36.2: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/36.2#Ex2 36.2#Ex2] || [[Item:Q9843|<math>\mathrm{F}_{+}(\mathbf{x}) = \int_{0}^{\infty}\cos@{ry\exp@{+ i\dfrac{\pi}{6}}}\exp@{2ir^{2}z\exp@{+ i\dfrac{\pi}{3}}}\AiryAi@{3^{2/3}r^{2}+3^{-1/3}\exp@{- i\dfrac{\pi}{3}}\left(\tfrac{1}{3}z^{2}-x\right)}\diff{r}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\mathrm{F}_{+}(\mathbf{x}) = \int_{0}^{\infty}\cos@{ry\exp@{+ i\dfrac{\pi}{6}}}\exp@{2ir^{2}z\exp@{+ i\dfrac{\pi}{3}}}\AiryAi@{3^{2/3}r^{2}+3^{-1/3}\exp@{- i\dfrac{\pi}{3}}\left(\tfrac{1}{3}z^{2}-x\right)}\diff{r}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>F[+](x) = int(cos(r*y*exp(+ I*(Pi)/(6)))*exp(2*I*(r)^(2)*(x + y*I)*exp(+ I*(Pi)/(3)))*AiryAi((3)^(2/3)* (r)^(2)+ (3)^(- 1/3)* exp(- I*(Pi)/(3))*((1)/(3)*(x + y*I)^(2)- x)), r = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Subscript[F, +][x] == Integrate[Cos[r*y*Exp[+ I*Divide[Pi,6]]]*Exp[2*I*(r)^(2)*(x + y*I)*Exp[+ I*Divide[Pi,3]]]*AiryAi[(3)^(2/3)* (r)^(2)+ (3)^(- 1/3)* Exp[- I*Divide[Pi,3]]*(Divide[1,3]*(x + y*I)^(2)- x)], {r, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Error || Failure || - || Error
| [https://dlmf.nist.gov/36.2#Ex2 36.2#Ex2] || <math qid="Q9843">\mathrm{F}_{+}(\mathbf{x}) = \int_{0}^{\infty}\cos@{ry\exp@{+ i\dfrac{\pi}{6}}}\exp@{2ir^{2}z\exp@{+ i\dfrac{\pi}{3}}}\AiryAi@{3^{2/3}r^{2}+3^{-1/3}\exp@{- i\dfrac{\pi}{3}}\left(\tfrac{1}{3}z^{2}-x\right)}\diff{r}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\mathrm{F}_{+}(\mathbf{x}) = \int_{0}^{\infty}\cos@{ry\exp@{+ i\dfrac{\pi}{6}}}\exp@{2ir^{2}z\exp@{+ i\dfrac{\pi}{3}}}\AiryAi@{3^{2/3}r^{2}+3^{-1/3}\exp@{- i\dfrac{\pi}{3}}\left(\tfrac{1}{3}z^{2}-x\right)}\diff{r}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>F[+](x) = int(cos(r*y*exp(+ I*(Pi)/(6)))*exp(2*I*(r)^(2)*(x + y*I)*exp(+ I*(Pi)/(3)))*AiryAi((3)^(2/3)* (r)^(2)+ (3)^(- 1/3)* exp(- I*(Pi)/(3))*((1)/(3)*(x + y*I)^(2)- x)), r = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Subscript[F, +][x] == Integrate[Cos[r*y*Exp[+ I*Divide[Pi,6]]]*Exp[2*I*(r)^(2)*(x + y*I)*Exp[+ I*Divide[Pi,3]]]*AiryAi[(3)^(2/3)* (r)^(2)+ (3)^(- 1/3)* Exp[- I*Divide[Pi,3]]*(Divide[1,3]*(x + y*I)^(2)- x)], {r, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Error || Failure || - || Error
|-  
|-  
