26.8: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/26.8.E1 26.8.E1] || [[Item:Q7826|<math>\Stirlingnumbers@{n}{n} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Stirlingnumbers@{n}{n} = 1</syntaxhighlight> || <math>n \geq 0</math> || <syntaxhighlight lang=mathematica>Stirling1(n, n) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>StirlingS1[n, n] == 1</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 3]
| [https://dlmf.nist.gov/26.8.E1 26.8.E1] || <math qid="Q7826">\Stirlingnumbers@{n}{n} = 1</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Stirlingnumbers@{n}{n} = 1</syntaxhighlight> || <math>n \geq 0</math> || <syntaxhighlight lang=mathematica>Stirling1(n, n) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>StirlingS1[n, n] == 1</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 3]
|-  
|-  
| [https://dlmf.nist.gov/26.8.E2 26.8.E2] || [[Item:Q7827|<math>\Stirlingnumbers@{1}{k} = \Kroneckerdelta{1}{k}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Stirlingnumbers@{1}{k} = \Kroneckerdelta{1}{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Stirling1(1, k) = KroneckerDelta[1, k]</syntaxhighlight> || <syntaxhighlight lang=mathematica>StirlingS1[1, k] == KroneckerDelta[1, k]</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
| [https://dlmf.nist.gov/26.8.E2 26.8.E2] || <math qid="Q7827">\Stirlingnumbers@{1}{k} = \Kroneckerdelta{1}{k}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Stirlingnumbers@{1}{k} = \Kroneckerdelta{1}{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Stirling1(1, k) = KroneckerDelta[1, k]</syntaxhighlight> || <syntaxhighlight lang=mathematica>StirlingS1[1, k] == KroneckerDelta[1, k]</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
|-  
|-  
| [https://dlmf.nist.gov/26.8.E4 26.8.E4] || [[Item:Q7829|<math>\StirlingnumberS@{n}{n} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\StirlingnumberS@{n}{n} = 1</syntaxhighlight> || <math>n \geq 0</math> || <syntaxhighlight lang=mathematica>Stirling2(n, n) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>StirlingS2[n, n] == 1</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 3]
| [https://dlmf.nist.gov/26.8.E4 26.8.E4] || <math qid="Q7829">\StirlingnumberS@{n}{n} = 1</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\StirlingnumberS@{n}{n} = 1</syntaxhighlight> || <math>n \geq 0</math> || <syntaxhighlight lang=mathematica>Stirling2(n, n) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>StirlingS2[n, n] == 1</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 3]
|-  
|-  
| [https://dlmf.nist.gov/26.8.E6 26.8.E6] || [[Item:Q7831|<math>\StirlingnumberS@{n}{k} = \frac{1}{k!}\sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j}j^{n}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\StirlingnumberS@{n}{k} = \frac{1}{k!}\sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j}j^{n}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Stirling2(n, k) = (1)/(factorial(k))*sum((- 1)^(k - j)*binomial(k,j)*(j)^(n), j = 0..k)</syntaxhighlight> || <syntaxhighlight lang=mathematica>StirlingS2[n, k] == Divide[1,(k)!]*Sum[(- 1)^(k - j)*Binomial[k,j]*(j)^(n), {j, 0, k}, GenerateConditions->None]</syntaxhighlight> || Aborted || Failure || Successful [Tested: 9] || Successful [Tested: 9]
| [https://dlmf.nist.gov/26.8.E6 26.8.E6] || <math qid="Q7831">\StirlingnumberS@{n}{k} = \frac{1}{k!}\sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j}j^{n}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\StirlingnumberS@{n}{k} = \frac{1}{k!}\sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j}j^{n}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Stirling2(n, k) = (1)/(factorial(k))*sum((- 1)^(k - j)*binomial(k,j)*(j)^(n), j = 0..k)</syntaxhighlight> || <syntaxhighlight lang=mathematica>StirlingS2[n, k] == Divide[1,(k)!]*Sum[(- 1)^(k - j)*Binomial[k,j]*(j)^(n), {j, 0, k}, GenerateConditions->None]</syntaxhighlight> || Aborted || Failure || Successful [Tested: 9] || Successful [Tested: 9]
|-  
|-  
| [https://dlmf.nist.gov/26.8.E7 26.8.E7] || [[Item:Q7832|<math>\sum_{k=0}^{n}\Stirlingnumbers@{n}{k}x^{k} = (x-n+1)_{n}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{k=0}^{n}\Stirlingnumbers@{n}{k}x^{k} = (x-n+1)_{n}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sum(Stirling1(n, k)*(x)^(k), k = 0..n) = x - n + 1[n]</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[StirlingS1[n, k]*(x)^(k), {k, 0, n}, GenerateConditions->None] == Subscript[x - n + 1, n]</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [9 / 9]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[1.5, Times[-1.0, Subscript[1.5, 1]]]
| [https://dlmf.nist.gov/26.8.E7 26.8.E7] || <math qid="Q7832">\sum_{k=0}^{n}\Stirlingnumbers@{n}{k}x^{k} = (x-n+1)_{n}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{k=0}^{n}\Stirlingnumbers@{n}{k}x^{k} = (x-n+1)_{n}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sum(Stirling1(n, k)*(x)^(k), k = 0..n) = x - n + 1[n]</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[StirlingS1[n, k]*(x)^(k), {k, 0, n}, GenerateConditions->None] == Subscript[x - n + 1, n]</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [9 / 9]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[1.5, Times[-1.0, Subscript[1.5, 1]]]
Test Values: {Rule[n, 1], Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[0.75, Times[-1.0, Subscript[0.5, 2]]]
Test Values: {Rule[n, 1], Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[0.75, Times[-1.0, Subscript[0.5, 2]]]
Test Values: {Rule[n, 2], Rule[x, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[n, 2], Rule[x, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/26.8.E8 26.8.E8] || [[Item:Q7833|<math>\sum_{n=0}^{\infty}\Stirlingnumbers@{n}{k}\frac{x^{n}}{n!} = \frac{(\ln@{1+x})^{k}}{k!}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{n=0}^{\infty}\Stirlingnumbers@{n}{k}\frac{x^{n}}{n!} = \frac{(\ln@{1+x})^{k}}{k!}</syntaxhighlight> || <math>|x| < 1</math> || <syntaxhighlight lang=mathematica>sum(Stirling1(n, k)*((x)^(n))/(factorial(n)), n = 0..infinity) = ((ln(1 + x))^(k))/(factorial(k))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[StirlingS1[n, k]*Divide[(x)^(n),(n)!], {n, 0, Infinity}, GenerateConditions->None] == Divide[(Log[1 + x])^(k),(k)!]</syntaxhighlight> || Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[-0.08220097694658271, NSum[Times[Power[0.5, n], Power[Factorial[n], -1], StirlingS1[n, 2]]
| [https://dlmf.nist.gov/26.8.E8 26.8.E8] || <math qid="Q7833">\sum_{n=0}^{\infty}\Stirlingnumbers@{n}{k}\frac{x^{n}}{n!} = \frac{(\ln@{1+x})^{k}}{k!}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{n=0}^{\infty}\Stirlingnumbers@{n}{k}\frac{x^{n}}{n!} = \frac{(\ln@{1+x})^{k}}{k!}</syntaxhighlight> || <math>|x| < 1</math> || <syntaxhighlight lang=mathematica>sum(Stirling1(n, k)*((x)^(n))/(factorial(n)), n = 0..infinity) = ((ln(1 + x))^(k))/(factorial(k))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[StirlingS1[n, k]*Divide[(x)^(n),(n)!], {n, 0, Infinity}, GenerateConditions->None] == Divide[(Log[1 + x])^(k),(k)!]</syntaxhighlight> || Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[-0.08220097694658271, NSum[Times[Power[0.5, n], Power[Factorial[n], -1], StirlingS1[n, 2]]
Test Values: {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], {Rule[k, 2], Rule[x, 0.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[-0.011109876001414293, NSum[Times[Power[0.5, n], Power[Factorial[n], -1], StirlingS1[n, 3]]
Test Values: {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], {Rule[k, 2], Rule[x, 0.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[-0.011109876001414293, NSum[Times[Power[0.5, n], Power[Factorial[n], -1], StirlingS1[n, 3]]
Test Values: {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], {Rule[k, 3], Rule[x, 0.5]}</syntaxhighlight><br></div></div>
Test Values: {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], {Rule[k, 3], Rule[x, 0.5]}</syntaxhighlight><br></div></div>
|-  
|-  
| [https://dlmf.nist.gov/26.8.E9 26.8.E9] || [[Item:Q7834|<math>\sum_{n,k=0}^{\infty}\Stirlingnumbers@{n}{k}\frac{x^{n}}{n!}y^{k} = (1+x)^{y}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{n,k=0}^{\infty}\Stirlingnumbers@{n}{k}\frac{x^{n}}{n!}y^{k} = (1+x)^{y}</syntaxhighlight> || <math>|x| < 1</math> || <syntaxhighlight lang=mathematica>sum(sum(Stirling1(n, k)*((x)^(n))/(factorial(n))*(y)^(k), k = 0..infinity), n = 0..infinity) = (1 + x)^(y)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[Sum[StirlingS1[n, k]*Divide[(x)^(n),(n)!]*(y)^(k), {k, 0, Infinity}, GenerateConditions->None], {n, 0, Infinity}, GenerateConditions->None] == (1 + x)^(y)</syntaxhighlight> || Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 6]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[-0.5443310539518174, NSum[Sum[Times[Power[-1.5, k], Power[0.5, n], Power[Factorial[n], -1], StirlingS1[n, k]]
| [https://dlmf.nist.gov/26.8.E9 26.8.E9] || <math qid="Q7834">\sum_{n,k=0}^{\infty}\Stirlingnumbers@{n}{k}\frac{x^{n}}{n!}y^{k} = (1+x)^{y}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{n,k=0}^{\infty}\Stirlingnumbers@{n}{k}\frac{x^{n}}{n!}y^{k} = (1+x)^{y}</syntaxhighlight> || <math>|x| < 1</math> || <syntaxhighlight lang=mathematica>sum(sum(Stirling1(n, k)*((x)^(n))/(factorial(n))*(y)^(k), k = 0..infinity), n = 0..infinity) = (1 + x)^(y)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[Sum[StirlingS1[n, k]*Divide[(x)^(n),(n)!]*(y)^(k), {k, 0, Infinity}, GenerateConditions->None], {n, 0, Infinity}, GenerateConditions->None] == (1 + x)^(y)</syntaxhighlight> || Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 6]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[-0.5443310539518174, NSum[Sum[Times[Power[-1.5, k], Power[0.5, n], Power[Factorial[n], -1], StirlingS1[n, k]]
Test Values: {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]], {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], {Rule[x, 0.5], Rule[y, -1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[-1.8371173070873836, NSum[Sum[Times[Power[0.5, n], Power[1.5, k], Power[Factorial[n], -1], StirlingS1[n, k]]
Test Values: {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]], {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], {Rule[x, 0.5], Rule[y, -1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[-1.8371173070873836, NSum[Sum[Times[Power[0.5, n], Power[1.5, k], Power[Factorial[n], -1], StirlingS1[n, k]]
Test Values: {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]], {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], {Rule[x, 0.5], Rule[y, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]], {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], {Rule[x, 0.5], Rule[y, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/26.8.E10 26.8.E10] || [[Item:Q7835|<math>\sum_{k=1}^{n}\StirlingnumberS@{n}{k}(x-k+1)_{k} = x^{n}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{k=1}^{n}\StirlingnumberS@{n}{k}(x-k+1)_{k} = x^{n}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sum(Stirling2(n, k)*x - k + 1[k], k = 1..n) = (x)^(n)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[StirlingS2[n, k]*Subscript[x - k + 1, k], {k, 1, n}, GenerateConditions->None] == (x)^(n)</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [9 / 9]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[-1.5, Subscript[1.5, 1]]
| [https://dlmf.nist.gov/26.8.E10 26.8.E10] || <math qid="Q7835">\sum_{k=1}^{n}\StirlingnumberS@{n}{k}(x-k+1)_{k} = x^{n}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{k=1}^{n}\StirlingnumberS@{n}{k}(x-k+1)_{k} = x^{n}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sum(Stirling2(n, k)*x - k + 1[k], k = 1..n) = (x)^(n)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[StirlingS2[n, k]*Subscript[x - k + 1, k], {k, 1, n}, GenerateConditions->None] == (x)^(n)</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [9 / 9]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[-1.5, Subscript[1.5, 1]]
Test Values: {Rule[n, 1], Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[-2.25, Subscript[0.5, 2], Subscript[1.5, 1]]
Test Values: {Rule[n, 1], Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[-2.25, Subscript[0.5, 2], Subscript[1.5, 1]]
Test Values: {Rule[n, 2], Rule[x, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[n, 2], Rule[x, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/26.8.E12 26.8.E12] || [[Item:Q7837|<math>\sum_{n=0}^{\infty}\StirlingnumberS@{n}{k}\frac{x^{n}}{n!} = \frac{(\expe^{x}-1)^{k}}{k!}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{n=0}^{\infty}\StirlingnumberS@{n}{k}\frac{x^{n}}{n!} = \frac{(\expe^{x}-1)^{k}}{k!}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sum(Stirling2(n, k)*((x)^(n))/(factorial(n)), n = 0..infinity) = ((exp(x)- 1)^(k))/(factorial(k))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[StirlingS2[n, k]*Divide[(x)^(n),(n)!], {n, 0, Infinity}, GenerateConditions->None] == Divide[(Exp[x]- 1)^(k),(k)!]</syntaxhighlight> || Failure || Failure || Error || Successful [Tested: 9]
| [https://dlmf.nist.gov/26.8.E12 26.8.E12] || <math qid="Q7837">\sum_{n=0}^{\infty}\StirlingnumberS@{n}{k}\frac{x^{n}}{n!} = \frac{(\expe^{x}-1)^{k}}{k!}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{n=0}^{\infty}\StirlingnumberS@{n}{k}\frac{x^{n}}{n!} = \frac{(\expe^{x}-1)^{k}}{k!}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sum(Stirling2(n, k)*((x)^(n))/(factorial(n)), n = 0..infinity) = ((exp(x)- 1)^(k))/(factorial(k))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[StirlingS2[n, k]*Divide[(x)^(n),(n)!], {n, 0, Infinity}, GenerateConditions->None] == Divide[(Exp[x]- 1)^(k),(k)!]</syntaxhighlight> || Failure || Failure || Error || Successful [Tested: 9]
|-  
|-  
| [https://dlmf.nist.gov/26.8.E13 26.8.E13] || [[Item:Q7838|<math>\sum_{n,k=0}^{\infty}\StirlingnumberS@{n}{k}\frac{x^{n}}{n!}y^{k} = \exp\left(y(\expe^{x}-1)\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{n,k=0}^{\infty}\StirlingnumberS@{n}{k}\frac{x^{n}}{n!}y^{k} = \exp\left(y(\expe^{x}-1)\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sum(sum(Stirling2(n, k)*((x)^(n))/(factorial(n))*(y)^(k), k = 0..infinity), n = 0..infinity) = exp(y*(exp(x)- 1))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[Sum[StirlingS2[n, k]*Divide[(x)^(n),(n)!]*(y)^(k), {k, 0, Infinity}, GenerateConditions->None], {n, 0, Infinity}, GenerateConditions->None] == Exp[y*(Exp[x]- 1)]</syntaxhighlight> || Translation Error || Translation Error || - || -
| [https://dlmf.nist.gov/26.8.E13 26.8.E13] || <math qid="Q7838">\sum_{n,k=0}^{\infty}\StirlingnumberS@{n}{k}\frac{x^{n}}{n!}y^{k} = \exp\left(y(\expe^{x}-1)\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{n,k=0}^{\infty}\StirlingnumberS@{n}{k}\frac{x^{n}}{n!}y^{k} = \exp\left(y(\expe^{x}-1)\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sum(sum(Stirling2(n, k)*((x)^(n))/(factorial(n))*(y)^(k), k = 0..infinity), n = 0..infinity) = exp(y*(exp(x)- 1))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[Sum[StirlingS2[n, k]*Divide[(x)^(n),(n)!]*(y)^(k), {k, 0, Infinity}, GenerateConditions->None], {n, 0, Infinity}, GenerateConditions->None] == Exp[y*(Exp[x]- 1)]</syntaxhighlight> || Translation Error || Translation Error || - || -
|-  
|-  
| [https://dlmf.nist.gov/26.8#Ex1 26.8#Ex1] || [[Item:Q7839|<math>\Stirlingnumbers@{n}{0} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Stirlingnumbers@{n}{0} = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Stirling1(n, 0) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>StirlingS1[n, 0] == 0</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
| [https://dlmf.nist.gov/26.8#Ex1 26.8#Ex1] || <math qid="Q7839">\Stirlingnumbers@{n}{0} = 0</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Stirlingnumbers@{n}{0} = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Stirling1(n, 0) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>StirlingS1[n, 0] == 0</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
|-  
|-  
| [https://dlmf.nist.gov/26.8#Ex2 26.8#Ex2] || [[Item:Q7840|<math>\Stirlingnumbers@{n}{1} = (-1)^{n-1}(n-1)!</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Stirlingnumbers@{n}{1} = (-1)^{n-1}(n-1)!</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Stirling1(n, 1) = (- 1)^(n - 1)*factorial(n - 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>StirlingS1[n, 1] == (- 1)^(n - 1)*(n - 1)!</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
| [https://dlmf.nist.gov/26.8#Ex2 26.8#Ex2] || <math qid="Q7840">\Stirlingnumbers@{n}{1} = (-1)^{n-1}(n-1)!</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Stirlingnumbers@{n}{1} = (-1)^{n-1}(n-1)!</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Stirling1(n, 1) = (- 1)^(n - 1)*factorial(n - 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>StirlingS1[n, 1] == (- 1)^(n - 1)*(n - 1)!</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
