28.33: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/28.33.E1 28.33.E1] || [[Item:Q8560|<math>\pderiv[2]{W}{x}+\pderiv[2]{W}{y}-\frac{\rho}{\tau}\pderiv[2]{W}{t} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\pderiv[2]{W}{x}+\pderiv[2]{W}{y}-\frac{\rho}{\tau}\pderiv[2]{W}{t} = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(W, [x$(2)])+ diff(W, [y$(2)])-(rho)/(tau)*diff(W, [t$(2)]) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[W, {x, 2}]+ D[W, {y, 2}]-Divide[\[Rho],\[Tau]]*D[W, {t, 2}] == 0</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 300]
| [https://dlmf.nist.gov/28.33.E1 28.33.E1] || <math qid="Q8560">\pderiv[2]{W}{x}+\pderiv[2]{W}{y}-\frac{\rho}{\tau}\pderiv[2]{W}{t} = 0</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\pderiv[2]{W}{x}+\pderiv[2]{W}{y}-\frac{\rho}{\tau}\pderiv[2]{W}{t} = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(W, [x$(2)])+ diff(W, [y$(2)])-(rho)/(tau)*diff(W, [t$(2)]) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[W, {x, 2}]+ D[W, {y, 2}]-Divide[\[Rho],\[Tau]]*D[W, {t, 2}] == 0</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 300]
|}
|}
</div>
</div>

Latest revision as of 12:09, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
28.33.E1 2 W x 2 + 2 W y 2 - ρ τ 2 W t 2 = 0 partial-derivative 𝑊 𝑥 2 partial-derivative 𝑊 𝑦 2 𝜌 𝜏 partial-derivative 𝑊 𝑡 2 0 {\displaystyle{\displaystyle\frac{{\partial}^{2}W}{{\partial x}^{2}}+\frac{{% \partial}^{2}W}{{\partial y}^{2}}-\frac{\rho}{\tau}\frac{{\partial}^{2}W}{{% \partial t}^{2}}=0}}
\pderiv[2]{W}{x}+\pderiv[2]{W}{y}-\frac{\rho}{\tau}\pderiv[2]{W}{t} = 0

diff(W, [x$(2)])+ diff(W, [y$(2)])-(rho)/(tau)*diff(W, [t$(2)]) = 0
D[W, {x, 2}]+ D[W, {y, 2}]-Divide[\[Rho],\[Tau]]*D[W, {t, 2}] == 0
Successful Successful - Successful [Tested: 300]