29.6: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/29.6.E5 29.6.E5] || [[Item:Q8631|<math>\tfrac{1}{2}A_{0}^{2}+\sum_{p=1}^{\infty}A_{2p}^{2} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\tfrac{1}{2}A_{0}^{2}+\sum_{p=1}^{\infty}A_{2p}^{2} = 1</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(1)/(2)*(A[0])^(2)+ sum((A[2*p])^(2), p = 1..infinity) = 1</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Divide[1,2]*(Subscript[A, 0])^(2)+ Sum[(Subscript[A, 2*p])^(2), {p, 1, Infinity}, GenerateConditions->None] == 1</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/29.6.E5 29.6.E5] || <math qid="Q8631">\tfrac{1}{2}A_{0}^{2}+\sum_{p=1}^{\infty}A_{2p}^{2} = 1</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\tfrac{1}{2}A_{0}^{2}+\sum_{p=1}^{\infty}A_{2p}^{2} = 1</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(1)/(2)*(A[0])^(2)+ sum((A[2*p])^(2), p = 1..infinity) = 1</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Divide[1,2]*(Subscript[A, 0])^(2)+ Sum[(Subscript[A, 2*p])^(2), {p, 1, Infinity}, GenerateConditions->None] == 1</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/29.6.E6 29.6.E6] || [[Item:Q8632|<math>\tfrac{1}{2}A_{0}+\sum_{p=1}^{\infty}A_{2p} > 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\tfrac{1}{2}A_{0}+\sum_{p=1}^{\infty}A_{2p} > 0</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(1)/(2)*A[0]+ sum(A[2*p], p = 1..infinity) > 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Divide[1,2]*Subscript[A, 0]+ Sum[Subscript[A, 2*p], {p, 1, Infinity}, GenerateConditions->None] > 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/29.6.E6 29.6.E6] || <math qid="Q8632">\tfrac{1}{2}A_{0}+\sum_{p=1}^{\infty}A_{2p} > 0</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\tfrac{1}{2}A_{0}+\sum_{p=1}^{\infty}A_{2p} > 0</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(1)/(2)*A[0]+ sum(A[2*p], p = 1..infinity) > 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Divide[1,2]*Subscript[A, 0]+ Sum[Subscript[A, 2*p], {p, 1, Infinity}, GenerateConditions->None] > 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/29.6.E7 29.6.E7] || [[Item:Q8633|<math>\lim_{p\to\infty}\frac{A_{2p+2}}{A_{2p}} = \frac{k^{2}}{(1+k^{\prime})^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\lim_{p\to\infty}\frac{A_{2p+2}}{A_{2p}} = \frac{k^{2}}{(1+k^{\prime})^{2}}</syntaxhighlight> || <math>\nu \neq 2n, \nu = 2n, m > n</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">limit((A[2*p + 2])/(A[2*p]), p = infinity) = ((k)^(2))/((1 +sqrt(1 - (k)^(2)))^(2))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Limit[Divide[Subscript[A, 2*p + 2],Subscript[A, 2*p]], p -> Infinity, GenerateConditions->None] == Divide[(k)^(2),(1 +Sqrt[1 - (k)^(2)])^(2)]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/29.6.E7 29.6.E7] || <math qid="Q8633">\lim_{p\to\infty}\frac{A_{2p+2}}{A_{2p}} = \frac{k^{2}}{(1+k^{\prime})^{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\lim_{p\to\infty}\frac{A_{2p+2}}{A_{2p}} = \frac{k^{2}}{(1+k^{\prime})^{2}}</syntaxhighlight> || <math>\nu \neq 2n, \nu = 2n, m > n</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">limit((A[2*p + 2])/(A[2*p]), p = infinity) = ((k)^(2))/((1 +sqrt(1 - (k)^(2)))^(2))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Limit[Divide[Subscript[A, 2*p + 2],Subscript[A, 2*p]], p -> Infinity, GenerateConditions->None] == Divide[(k)^(2),(1 +Sqrt[1 - (k)^(2)])^(2)]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/29.6#Ex2 29.6#Ex2] || [[Item:Q8638|<math>\beta_{p} = 4p^{2}(2-k^{2})</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\beta_{p} = 4p^{2}(2-k^{2})</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">beta[p] = 4*(p)^(2)*(2 - (k)^(2))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[\[Beta], p] == 4*(p)^(2)*(2 - (k)^(2))</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/29.6#Ex2 29.6#Ex2] || <math qid="Q8638">\beta_{p} = 4p^{2}(2-k^{2})</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\beta_{p} = 4p^{2}(2-k^{2})</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">beta[p] = 4*(p)^(2)*(2 - (k)^(2))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[\[Beta], p] == 4*(p)^(2)*(2 - (k)^(2))</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/29.6#Ex3 29.6#Ex3] || [[Item:Q8639|<math>\gamma_{p} = \tfrac{1}{2}(\nu-2p+1)(\nu+2p)k^{2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\gamma_{p} = \tfrac{1}{2}(\nu-2p+1)(\nu+2p)k^{2}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">((1)/(2)*(nu - 2*p + 2)*(nu + 2*p - 1)*(k)^(2)) = (1)/(2)*(nu - 2*p + 1)*(nu + 2*p)*(k)^(2)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(Divide[1,2]*(\[Nu]- 2*p + 2)*(\[Nu]+ 2*p - 1)*(k)^(2)) == Divide[1,2]*(\[Nu]- 2*p + 1)*(\[Nu]+ 2*p)*(k)^(2)</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/29.6#Ex3 29.6#Ex3] || <math qid="Q8639">\gamma_{p} = \tfrac{1}{2}(\nu-2p+1)(\nu+2p)k^{2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\gamma_{p} = \tfrac{1}{2}(\nu-2p+1)(\nu+2p)k^{2}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">((1)/(2)*(nu - 2*p + 2)*(nu + 2*p - 1)*(k)^(2)) = (1)/(2)*(nu - 2*p + 1)*(nu + 2*p)*(k)^(2)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(Divide[1,2]*(\[Nu]- 2*p + 2)*(\[Nu]+ 2*p - 1)*(k)^(2)) == Divide[1,2]*(\[Nu]- 2*p + 1)*(\[Nu]+ 2*p)*(k)^(2)</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/29.6.E12 29.6.E12] || [[Item:Q8640|<math>\left(1-\tfrac{1}{2}k^{2}\right)\left(\tfrac{1}{2}C_{0}^{2}+\sum_{p=1}^{\infty}C_{2p}^{2}\right)-\tfrac{1}{2}k^{2}\sum_{p=0}^{\infty}C_{2p}C_{2p+2} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\left(1-\tfrac{1}{2}k^{2}\right)\left(\tfrac{1}{2}C_{0}^{2}+\sum_{p=1}^{\infty}C_{2p}^{2}\right)-\tfrac{1}{2}k^{2}\sum_{p=0}^{\infty}C_{2p}C_{2p+2} = 1</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(1 -(1)/(2)*(k)^(2))*((1)/(2)*(C[0])^(2)+ sum((C[2*p])^(2), p = 1..infinity))-(1)/(2)*(k)^(2)* sum(C[2*p]*C[2*p + 2], p = 0..infinity) = 1</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(1 -Divide[1,2]*(k)^(2))*(Divide[1,2]*(Subscript[C, 0])^(2)+ Sum[(Subscript[C, 2*p])^(2), {p, 1, Infinity}, GenerateConditions->None])-Divide[1,2]*(k)^(2)* Sum[Subscript[C, 2*p]*Subscript[C, 2*p + 2], {p, 0, Infinity}, GenerateConditions->None] == 1</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/29.6.E12 29.6.E12] || <math qid="Q8640">\left(1-\tfrac{1}{2}k^{2}\right)\left(\tfrac{1}{2}C_{0}^{2}+\sum_{p=1}^{\infty}C_{2p}^{2}\right)-\tfrac{1}{2}k^{2}\sum_{p=0}^{\infty}C_{2p}C_{2p+2} = 1</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\left(1-\tfrac{1}{2}k^{2}\right)\left(\tfrac{1}{2}C_{0}^{2}+\sum_{p=1}^{\infty}C_{2p}^{2}\right)-\tfrac{1}{2}k^{2}\sum_{p=0}^{\infty}C_{2p}C_{2p+2} = 1</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(1 -(1)/(2)*(k)^(2))*((1)/(2)*(C[0])^(2)+ sum((C[2*p])^(2), p = 1..infinity))-(1)/(2)*(k)^(2)* sum(C[2*p]*C[2*p + 2], p = 0..infinity) = 1</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(1 -Divide[1,2]*(k)^(2))*(Divide[1,2]*(Subscript[C, 0])^(2)+ Sum[(Subscript[C, 2*p])^(2), {p, 1, Infinity}, GenerateConditions->None])-Divide[1,2]*(k)^(2)* Sum[Subscript[C, 2*p]*Subscript[C, 2*p + 2], {p, 0, Infinity}, GenerateConditions->None] == 1</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/29.6.E13 29.6.E13] || [[Item:Q8641|<math>\tfrac{1}{2}C_{0}+\sum_{p=1}^{\infty}C_{2p} > 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\tfrac{1}{2}C_{0}+\sum_{p=1}^{\infty}C_{2p} > 0</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(1)/(2)*C[0]+ sum(C[2*p], p = 1..infinity) > 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Divide[1,2]*Subscript[C, 0]+ Sum[Subscript[C, 2*p], {p, 1, Infinity}, GenerateConditions->None] > 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/29.6.E13 29.6.E13] || <math qid="Q8641">\tfrac{1}{2}C_{0}+\sum_{p=1}^{\infty}C_{2p} > 0</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\tfrac{1}{2}C_{0}+\sum_{p=1}^{\infty}C_{2p} > 0</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(1)/(2)*C[0]+ sum(C[2*p], p = 1..infinity) > 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Divide[1,2]*Subscript[C, 0]+ Sum[Subscript[C, 2*p], {p, 1, Infinity}, GenerateConditions->None] > 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/29.6.E14 29.6.E14] || [[Item:Q8642|<math>\lim_{p\to\infty}\frac{C_{2p+2}}{C_{2p}} = \frac{k^{2}}{(1+k^{\prime})^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\lim_{p\to\infty}\frac{C_{2p+2}}{C_{2p}} = \frac{k^{2}}{(1+k^{\prime})^{2}}</syntaxhighlight> || <math>\nu \neq 2n+1, \nu = 2n+1, m > n</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">limit((C[2*p + 2])/(C[2*p]), p = infinity) = ((k)^(2))/((1 +sqrt(1 - (k)^(2)))^(2))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Limit[Divide[Subscript[C, 2*p + 2],Subscript[C, 2*p]], p -> Infinity, GenerateConditions->None] == Divide[(k)^(2),(1 +Sqrt[1 - (k)^(2)])^(2)]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/29.6.E14 29.6.E14] || <math qid="Q8642">\lim_{p\to\infty}\frac{C_{2p+2}}{C_{2p}} = \frac{k^{2}}{(1+k^{\prime})^{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\lim_{p\to\infty}\frac{C_{2p+2}}{C_{2p}} = \frac{k^{2}}{(1+k^{\prime})^{2}}</syntaxhighlight> || <math>\nu \neq 2n+1, \nu = 2n+1, m > n</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">limit((C[2*p + 2])/(C[2*p]), p = infinity) = ((k)^(2))/((1 +sqrt(1 - (k)^(2)))^(2))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Limit[Divide[Subscript[C, 2*p + 2],Subscript[C, 2*p]], p -> Infinity, GenerateConditions->None] == Divide[(k)^(2),(1 +Sqrt[1 - (k)^(2)])^(2)]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/29.6.E20 29.6.E20] || [[Item:Q8648|<math>\sum_{p=0}^{\infty}A_{2p+1}^{2} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\sum_{p=0}^{\infty}A_{2p+1}^{2} = 1</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">sum((A[2*p + 1])^(2), p = 0..infinity) = 1</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Sum[(Subscript[A, 2*p + 1])^(2), {p, 0, Infinity}, GenerateConditions->None] == 1</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/29.6.E20 29.6.E20] || <math qid="Q8648">\sum_{p=0}^{\infty}A_{2p+1}^{2} = 1</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\sum_{p=0}^{\infty}A_{2p+1}^{2} = 1</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">sum((A[2*p + 1])^(2), p = 0..infinity) = 1</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Sum[(Subscript[A, 2*p + 1])^(2), {p, 0, Infinity}, GenerateConditions->None] == 1</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/29.6.E21 29.6.E21] || [[Item:Q8649|<math>\sum_{p=0}^{\infty}A_{2p+1} > 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\sum_{p=0}^{\infty}A_{2p+1} > 0</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">sum(A[2*p + 1], p = 0..infinity) > 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Sum[Subscript[A, 2*p + 1], {p, 0, Infinity}, GenerateConditions->None] > 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/29.6.E21 29.6.E21] || <math qid="Q8649">\sum_{p=0}^{\infty}A_{2p+1} > 0</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\sum_{p=0}^{\infty}A_{2p+1} > 0</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">sum(A[2*p + 1], p = 0..infinity) > 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Sum[Subscript[A, 2*p + 1], {p, 0, Infinity}, GenerateConditions->None] > 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/29.6.E22 29.6.E22] || [[Item:Q8650|<math>\lim_{p\to\infty}\frac{A_{2p+1}}{A_{2p-1}} = \frac{k^{2}}{(1+k^{\prime})^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\lim_{p\to\infty}\frac{A_{2p+1}}{A_{2p-1}} = \frac{k^{2}}{(1+k^{\prime})^{2}}</syntaxhighlight> || <math>\nu \neq 2n+1, \nu = 2n+1, m > n</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">limit((A[2*p + 1])/(A[2*p - 1]), p = infinity) = ((k)^(2))/((1 +sqrt(1 - (k)^(2)))^(2))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Limit[Divide[Subscript[A, 2*p + 1],Subscript[A, 2*p - 1]], p -> Infinity, GenerateConditions->None] == Divide[(k)^(2),(1 +Sqrt[1 - (k)^(2)])^(2)]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/29.6.E22 29.6.E22] || <math qid="Q8650">\lim_{p\to\infty}\frac{A_{2p+1}}{A_{2p-1}} = \frac{k^{2}}{(1+k^{\prime})^{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\lim_{p\to\infty}\frac{A_{2p+1}}{A_{2p-1}} = \frac{k^{2}}{(1+k^{\prime})^{2}}</syntaxhighlight> || <math>\nu \neq 2n+1, \nu = 2n+1, m > n</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">limit((A[2*p + 1])/(A[2*p - 1]), p = infinity) = ((k)^(2))/((1 +sqrt(1 - (k)^(2)))^(2))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Limit[Divide[Subscript[A, 2*p + 1],Subscript[A, 2*p - 1]], p -> Infinity, GenerateConditions->None] == Divide[(k)^(2),(1 +Sqrt[1 - (k)^(2)])^(2)]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/29.6#Ex4 29.6#Ex4] || [[Item:Q8654|<math>\alpha_{p} = \tfrac{1}{2}(\nu-2p-1)(\nu+2p+2)k^{2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\alpha_{p} = \tfrac{1}{2}(\nu-2p-1)(\nu+2p+2)k^{2}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">alpha[p] = (1)/(2)*(nu - 2*p - 1)*(nu + 2*p + 2)*(k)^(2)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[\[Alpha], p] == Divide[1,2]*(\[Nu]- 2*p - 1)*(\[Nu]+ 2*p + 2)*(k)^(2)</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/29.6#Ex4 29.6#Ex4] || <math qid="Q8654">\alpha_{p} = \tfrac{1}{2}(\nu-2p-1)(\nu+2p+2)k^{2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\alpha_{p} = \tfrac{1}{2}(\nu-2p-1)(\nu+2p+2)k^{2}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">alpha[p] = (1)/(2)*(nu - 2*p - 1)*(nu + 2*p + 2)*(k)^(2)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[\[Alpha], p] == Divide[1,2]*(\[Nu]- 2*p - 1)*(\[Nu]+ 2*p + 2)*(k)^(2)</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/29.6#Ex6 29.6#Ex6] || [[Item:Q8656|<math>\gamma_{p} = \tfrac{1}{2}(\nu-2p)(\nu+2p+1)k^{2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\gamma_{p} = \tfrac{1}{2}(\nu-2p)(\nu+2p+1)k^{2}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">((1)/(2)*(nu - 2*p + 2)*(nu + 2*p - 1)*(k)^(2)) = (1)/(2)*(nu - 2*p)*(nu + 2*p + 1)*(k)^(2)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(Divide[1,2]*(\[Nu]- 2*p + 2)*(\[Nu]+ 2*p - 1)*(k)^(2)) == Divide[1,2]*(\[Nu]- 2*p)*(\[Nu]+ 2*p + 1)*(k)^(2)</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/29.6#Ex6 29.6#Ex6] || <math qid="Q8656">\gamma_{p} = \tfrac{1}{2}(\nu-2p)(\nu+2p+1)k^{2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\gamma_{p} = \tfrac{1}{2}(\nu-2p)(\nu+2p+1)k^{2}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">((1)/(2)*(nu - 2*p + 2)*(nu + 2*p - 1)*(k)^(2)) = (1)/(2)*(nu - 2*p)*(nu + 2*p + 1)*(k)^(2)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(Divide[1,2]*(\[Nu]- 2*p + 2)*(\[Nu]+ 2*p - 1)*(k)^(2)) == Divide[1,2]*(\[Nu]- 2*p)*(\[Nu]+ 2*p + 1)*(k)^(2)</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/29.6.E28 29.6.E28] || [[Item:Q8658|<math>\sum_{p=0}^{\infty}C_{2p+1} > 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\sum_{p=0}^{\infty}C_{2p+1} > 0</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">sum(C[2*p + 1], p = 0..infinity) > 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Sum[Subscript[C, 2*p + 1], {p, 0, Infinity}, GenerateConditions->None] > 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/29.6.E28 29.6.E28] || <math qid="Q8658">\sum_{p=0}^{\infty}C_{2p+1} > 0</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\sum_{p=0}^{\infty}C_{2p+1} > 0</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">sum(C[2*p + 1], p = 0..infinity) > 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Sum[Subscript[C, 2*p + 1], {p, 0, Infinity}, GenerateConditions->None] > 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/29.6.E29 29.6.E29] || [[Item:Q8659|<math>\lim_{p\to\infty}\frac{C_{2p+1}}{C_{2p-1}} = \frac{k^{2}}{(1+k^{\prime})^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\lim_{p\to\infty}\frac{C_{2p+1}}{C_{2p-1}} = \frac{k^{2}}{(1+k^{\prime})^{2}}</syntaxhighlight> || <math>\nu \neq 2n+2, \nu = 2n+2, m > n</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">limit((C[2*p + 1])/(C[2*p - 1]), p = infinity) = ((k)^(2))/((1 +sqrt(1 - (k)^(2)))^(2))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Limit[Divide[Subscript[C, 2*p + 1],Subscript[C, 2*p - 1]], p -> Infinity, GenerateConditions->None] == Divide[(k)^(2),(1 +Sqrt[1 - (k)^(2)])^(2)]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/29.6.E29 29.6.E29] || <math qid="Q8659">\lim_{p\to\infty}\frac{C_{2p+1}}{C_{2p-1}} = \frac{k^{2}}{(1+k^{\prime})^{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\lim_{p\to\infty}\frac{C_{2p+1}}{C_{2p-1}} = \frac{k^{2}}{(1+k^{\prime})^{2}}</syntaxhighlight> || <math>\nu \neq 2n+2, \nu = 2n+2, m > n</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">limit((C[2*p + 1])/(C[2*p - 1]), p = infinity) = ((k)^(2))/((1 +sqrt(1 - (k)^(2)))^(2))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Limit[Divide[Subscript[C, 2*p + 1],Subscript[C, 2*p - 1]], p -> Infinity, GenerateConditions->None] == Divide[(k)^(2),(1 +Sqrt[1 - (k)^(2)])^(2)]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/29.6.E35 29.6.E35] || [[Item:Q8665|<math>\sum_{p=0}^{\infty}B_{2p+1}^{2} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\sum_{p=0}^{\infty}B_{2p+1}^{2} = 1</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">sum((B[2*p + 1])^(2), p = 0..infinity) = 1</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Sum[(Subscript[B, 2*p + 1])^(2), {p, 0, Infinity}, GenerateConditions->None] == 1</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/29.6.E35 29.6.E35] || <math qid="Q8665">\sum_{p=0}^{\infty}B_{2p+1}^{2} = 1</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\sum_{p=0}^{\infty}B_{2p+1}^{2} = 1</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">sum((B[2*p + 1])^(2), p = 0..infinity) = 1</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Sum[(Subscript[B, 2*p + 1])^(2), {p, 0, Infinity}, GenerateConditions->None] == 1</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/29.6.E36 29.6.E36] || [[Item:Q8666|<math>\sum_{p=0}^{\infty}(2p+1)B_{2p+1} > 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\sum_{p=0}^{\infty}(2p+1)B_{2p+1} > 0</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">sum((2*p + 1)*B[2*p + 1], p = 0..infinity) > 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Sum[(2*p + 1)*Subscript[B, 2*p + 1], {p, 0, Infinity}, GenerateConditions->None] > 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/29.6.E36 29.6.E36] || <math qid="Q8666">\sum_{p=0}^{\infty}(2p+1)B_{2p+1} > 0</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\sum_{p=0}^{\infty}(2p+1)B_{2p+1} > 0</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">sum((2*p + 1)*B[2*p + 1], p = 0..infinity) > 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Sum[(2*p + 1)*Subscript[B, 2*p + 1], {p, 0, Infinity}, GenerateConditions->None] > 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/29.6.E37 29.6.E37] || [[Item:Q8667|<math>\lim_{p\to\infty}\frac{B_{2p+1}}{B_{2p-1}} = \frac{k^{2}}{(1+k^{\prime})^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\lim_{p\to\infty}\frac{B_{2p+1}}{B_{2p-1}} = \frac{k^{2}}{(1+k^{\prime})^{2}}</syntaxhighlight> || <math>\nu \neq 2n+1, \nu = 2n+1, m > n</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">limit((B[2*p + 1])/(B[2*p - 1]), p = infinity) = ((k)^(2))/((1 +sqrt(1 - (k)^(2)))^(2))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Limit[Divide[Subscript[B, 2*p + 1],Subscript[B, 2*p - 1]], p -> Infinity, GenerateConditions->None] == Divide[(k)^(2),(1 +Sqrt[1 - (k)^(2)])^(2)]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/29.6.E37 29.6.E37] || <math qid="Q8667">\lim_{p\to\infty}\frac{B_{2p+1}}{B_{2p-1}} = \frac{k^{2}}{(1+k^{\prime})^{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\lim_{p\to\infty}\frac{B_{2p+1}}{B_{2p-1}} = \frac{k^{2}}{(1+k^{\prime})^{2}}</syntaxhighlight> || <math>\nu \neq 2n+1, \nu = 2n+1, m > n</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">limit((B[2*p + 1])/(B[2*p - 1]), p = infinity) = ((k)^(2))/((1 +sqrt(1 - (k)^(2)))^(2))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Limit[Divide[Subscript[B, 2*p + 1],Subscript[B, 2*p - 1]], p -> Infinity, GenerateConditions->None] == Divide[(k)^(2),(1 +Sqrt[1 - (k)^(2)])^(2)]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/29.6#Ex7 29.6#Ex7] || [[Item:Q8671|<math>\alpha_{p} = \tfrac{1}{2}(\nu-2p-1)(\nu+2p+2)k^{2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\alpha_{p} = \tfrac{1}{2}(\nu-2p-1)(\nu+2p+2)k^{2}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">alpha[p] = (1)/(2)*(nu - 2*p - 1)*(nu + 2*p + 2)*(k)^(2)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[\[Alpha], p] == Divide[1,2]*(\[Nu]- 2*p - 1)*(\[Nu]+ 2*p + 2)*(k)^(2)</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/29.6#Ex7 29.6#Ex7] || <math qid="Q8671">\alpha_{p} = \tfrac{1}{2}(\nu-2p-1)(\nu+2p+2)k^{2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\alpha_{p} = \tfrac{1}{2}(\nu-2p-1)(\nu+2p+2)k^{2}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">alpha[p] = (1)/(2)*(nu - 2*p - 1)*(nu + 2*p + 2)*(k)^(2)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[\[Alpha], p] == Divide[1,2]*(\[Nu]- 2*p - 1)*(\[Nu]+ 2*p + 2)*(k)^(2)</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/29.6#Ex9 29.6#Ex9] || [[Item:Q8673|<math>\gamma_{p} = \tfrac{1}{2}(\nu-2p)(\nu+2p+1)k^{2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\gamma_{p} = \tfrac{1}{2}(\nu-2p)(\nu+2p+1)k^{2}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">((1)/(2)*(nu - 2*p + 2)*(nu + 2*p - 1)*(k)^(2)) = (1)/(2)*(nu - 2*p)*(nu + 2*p + 1)*(k)^(2)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(Divide[1,2]*(\[Nu]- 2*p + 2)*(\[Nu]+ 2*p - 1)*(k)^(2)) == Divide[1,2]*(\[Nu]- 2*p)*(\[Nu]+ 2*p + 1)*(k)^(2)</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/29.6#Ex9 29.6#Ex9] || <math qid="Q8673">\gamma_{p} = \tfrac{1}{2}(\nu-2p)(\nu+2p+1)k^{2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\gamma_{p} = \tfrac{1}{2}(\nu-2p)(\nu+2p+1)k^{2}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">((1)/(2)*(nu - 2*p + 2)*(nu + 2*p - 1)*(k)^(2)) = (1)/(2)*(nu - 2*p)*(nu + 2*p + 1)*(k)^(2)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(Divide[1,2]*(\[Nu]- 2*p + 2)*(\[Nu]+ 2*p - 1)*(k)^(2)) == Divide[1,2]*(\[Nu]- 2*p)*(\[Nu]+ 2*p + 1)*(k)^(2)</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/29.6.E43 29.6.E43] || [[Item:Q8675|<math>\sum_{p=0}^{\infty}(2p+1)D_{2p+1} > 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\sum_{p=0}^{\infty}(2p+1)D_{2p+1} > 0</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">sum((2*p + 1)*D[2*p + 1], p = 0..infinity) > 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Sum[(2*p + 1)*Subscript[D, 2*p + 1], {p, 0, Infinity}, GenerateConditions->None] > 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/29.6.E43 29.6.E43] || <math qid="Q8675">\sum_{p=0}^{\infty}(2p+1)D_{2p+1} > 0</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\sum_{p=0}^{\infty}(2p+1)D_{2p+1} > 0</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">sum((2*p + 1)*D[2*p + 1], p = 0..infinity) > 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Sum[(2*p + 1)*Subscript[D, 2*p + 1], {p, 0, Infinity}, GenerateConditions->None] > 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/29.6.E44 29.6.E44] || [[Item:Q8676|<math>\lim_{p\to\infty}\frac{D_{2p+1}}{D_{2p-1}} = \frac{k^{2}}{(1+k^{\prime})^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\lim_{p\to\infty}\frac{D_{2p+1}}{D_{2p-1}} = \frac{k^{2}}{(1+k^{\prime})^{2}}</syntaxhighlight> || <math>\nu \neq 2n+2, \nu = 2n+2, m > n</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">limit((D[2*p + 1])/(D[2*p - 1]), p = infinity) = ((k)^(2))/((1 +sqrt(1 - (k)^(2)))^(2))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Limit[Divide[Subscript[D, 2*p + 1],Subscript[D, 2*p - 1]], p -> Infinity, GenerateConditions->None] == Divide[(k)^(2),(1 +Sqrt[1 - (k)^(2)])^(2)]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/29.6.E44 29.6.E44] || <math qid="Q8676">\lim_{p\to\infty}\frac{D_{2p+1}}{D_{2p-1}} = \frac{k^{2}}{(1+k^{\prime})^{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\lim_{p\to\infty}\frac{D_{2p+1}}{D_{2p-1}} = \frac{k^{2}}{(1+k^{\prime})^{2}}</syntaxhighlight> || <math>\nu \neq 2n+2, \nu = 2n+2, m > n</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">limit((D[2*p + 1])/(D[2*p - 1]), p = infinity) = ((k)^(2))/((1 +sqrt(1 - (k)^(2)))^(2))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Limit[Divide[Subscript[D, 2*p + 1],Subscript[D, 2*p - 1]], p -> Infinity, GenerateConditions->None] == Divide[(k)^(2),(1 +Sqrt[1 - (k)^(2)])^(2)]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/29.6.E50 29.6.E50] || [[Item:Q8682|<math>\sum_{p=1}^{\infty}B_{2p}^{2} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\sum_{p=1}^{\infty}B_{2p}^{2} = 1</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">sum((B[2*p])^(2), p = 1..infinity) = 1</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Sum[(Subscript[B, 2*p])^(2), {p, 1, Infinity}, GenerateConditions->None] == 1</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/29.6.E50 29.6.E50] || <math qid="Q8682">\sum_{p=1}^{\infty}B_{2p}^{2} = 1</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\sum_{p=1}^{\infty}B_{2p}^{2} = 1</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">sum((B[2*p])^(2), p = 1..infinity) = 1</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Sum[(Subscript[B, 2*p])^(2), {p, 1, Infinity}, GenerateConditions->None] == 1</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/29.6.E51 29.6.E51] || [[Item:Q8683|<math>\sum_{p=0}^{\infty}(2p+2)B_{2p+2} > 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\sum_{p=0}^{\infty}(2p+2)B_{2p+2} > 0</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">sum((2*p + 2)*B[2*p + 2], p = 0..infinity) > 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Sum[(2*p + 2)*Subscript[B, 2*p + 2], {p, 0, Infinity}, GenerateConditions->None] > 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/29.6.E51 29.6.E51] || <math qid="Q8683">\sum_{p=0}^{\infty}(2p+2)B_{2p+2} > 0</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\sum_{p=0}^{\infty}(2p+2)B_{2p+2} > 0</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">sum((2*p + 2)*B[2*p + 2], p = 0..infinity) > 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Sum[(2*p + 2)*Subscript[B, 2*p + 2], {p, 0, Infinity}, GenerateConditions->None] > 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/29.6.E52 29.6.E52] || [[Item:Q8684|<math>\lim_{p\to\infty}\frac{B_{2p+2}}{B_{2p}} = \frac{k^{2}}{(1+k^{\prime})^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\lim_{p\to\infty}\frac{B_{2p+2}}{B_{2p}} = \frac{k^{2}}{(1+k^{\prime})^{2}}</syntaxhighlight> || <math>\nu \neq 2n+2, \nu = 2n+2, m > n</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">limit((B[2*p + 2])/(B[2*p]), p = infinity) = ((k)^(2))/((1 +sqrt(1 - (k)^(2)))^(2))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Limit[Divide[Subscript[B, 2*p + 2],Subscript[B, 2*p]], p -> Infinity, GenerateConditions->None] == Divide[(k)^(2),(1 +Sqrt[1 - (k)^(2)])^(2)]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/29.6.E52 29.6.E52] || <math qid="Q8684">\lim_{p\to\infty}\frac{B_{2p+2}}{B_{2p}} = \frac{k^{2}}{(1+k^{\prime})^{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\lim_{p\to\infty}\frac{B_{2p+2}}{B_{2p}} = \frac{k^{2}}{(1+k^{\prime})^{2}}</syntaxhighlight> || <math>\nu \neq 2n+2, \nu = 2n+2, m > n</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">limit((B[2*p + 2])/(B[2*p]), p = infinity) = ((k)^(2))/((1 +sqrt(1 - (k)^(2)))^(2))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Limit[Divide[Subscript[B, 2*p + 2],Subscript[B, 2*p]], p -> Infinity, GenerateConditions->None] == Divide[(k)^(2),(1 +Sqrt[1 - (k)^(2)])^(2)]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/29.6#Ex10 29.6#Ex10] || [[Item:Q8688|<math>\alpha_{p} = \tfrac{1}{2}(\nu-2p-2)(\nu+2p+3)k^{2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\alpha_{p} = \tfrac{1}{2}(\nu-2p-2)(\nu+2p+3)k^{2}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">alpha[p] = (1)/(2)*(nu - 2*p - 2)*(nu + 2*p + 3)*(k)^(2)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[\[Alpha], p] == Divide[1,2]*(\[Nu]- 2*p - 2)*(\[Nu]+ 2*p + 3)*(k)^(2)</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/29.6#Ex10 29.6#Ex10] || <math qid="Q8688">\alpha_{p} = \tfrac{1}{2}(\nu-2p-2)(\nu+2p+3)k^{2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\alpha_{p} = \tfrac{1}{2}(\nu-2p-2)(\nu+2p+3)k^{2}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">alpha[p] = (1)/(2)*(nu - 2*p - 2)*(nu + 2*p + 3)*(k)^(2)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[\[Alpha], p] == Divide[1,2]*(\[Nu]- 2*p - 2)*(\[Nu]+ 2*p + 3)*(k)^(2)</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/29.6#Ex11 29.6#Ex11] || [[Item:Q8689|<math>\beta_{p} = (2p+2)^{2}(2-k^{2})</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\beta_{p} = (2p+2)^{2}(2-k^{2})</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">beta[p] = (2*p + 2)^(2)*(2 - (k)^(2))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[\[Beta], p] == (2*p + 2)^(2)*(2 - (k)^(2))</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/29.6#Ex11 29.6#Ex11] || <math qid="Q8689">\beta_{p} = (2p+2)^{2}(2-k^{2})</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\beta_{p} = (2p+2)^{2}(2-k^{2})</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">beta[p] = (2*p + 2)^(2)*(2 - (k)^(2))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[\[Beta], p] == (2*p + 2)^(2)*(2 - (k)^(2))</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/29.6#Ex12 29.6#Ex12] || [[Item:Q8690|<math>\gamma_{p} = \tfrac{1}{2}(\nu-2p-1)(\nu+2p+2)k^{2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\gamma_{p} = \tfrac{1}{2}(\nu-2p-1)(\nu+2p+2)k^{2}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">((1)/(2)*(nu - 2*p + 2)*(nu + 2*p - 1)*(k)^(2)) = (1)/(2)*(nu - 2*p - 1)*(nu + 2*p + 2)*(k)^(2)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(Divide[1,2]*(\[Nu]- 2*p + 2)*(\[Nu]+ 2*p - 1)*(k)^(2)) == Divide[1,2]*(\[Nu]- 2*p - 1)*(\[Nu]+ 2*p + 2)*(k)^(2)</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/29.6#Ex12 29.6#Ex12] || <math qid="Q8690">\gamma_{p} = \tfrac{1}{2}(\nu-2p-1)(\nu+2p+2)k^{2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\gamma_{p} = \tfrac{1}{2}(\nu-2p-1)(\nu+2p+2)k^{2}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">((1)/(2)*(nu - 2*p + 2)*(nu + 2*p - 1)*(k)^(2)) = (1)/(2)*(nu - 2*p - 1)*(nu + 2*p + 2)*(k)^(2)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(Divide[1,2]*(\[Nu]- 2*p + 2)*(\[Nu]+ 2*p - 1)*(k)^(2)) == Divide[1,2]*(\[Nu]- 2*p - 1)*(\[Nu]+ 2*p + 2)*(k)^(2)</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/29.6.E57 29.6.E57] || [[Item:Q8691|<math>\left(1-\tfrac{1}{2}k^{2}\right)\sum_{p=1}^{\infty}D_{2p}^{2}-\tfrac{1}{2}k^{2}\sum_{p=1}^{\infty}D_{2p}D_{2p+2} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\left(1-\tfrac{1}{2}k^{2}\right)\sum_{p=1}^{\infty}D_{2p}^{2}-\tfrac{1}{2}k^{2}\sum_{p=1}^{\infty}D_{2p}D_{2p+2} = 1</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(1 -(1)/(2)*(k)^(2))*sum((D[2*p])^(2), p = 1..infinity)-(1)/(2)*(k)^(2)* sum(D[2*p]*D[2*p + 2], p = 1..infinity) = 1</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(1 -Divide[1,2]*(k)^(2))*Sum[(Subscript[D, 2*p])^(2), {p, 1, Infinity}, GenerateConditions->None]-Divide[1,2]*(k)^(2)* Sum[Subscript[D, 2*p]*Subscript[D, 2*p + 2], {p, 1, Infinity}, GenerateConditions->None] == 1</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/29.6.E57 29.6.E57] || <math qid="Q8691">\left(1-\tfrac{1}{2}k^{2}\right)\sum_{p=1}^{\infty}D_{2p}^{2}-\tfrac{1}{2}k^{2}\sum_{p=1}^{\infty}D_{2p}D_{2p+2} = 1</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\left(1-\tfrac{1}{2}k^{2}\right)\sum_{p=1}^{\infty}D_{2p}^{2}-\tfrac{1}{2}k^{2}\sum_{p=1}^{\infty}D_{2p}D_{2p+2} = 1</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(1 -(1)/(2)*(k)^(2))*sum((D[2*p])^(2), p = 1..infinity)-(1)/(2)*(k)^(2)* sum(D[2*p]*D[2*p + 2], p = 1..infinity) = 1</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(1 -Divide[1,2]*(k)^(2))*Sum[(Subscript[D, 2*p])^(2), {p, 1, Infinity}, GenerateConditions->None]-Divide[1,2]*(k)^(2)* Sum[Subscript[D, 2*p]*Subscript[D, 2*p + 2], {p, 1, Infinity}, GenerateConditions->None] == 1</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/29.6.E58 29.6.E58] || [[Item:Q8692|<math>\sum_{p=0}^{\infty}(2p+2)D_{2p+2} > 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\sum_{p=0}^{\infty}(2p+2)D_{2p+2} > 0</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">sum((2*p + 2)*D[2*p + 2], p = 0..infinity) > 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Sum[(2*p + 2)*Subscript[D, 2*p + 2], {p, 0, Infinity}, GenerateConditions->None] > 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/29.6.E58 29.6.E58] || <math qid="Q8692">\sum_{p=0}^{\infty}(2p+2)D_{2p+2} > 0</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\sum_{p=0}^{\infty}(2p+2)D_{2p+2} > 0</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">sum((2*p + 2)*D[2*p + 2], p = 0..infinity) > 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Sum[(2*p + 2)*Subscript[D, 2*p + 2], {p, 0, Infinity}, GenerateConditions->None] > 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/29.6.E59 29.6.E59] || [[Item:Q8693|<math>\lim_{p\to\infty}\frac{D_{2p+2}}{D_{2p}} = \frac{k^{2}}{(1+k^{\prime})^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\lim_{p\to\infty}\frac{D_{2p+2}}{D_{2p}} = \frac{k^{2}}{(1+k^{\prime})^{2}}</syntaxhighlight> || <math>\nu \neq 2n+3, \nu = 2n+3, m > n</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">limit((D[2*p + 2])/(D[2*p]), p = infinity) = ((k)^(2))/((1 +sqrt(1 - (k)^(2)))^(2))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Limit[Divide[Subscript[D, 2*p + 2],Subscript[D, 2*p]], p -> Infinity, GenerateConditions->None] == Divide[(k)^(2),(1 +Sqrt[1 - (k)^(2)])^(2)]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/29.6.E59 29.6.E59] || <math qid="Q8693">\lim_{p\to\infty}\frac{D_{2p+2}}{D_{2p}} = \frac{k^{2}}{(1+k^{\prime})^{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\lim_{p\to\infty}\frac{D_{2p+2}}{D_{2p}} = \frac{k^{2}}{(1+k^{\prime})^{2}}</syntaxhighlight> || <math>\nu \neq 2n+3, \nu = 2n+3, m > n</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">limit((D[2*p + 2])/(D[2*p]), p = infinity) = ((k)^(2))/((1 +sqrt(1 - (k)^(2)))^(2))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Limit[Divide[Subscript[D, 2*p + 2],Subscript[D, 2*p]], p -> Infinity, GenerateConditions->None] == Divide[(k)^(2),(1 +Sqrt[1 - (k)^(2)])^(2)]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|}
|}
</div>
</div>