| [https://dlmf.nist.gov/36.2#Ex2 36.2#Ex2] || [[Item:Q9843|<math>\mathrm{F}_{-}(\mathbf{x}) = \int_{0}^{\infty}\cos@{ry\exp@{- i\dfrac{\pi}{6}}}\exp@{2ir^{2}z\exp@{- i\dfrac{\pi}{3}}}\AiryAi@{3^{2/3}r^{2}+3^{-1/3}\exp@{+ i\dfrac{\pi}{3}}\left(\tfrac{1}{3}z^{2}-x\right)}\diff{r}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\mathrm{F}_{-}(\mathbf{x}) = \int_{0}^{\infty}\cos@{ry\exp@{- i\dfrac{\pi}{6}}}\exp@{2ir^{2}z\exp@{- i\dfrac{\pi}{3}}}\AiryAi@{3^{2/3}r^{2}+3^{-1/3}\exp@{+ i\dfrac{\pi}{3}}\left(\tfrac{1}{3}z^{2}-x\right)}\diff{r}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>F[-](x) = int(cos(r*y*exp(- I*(Pi)/(6)))*exp(2*I*(r)^(2)*(x + y*I)*exp(- I*(Pi)/(3)))*AiryAi((3)^(2/3)* (r)^(2)+ (3)^(- 1/3)* exp(+ I*(Pi)/(3))*((1)/(3)*(x + y*I)^(2)- x)), r = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Subscript[F, -][x] == Integrate[Cos[r*y*Exp[- I*Divide[Pi,6]]]*Exp[2*I*(r)^(2)*(x + y*I)*Exp[- I*Divide[Pi,3]]]*AiryAi[(3)^(2/3)* (r)^(2)+ (3)^(- 1/3)* Exp[+ I*Divide[Pi,3]]*(Divide[1,3]*(x + y*I)^(2)- x)], {r, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Error || Failure || - || Error
| [https://dlmf.nist.gov/36.2#Ex2 36.2#Ex2] || <math qid="Q9843">\mathrm{F}_{-}(\mathbf{x}) = \int_{0}^{\infty}\cos@{ry\exp@{- i\dfrac{\pi}{6}}}\exp@{2ir^{2}z\exp@{- i\dfrac{\pi}{3}}}\AiryAi@{3^{2/3}r^{2}+3^{-1/3}\exp@{+ i\dfrac{\pi}{3}}\left(\tfrac{1}{3}z^{2}-x\right)}\diff{r}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\mathrm{F}_{-}(\mathbf{x}) = \int_{0}^{\infty}\cos@{ry\exp@{- i\dfrac{\pi}{6}}}\exp@{2ir^{2}z\exp@{- i\dfrac{\pi}{3}}}\AiryAi@{3^{2/3}r^{2}+3^{-1/3}\exp@{+ i\dfrac{\pi}{3}}\left(\tfrac{1}{3}z^{2}-x\right)}\diff{r}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>F[-](x) = int(cos(r*y*exp(- I*(Pi)/(6)))*exp(2*I*(r)^(2)*(x + y*I)*exp(- I*(Pi)/(3)))*AiryAi((3)^(2/3)* (r)^(2)+ (3)^(- 1/3)* exp(+ I*(Pi)/(3))*((1)/(3)*(x + y*I)^(2)- x)), r = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Subscript[F, -][x] == Integrate[Cos[r*y*Exp[- I*Divide[Pi,6]]]*Exp[2*I*(r)^(2)*(x + y*I)*Exp[- I*Divide[Pi,3]]]*AiryAi[(3)^(2/3)* (r)^(2)+ (3)^(- 1/3)* Exp[+ I*Divide[Pi,3]]*(Divide[1,3]*(x + y*I)^(2)- x)], {r, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Error || Failure || - || Error
|-  
|-  