|-  
|-  
| [https://dlmf.nist.gov/26.8.E16 26.8.E16] || [[Item:Q7842|<math>-\Stirlingnumbers@{n}{n-1} = \StirlingnumberS@{n}{n-1}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>-\Stirlingnumbers@{n}{n-1} = \StirlingnumberS@{n}{n-1}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>- Stirling1(n, n - 1) = Stirling2(n, n - 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>- StirlingS1[n, n - 1] == StirlingS2[n, n - 1]</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 3]
| [https://dlmf.nist.gov/26.8.E16 26.8.E16] || <math qid="Q7842">-\Stirlingnumbers@{n}{n-1} = \StirlingnumberS@{n}{n-1}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>-\Stirlingnumbers@{n}{n-1} = \StirlingnumberS@{n}{n-1}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>- Stirling1(n, n - 1) = Stirling2(n, n - 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>- StirlingS1[n, n - 1] == StirlingS2[n, n - 1]</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 3]
|-  
|-  
| [https://dlmf.nist.gov/26.8.E16 26.8.E16] || [[Item:Q7842|<math>\StirlingnumberS@{n}{n-1} = \binom{n}{2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\StirlingnumberS@{n}{n-1} = \binom{n}{2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Stirling2(n, n - 1) = binomial(n,2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>StirlingS2[n, n - 1] == Binomial[n,2]</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 3]
| [https://dlmf.nist.gov/26.8.E16 26.8.E16] || <math qid="Q7842">\StirlingnumberS@{n}{n-1} = \binom{n}{2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\StirlingnumberS@{n}{n-1} = \binom{n}{2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Stirling2(n, n - 1) = binomial(n,2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>StirlingS2[n, n - 1] == Binomial[n,2]</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 3]
|-  
|-  
| [https://dlmf.nist.gov/26.8#Ex3 26.8#Ex3] || [[Item:Q7843|<math>\StirlingnumberS@{n}{0} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\StirlingnumberS@{n}{0} = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Stirling2(n, 0) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>StirlingS2[n, 0] == 0</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
| [https://dlmf.nist.gov/26.8#Ex3 26.8#Ex3] || <math qid="Q7843">\StirlingnumberS@{n}{0} = 0</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\StirlingnumberS@{n}{0} = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Stirling2(n, 0) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>StirlingS2[n, 0] == 0</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
|-  
|-  
| [https://dlmf.nist.gov/26.8#Ex4 26.8#Ex4] || [[Item:Q7844|<math>\StirlingnumberS@{n}{1} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\StirlingnumberS@{n}{1} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Stirling2(n, 1) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>StirlingS2[n, 1] == 1</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
| [https://dlmf.nist.gov/26.8#Ex4 26.8#Ex4] || <math qid="Q7844">\StirlingnumberS@{n}{1} = 1</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\StirlingnumberS@{n}{1} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Stirling2(n, 1) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>StirlingS2[n, 1] == 1</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
|-  
|-  
| [https://dlmf.nist.gov/26.8#Ex5 26.8#Ex5] || [[Item:Q7845|<math>\StirlingnumberS@{n}{2} = 2^{n-1}-1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\StirlingnumberS@{n}{2} = 2^{n-1}-1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Stirling2(n, 2) = (2)^(n - 1)- 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>StirlingS2[n, 2] == (2)^(n - 1)- 1</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
| [https://dlmf.nist.gov/26.8#Ex5 26.8#Ex5] || <math qid="Q7845">\StirlingnumberS@{n}{2} = 2^{n-1}-1</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\StirlingnumberS@{n}{2} = 2^{n-1}-1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Stirling2(n, 2) = (2)^(n - 1)- 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>StirlingS2[n, 2] == (2)^(n - 1)- 1</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
|-  
|-  
| [https://dlmf.nist.gov/26.8.E18 26.8.E18] || [[Item:Q7846|<math>\Stirlingnumbers@{n}{k} = \Stirlingnumbers@{n-1}{k-1}-(n-1)\Stirlingnumbers@{n-1}{k}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Stirlingnumbers@{n}{k} = \Stirlingnumbers@{n-1}{k-1}-(n-1)\Stirlingnumbers@{n-1}{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Stirling1(n, k) = Stirling1(n - 1, k - 1)-(n - 1)*Stirling1(n - 1, k)</syntaxhighlight> || <syntaxhighlight lang=mathematica>StirlingS1[n, k] == StirlingS1[n - 1, k - 1]-(n - 1)*StirlingS1[n - 1, k]</syntaxhighlight> || Failure || Failure || Successful [Tested: 9] || Successful [Tested: 9]
| [https://dlmf.nist.gov/26.8.E18 26.8.E18] || <math qid="Q7846">\Stirlingnumbers@{n}{k} = \Stirlingnumbers@{n-1}{k-1}-(n-1)\Stirlingnumbers@{n-1}{k}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Stirlingnumbers@{n}{k} = \Stirlingnumbers@{n-1}{k-1}-(n-1)\Stirlingnumbers@{n-1}{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Stirling1(n, k) = Stirling1(n - 1, k - 1)-(n - 1)*Stirling1(n - 1, k)</syntaxhighlight> || <syntaxhighlight lang=mathematica>StirlingS1[n, k] == StirlingS1[n - 1, k - 1]-(n - 1)*StirlingS1[n - 1, k]</syntaxhighlight> || Failure || Failure || Successful [Tested: 9] || Successful [Tested: 9]
|-  
|-  
| [https://dlmf.nist.gov/26.8.E19 26.8.E19] || [[Item:Q7847|<math>\binom{k}{h}\Stirlingnumbers@{n}{k} = \sum_{j=k-h}^{n-h}\binom{n}{j}\Stirlingnumbers@{n-j}{h}\Stirlingnumbers@{j}{k-h}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\binom{k}{h}\Stirlingnumbers@{n}{k} = \sum_{j=k-h}^{n-h}\binom{n}{j}\Stirlingnumbers@{n-j}{h}\Stirlingnumbers@{j}{k-h}</syntaxhighlight> || <math>n \geq k, k \geq h</math> || <syntaxhighlight lang=mathematica>binomial(k,h)*Stirling1(n, k) = sum(binomial(n,j)*Stirling1(n - j, h)*Stirling1(j, k - h), j = k - h..n - h)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Binomial[k,h]*StirlingS1[n, k] == Sum[Binomial[n,j]*StirlingS1[n - j, h]*StirlingS1[j, k - h], {j, k - h, n - h}, GenerateConditions->None]</syntaxhighlight> || Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [11 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 0.16976527263135505
| [https://dlmf.nist.gov/26.8.E19 26.8.E19] || <math qid="Q7847">\binom{k}{h}\Stirlingnumbers@{n}{k} = \sum_{j=k-h}^{n-h}\binom{n}{j}\Stirlingnumbers@{n-j}{h}\Stirlingnumbers@{j}{k-h}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\binom{k}{h}\Stirlingnumbers@{n}{k} = \sum_{j=k-h}^{n-h}\binom{n}{j}\Stirlingnumbers@{n-j}{h}\Stirlingnumbers@{j}{k-h}</syntaxhighlight> || <math>n \geq k, k \geq h</math> || <syntaxhighlight lang=mathematica>binomial(k,h)*Stirling1(n, k) = sum(binomial(n,j)*Stirling1(n - j, h)*Stirling1(j, k - h), j = k - h..n - h)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Binomial[k,h]*StirlingS1[n, k] == Sum[Binomial[n,j]*StirlingS1[n - j, h]*StirlingS1[j, k - h], {j, k - h, n - h}, GenerateConditions->None]</syntaxhighlight> || Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [11 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 0.16976527263135505
Test Values: {Rule[h, -1.5], Rule[k, 1], Rule[n, 2]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -0.08488263631567752
Test Values: {Rule[h, -1.5], Rule[k, 1], Rule[n, 2]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -0.08488263631567752
Test Values: {Rule[h, -1.5], Rule[k, 1], Rule[n, 3]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[h, -1.5], Rule[k, 1], Rule[n, 3]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/26.8.E20 26.8.E20] || [[Item:Q7848|<math>\Stirlingnumbers@{n+1}{k+1} = n!\sum_{j=k}^{n}\frac{(-1)^{n-j}}{j!}\,\Stirlingnumbers@{j}{k}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Stirlingnumbers@{n+1}{k+1} = n!\sum_{j=k}^{n}\frac{(-1)^{n-j}}{j!}\,\Stirlingnumbers@{j}{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Stirling1(n + 1, k + 1) = factorial(n)*sum(((- 1)^(n - j))/(factorial(j))*Stirling1(j, k), j = k..n)</syntaxhighlight> || <syntaxhighlight lang=mathematica>StirlingS1[n + 1, k + 1] == (n)!*Sum[Divide[(- 1)^(n - j),(j)!]*StirlingS1[j, k], {j, k, n}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Successful [Tested: 9] || Successful [Tested: 9]
| [https://dlmf.nist.gov/26.8.E20 26.8.E20] || <math qid="Q7848">\Stirlingnumbers@{n+1}{k+1} = n!\sum_{j=k}^{n}\frac{(-1)^{n-j}}{j!}\,\Stirlingnumbers@{j}{k}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Stirlingnumbers@{n+1}{k+1} = n!\sum_{j=k}^{n}\frac{(-1)^{n-j}}{j!}\,\Stirlingnumbers@{j}{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Stirling1(n + 1, k + 1) = factorial(n)*sum(((- 1)^(n - j))/(factorial(j))*Stirling1(j, k), j = k..n)</syntaxhighlight> || <syntaxhighlight lang=mathematica>StirlingS1[n + 1, k + 1] == (n)!*Sum[Divide[(- 1)^(n - j),(j)!]*StirlingS1[j, k], {j, k, n}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Successful [Tested: 9] || Successful [Tested: 9]
|-  
|-  
| [https://dlmf.nist.gov/26.8.E21 26.8.E21] || [[Item:Q7849|<math>\Stirlingnumbers@{n+k+1}{k} = -\sum_{j=0}^{k}(n+j)\Stirlingnumbers@{n+j}{j}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Stirlingnumbers@{n+k+1}{k} = -\sum_{j=0}^{k}(n+j)\Stirlingnumbers@{n+j}{j}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Stirling1(n + k + 1, k) = - sum((n + j)*Stirling1(n + j, j), j = 0..k)</syntaxhighlight> || <syntaxhighlight lang=mathematica>StirlingS1[n + k + 1, k] == - Sum[(n + j)*StirlingS1[n + j, j], {j, 0, k}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Successful [Tested: 9] || Successful [Tested: 9]
| [https://dlmf.nist.gov/26.8.E21 26.8.E21] || <math qid="Q7849">\Stirlingnumbers@{n+k+1}{k} = -\sum_{j=0}^{k}(n+j)\Stirlingnumbers@{n+j}{j}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Stirlingnumbers@{n+k+1}{k} = -\sum_{j=0}^{k}(n+j)\Stirlingnumbers@{n+j}{j}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Stirling1(n + k + 1, k) = - sum((n + j)*Stirling1(n + j, j), j = 0..k)</syntaxhighlight> || <syntaxhighlight lang=mathematica>StirlingS1[n + k + 1, k] == - Sum[(n + j)*StirlingS1[n + j, j], {j, 0, k}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Successful [Tested: 9] || Successful [Tested: 9]
|-  
|-  
| [https://dlmf.nist.gov/26.8.E22 26.8.E22] || [[Item:Q7850|<math>\StirlingnumberS@{n}{k} = k\StirlingnumberS@{n-1}{k}+\StirlingnumberS@{n-1}{k-1}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\StirlingnumberS@{n}{k} = k\StirlingnumberS@{n-1}{k}+\StirlingnumberS@{n-1}{k-1}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Stirling2(n, k) = k*Stirling2(n - 1, k)+ Stirling2(n - 1, k - 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>StirlingS2[n, k] == k*StirlingS2[n - 1, k]+ StirlingS2[n - 1, k - 1]</syntaxhighlight> || Failure || Failure || Successful [Tested: 9] || Successful [Tested: 9]
| [https://dlmf.nist.gov/26.8.E22 26.8.E22] || <math qid="Q7850">\StirlingnumberS@{n}{k} = k\StirlingnumberS@{n-1}{k}+\StirlingnumberS@{n-1}{k-1}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\StirlingnumberS@{n}{k} = k\StirlingnumberS@{n-1}{k}+\StirlingnumberS@{n-1}{k-1}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Stirling2(n, k) = k*Stirling2(n - 1, k)+ Stirling2(n - 1, k - 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>StirlingS2[n, k] == k*StirlingS2[n - 1, k]+ StirlingS2[n - 1, k - 1]</syntaxhighlight> || Failure || Failure || Successful [Tested: 9] || Successful [Tested: 9]
|-  
|-  
| [https://dlmf.nist.gov/26.8.E23 26.8.E23] || [[Item:Q7851|<math>\binom{k}{h}\StirlingnumberS@{n}{k} = \sum_{j=k-h}^{n-h}\binom{n}{j}\StirlingnumberS@{n-j}{h}\StirlingnumberS@{j}{k-h}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\binom{k}{h}\StirlingnumberS@{n}{k} = \sum_{j=k-h}^{n-h}\binom{n}{j}\StirlingnumberS@{n-j}{h}\StirlingnumberS@{j}{k-h}</syntaxhighlight> || <math>n \geq k, k \geq h</math> || <syntaxhighlight lang=mathematica>binomial(k,h)*Stirling2(n, k) = sum(binomial(n,j)*Stirling2(n - j, h)*Stirling2(j, k - h), j = k - h..n - h)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Binomial[k,h]*StirlingS2[n, k] == Sum[Binomial[n,j]*StirlingS2[n - j, h]*StirlingS2[j, k - h], {j, k - h, n - h}, GenerateConditions->None]</syntaxhighlight> || Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [22 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[-0.08488263631567752, Times[0.08488263631567751, StirlingS2[-1.5, -1.5], StirlingS2[2.5, 2.5]]]
| [https://dlmf.nist.gov/26.8.E23 26.8.E23] || <math qid="Q7851">\binom{k}{h}\StirlingnumberS@{n}{k} = \sum_{j=k-h}^{n-h}\binom{n}{j}\StirlingnumberS@{n-j}{h}\StirlingnumberS@{j}{k-h}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\binom{k}{h}\StirlingnumberS@{n}{k} = \sum_{j=k-h}^{n-h}\binom{n}{j}\StirlingnumberS@{n-j}{h}\StirlingnumberS@{j}{k-h}</syntaxhighlight> || <math>n \geq k, k \geq h</math> || <syntaxhighlight lang=mathematica>binomial(k,h)*Stirling2(n, k) = sum(binomial(n,j)*Stirling2(n - j, h)*Stirling2(j, k - h), j = k - h..n - h)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Binomial[k,h]*StirlingS2[n, k] == Sum[Binomial[n,j]*StirlingS2[n - j, h]*StirlingS2[j, k - h], {j, k - h, n - h}, GenerateConditions->None]</syntaxhighlight> || Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [22 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[-0.08488263631567752, Times[0.08488263631567751, StirlingS2[-1.5, -1.5], StirlingS2[2.5, 2.5]]]
Test Values: {Rule[h, -1.5], Rule[k, 1], Rule[n, 1]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[-0.08488263631567752, Times[-0.33953054526271004, StirlingS2[-0.5, -1.5], StirlingS2[2.5, 2.5]], Times[0.04850436360895858, StirlingS2[-1.5, -1.5], StirlingS2[3.5, 2.5]]]
Test Values: {Rule[h, -1.5], Rule[k, 1], Rule[n, 1]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[-0.08488263631567752, Times[-0.33953054526271004, StirlingS2[-0.5, -1.5], StirlingS2[2.5, 2.5]], Times[0.04850436360895858, StirlingS2[-1.5, -1.5], StirlingS2[3.5, 2.5]]]
Test Values: {Rule[h, -1.5], Rule[k, 1], Rule[n, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[h, -1.5], Rule[k, 1], Rule[n, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/26.8.E24 26.8.E24] || [[Item:Q7852|<math>\StirlingnumberS@{n}{k} = \sum_{j=k}^{n}\StirlingnumberS@{j-1}{k-1}k^{n-j}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\StirlingnumberS@{n}{k} = \sum_{j=k}^{n}\StirlingnumberS@{j-1}{k-1}k^{n-j}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Stirling2(n, k) = sum(Stirling2(j - 1, k - 1)*(k)^(n - j), j = k..n)</syntaxhighlight> || <syntaxhighlight lang=mathematica>StirlingS2[n, k] == Sum[StirlingS2[j - 1, k - 1]*(k)^(n - j), {j, k, n}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Successful [Tested: 9] || Successful [Tested: 9]
| [https://dlmf.nist.gov/26.8.E24 26.8.E24] || <math qid="Q7852">\StirlingnumberS@{n}{k} = \sum_{j=k}^{n}\StirlingnumberS@{j-1}{k-1}k^{n-j}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\StirlingnumberS@{n}{k} = \sum_{j=k}^{n}\StirlingnumberS@{j-1}{k-1}k^{n-j}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Stirling2(n, k) = sum(Stirling2(j - 1, k - 1)*(k)^(n - j), j = k..n)</syntaxhighlight> || <syntaxhighlight lang=mathematica>StirlingS2[n, k] == Sum[StirlingS2[j - 1, k - 1]*(k)^(n - j), {j, k, n}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Successful [Tested: 9] || Successful [Tested: 9]
|-  
|-  
| [https://dlmf.nist.gov/26.8.E25 26.8.E25] || [[Item:Q7853|<math>\StirlingnumberS@{n+1}{k+1} = \sum_{j=k}^{n}\binom{n}{j}\StirlingnumberS@{j}{k}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\StirlingnumberS@{n+1}{k+1} = \sum_{j=k}^{n}\binom{n}{j}\StirlingnumberS@{j}{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Stirling2(n + 1, k + 1) = sum(binomial(n,j)*Stirling2(j, k), j = k..n)</syntaxhighlight> || <syntaxhighlight lang=mathematica>StirlingS2[n + 1, k + 1] == Sum[Binomial[n,j]*StirlingS2[j, k], {j, k, n}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Successful [Tested: 9] || Successful [Tested: 9]
| [https://dlmf.nist.gov/26.8.E25 26.8.E25] || <math qid="Q7853">\StirlingnumberS@{n+1}{k+1} = \sum_{j=k}^{n}\binom{n}{j}\StirlingnumberS@{j}{k}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\StirlingnumberS@{n+1}{k+1} = \sum_{j=k}^{n}\binom{n}{j}\StirlingnumberS@{j}{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Stirling2(n + 1, k + 1) = sum(binomial(n,j)*Stirling2(j, k), j = k..n)</syntaxhighlight> || <syntaxhighlight lang=mathematica>StirlingS2[n + 1, k + 1] == Sum[Binomial[n,j]*StirlingS2[j, k], {j, k, n}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Successful [Tested: 9] || Successful [Tested: 9]