Latest revision as of 12:09, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
29.6.E5 1 2 A 0 2 + p = 1 A 2 p 2 = 1 1 2 superscript subscript 𝐴 0 2 superscript subscript 𝑝 1 superscript subscript 𝐴 2 𝑝 2 1 {\displaystyle{\displaystyle\tfrac{1}{2}A_{0}^{2}+\sum_{p=1}^{\infty}A_{2p}^{2% }=1}}
\tfrac{1}{2}A_{0}^{2}+\sum_{p=1}^{\infty}A_{2p}^{2} = 1

(1)/(2)*(A[0])^(2)+ sum((A[2*p])^(2), p = 1..infinity) = 1
Divide[1,2]*(Subscript[A, 0])^(2)+ Sum[(Subscript[A, 2*p])^(2), {p, 1, Infinity}, GenerateConditions->None] == 1
Skipped - no semantic math Skipped - no semantic math - -
29.6.E6 1 2 A 0 + p = 1 A 2 p > 0 1 2 subscript 𝐴 0 superscript subscript 𝑝 1 subscript 𝐴 2 𝑝 0 {\displaystyle{\displaystyle\tfrac{1}{2}A_{0}+\sum_{p=1}^{\infty}A_{2p}>0}}
\tfrac{1}{2}A_{0}+\sum_{p=1}^{\infty}A_{2p} > 0

