\NVar{f}}{\mathrm{d}\NVar{x}}}}

\deriv{\NVar{f}}{\NVar{x}}
Property / Symbols used: derivative of $$f$$ with respect to $$x$$ / qualifier
 
xml-id: C1.S4.E4.m2aadec
Property / Symbols used
 
Property / Symbols used: Q10770 / rank
 
Normal rank
Property / Symbols used: Q10770 / qualifier
 
test:

d x 𝑥 {\displaystyle{\displaystyle\mathrm{d}\NVar{x}}}

\diff{\NVar{x}}
Property / Symbols used: Q10770 / qualifier
 
xml-id: C1.S4.SS4.m1adec
Property / Symbols used
 
Property / Symbols used: Q10771 / rank
 
Normal rank
Property / Symbols used: Q10771 / qualifier
 
test:

{\displaystyle{\displaystyle\int}}

\int
Property / Symbols used: Q10771 / qualifier
 
xml-id: C1.S4.SS4.m3adec
Property / Symbols used
 
Property / Symbols used: Q11526 / rank
 
Normal rank
Property / Symbols used: Q11526 / qualifier
 
test:

s 𝑠 {\displaystyle{\displaystyle s}}

s
Property / Symbols used: Q11526 / qualifier
 
xml-id: C12.S1.XMD5.m1wdec
Property / Symbols used
 
Property / Symbols used: DLMF:12.10.E32 / rank
 
Normal rank
Property / Symbols used: DLMF:12.10.E32 / qualifier
 
test:

τ 𝜏 {\displaystyle{\displaystyle\tau}}

\tau
Property / Symbols used: DLMF:12.10.E32 / qualifier
 
xml-id: C12.S10.XMD19.m1bdec

Latest revision as of 14:21, 2 January 2020

No description defined
Language Label Description Also known as
English
DLMF:12.10.E33
No description defined

    Statements

    𝖠 s + 1 ( τ ) = - 4 τ 2 ( τ + 1 ) 2 d d τ 𝖠 s ( τ ) - 1 4 0 τ ( 20 u 2 + 20 u + 3 ) 𝖠 s ( u ) d u , subscript 𝖠 𝑠 1 𝜏 4 superscript 𝜏 2 superscript 𝜏 1 2 derivative 𝜏 subscript 𝖠 𝑠 𝜏 1 4 superscript subscript 0 𝜏 20 superscript 𝑢 2 20 𝑢 3 subscript 𝖠 𝑠 𝑢 𝑢 {\displaystyle{\displaystyle\mathsf{A}_{s+1}(\tau)=-4\tau^{2}(\tau+1)^{2}\frac% {\mathrm{d}}{\mathrm{d}\tau}\mathsf{A}_{s}(\tau)-\frac{1}{4}\int_{0}^{\tau}% \left(20u^{2}+20u+3\right)\mathsf{A}_{s}(u)\mathrm{d}u,}}
    0 references
    0 references
    s = 0 , 1 , 2 , 𝑠 0 1 2 {\displaystyle{\displaystyle s=0,1,2,\dots}}
    0 references
    d f d x derivative 𝑓 𝑥 {\displaystyle{\displaystyle\frac{\mathrm{d}\NVar{f}}{\mathrm{d}\NVar{x}}}}
    C1.S4.E4.m2aadec
    0 references
    d x 𝑥 {\displaystyle{\displaystyle\mathrm{d}\NVar{x}}}
    C1.S4.SS4.m1adec
    0 references
    {\displaystyle{\displaystyle\int}}
    C1.S4.SS4.m3adec
    0 references
    s 𝑠 {\displaystyle{\displaystyle s}}
    C12.S1.XMD5.m1wdec
    0 references
    τ 𝜏 {\displaystyle{\displaystyle\tau}}
    C12.S10.XMD19.m1bdec
    0 references