| [https://dlmf.nist.gov/36.2.E14 36.2.E14] || [[Item:Q9850|<math>P(x_{2},x_{1}) = \int_{-\infty}^{\infty}\exp@{\iunit(t^{4}+x_{2}t^{2}+x_{1}t)}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>P(x_{2},x_{1}) = \int_{-\infty}^{\infty}\exp@{\iunit(t^{4}+x_{2}t^{2}+x_{1}t)}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>P(x[2], x[1]) = int(exp(I*((t)^(4)+ x[2]*(t)^(2)+ x[1]*t)), t = - infinity..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>P[Subscript[x, 2], Subscript[x, 1]] == Integrate[Exp[I*((t)^(4)+ Subscript[x, 2]*(t)^(2)+ Subscript[x, 1]*t)], {t, - Infinity, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Skipped - Because timed out || Error
| [https://dlmf.nist.gov/36.2.E14 36.2.E14] || <math qid="Q9850">P(x_{2},x_{1}) = \int_{-\infty}^{\infty}\exp@{\iunit(t^{4}+x_{2}t^{2}+x_{1}t)}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>P(x_{2},x_{1}) = \int_{-\infty}^{\infty}\exp@{\iunit(t^{4}+x_{2}t^{2}+x_{1}t)}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>P(x[2], x[1]) = int(exp(I*((t)^(4)+ x[2]*(t)^(2)+ x[1]*t)), t = - infinity..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>P[Subscript[x, 2], Subscript[x, 1]] == Integrate[Exp[I*((t)^(4)+ Subscript[x, 2]*(t)^(2)+ Subscript[x, 1]*t)], {t, - Infinity, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Skipped - Because timed out || Error
|-  
|-  
| [https://dlmf.nist.gov/36.2#Ex10 36.2#Ex10] || [[Item:Q9859|<math>\tfrac{1}{3}\sqrt{\pi}\EulerGamma@{\tfrac{1}{6}} = 3.28868</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tfrac{1}{3}\sqrt{\pi}\EulerGamma@{\tfrac{1}{6}} = 3.28868</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(1)/(3)*sqrt(Pi)*GAMMA((1)/(6)) = 3.28868</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,3]*Sqrt[Pi]*Gamma[Divide[1,6]] == 3.28868</syntaxhighlight> || Failure || Failure || Successful [Tested: 0] || Successful [Tested: 1]
| [https://dlmf.nist.gov/36.2#Ex10 36.2#Ex10] || <math qid="Q9859">\tfrac{1}{3}\sqrt{\pi}\EulerGamma@{\tfrac{1}{6}} = 3.28868</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tfrac{1}{3}\sqrt{\pi}\EulerGamma@{\tfrac{1}{6}} = 3.28868</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(1)/(3)*sqrt(Pi)*GAMMA((1)/(6)) = 3.28868</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,3]*Sqrt[Pi]*Gamma[Divide[1,6]] == 3.28868</syntaxhighlight> || Failure || Failure || Successful [Tested: 0] || Successful [Tested: 1]
|-  
|-  
| [https://dlmf.nist.gov/36.2#Ex11 36.2#Ex11] || [[Item:Q9860|<math>\tfrac{1}{3}\EulerGamma^{2}@{\tfrac{1}{3}} = 2.39224</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tfrac{1}{3}\EulerGamma^{2}@{\tfrac{1}{3}} = 2.39224</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(1)/(3)*(GAMMA((1)/(3)))^(2) = 2.39224</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,3]*(Gamma[Divide[1,3]])^(2) == 2.39224</syntaxhighlight> || Failure || Failure || Successful [Tested: 0] || Successful [Tested: 1]