(1)/(2)*A[0]+ sum(A[2*p], p = 1..infinity) > 0
Divide[1,2]*Subscript[A, 0]+ Sum[Subscript[A, 2*p], {p, 1, Infinity}, GenerateConditions->None] > 0
Skipped - no semantic math Skipped - no semantic math - -
29.6.E7 lim p A 2 p + 2 A 2 p = k 2 ( 1 + k ) 2 subscript 𝑝 subscript 𝐴 2 𝑝 2 subscript 𝐴 2 𝑝 superscript 𝑘 2 superscript 1 superscript 𝑘 2 {\displaystyle{\displaystyle\lim_{p\to\infty}\frac{A_{2p+2}}{A_{2p}}=\frac{k^{% 2}}{(1+k^{\prime})^{2}}}}
\lim_{p\to\infty}\frac{A_{2p+2}}{A_{2p}} = \frac{k^{2}}{(1+k^{\prime})^{2}}
ν 2 n , ν = 2 n , m > n formulae-sequence 𝜈 2 𝑛 formulae-sequence 𝜈 2 𝑛 𝑚 𝑛 {\displaystyle{\displaystyle\nu\neq 2n,\nu=2n,m>n}}
limit((A[2*p + 2])/(A[2*p]), p = infinity) = ((k)^(2))/((1 +sqrt(1 - (k)^(2)))^(2))
Limit[Divide[Subscript[A, 2*p + 2],Subscript[A, 2*p]], p -> Infinity, GenerateConditions->None] == Divide[(k)^(2),(1 +Sqrt[1 - (k)^(2)])^(2)]
Skipped - no semantic math Skipped - no semantic math - -
29.6#Ex2 β p = 4 p 2 ( 2 - k 2 ) subscript 𝛽 𝑝 4 superscript 𝑝 2 2 superscript 𝑘 2 {\displaystyle{\displaystyle\beta_{p}=4p^{2}(2-k^{2})}}
\beta_{p} = 4p^{2}(2-k^{2})