|-  
|-  
| [https://dlmf.nist.gov/26.8.E26 26.8.E26] || [[Item:Q7854|<math>\StirlingnumberS@{n+k+1}{k} = \sum_{j=0}^{k}j\StirlingnumberS@{n+j}{j}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\StirlingnumberS@{n+k+1}{k} = \sum_{j=0}^{k}j\StirlingnumberS@{n+j}{j}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Stirling2(n + k + 1, k) = sum(j*Stirling2(n + j, j), j = 0..k)</syntaxhighlight> || <syntaxhighlight lang=mathematica>StirlingS2[n + k + 1, k] == Sum[j*StirlingS2[n + j, j], {j, 0, k}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || Successful [Tested: 9] || Successful [Tested: 9]
| [https://dlmf.nist.gov/26.8.E26 26.8.E26] || <math qid="Q7854">\StirlingnumberS@{n+k+1}{k} = \sum_{j=0}^{k}j\StirlingnumberS@{n+j}{j}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\StirlingnumberS@{n+k+1}{k} = \sum_{j=0}^{k}j\StirlingnumberS@{n+j}{j}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Stirling2(n + k + 1, k) = sum(j*Stirling2(n + j, j), j = 0..k)</syntaxhighlight> || <syntaxhighlight lang=mathematica>StirlingS2[n + k + 1, k] == Sum[j*StirlingS2[n + j, j], {j, 0, k}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || Successful [Tested: 9] || Successful [Tested: 9]
|-  
|-  
| [https://dlmf.nist.gov/26.8.E27 26.8.E27] || [[Item:Q7855|<math>\Stirlingnumbers@{n}{n-k} = \sum_{j=0}^{k}(-1)^{j}\binom{n-1+j}{k+j}\,\binom{n+k}{k-j}\*\StirlingnumberS@{k+j}{j}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Stirlingnumbers@{n}{n-k} = \sum_{j=0}^{k}(-1)^{j}\binom{n-1+j}{k+j}\,\binom{n+k}{k-j}\*\StirlingnumberS@{k+j}{j}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Stirling1(n, n - k) = sum((- 1)^(j)*binomial(n - 1 + j,k + j)*binomial(n + k,k - j)* Stirling2(k + j, j), j = 0..k)</syntaxhighlight> || <syntaxhighlight lang=mathematica>StirlingS1[n, n - k] == Sum[(- 1)^(j)*Binomial[n - 1 + j,k + j]*Binomial[n + k,k - j]* StirlingS2[k + j, j], {j, 0, k}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Successful [Tested: 9] || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 9]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: StirlingS1[1.0, -1.0]
| [https://dlmf.nist.gov/26.8.E27 26.8.E27] || <math qid="Q7855">\Stirlingnumbers@{n}{n-k} = \sum_{j=0}^{k}(-1)^{j}\binom{n-1+j}{k+j}\,\binom{n+k}{k-j}\*\StirlingnumberS@{k+j}{j}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Stirlingnumbers@{n}{n-k} = \sum_{j=0}^{k}(-1)^{j}\binom{n-1+j}{k+j}\,\binom{n+k}{k-j}\*\StirlingnumberS@{k+j}{j}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Stirling1(n, n - k) = sum((- 1)^(j)*binomial(n - 1 + j,k + j)*binomial(n + k,k - j)* Stirling2(k + j, j), j = 0..k)</syntaxhighlight> || <syntaxhighlight lang=mathematica>StirlingS1[n, n - k] == Sum[(- 1)^(j)*Binomial[n - 1 + j,k + j]*Binomial[n + k,k - j]* StirlingS2[k + j, j], {j, 0, k}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Successful [Tested: 9] || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 9]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: StirlingS1[1.0, -1.0]
Test Values: {Rule[k, 2], Rule[n, 1]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: StirlingS1[1.0, -2.0]
Test Values: {Rule[k, 2], Rule[n, 1]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: StirlingS1[1.0, -2.0]
Test Values: {Rule[k, 3], Rule[n, 1]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[k, 3], Rule[n, 1]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/26.8.E28 26.8.E28] || [[Item:Q7856|<math>\sum_{k=1}^{n}\Stirlingnumbers@{n}{k} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{k=1}^{n}\Stirlingnumbers@{n}{k} = 0</syntaxhighlight> || <math>n > 1</math> || <syntaxhighlight lang=mathematica>sum(Stirling1(n, k), k = 1..n) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[StirlingS1[n, k], {k, 1, n}, GenerateConditions->None] == 0</syntaxhighlight> || Failure || Failure || Successful [Tested: 2] || Successful [Tested: 2]
| [https://dlmf.nist.gov/26.8.E28 26.8.E28] || <math qid="Q7856">\sum_{k=1}^{n}\Stirlingnumbers@{n}{k} = 0</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{k=1}^{n}\Stirlingnumbers@{n}{k} = 0</syntaxhighlight> || <math>n > 1</math> || <syntaxhighlight lang=mathematica>sum(Stirling1(n, k), k = 1..n) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[StirlingS1[n, k], {k, 1, n}, GenerateConditions->None] == 0</syntaxhighlight> || Failure || Failure || Successful [Tested: 2] || Successful [Tested: 2]
|-  
|-  
| [https://dlmf.nist.gov/26.8.E29 26.8.E29] || [[Item:Q7857|<math>\sum_{k=1}^{n}(-1)^{n-k}\Stirlingnumbers@{n}{k} = n!</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{k=1}^{n}(-1)^{n-k}\Stirlingnumbers@{n}{k} = n!</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sum((- 1)^(n - k)* Stirling1(n, k), k = 1..n) = factorial(n)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[(- 1)^(n - k)* StirlingS1[n, k], {k, 1, n}, GenerateConditions->None] == (n)!</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
| [https://dlmf.nist.gov/26.8.E29 26.8.E29] || <math qid="Q7857">\sum_{k=1}^{n}(-1)^{n-k}\Stirlingnumbers@{n}{k} = n!</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{k=1}^{n}(-1)^{n-k}\Stirlingnumbers@{n}{k} = n!</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sum((- 1)^(n - k)* Stirling1(n, k), k = 1..n) = factorial(n)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[(- 1)^(n - k)* StirlingS1[n, k], {k, 1, n}, GenerateConditions->None] == (n)!</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
|-  
|-  
| [https://dlmf.nist.gov/26.8.E30 26.8.E30] || [[Item:Q7858|<math>\sum_{j=k}^{n}\Stirlingnumbers@{n+1}{j+1}\,n^{j-k} = \Stirlingnumbers@{n}{k}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{j=k}^{n}\Stirlingnumbers@{n+1}{j+1}\,n^{j-k} = \Stirlingnumbers@{n}{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sum(Stirling1(n + 1, j + 1)*(n)^(j - k), j = k..n) = Stirling1(n, k)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[StirlingS1[n + 1, j + 1]*(n)^(j - k), {j, k, n}, GenerateConditions->None] == StirlingS1[n, k]</syntaxhighlight> || Failure || Successful || Successful [Tested: 9] || Successful [Tested: 9]
| [https://dlmf.nist.gov/26.8.E30 26.8.E30] || <math qid="Q7858">\sum_{j=k}^{n}\Stirlingnumbers@{n+1}{j+1}\,n^{j-k} = \Stirlingnumbers@{n}{k}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{j=k}^{n}\Stirlingnumbers@{n+1}{j+1}\,n^{j-k} = \Stirlingnumbers@{n}{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sum(Stirling1(n + 1, j + 1)*(n)^(j - k), j = k..n) = Stirling1(n, k)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[StirlingS1[n + 1, j + 1]*(n)^(j - k), {j, k, n}, GenerateConditions->None] == StirlingS1[n, k]</syntaxhighlight> || Failure || Successful || Successful [Tested: 9] || Successful [Tested: 9]
|-  
|-  
| [https://dlmf.nist.gov/26.8.E33 26.8.E33] || [[Item:Q7861|<math>\StirlingnumberS@{n}{n-k} = \sum_{j=0}^{k}(-1)^{j}\binom{n-1+j}{k+j}\binom{n+k}{k-j}\*\Stirlingnumbers@{k+j}{j}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\StirlingnumberS@{n}{n-k} = \sum_{j=0}^{k}(-1)^{j}\binom{n-1+j}{k+j}\binom{n+k}{k-j}\*\Stirlingnumbers@{k+j}{j}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Stirling2(n, n - k) = sum((- 1)^(j)*binomial(n - 1 + j,k + j)*binomial(n + k,k - j)* Stirling1(k + j, j), j = 0..k)</syntaxhighlight> || <syntaxhighlight lang=mathematica>StirlingS2[n, n - k] == Sum[(- 1)^(j)*Binomial[n - 1 + j,k + j]*Binomial[n + k,k - j]* StirlingS1[k + j, j], {j, 0, k}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Successful [Tested: 9] || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 9]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: StirlingS2[1.0, -1.0]
| [https://dlmf.nist.gov/26.8.E33 26.8.E33] || <math qid="Q7861">\StirlingnumberS@{n}{n-k} = \sum_{j=0}^{k}(-1)^{j}\binom{n-1+j}{k+j}\binom{n+k}{k-j}\*\Stirlingnumbers@{k+j}{j}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\StirlingnumberS@{n}{n-k} = \sum_{j=0}^{k}(-1)^{j}\binom{n-1+j}{k+j}\binom{n+k}{k-j}\*\Stirlingnumbers@{k+j}{j}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Stirling2(n, n - k) = sum((- 1)^(j)*binomial(n - 1 + j,k + j)*binomial(n + k,k - j)* Stirling1(k + j, j), j = 0..k)</syntaxhighlight> || <syntaxhighlight lang=mathematica>StirlingS2[n, n - k] == Sum[(- 1)^(j)*Binomial[n - 1 + j,k + j]*Binomial[n + k,k - j]* StirlingS1[k + j, j], {j, 0, k}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Successful [Tested: 9] || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 9]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: StirlingS2[1.0, -1.0]
Test Values: {Rule[k, 2], Rule[n, 1]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: StirlingS2[1.0, -2.0]
Test Values: {Rule[k, 2], Rule[n, 1]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: StirlingS2[1.0, -2.0]
Test Values: {Rule[k, 3], Rule[n, 1]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[k, 3], Rule[n, 1]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/26.8.E34 26.8.E34] || [[Item:Q7862|<math>\sum_{j=0}^{n}j^{k}x^{j} = \sum_{j=0}^{k}\StirlingnumberS@{k}{j}x^{j}\deriv[j]{}{x}\left(\frac{1-x^{n+1}}{1-x}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{j=0}^{n}j^{k}x^{j} = \sum_{j=0}^{k}\StirlingnumberS@{k}{j}x^{j}\deriv[j]{}{x}\left(\frac{1-x^{n+1}}{1-x}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sum((j)^(k)* (x)^(j), j = 0..n) = sum(Stirling2(k, j)*(x)^(j)* diff((1 - (x)^(n + 1))/(1 - x), [x$(j)]), j = 0..k)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[(j)^(k)* (x)^(j), {j, 0, n}, GenerateConditions->None] == Sum[StirlingS2[k, j]*(x)^(j)* D[Divide[1 - (x)^(n + 1),1 - x], {x, j}], {j, 0, k}, GenerateConditions->None]</syntaxhighlight> || Aborted || Failure || Skipped - Because timed out || Skipped - Because timed out
| [https://dlmf.nist.gov/26.8.E34 26.8.E34] || <math qid="Q7862">\sum_{j=0}^{n}j^{k}x^{j} = \sum_{j=0}^{k}\StirlingnumberS@{k}{j}x^{j}\deriv[j]{}{x}\left(\frac{1-x^{n+1}}{1-x}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{j=0}^{n}j^{k}x^{j} = \sum_{j=0}^{k}\StirlingnumberS@{k}{j}x^{j}\deriv[j]{}{x}\left(\frac{1-x^{n+1}}{1-x}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sum((j)^(k)* (x)^(j), j = 0..n) = sum(Stirling2(k, j)*(x)^(j)* diff((1 - (x)^(n + 1))/(1 - x), [x$(j)]), j = 0..k)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[(j)^(k)* (x)^(j), {j, 0, n}, GenerateConditions->None] == Sum[StirlingS2[k, j]*(x)^(j)* D[Divide[1 - (x)^(n + 1),1 - x], {x, j}], {j, 0, k}, GenerateConditions->None]</syntaxhighlight> || Aborted || Failure || Skipped - Because timed out || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/26.8.E35 26.8.E35] || [[Item:Q7863|<math>\sum_{j=0}^{n}j^{k} = \sum_{j=0}^{k}j!\StirlingnumberS@{k}{j}\binom{n+1}{j+1}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{j=0}^{n}j^{k} = \sum_{j=0}^{k}j!\StirlingnumberS@{k}{j}\binom{n+1}{j+1}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sum((j)^(k), j = 0..n) = sum(factorial(j)*Stirling2(k, j)*binomial(n + 1,j + 1), j = 0..k)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[(j)^(k), {j, 0, n}, GenerateConditions->None] == Sum[(j)!*StirlingS2[k, j]*Binomial[n + 1,j + 1], {j, 0, k}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Successful [Tested: 9] || Successful [Tested: 9]
| [https://dlmf.nist.gov/26.8.E35 26.8.E35] || <math qid="Q7863">\sum_{j=0}^{n}j^{k} = \sum_{j=0}^{k}j!\StirlingnumberS@{k}{j}\binom{n+1}{j+1}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{j=0}^{n}j^{k} = \sum_{j=0}^{k}j!\StirlingnumberS@{k}{j}\binom{n+1}{j+1}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sum((j)^(k), j = 0..n) = sum(factorial(j)*Stirling2(k, j)*binomial(n + 1,j + 1), j = 0..k)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[(j)^(k), {j, 0, n}, GenerateConditions->None] == Sum[(j)!*StirlingS2[k, j]*Binomial[n + 1,j + 1], {j, 0, k}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Successful [Tested: 9] || Successful [Tested: 9]
|-  
|-  
| [https://dlmf.nist.gov/26.8.E36 26.8.E36] || [[Item:Q7864|<math>\sum_{k=0}^{n}(-1)^{n-k}k!\StirlingnumberS@{n}{k} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{k=0}^{n}(-1)^{n-k}k!\StirlingnumberS@{n}{k} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sum((- 1)^(n - k)* factorial(k)*Stirling2(n, k), k = 0..n) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[(- 1)^(n - k)* (k)!*StirlingS2[n, k], {k, 0, n}, GenerateConditions->None] == 1</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
| [https://dlmf.nist.gov/26.8.E36 26.8.E36] || <math qid="Q7864">\sum_{k=0}^{n}(-1)^{n-k}k!\StirlingnumberS@{n}{k} = 1</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{k=0}^{n}(-1)^{n-k}k!\StirlingnumberS@{n}{k} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sum((- 1)^(n - k)* factorial(k)*Stirling2(n, k), k = 0..n) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[(- 1)^(n - k)* (k)!*StirlingS2[n, k], {k, 0, n}, GenerateConditions->None] == 1</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/26.8.E38 26.8.E38] || [[Item:Q7866|<math>A^{-1} = B</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>A^{-1} = B</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(A)^(- 1) = B</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(A)^(- 1) == B</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/26.8.E38 26.8.E38] || <math qid="Q7866">A^{-1} = B</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>A^{-1} = B</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(A)^(- 1) = B</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(A)^(- 1) == B</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-  
|-  
| [https://dlmf.nist.gov/26.8.E39 26.8.E39] || [[Item:Q7867|<math>\sum_{j=k}^{n}\Stirlingnumbers@{j}{k}\StirlingnumberS@{n}{j} = \sum_{j=k}^{n}\Stirlingnumbers@{n}{j}\StirlingnumberS@{j}{k}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{j=k}^{n}\Stirlingnumbers@{j}{k}\StirlingnumberS@{n}{j} = \sum_{j=k}^{n}\Stirlingnumbers@{n}{j}\StirlingnumberS@{j}{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sum(Stirling1(j, k)*Stirling2(n, j), j = k..n) = sum(Stirling1(n, j)*Stirling2(j, k), j = k..n)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[StirlingS1[j, k]*StirlingS2[n, j], {j, k, n}, GenerateConditions->None] == Sum[StirlingS1[n, j]*StirlingS2[j, k], {j, k, n}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Successful [Tested: 9] || Successful [Tested: 9]
| [https://dlmf.nist.gov/26.8.E39 26.8.E39] || <math qid="Q7867">\sum_{j=k}^{n}\Stirlingnumbers@{j}{k}\StirlingnumberS@{n}{j} = \sum_{j=k}^{n}\Stirlingnumbers@{n}{j}\StirlingnumberS@{j}{k}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{j=k}^{n}\Stirlingnumbers@{j}{k}\StirlingnumberS@{n}{j} = \sum_{j=k}^{n}\Stirlingnumbers@{n}{j}\StirlingnumberS@{j}{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sum(Stirling1(j, k)*Stirling2(n, j), j = k..n) = sum(Stirling1(n, j)*Stirling2(j, k), j = k..n)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[StirlingS1[j, k]*StirlingS2[n, j], {j, k, n}, GenerateConditions->None] == Sum[StirlingS1[n, j]*StirlingS2[j, k], {j, k, n}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Successful [Tested: 9] || Successful [Tested: 9]
|-  
|-  
| [https://dlmf.nist.gov/26.8.E39 26.8.E39] || [[Item:Q7867|<math>\sum_{j=k}^{n}\Stirlingnumbers@{n}{j}\StirlingnumberS@{j}{k} = \Kroneckerdelta{n}{k}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{j=k}^{n}\Stirlingnumbers@{n}{j}\StirlingnumberS@{j}{k} = \Kroneckerdelta{n}{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sum(Stirling1(n, j)*Stirling2(j, k), j = k..n) = KroneckerDelta[n, k]</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[StirlingS1[n, j]*StirlingS2[j, k], {j, k, n}, GenerateConditions->None] == KroneckerDelta[n, k]</syntaxhighlight> || Failure || Failure || Successful [Tested: 9] || Successful [Tested: 9]
| [https://dlmf.nist.gov/26.8.E39 26.8.E39] || <math qid="Q7867">\sum_{j=k}^{n}\Stirlingnumbers@{n}{j}\StirlingnumberS@{j}{k} = \Kroneckerdelta{n}{k}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{j=k}^{n}\Stirlingnumbers@{n}{j}\StirlingnumberS@{j}{k} = \Kroneckerdelta{n}{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sum(Stirling1(n, j)*Stirling2(j, k), j = k..n) = KroneckerDelta[n, k]</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[StirlingS1[n, j]*StirlingS2[j, k], {j, k, n}, GenerateConditions->None] == KroneckerDelta[n, k]</syntaxhighlight> || Failure || Failure || Successful [Tested: 9] || Successful [Tested: 9]
|}
|}
</div>
</div>