| [https://dlmf.nist.gov/36.2#Ex11 36.2#Ex11] || <math qid="Q9860">\tfrac{1}{3}\EulerGamma^{2}@{\tfrac{1}{3}} = 2.39224</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tfrac{1}{3}\EulerGamma^{2}@{\tfrac{1}{3}} = 2.39224</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(1)/(3)*(GAMMA((1)/(3)))^(2) = 2.39224</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,3]*(Gamma[Divide[1,3]])^(2) == 2.39224</syntaxhighlight> || Failure || Failure || Successful [Tested: 0] || Successful [Tested: 1]
|}
|}
</div>
</div>

Latest revision as of 12:15, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
36.2#Ex2 F + ( 𝐱 ) = 0 cos ( r y exp ( + i π 6 ) ) exp ( 2 i r 2 z exp ( + i π 3 ) ) Ai ( 3 2 / 3 r 2 + 3 - 1 / 3 exp ( - i π 3 ) ( 1 3 z 2 - x ) ) d r subscript F 𝐱 superscript subscript 0 𝑟 𝑦 𝑖 𝜋 6 2 𝑖 superscript 𝑟 2 𝑧 𝑖 𝜋 3 Airy-Ai superscript 3 2 3 superscript 𝑟 2 superscript 3 1 3 𝑖 𝜋 3 1 3 superscript 𝑧 2 𝑥 𝑟 {\displaystyle{\displaystyle\mathrm{F}_{+}(\mathbf{x})=\int_{0}^{\infty}\cos% \left(ry\exp\left(+i\dfrac{\pi}{6}\right)\right)\exp\left(2ir^{2}z\exp\left(+i% \dfrac{\pi}{3}\right)\right)\mathrm{Ai}\left(3^{2/3}r^{2}+3^{-1/3}\exp\left(-i% \dfrac{\pi}{3}\right)\left(\tfrac{1}{3}z^{2}-x\right)\right)\mathrm{d}r}}
\mathrm{F}_{+}(\mathbf{x}) = \int_{0}^{\infty}\cos@{ry\exp@{+ i\dfrac{\pi}{6}}}\exp@{2ir^{2}z\exp@{+ i\dfrac{\pi}{3}}}\AiryAi@{3^{2/3}r^{2}+3^{-1/3}\exp@{- i\dfrac{\pi}{3}}\left(\tfrac{1}{3}z^{2}-x\right)}\diff{r}

F[+](x) = int(cos(r*y*exp(+ I*(Pi)/(6)))*exp(2*I*(r)^(2)*(x + y*I)*exp(+ I*(Pi)/(3)))*AiryAi((3)^(2/3)* (r)^(2)+ (3)^(- 1/3)* exp(- I*(Pi)/(3))*((1)/(3)*(x + y*I)^(2)- x)), r = 0..infinity)
Subscript[F, +][x] == Integrate[Cos[r*y*Exp[+ I*Divide[Pi,6]]]*Exp[2*I*(r)^(2)*(x + y*I)*Exp[+ I*Divide[Pi,3]]]*AiryAi[(3)^(2/3)* (r)^(2)+ (3)^(- 1/3)* Exp[- I*Divide[Pi,3]]*(Divide[1,3]*(x + y*I)^(2)- x)], {r, 0, Infinity}, GenerateConditions->None]
Error Failure - Error
36.2#Ex2 F - ( 𝐱 ) = 0 cos ( r y exp ( - i π 6 ) ) exp ( 2 i r 2 z exp ( - i π 3 ) ) Ai ( 3 2 / 3 r 2 + 3 - 1 / 3 exp ( + i π 3 ) ( 1 3 z 2 - x ) ) d r subscript F 𝐱 superscript subscript 0 𝑟 𝑦 𝑖 𝜋 6 2 𝑖 superscript 𝑟 2 𝑧 𝑖 𝜋 3 Airy-Ai superscript 3 2 3 superscript 𝑟 2 superscript 3 1 3 𝑖 𝜋 3 1 3 superscript 𝑧 2 𝑥 𝑟 {\displaystyle{\displaystyle\mathrm{F}_{-}(\mathbf{x})=\int_{0}^{\infty}\cos% \left(ry\exp\left(-i\dfrac{\pi}{6}\right)\right)\exp\left(2ir^{2}z\exp\left(-i% \dfrac{\pi}{3}\right)\right)\mathrm{Ai}\left(3^{2/3}r^{2}+3^{-1/3}\exp\left(+i% \dfrac{\pi}{3}\right)\left(\tfrac{1}{3}z^{2}-x\right)\right)\mathrm{d}r}}