beta[p] = 4*(p)^(2)*(2 - (k)^(2))
Subscript[\[Beta], p] == 4*(p)^(2)*(2 - (k)^(2))
Skipped - no semantic math Skipped - no semantic math - -
29.6#Ex3 γ p = 1 2 ( ν - 2 p + 1 ) ( ν + 2 p ) k 2 subscript 𝛾 𝑝 1 2 𝜈 2 𝑝 1 𝜈 2 𝑝 superscript 𝑘 2 {\displaystyle{\displaystyle\gamma_{p}=\tfrac{1}{2}(\nu-2p+1)(\nu+2p)k^{2}}}
\gamma_{p} = \tfrac{1}{2}(\nu-2p+1)(\nu+2p)k^{2}

((1)/(2)*(nu - 2*p + 2)*(nu + 2*p - 1)*(k)^(2)) = (1)/(2)*(nu - 2*p + 1)*(nu + 2*p)*(k)^(2)
(Divide[1,2]*(\[Nu]- 2*p + 2)*(\[Nu]+ 2*p - 1)*(k)^(2)) == Divide[1,2]*(\[Nu]- 2*p + 1)*(\[Nu]+ 2*p)*(k)^(2)
Skipped - no semantic math Skipped - no semantic math - -
29.6.E12 ( 1 - 1 2 k 2 ) ( 1 2 C 0 2 + p = 1 C 2 p 2 ) - 1 2 k 2 p = 0 C 2 p C 2 p + 2 = 1 1 1 2 superscript 𝑘 2 1 2 superscript subscript 𝐶 0 2 superscript subscript 𝑝 1 superscript subscript 𝐶 2 𝑝 2 1 2 superscript 𝑘 2 superscript subscript 𝑝 0 subscript 𝐶 2 𝑝 subscript 𝐶 2 𝑝 2 1 {\displaystyle{\displaystyle\left(1-\tfrac{1}{2}k^{2}\right)\left(\tfrac{1}{2}% C_{0}^{2}+\sum_{p=1}^{\infty}C_{2p}^{2}\right)-\tfrac{1}{2}k^{2}\sum_{p=0}^{% \infty}C_{2p}C_{2p+2}=1}}
\left(1-\tfrac{1}{2}k^{2}\right)\left(\tfrac{1}{2}C_{0}^{2}+\sum_{p=1}^{\infty}C_{2p}^{2}\right)-\tfrac{1}{2}k^{2}\sum_{p=0}^{\infty}C_{2p}C_{2p+2} = 1

(1 -(1)/(2)*(k)^(2))*((1)/(2)*(C[0])^(2)+ sum((C[2*p])^(2), p = 1..infinity))-(1)/(2)*(k)^(2)* sum(C[2*p]*C[2*p + 2], p = 0..infinity) = 1
(1 -Divide[1,2]*(k)^(2))*(Divide[1,2]*(Subscript[C, 0])^(2)+ Sum[(Subscript[C, 2*p])^(2), {p, 1, Infinity}, GenerateConditions->None])-Divide[1,2]*(k)^(2)* Sum[Subscript[C, 2*p]*Subscript[C, 2*p + 2], {p, 0, Infinity}, GenerateConditions->None] == 1
Skipped - no semantic math Skipped - no semantic math - -
29.6.E13 1 2 C 0 + p = 1 C 2 p > 0 1 2 subscript 𝐶 0 superscript subscript 𝑝 1 subscript 𝐶 2 𝑝 0 {\displaystyle{\displaystyle\tfrac{1}{2}C_{0}+\sum_{p=1}^{\infty}C_{2p}>0}}
\tfrac{1}{2}C_{0}+\sum_{p=1}^{\infty}C_{2p} > 0

(1)/(2)*C[0]+ sum(C[2*p], p = 1..infinity) > 0
Divide[1,2]*Subscript[C, 0]+ Sum[Subscript[C, 2*p], {p, 1, Infinity}, GenerateConditions->None] > 0
Skipped - no semantic math Skipped - no semantic math - -
29.6.E14 lim p C 2 p + 2 C 2 p = k 2 ( 1 + k ) 2 subscript 𝑝 subscript 𝐶 2 𝑝 2 subscript 𝐶 2 𝑝 superscript 𝑘 2 superscript 1 superscript 𝑘 2 {\displaystyle{\displaystyle\lim_{p\to\infty}\frac{C_{2p+2}}{C_{2p}}=\frac{k^{% 2}}{(1+k^{\prime})^{2}}}}
\lim_{p\to\infty}\frac{C_{2p+2}}{C_{2p}} = \frac{k^{2}}{(1+k^{\prime})^{2}}
ν 2 n + 1 , ν = 2 n + 1 , m > n formulae-sequence 𝜈 2 𝑛 1 formulae-sequence 𝜈 2 𝑛 1 𝑚 𝑛 {\displaystyle{\displaystyle\nu\neq 2n+1,\nu=2n+1,m>n}}
limit((C[2*p + 2])/(C[2*p]), p = infinity) = ((k)^(2))/((1 +sqrt(1 - (k)^(2)))^(2))
Limit[Divide[Subscript[C, 2*p + 2],Subscript[C, 2*p]], p -> Infinity, GenerateConditions->None] == Divide[(k)^(2),(1 +Sqrt[1 - (k)^(2)])^(2)]
Skipped - no semantic math Skipped - no semantic math - -
29.6.E20 p = 0 A 2 p + 1 2 = 1 superscript subscript 𝑝 0 superscript subscript 𝐴 2 𝑝 1 2 1 {\displaystyle{\displaystyle\sum_{p=0}^{\infty}A_{2p+1}^{2}=1}}
\sum_{p=0}^{\infty}A_{2p+1}^{2} = 1

sum((A[2*p + 1])^(2), p = 0..infinity) = 1
Sum[(Subscript[A, 2*p + 1])^(2), {p, 0, Infinity}, GenerateConditions->None] == 1
Skipped - no semantic math Skipped - no semantic math - -
29.6.E21 p = 0 A 2 p + 1 > 0 superscript subscript 𝑝 0 subscript 𝐴 2 𝑝 1 0 {\displaystyle{\displaystyle\sum_{p=0}^{\infty}A_{2p+1}>0}}
\sum_{p=0}^{\infty}A_{2p+1} > 0

sum(A[2*p + 1], p = 0..infinity) > 0
Sum[Subscript[A, 2*p + 1], {p, 0, Infinity}, GenerateConditions->None] > 0
Skipped - no semantic math Skipped - no semantic math - -
29.6.E22 lim p A 2 p + 1 A 2 p - 1 = k 2 ( 1 + k ) 2 subscript 𝑝 subscript 𝐴 2 𝑝 1 subscript 𝐴 2 𝑝 1 superscript 𝑘 2 superscript 1 superscript 𝑘 2 {\displaystyle{\displaystyle\lim_{p\to\infty}\frac{A_{2p+1}}{A_{2p-1}}=\frac{k% ^{2}}{(1+k^{\prime})^{2}}}}
\lim_{p\to\infty}\frac{A_{2p+1}}{A_{2p-1}} = \frac{k^{2}}{(1+k^{\prime})^{2}}
ν 2 n + 1 , ν = 2 n + 1 , m > n formulae-sequence 𝜈 2 𝑛 1 formulae-sequence 𝜈 2 𝑛 1 𝑚 𝑛 {\displaystyle{\displaystyle\nu\neq 2n+1,\nu=2n+1,m>n}}
limit((A[2*p + 1])/(A[2*p - 1]), p = infinity) = ((k)^(2))/((1 +sqrt(1 - (k)^(2)))^(2))
Limit[Divide[Subscript[A, 2*p + 1],Subscript[A, 2*p - 1]], p -> Infinity, GenerateConditions->None] == Divide[(k)^(2),(1 +Sqrt[1 - (k)^(2)])^(2)]
Skipped - no semantic math Skipped - no semantic math - -
29.6#Ex4 α p = 1 2 ( ν - 2 p - 1 ) ( ν + 2 p + 2 ) k 2 subscript 𝛼 𝑝 1 2 𝜈 2 𝑝 1 𝜈 2 𝑝 2 superscript 𝑘 2 {\displaystyle{\displaystyle\alpha_{p}=\tfrac{1}{2}(\nu-2p-1)(\nu+2p+2)k^{2}}}
\alpha_{p} = \tfrac{1}{2}(\nu-2p-1)(\nu+2p+2)k^{2}

alpha[p] = (1)/(2)*(nu - 2*p - 1)*(nu + 2*p + 2)*(k)^(2)
Subscript[\[Alpha], p] == Divide[1,2]*(\[Nu]- 2*p - 1)*(\[Nu]+ 2*p + 2)*(k)^(2)
Skipped - no semantic math Skipped - no semantic math - -
29.6#Ex6 γ p = 1 2 ( ν - 2 p ) ( ν + 2 p + 1 ) k 2 subscript 𝛾 𝑝 1 2 𝜈 2 𝑝 𝜈 2 𝑝 1 superscript 𝑘 2 {\displaystyle{\displaystyle\gamma_{p}=\tfrac{1}{2}(\nu-2p)(\nu+2p+1)k^{2}}}
\gamma_{p} = \tfrac{1}{2}(\nu-2p)(\nu+2p+1)k^{2}