Latest revision as of 12:05, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
26.8.E1 s ( n , n ) = 1 Stirling-number-first-kind-S 𝑛 𝑛 1 {\displaystyle{\displaystyle s\left(n,n\right)=1}}
\Stirlingnumbers@{n}{n} = 1
n 0 𝑛 0 {\displaystyle{\displaystyle n\geq 0}}
Stirling1(n, n) = 1
StirlingS1[n, n] == 1
Successful Failure - Successful [Tested: 3]
26.8.E2 s ( 1 , k ) = δ 1 , k Stirling-number-first-kind-S 1 𝑘 Kronecker 1 𝑘 {\displaystyle{\displaystyle s\left(1,k\right)=\delta_{1,k}}}
\Stirlingnumbers@{1}{k} = \Kroneckerdelta{1}{k}

Stirling1(1, k) = KroneckerDelta[1, k]
StirlingS1[1, k] == KroneckerDelta[1, k]
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
26.8.E4 S ( n , n ) = 1 Stirling-number-second-kind-S 𝑛 𝑛 1 {\displaystyle{\displaystyle S\left(n,n\right)=1}}
\StirlingnumberS@{n}{n} = 1
n 0 𝑛 0 {\displaystyle{\displaystyle n\geq 0}}
Stirling2(n, n) = 1
StirlingS2[n, n] == 1
Successful Failure - Successful [Tested: 3]
26.8.E6 S ( n , k ) = 1 k ! j = 0 k ( - 1 ) k - j ( k j ) j n Stirling-number-second-kind-S 𝑛 𝑘 1 𝑘 superscript subscript 𝑗 0 𝑘 superscript 1 𝑘 𝑗 binomial 𝑘 𝑗 superscript 𝑗 𝑛 {\displaystyle{\displaystyle S\left(n,k\right)=\frac{1}{k!}\sum_{j=0}^{k}(-1)^% {k-j}\genfrac{(}{)}{0.0pt}{}{k}{j}j^{n}}}
\StirlingnumberS@{n}{k} = \frac{1}{k!}\sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j}j^{n}