\mathrm{F}_{-}(\mathbf{x}) = \int_{0}^{\infty}\cos@{ry\exp@{- i\dfrac{\pi}{6}}}\exp@{2ir^{2}z\exp@{- i\dfrac{\pi}{3}}}\AiryAi@{3^{2/3}r^{2}+3^{-1/3}\exp@{+ i\dfrac{\pi}{3}}\left(\tfrac{1}{3}z^{2}-x\right)}\diff{r}

F[-](x) = int(cos(r*y*exp(- I*(Pi)/(6)))*exp(2*I*(r)^(2)*(x + y*I)*exp(- I*(Pi)/(3)))*AiryAi((3)^(2/3)* (r)^(2)+ (3)^(- 1/3)* exp(+ I*(Pi)/(3))*((1)/(3)*(x + y*I)^(2)- x)), r = 0..infinity)
Subscript[F, -][x] == Integrate[Cos[r*y*Exp[- I*Divide[Pi,6]]]*Exp[2*I*(r)^(2)*(x + y*I)*Exp[- I*Divide[Pi,3]]]*AiryAi[(3)^(2/3)* (r)^(2)+ (3)^(- 1/3)* Exp[+ I*Divide[Pi,3]]*(Divide[1,3]*(x + y*I)^(2)- x)], {r, 0, Infinity}, GenerateConditions->None]
Error Failure - Error
36.2.E14 P ( x 2 , x 1 ) = - exp ( i ( t 4 + x 2 t 2 + x 1 t ) ) d t 𝑃 subscript 𝑥 2 subscript 𝑥 1 superscript subscript imaginary-unit superscript 𝑡 4 subscript 𝑥 2 superscript 𝑡 2 subscript 𝑥 1 𝑡 𝑡 {\displaystyle{\displaystyle P(x_{2},x_{1})=\int_{-\infty}^{\infty}\exp\left(% \mathrm{i}(t^{4}+x_{2}t^{2}+x_{1}t)\right)\mathrm{d}t}}
P(x_{2},x_{1}) = \int_{-\infty}^{\infty}\exp@{\iunit(t^{4}+x_{2}t^{2}+x_{1}t)}\diff{t}

P(x[2], x[1]) = int(exp(I*((t)^(4)+ x[2]*(t)^(2)+ x[1]*t)), t = - infinity..infinity)
P[Subscript[x, 2], Subscript[x, 1]] == Integrate[Exp[I*((t)^(4)+ Subscript[x, 2]*(t)^(2)+ Subscript[x, 1]*t)], {t, - Infinity, Infinity}, GenerateConditions->None]
Failure Failure Skipped - Because timed out Error
36.2#Ex10 1 3 π Γ ( 1 6 ) = 3.28868 1 3 𝜋 Euler-Gamma 1 6 3.28868 {\displaystyle{\displaystyle\tfrac{1}{3}\sqrt{\pi}\Gamma\left(\tfrac{1}{6}% \right)=3.28868}}
\tfrac{1}{3}\sqrt{\pi}\EulerGamma@{\tfrac{1}{6}} = 3.28868

(1)/(3)*sqrt(Pi)*GAMMA((1)/(6)) = 3.28868
Divide[1,3]*Sqrt[Pi]*Gamma[Divide[1,6]] == 3.28868
Failure Failure Successful [Tested: 0] Successful [Tested: 1]
36.2#Ex11 1 3 Γ 2 ( 1 3 ) = 2.39224 1 3 Euler-Gamma 2 1 3 2.39224 {\displaystyle{\displaystyle\tfrac{1}{3}{\Gamma^{2}}\left(\tfrac{1}{3}\right)=% 2.39224}}
\tfrac{1}{3}\EulerGamma^{2}@{\tfrac{1}{3}} = 2.39224

(1)/(3)*(GAMMA((1)/(3)))^(2) = 2.39224
Divide[1,3]*(Gamma[Divide[1,3]])^(2) == 2.39224
Failure Failure Successful [Tested: 0] Successful [Tested: 1]