((1)/(2)*(nu - 2*p + 2)*(nu + 2*p - 1)*(k)^(2)) = (1)/(2)*(nu - 2*p)*(nu + 2*p + 1)*(k)^(2)
(Divide[1,2]*(\[Nu]- 2*p + 2)*(\[Nu]+ 2*p - 1)*(k)^(2)) == Divide[1,2]*(\[Nu]- 2*p)*(\[Nu]+ 2*p + 1)*(k)^(2)
Skipped - no semantic math Skipped - no semantic math - -
29.6.E28 p = 0 C 2 p + 1 > 0 superscript subscript 𝑝 0 subscript 𝐶 2 𝑝 1 0 {\displaystyle{\displaystyle\sum_{p=0}^{\infty}C_{2p+1}>0}}
\sum_{p=0}^{\infty}C_{2p+1} > 0

sum(C[2*p + 1], p = 0..infinity) > 0
Sum[Subscript[C, 2*p + 1], {p, 0, Infinity}, GenerateConditions->None] > 0
Skipped - no semantic math Skipped - no semantic math - -
29.6.E29 lim p C 2 p + 1 C 2 p - 1 = k 2 ( 1 + k ) 2 subscript 𝑝 subscript 𝐶 2 𝑝 1 subscript 𝐶 2 𝑝 1 superscript 𝑘 2 superscript 1 superscript 𝑘 2 {\displaystyle{\displaystyle\lim_{p\to\infty}\frac{C_{2p+1}}{C_{2p-1}}=\frac{k% ^{2}}{(1+k^{\prime})^{2}}}}
\lim_{p\to\infty}\frac{C_{2p+1}}{C_{2p-1}} = \frac{k^{2}}{(1+k^{\prime})^{2}}
ν 2 n + 2 , ν = 2 n + 2 , m > n formulae-sequence 𝜈 2 𝑛 2 formulae-sequence 𝜈 2 𝑛 2 𝑚 𝑛 {\displaystyle{\displaystyle\nu\neq 2n+2,\nu=2n+2,m>n}}
limit((C[2*p + 1])/(C[2*p - 1]), p = infinity) = ((k)^(2))/((1 +sqrt(1 - (k)^(2)))^(2))
Limit[Divide[Subscript[C, 2*p + 1],Subscript[C, 2*p - 1]], p -> Infinity, GenerateConditions->None] == Divide[(k)^(2),(1 +Sqrt[1 - (k)^(2)])^(2)]
Skipped - no semantic math Skipped - no semantic math - -
29.6.E35 p = 0 B 2 p + 1 2 = 1 superscript subscript 𝑝 0 superscript subscript 𝐵 2 𝑝 1 2 1 {\displaystyle{\displaystyle\sum_{p=0}^{\infty}B_{2p+1}^{2}=1}}
\sum_{p=0}^{\infty}B_{2p+1}^{2} = 1

sum((B[2*p + 1])^(2), p = 0..infinity) = 1
Sum[(Subscript[B, 2*p + 1])^(2), {p, 0, Infinity}, GenerateConditions->None] == 1
Skipped - no semantic math Skipped - no semantic math - -
29.6.E36 p = 0 ( 2 p + 1 ) B 2 p + 1 > 0 superscript subscript 𝑝 0 2 𝑝 1 subscript 𝐵 2 𝑝 1 0 {\displaystyle{\displaystyle\sum_{p=0}^{\infty}(2p+1)B_{2p+1}>0}}
\sum_{p=0}^{\infty}(2p+1)B_{2p+1} > 0

sum((2*p + 1)*B[2*p + 1], p = 0..infinity) > 0
Sum[(2*p + 1)*Subscript[B, 2*p + 1], {p, 0, Infinity}, GenerateConditions->None] > 0
Skipped - no semantic math Skipped - no semantic math - -
29.6.E37 lim p B 2 p + 1 B 2 p - 1 = k 2 ( 1 + k ) 2 subscript 𝑝 subscript 𝐵 2 𝑝 1 subscript 𝐵 2 𝑝 1 superscript 𝑘 2 superscript 1 superscript 𝑘 2 {\displaystyle{\displaystyle\lim_{p\to\infty}\frac{B_{2p+1}}{B_{2p-1}}=\frac{k% ^{2}}{(1+k^{\prime})^{2}}}}
\lim_{p\to\infty}\frac{B_{2p+1}}{B_{2p-1}} = \frac{k^{2}}{(1+k^{\prime})^{2}}
ν 2 n + 1 , ν = 2 n + 1 , m > n formulae-sequence 𝜈 2 𝑛 1 formulae-sequence 𝜈 2 𝑛 1 𝑚 𝑛 {\displaystyle{\displaystyle\nu\neq 2n+1,\nu=2n+1,m>n}}
limit((B[2*p + 1])/(B[2*p - 1]), p = infinity) = ((k)^(2))/((1 +sqrt(1 - (k)^(2)))^(2))
Limit[Divide[Subscript[B, 2*p + 1],Subscript[B, 2*p - 1]], p -> Infinity, GenerateConditions->None] == Divide[(k)^(2),(1 +Sqrt[1 - (k)^(2)])^(2)]
Skipped - no semantic math Skipped - no semantic math - -
29.6#Ex7 α p = 1 2 ( ν - 2 p - 1 ) ( ν + 2 p + 2 ) k 2 subscript 𝛼 𝑝 1 2 𝜈 2 𝑝 1 𝜈 2 𝑝 2 superscript 𝑘 2 {\displaystyle{\displaystyle\alpha_{p}=\tfrac{1}{2}(\nu-2p-1)(\nu+2p+2)k^{2}}}
\alpha_{p} = \tfrac{1}{2}(\nu-2p-1)(\nu+2p+2)k^{2}

alpha[p] = (1)/(2)*(nu - 2*p - 1)*(nu + 2*p + 2)*(k)^(2)
Subscript[\[Alpha], p] == Divide[1,2]*(\[Nu]- 2*p - 1)*(\[Nu]+ 2*p + 2)*(k)^(2)
Skipped - no semantic math Skipped - no semantic math - -
29.6#Ex9 γ p = 1 2 ( ν - 2 p ) ( ν + 2 p + 1 ) k 2 subscript 𝛾 𝑝 1 2 𝜈 2 𝑝 𝜈 2 𝑝 1 superscript 𝑘 2 {\displaystyle{\displaystyle\gamma_{p}=\tfrac{1}{2}(\nu-2p)(\nu+2p+1)k^{2}}}
\gamma_{p} = \tfrac{1}{2}(\nu-2p)(\nu+2p+1)k^{2}

((1)/(2)*(nu - 2*p + 2)*(nu + 2*p - 1)*(k)^(2)) = (1)/(2)*(nu - 2*p)*(nu + 2*p + 1)*(k)^(2)
(Divide[1,2]*(\[Nu]- 2*p + 2)*(\[Nu]+ 2*p - 1)*(k)^(2)) == Divide[1,2]*(\[Nu]- 2*p)*(\[Nu]+ 2*p + 1)*(k)^(2)
Skipped - no semantic math Skipped - no semantic math - -
29.6.E43 p = 0 ( 2 p + 1 ) D 2 p + 1 > 0 superscript subscript 𝑝 0 2 𝑝 1 subscript 𝐷 2 𝑝 1 0 {\displaystyle{\displaystyle\sum_{p=0}^{\infty}(2p+1)D_{2p+1}>0}}
\sum_{p=0}^{\infty}(2p+1)D_{2p+1} > 0

sum((2*p + 1)*D[2*p + 1], p = 0..infinity) > 0
Sum[(2*p + 1)*Subscript[D, 2*p + 1], {p, 0, Infinity}, GenerateConditions->None] > 0
Skipped - no semantic math Skipped - no semantic math - -
29.6.E44 lim p D 2 p + 1 D 2 p - 1 = k 2 ( 1 + k ) 2 subscript 𝑝 subscript 𝐷 2 𝑝 1 subscript 𝐷 2 𝑝 1 superscript 𝑘 2 superscript 1 superscript 𝑘 2 {\displaystyle{\displaystyle\lim_{p\to\infty}\frac{D_{2p+1}}{D_{2p-1}}=\frac{k% ^{2}}{(1+k^{\prime})^{2}}}}
\lim_{p\to\infty}\frac{D_{2p+1}}{D_{2p-1}} = \frac{k^{2}}{(1+k^{\prime})^{2}}
ν 2 n + 2 , ν = 2 n + 2 , m > n formulae-sequence 𝜈 2 𝑛 2 formulae-sequence 𝜈 2 𝑛 2 𝑚 𝑛 {\displaystyle{\displaystyle\nu\neq 2n+2,\nu=2n+2,m>n}}
limit((D[2*p + 1])/(D[2*p - 1]), p = infinity) = ((k)^(2))/((1 +sqrt(1 - (k)^(2)))^(2))
Limit[Divide[Subscript[D, 2*p + 1],Subscript[D, 2*p - 1]], p -> Infinity, GenerateConditions->None] == Divide[(k)^(2),(1 +Sqrt[1 - (k)^(2)])^(2)]
Skipped - no semantic math Skipped - no semantic math - -
29.6.E50 p = 1 B 2 p 2 = 1 superscript subscript 𝑝 1 superscript subscript 𝐵 2 𝑝 2 1 {\displaystyle{\displaystyle\sum_{p=1}^{\infty}B_{2p}^{2}=1}}
\sum_{p=1}^{\infty}B_{2p}^{2} = 1