Stirling2(n, k) = (1)/(factorial(k))*sum((- 1)^(k - j)*binomial(k,j)*(j)^(n), j = 0..k)
StirlingS2[n, k] == Divide[1,(k)!]*Sum[(- 1)^(k - j)*Binomial[k,j]*(j)^(n), {j, 0, k}, GenerateConditions->None]
Aborted Failure Successful [Tested: 9] Successful [Tested: 9]
26.8.E7 k = 0 n s ( n , k ) x k = ( x - n + 1 ) n superscript subscript 𝑘 0 𝑛 Stirling-number-first-kind-S 𝑛 𝑘 superscript 𝑥 𝑘 subscript 𝑥 𝑛 1 𝑛 {\displaystyle{\displaystyle\sum_{k=0}^{n}s\left(n,k\right)x^{k}=(x-n+1)_{n}}}
\sum_{k=0}^{n}\Stirlingnumbers@{n}{k}x^{k} = (x-n+1)_{n}

sum(Stirling1(n, k)*(x)^(k), k = 0..n) = x - n + 1[n]
Sum[StirlingS1[n, k]*(x)^(k), {k, 0, n}, GenerateConditions->None] == Subscript[x - n + 1, n]
Failure Failure Error
Failed [9 / 9]
Result: Plus[1.5, Times[-1.0, Subscript[1.5, 1]]]
Test Values: {Rule[n, 1], Rule[x, 1.5]}