sum((B[2*p])^(2), p = 1..infinity) = 1
Sum[(Subscript[B, 2*p])^(2), {p, 1, Infinity}, GenerateConditions->None] == 1
Skipped - no semantic math Skipped - no semantic math - -
29.6.E51 p = 0 ( 2 p + 2 ) B 2 p + 2 > 0 superscript subscript 𝑝 0 2 𝑝 2 subscript 𝐵 2 𝑝 2 0 {\displaystyle{\displaystyle\sum_{p=0}^{\infty}(2p+2)B_{2p+2}>0}}
\sum_{p=0}^{\infty}(2p+2)B_{2p+2} > 0

sum((2*p + 2)*B[2*p + 2], p = 0..infinity) > 0
Sum[(2*p + 2)*Subscript[B, 2*p + 2], {p, 0, Infinity}, GenerateConditions->None] > 0
Skipped - no semantic math Skipped - no semantic math - -
29.6.E52 lim p B 2 p + 2 B 2 p = k 2 ( 1 + k ) 2 subscript 𝑝 subscript 𝐵 2 𝑝 2 subscript 𝐵 2 𝑝 superscript 𝑘 2 superscript 1 superscript 𝑘 2 {\displaystyle{\displaystyle\lim_{p\to\infty}\frac{B_{2p+2}}{B_{2p}}=\frac{k^{% 2}}{(1+k^{\prime})^{2}}}}
\lim_{p\to\infty}\frac{B_{2p+2}}{B_{2p}} = \frac{k^{2}}{(1+k^{\prime})^{2}}
ν 2 n + 2 , ν = 2 n + 2 , m > n formulae-sequence 𝜈 2 𝑛 2 formulae-sequence 𝜈 2 𝑛 2 𝑚 𝑛 {\displaystyle{\displaystyle\nu\neq 2n+2,\nu=2n+2,m>n}}
limit((B[2*p + 2])/(B[2*p]), p = infinity) = ((k)^(2))/((1 +sqrt(1 - (k)^(2)))^(2))
Limit[Divide[Subscript[B, 2*p + 2],Subscript[B, 2*p]], p -> Infinity, GenerateConditions->None] == Divide[(k)^(2),(1 +Sqrt[1 - (k)^(2)])^(2)]
Skipped - no semantic math Skipped - no semantic math - -
29.6#Ex10 α p = 1 2 ( ν - 2 p - 2 ) ( ν + 2 p + 3 ) k 2 subscript 𝛼 𝑝 1 2 𝜈 2 𝑝 2 𝜈 2 𝑝 3 superscript 𝑘 2 {\displaystyle{\displaystyle\alpha_{p}=\tfrac{1}{2}(\nu-2p-2)(\nu+2p+3)k^{2}}}
\alpha_{p} = \tfrac{1}{2}(\nu-2p-2)(\nu+2p+3)k^{2}

alpha[p] = (1)/(2)*(nu - 2*p - 2)*(nu + 2*p + 3)*(k)^(2)
Subscript[\[Alpha], p] == Divide[1,2]*(\[Nu]- 2*p - 2)*(\[Nu]+ 2*p + 3)*(k)^(2)
Skipped - no semantic math Skipped - no semantic math - -
29.6#Ex11 β p = ( 2 p + 2 ) 2 ( 2 - k 2 ) subscript 𝛽 𝑝 superscript 2 𝑝 2 2 2 superscript 𝑘 2 {\displaystyle{\displaystyle\beta_{p}=(2p+2)^{2}(2-k^{2})}}
\beta_{p} = (2p+2)^{2}(2-k^{2})

beta[p] = (2*p + 2)^(2)*(2 - (k)^(2))
Subscript[\[Beta], p] == (2*p + 2)^(2)*(2 - (k)^(2))
Skipped - no semantic math Skipped - no semantic math - -
29.6#Ex12 γ p = 1 2 ( ν - 2 p - 1 ) ( ν + 2 p + 2 ) k 2 subscript 𝛾 𝑝 1 2 𝜈 2 𝑝 1 𝜈 2 𝑝 2 superscript 𝑘 2 {\displaystyle{\displaystyle\gamma_{p}=\tfrac{1}{2}(\nu-2p-1)(\nu+2p+2)k^{2}}}
\gamma_{p} = \tfrac{1}{2}(\nu-2p-1)(\nu+2p+2)k^{2}

((1)/(2)*(nu - 2*p + 2)*(nu + 2*p - 1)*(k)^(2)) = (1)/(2)*(nu - 2*p - 1)*(nu + 2*p + 2)*(k)^(2)
(Divide[1,2]*(\[Nu]- 2*p + 2)*(\[Nu]+ 2*p - 1)*(k)^(2)) == Divide[1,2]*(\[Nu]- 2*p - 1)*(\[Nu]+ 2*p + 2)*(k)^(2)
Skipped - no semantic math Skipped - no semantic math - -
29.6.E57 ( 1 - 1 2 k 2 ) p = 1 D 2 p 2 - 1 2 k 2 p = 1 D 2 p D 2 p + 2 = 1 1 1 2 superscript 𝑘 2 superscript subscript 𝑝 1 superscript subscript 𝐷 2 𝑝 2 1 2 superscript 𝑘 2 superscript subscript 𝑝 1 subscript 𝐷 2 𝑝 subscript 𝐷 2 𝑝 2 1 {\displaystyle{\displaystyle\left(1-\tfrac{1}{2}k^{2}\right)\sum_{p=1}^{\infty% }D_{2p}^{2}-\tfrac{1}{2}k^{2}\sum_{p=1}^{\infty}D_{2p}D_{2p+2}=1}}
\left(1-\tfrac{1}{2}k^{2}\right)\sum_{p=1}^{\infty}D_{2p}^{2}-\tfrac{1}{2}k^{2}\sum_{p=1}^{\infty}D_{2p}D_{2p+2} = 1

(1 -(1)/(2)*(k)^(2))*sum((D[2*p])^(2), p = 1..infinity)-(1)/(2)*(k)^(2)* sum(D[2*p]*D[2*p + 2], p = 1..infinity) = 1
(1 -Divide[1,2]*(k)^(2))*Sum[(Subscript[D, 2*p])^(2), {p, 1, Infinity}, GenerateConditions->None]-Divide[1,2]*(k)^(2)* Sum[Subscript[D, 2*p]*Subscript[D, 2*p + 2], {p, 1, Infinity}, GenerateConditions->None] == 1
Skipped - no semantic math Skipped - no semantic math - -
29.6.E58 p = 0 ( 2 p + 2 ) D 2 p + 2 > 0 superscript subscript 𝑝 0 2 𝑝 2 subscript 𝐷 2 𝑝 2 0 {\displaystyle{\displaystyle\sum_{p=0}^{\infty}(2p+2)D_{2p+2}>0}}
\sum_{p=0}^{\infty}(2p+2)D_{2p+2} > 0

sum((2*p + 2)*D[2*p + 2], p = 0..infinity) > 0
Sum[(2*p + 2)*Subscript[D, 2*p + 2], {p, 0, Infinity}, GenerateConditions->None] > 0
Skipped - no semantic math Skipped - no semantic math - -
29.6.E59 lim p D 2 p + 2 D 2 p = k 2 ( 1 + k ) 2 subscript 𝑝 subscript 𝐷 2 𝑝 2 subscript 𝐷 2 𝑝 superscript 𝑘 2 superscript 1 superscript 𝑘 2 {\displaystyle{\displaystyle\lim_{p\to\infty}\frac{D_{2p+2}}{D_{2p}}=\frac{k^{% 2}}{(1+k^{\prime})^{2}}}}
\lim_{p\to\infty}\frac{D_{2p+2}}{D_{2p}} = \frac{k^{2}}{(1+k^{\prime})^{2}}
ν 2 n + 3 , ν = 2 n + 3 , m > n formulae-sequence 𝜈 2 𝑛 3 formulae-sequence 𝜈 2 𝑛 3 𝑚 𝑛 {\displaystyle{\displaystyle\nu\neq 2n+3,\nu=2n+3,m>n}}
limit((D[2*p + 2])/(D[2*p]), p = infinity) = ((k)^(2))/((1 +sqrt(1 - (k)^(2)))^(2))
Limit[Divide[Subscript[D, 2*p + 2],Subscript[D, 2*p]], p -> Infinity, GenerateConditions->None] == Divide[(k)^(2),(1 +Sqrt[1 - (k)^(2)])^(2)]
Skipped - no semantic math Skipped - no semantic math - -