Result: Plus[0.75, Times[-1.0, Subscript[0.5, 2]]]
Test Values: {Rule[n, 2], Rule[x, 1.5]}

... skip entries to safe data
26.8.E8 n = 0 s ( n , k ) x n n ! = ( ln ( 1 + x ) ) k k ! superscript subscript 𝑛 0 Stirling-number-first-kind-S 𝑛 𝑘 superscript 𝑥 𝑛 𝑛 superscript 1 𝑥 𝑘 𝑘 {\displaystyle{\displaystyle\sum_{n=0}^{\infty}s\left(n,k\right)\frac{x^{n}}{n% !}=\frac{(\ln\left(1+x\right))^{k}}{k!}}}
\sum_{n=0}^{\infty}\Stirlingnumbers@{n}{k}\frac{x^{n}}{n!} = \frac{(\ln@{1+x})^{k}}{k!}
| x | < 1 𝑥 1 {\displaystyle{\displaystyle|x|<1}}
sum(Stirling1(n, k)*((x)^(n))/(factorial(n)), n = 0..infinity) = ((ln(1 + x))^(k))/(factorial(k))
Sum[StirlingS1[n, k]*Divide[(x)^(n),(n)!], {n, 0, Infinity}, GenerateConditions->None] == Divide[(Log[1 + x])^(k),(k)!]
Error Failure -
Failed [2 / 3]
Result: Plus[-0.08220097694658271, NSum[Times[Power[0.5, n], Power[Factorial[n], -1], StirlingS1[n, 2]]
Test Values: {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], {Rule[k, 2], Rule[x, 0.5]}

Result: Plus[-0.011109876001414293, NSum[Times[Power[0.5, n], Power[Factorial[n], -1], StirlingS1[n, 3]]
Test Values: {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], {Rule[k, 3], Rule[x, 0.5]}

26.8.E9 n , k = 0 s ( n , k ) x n n ! y k = ( 1 + x ) y superscript subscript 𝑛 𝑘 0 Stirling-number-first-kind-S 𝑛 𝑘 superscript 𝑥 𝑛 𝑛 superscript 𝑦 𝑘 superscript 1 𝑥 𝑦 {\displaystyle{\displaystyle\sum_{n,k=0}^{\infty}s\left(n,k\right)\frac{x^{n}}% {n!}y^{k}=(1+x)^{y}}}
\sum_{n,k=0}^{\infty}\Stirlingnumbers@{n}{k}\frac{x^{n}}{n!}y^{k} = (1+x)^{y}
| x | < 1 𝑥 1 {\displaystyle{\displaystyle|x|<1}}
sum(sum(Stirling1(n, k)*((x)^(n))/(factorial(n))*(y)^(k), k = 0..infinity), n = 0..infinity) = (1 + x)^(y)
Sum[Sum[StirlingS1[n, k]*Divide[(x)^(n),(n)!]*(y)^(k), {k, 0, Infinity}, GenerateConditions->None], {n, 0, Infinity}, GenerateConditions->None] == (1 + x)^(y)
Error Failure -
Failed [6 / 6]
Result: Plus[-0.5443310539518174, NSum[Sum[Times[Power[-1.5, k], Power[0.5, n], Power[Factorial[n], -1], StirlingS1[n, k]]
Test Values: {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]], {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], {Rule[x, 0.5], Rule[y, -1.5]}

Result: Plus[-1.8371173070873836, NSum[Sum[Times[Power[0.5, n], Power[1.5, k], Power[Factorial[n], -1], StirlingS1[n, k]]
Test Values: {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]], {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], {Rule[x, 0.5], Rule[y, 1.5]}

... skip entries to safe data
26.8.E10 k = 1 n S ( n , k ) ( x - k + 1 ) k = x n superscript subscript 𝑘 1 𝑛 Stirling-number-second-kind-S 𝑛 𝑘 subscript 𝑥 𝑘 1 𝑘 superscript 𝑥 𝑛 {\displaystyle{\displaystyle\sum_{k=1}^{n}S\left(n,k\right)(x-k+1)_{k}=x^{n}}}
\sum_{k=1}^{n}\StirlingnumberS@{n}{k}(x-k+1)_{k} = x^{n}

sum(Stirling2(n, k)*x - k + 1[k], k = 1..n) = (x)^(n)
Sum[StirlingS2[n, k]*Subscript[x - k + 1, k], {k, 1, n}, GenerateConditions->None] == (x)^(n)
Failure Failure Error
Failed [9 / 9]
Result: Plus[-1.5, Subscript[1.5, 1]]
Test Values: {Rule[n, 1], Rule[x, 1.5]}

Result: Plus[-2.25, Subscript[0.5, 2], Subscript[1.5, 1]]
Test Values: {Rule[n, 2], Rule[x, 1.5]}

... skip entries to safe data
26.8.E12 n = 0 S ( n , k ) x n n ! = ( e x - 1 ) k k ! superscript subscript 𝑛 0 Stirling-number-second-kind-S 𝑛 𝑘 superscript 𝑥 𝑛 𝑛 superscript 𝑥 1 𝑘 𝑘 {\displaystyle{\displaystyle\sum_{n=0}^{\infty}S\left(n,k\right)\frac{x^{n}}{n% !}=\frac{({\mathrm{e}^{x}}-1)^{k}}{k!}}}
\sum_{n=0}^{\infty}\StirlingnumberS@{n}{k}\frac{x^{n}}{n!} = \frac{(\expe^{x}-1)^{k}}{k!}

sum(Stirling2(n, k)*((x)^(n))/(factorial(n)), n = 0..infinity) = ((exp(x)- 1)^(k))/(factorial(k))
Sum[StirlingS2[n, k]*Divide[(x)^(n),(n)!], {n, 0, Infinity}, GenerateConditions->None] == Divide[(Exp[x]- 1)^(k),(k)!]
Failure Failure Error Successful [Tested: 9]
26.8.E13 n , k = 0 S ( n , k ) x n n ! y k = exp ( y ( e x - 1 ) ) superscript subscript 𝑛 𝑘 0 Stirling-number-second-kind-S 𝑛 𝑘 superscript 𝑥 𝑛 𝑛 superscript 𝑦 𝑘 𝑦 𝑥 1 {\displaystyle{\displaystyle\sum_{n,k=0}^{\infty}S\left(n,k\right)\frac{x^{n}}% {n!}y^{k}=\exp\left(y({\mathrm{e}^{x}}-1)\right)}}
\sum_{n,k=0}^{\infty}\StirlingnumberS@{n}{k}\frac{x^{n}}{n!}y^{k} = \exp\left(y(\expe^{x}-1)\right)

sum(sum(Stirling2(n, k)*((x)^(n))/(factorial(n))*(y)^(k), k = 0..infinity), n = 0..infinity) = exp(y*(exp(x)- 1))
Sum[Sum[StirlingS2[n, k]*Divide[(x)^(n),(n)!]*(y)^(k), {k, 0, Infinity}, GenerateConditions->None], {n, 0, Infinity}, GenerateConditions->None] == Exp[y*(Exp[x]- 1)]
Translation Error Translation Error - -
26.8#Ex1 s ( n , 0 ) = 0 Stirling-number-first-kind-S 𝑛 0 0 {\displaystyle{\displaystyle s\left(n,0\right)=0}}
\Stirlingnumbers@{n}{0} = 0

Stirling1(n, 0) = 0
StirlingS1[n, 0] == 0
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
26.8#Ex2 s ( n , 1 ) = ( - 1 ) n - 1 ( n - 1 ) ! Stirling-number-first-kind-S 𝑛 1 superscript 1 𝑛 1 𝑛 1 {\displaystyle{\displaystyle s\left(n,1\right)=(-1)^{n-1}(n-1)!}}
\Stirlingnumbers@{n}{1} = (-1)^{n-1}(n-1)!

Stirling1(n, 1) = (- 1)^(n - 1)*factorial(n - 1)
StirlingS1[n, 1] == (- 1)^(n - 1)*(n - 1)!
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
26.8.E16 - s ( n , n - 1 ) = S ( n , n - 1 ) Stirling-number-first-kind-S 𝑛 𝑛 1 Stirling-number-second-kind-S 𝑛 𝑛 1 {\displaystyle{\displaystyle-s\left(n,n-1\right)=S\left(n,n-1\right)}}
-\Stirlingnumbers@{n}{n-1} = \StirlingnumberS@{n}{n-1}

- Stirling1(n, n - 1) = Stirling2(n, n - 1)
- StirlingS1[n, n - 1] == StirlingS2[n, n - 1]
Successful Failure - Successful [Tested: 3]
26.8.E16 S ( n , n - 1 ) = ( n 2 ) Stirling-number-second-kind-S 𝑛 𝑛 1 binomial 𝑛 2 {\displaystyle{\displaystyle S\left(n,n-1\right)=\genfrac{(}{)}{0.0pt}{}{n}{2}}}
\StirlingnumberS@{n}{n-1} = \binom{n}{2}

Stirling2(n, n - 1) = binomial(n,2)
StirlingS2[n, n - 1] == Binomial[n,2]
Successful Failure - Successful [Tested: 3]
26.8#Ex3 S ( n , 0 ) = 0 Stirling-number-second-kind-S 𝑛 0 0 {\displaystyle{\displaystyle S\left(n,0\right)=0}}
\StirlingnumberS@{n}{0} = 0

Stirling2(n, 0) = 0
StirlingS2[n, 0] == 0
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
26.8#Ex4 S ( n , 1 ) = 1 Stirling-number-second-kind-S 𝑛 1 1 {\displaystyle{\displaystyle S\left(n,1\right)=1}}
\StirlingnumberS@{n}{1} = 1

Stirling2(n, 1) = 1
StirlingS2[n, 1] == 1
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
26.8#Ex5 S ( n , 2 ) = 2 n - 1 - 1 Stirling-number-second-kind-S 𝑛 2 superscript 2 𝑛 1 1 {\displaystyle{\displaystyle S\left(n,2\right)=2^{n-1}-1}}
\StirlingnumberS@{n}{2} = 2^{n-1}-1

Stirling2(n, 2) = (2)^(n - 1)- 1
StirlingS2[n, 2] == (2)^(n - 1)- 1
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
26.8.E18 s ( n , k ) = s ( n - 1 , k - 1 ) - ( n - 1 ) s ( n - 1 , k ) Stirling-number-first-kind-S 𝑛 𝑘 Stirling-number-first-kind-S 𝑛 1 𝑘 1 𝑛 1 Stirling-number-first-kind-S 𝑛 1 𝑘 {\displaystyle{\displaystyle s\left(n,k\right)=s\left(n-1,k-1\right)-(n-1)s% \left(n-1,k\right)}}
\Stirlingnumbers@{n}{k} = \Stirlingnumbers@{n-1}{k-1}-(n-1)\Stirlingnumbers@{n-1}{k}

Stirling1(n, k) = Stirling1(n - 1, k - 1)-(n - 1)*Stirling1(n - 1, k)
StirlingS1[n, k] == StirlingS1[n - 1, k - 1]-(n - 1)*StirlingS1[n - 1, k]
Failure Failure Successful [Tested: 9] Successful [Tested: 9]
26.8.E19 ( k h ) s ( n , k ) = j = k - h n - h ( n j ) s ( n - j , h ) s ( j , k - h ) binomial 𝑘 Stirling-number-first-kind-S 𝑛 𝑘 superscript subscript 𝑗 𝑘 𝑛 binomial 𝑛 𝑗 Stirling-number-first-kind-S 𝑛 𝑗 Stirling-number-first-kind-S 𝑗 𝑘 {\displaystyle{\displaystyle\genfrac{(}{)}{0.0pt}{}{k}{h}s\left(n,k\right)=% \sum_{j=k-h}^{n-h}\genfrac{(}{)}{0.0pt}{}{n}{j}s\left(n-j,h\right)s\left(j,k-h% \right)}}
\binom{k}{h}\Stirlingnumbers@{n}{k} = \sum_{j=k-h}^{n-h}\binom{n}{j}\Stirlingnumbers@{n-j}{h}\Stirlingnumbers@{j}{k-h}
n k , k h formulae-sequence 𝑛 𝑘 𝑘 {\displaystyle{\displaystyle n\geq k,k\geq h}}
binomial(k,h)*Stirling1(n, k) = sum(binomial(n,j)*Stirling1(n - j, h)*Stirling1(j, k - h), j = k - h..n - h)
Binomial[k,h]*StirlingS1[n, k] == Sum[Binomial[n,j]*StirlingS1[n - j, h]*StirlingS1[j, k - h], {j, k - h, n - h}, GenerateConditions->None]
Error Failure -
Failed [11 / 30]
Result: 0.16976527263135505
Test Values: {Rule[h, -1.5], Rule[k, 1], Rule[n, 2]}

Result: -0.08488263631567752
Test Values: {Rule[h, -1.5], Rule[k, 1], Rule[n, 3]}

... skip entries to safe data
26.8.E20 s ( n + 1 , k + 1 ) = n ! j = k n ( - 1 ) n - j j ! s ( j , k ) Stirling-number-first-kind-S 𝑛 1 𝑘 1 𝑛 superscript subscript 𝑗 𝑘 𝑛 superscript 1 𝑛 𝑗 𝑗 Stirling-number-first-kind-S 𝑗 𝑘 {\displaystyle{\displaystyle s\left(n+1,k+1\right)=n!\sum_{j=k}^{n}\frac{(-1)^% {n-j}}{j!}\,s\left(j,k\right)}}
\Stirlingnumbers@{n+1}{k+1} = n!\sum_{j=k}^{n}\frac{(-1)^{n-j}}{j!}\,\Stirlingnumbers@{j}{k}

Stirling1(n + 1, k + 1) = factorial(n)*sum(((- 1)^(n - j))/(factorial(j))*Stirling1(j, k), j = k..n)
StirlingS1[n + 1, k + 1] == (n)!*Sum[Divide[(- 1)^(n - j),(j)!]*StirlingS1[j, k], {j, k, n}, GenerateConditions->None]
Failure Failure Successful [Tested: 9] Successful [Tested: 9]
26.8.E21 s ( n + k + 1 , k ) = - j = 0 k ( n + j ) s ( n + j , j ) Stirling-number-first-kind-S 𝑛 𝑘 1 𝑘 superscript subscript 𝑗 0 𝑘 𝑛 𝑗 Stirling-number-first-kind-S 𝑛 𝑗 𝑗 {\displaystyle{\displaystyle s\left(n+k+1,k\right)=-\sum_{j=0}^{k}(n+j)s\left(% n+j,j\right)}}
\Stirlingnumbers@{n+k+1}{k} = -\sum_{j=0}^{k}(n+j)\Stirlingnumbers@{n+j}{j}

Stirling1(n + k + 1, k) = - sum((n + j)*Stirling1(n + j, j), j = 0..k)
StirlingS1[n + k + 1, k] == - Sum[(n + j)*StirlingS1[n + j, j], {j, 0, k}, GenerateConditions->None]
Failure Failure Successful [Tested: 9] Successful [Tested: 9]
26.8.E22 S ( n , k ) = k S ( n - 1 , k ) + S ( n - 1 , k - 1 ) Stirling-number-second-kind-S 𝑛 𝑘 𝑘 Stirling-number-second-kind-S 𝑛 1 𝑘 Stirling-number-second-kind-S 𝑛 1 𝑘 1 {\displaystyle{\displaystyle S\left(n,k\right)=kS\left(n-1,k\right)+S\left(n-1% ,k-1\right)}}
\StirlingnumberS@{n}{k} = k\StirlingnumberS@{n-1}{k}+\StirlingnumberS@{n-1}{k-1}

Stirling2(n, k) = k*Stirling2(n - 1, k)+ Stirling2(n - 1, k - 1)
StirlingS2[n, k] == k*StirlingS2[n - 1, k]+ StirlingS2[n - 1, k - 1]
Failure Failure Successful [Tested: 9] Successful [Tested: 9]
26.8.E23 ( k h ) S ( n , k ) = j = k - h n - h ( n j ) S ( n - j , h ) S ( j , k - h ) binomial 𝑘 Stirling-number-second-kind-S 𝑛 𝑘 superscript subscript 𝑗 𝑘 𝑛 binomial 𝑛 𝑗 Stirling-number-second-kind-S 𝑛 𝑗 Stirling-number-second-kind-S 𝑗 𝑘 {\displaystyle{\displaystyle\genfrac{(}{)}{0.0pt}{}{k}{h}S\left(n,k\right)=% \sum_{j=k-h}^{n-h}\genfrac{(}{)}{0.0pt}{}{n}{j}S\left(n-j,h\right)S\left(j,k-h% \right)}}
\binom{k}{h}\StirlingnumberS@{n}{k} = \sum_{j=k-h}^{n-h}\binom{n}{j}\StirlingnumberS@{n-j}{h}\StirlingnumberS@{j}{k-h}
n k , k h formulae-sequence 𝑛 𝑘 𝑘 {\displaystyle{\displaystyle n\geq k,k\geq h}}
binomial(k,h)*Stirling2(n, k) = sum(binomial(n,j)*Stirling2(n - j, h)*Stirling2(j, k - h), j = k - h..n - h)
Binomial[k,h]*StirlingS2[n, k] == Sum[Binomial[n,j]*StirlingS2[n - j, h]*StirlingS2[j, k - h], {j, k - h, n - h}, GenerateConditions->None]
Error Failure -
Failed [22 / 30]
Result: Plus[-0.08488263631567752, Times[0.08488263631567751, StirlingS2[-1.5, -1.5], StirlingS2[2.5, 2.5]]]
Test Values: {Rule[h, -1.5], Rule[k, 1], Rule[n, 1]}

Result: Plus[-0.08488263631567752, Times[-0.33953054526271004, StirlingS2[-0.5, -1.5], StirlingS2[2.5, 2.5]], Times[0.04850436360895858, StirlingS2[-1.5, -1.5], StirlingS2[3.5, 2.5]]]
Test Values: {Rule[h, -1.5], Rule[k, 1], Rule[n, 2]}

... skip entries to safe data
26.8.E24 S ( n , k ) = j = k n S ( j - 1 , k - 1 ) k n - j Stirling-number-second-kind-S 𝑛 𝑘 superscript subscript 𝑗 𝑘 𝑛 Stirling-number-second-kind-S 𝑗 1 𝑘 1 superscript 𝑘 𝑛 𝑗 {\displaystyle{\displaystyle S\left(n,k\right)=\sum_{j=k}^{n}S\left(j-1,k-1% \right)k^{n-j}}}
\StirlingnumberS@{n}{k} = \sum_{j=k}^{n}\StirlingnumberS@{j-1}{k-1}k^{n-j}

Stirling2(n, k) = sum(Stirling2(j - 1, k - 1)*(k)^(n - j), j = k..n)
StirlingS2[n, k] == Sum[StirlingS2[j - 1, k - 1]*(k)^(n - j), {j, k, n}, GenerateConditions->None]
Failure Failure Successful [Tested: 9] Successful [Tested: 9]
26.8.E25 S ( n + 1 , k + 1 ) = j = k n ( n j ) S ( j , k ) Stirling-number-second-kind-S 𝑛 1 𝑘 1 superscript subscript 𝑗 𝑘 𝑛 binomial 𝑛 𝑗 Stirling-number-second-kind-S 𝑗 𝑘 {\displaystyle{\displaystyle S\left(n+1,k+1\right)=\sum_{j=k}^{n}\genfrac{(}{)% }{0.0pt}{}{n}{j}S\left(j,k\right)}}
\StirlingnumberS@{n+1}{k+1} = \sum_{j=k}^{n}\binom{n}{j}\StirlingnumberS@{j}{k}

Stirling2(n + 1, k + 1) = sum(binomial(n,j)*Stirling2(j, k), j = k..n)
StirlingS2[n + 1, k + 1] == Sum[Binomial[n,j]*StirlingS2[j, k], {j, k, n}, GenerateConditions->None]
Failure Failure Successful [Tested: 9] Successful [Tested: 9]
26.8.E26 S ( n + k + 1 , k ) = j = 0 k j S ( n + j , j ) Stirling-number-second-kind-S 𝑛 𝑘 1 𝑘 superscript subscript 𝑗 0 𝑘 𝑗 Stirling-number-second-kind-S 𝑛 𝑗 𝑗 {\displaystyle{\displaystyle S\left(n+k+1,k\right)=\sum_{j=0}^{k}jS\left(n+j,j% \right)}}
\StirlingnumberS@{n+k+1}{k} = \sum_{j=0}^{k}j\StirlingnumberS@{n+j}{j}

Stirling2(n + k + 1, k) = sum(j*Stirling2(n + j, j), j = 0..k)
StirlingS2[n + k + 1, k] == Sum[j*StirlingS2[n + j, j], {j, 0, k}, GenerateConditions->None]
Failure Successful Successful [Tested: 9] Successful [Tested: 9]
26.8.E27 s ( n , n - k ) = j = 0 k ( - 1 ) j ( n - 1 + j k + j ) ( n + k k - j ) S ( k + j , j ) Stirling-number-first-kind-S 𝑛 𝑛 𝑘 superscript subscript 𝑗 0 𝑘 superscript 1 𝑗 binomial 𝑛 1 𝑗 𝑘 𝑗 binomial 𝑛 𝑘 𝑘 𝑗 Stirling-number-second-kind-S 𝑘 𝑗 𝑗 {\displaystyle{\displaystyle s\left(n,n-k\right)=\sum_{j=0}^{k}(-1)^{j}% \genfrac{(}{)}{0.0pt}{}{n-1+j}{k+j}\,\genfrac{(}{)}{0.0pt}{}{n+k}{k-j}\*S\left% (k+j,j\right)}}
\Stirlingnumbers@{n}{n-k} = \sum_{j=0}^{k}(-1)^{j}\binom{n-1+j}{k+j}\,\binom{n+k}{k-j}\*\StirlingnumberS@{k+j}{j}

Stirling1(n, n - k) = sum((- 1)^(j)*binomial(n - 1 + j,k + j)*binomial(n + k,k - j)* Stirling2(k + j, j), j = 0..k)
StirlingS1[n, n - k] == Sum[(- 1)^(j)*Binomial[n - 1 + j,k + j]*Binomial[n + k,k - j]* StirlingS2[k + j, j], {j, 0, k}, GenerateConditions->None]
Failure Failure Successful [Tested: 9]
Failed [3 / 9]
Result: StirlingS1[1.0, -1.0]
Test Values: {Rule[k, 2], Rule[n, 1]}

Result: StirlingS1[1.0, -2.0]
Test Values: {Rule[k, 3], Rule[n, 1]}

... skip entries to safe data
26.8.E28 k = 1 n s ( n , k ) = 0 superscript subscript 𝑘 1 𝑛 Stirling-number-first-kind-S 𝑛 𝑘 0 {\displaystyle{\displaystyle\sum_{k=1}^{n}s\left(n,k\right)=0}}
\sum_{k=1}^{n}\Stirlingnumbers@{n}{k} = 0
n > 1 𝑛 1 {\displaystyle{\displaystyle n>1}}
sum(Stirling1(n, k), k = 1..n) = 0
Sum[StirlingS1[n, k], {k, 1, n}, GenerateConditions->None] == 0
Failure Failure Successful [Tested: 2] Successful [Tested: 2]
26.8.E29 k = 1 n ( - 1 ) n - k s ( n , k ) = n ! superscript subscript 𝑘 1 𝑛 superscript 1 𝑛 𝑘 Stirling-number-first-kind-S 𝑛 𝑘 𝑛 {\displaystyle{\displaystyle\sum_{k=1}^{n}(-1)^{n-k}s\left(n,k\right)=n!}}
\sum_{k=1}^{n}(-1)^{n-k}\Stirlingnumbers@{n}{k} = n!

sum((- 1)^(n - k)* Stirling1(n, k), k = 1..n) = factorial(n)
Sum[(- 1)^(n - k)* StirlingS1[n, k], {k, 1, n}, GenerateConditions->None] == (n)!
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
26.8.E30 j = k n s ( n + 1 , j + 1 ) n j - k = s ( n , k ) superscript subscript 𝑗 𝑘 𝑛 Stirling-number-first-kind-S 𝑛 1 𝑗 1 superscript 𝑛 𝑗 𝑘 Stirling-number-first-kind-S 𝑛 𝑘 {\displaystyle{\displaystyle\sum_{j=k}^{n}s\left(n+1,j+1\right)\,n^{j-k}=s% \left(n,k\right)}}
\sum_{j=k}^{n}\Stirlingnumbers@{n+1}{j+1}\,n^{j-k} = \Stirlingnumbers@{n}{k}

sum(Stirling1(n + 1, j + 1)*(n)^(j - k), j = k..n) = Stirling1(n, k)
Sum[StirlingS1[n + 1, j + 1]*(n)^(j - k), {j, k, n}, GenerateConditions->None] == StirlingS1[n, k]
Failure Successful Successful [Tested: 9] Successful [Tested: 9]
26.8.E33 S ( n , n - k ) = j = 0 k ( - 1 ) j ( n - 1 + j k + j ) ( n + k k - j ) s ( k + j , j ) Stirling-number-second-kind-S 𝑛 𝑛 𝑘 superscript subscript 𝑗 0 𝑘 superscript 1 𝑗 binomial 𝑛 1 𝑗 𝑘 𝑗 binomial 𝑛 𝑘 𝑘 𝑗 Stirling-number-first-kind-S 𝑘 𝑗 𝑗 {\displaystyle{\displaystyle S\left(n,n-k\right)=\sum_{j=0}^{k}(-1)^{j}% \genfrac{(}{)}{0.0pt}{}{n-1+j}{k+j}\genfrac{(}{)}{0.0pt}{}{n+k}{k-j}\*s\left(k% +j,j\right)}}
\StirlingnumberS@{n}{n-k} = \sum_{j=0}^{k}(-1)^{j}\binom{n-1+j}{k+j}\binom{n+k}{k-j}\*\Stirlingnumbers@{k+j}{j}

Stirling2(n, n - k) = sum((- 1)^(j)*binomial(n - 1 + j,k + j)*binomial(n + k,k - j)* Stirling1(k + j, j), j = 0..k)
StirlingS2[n, n - k] == Sum[(- 1)^(j)*Binomial[n - 1 + j,k + j]*Binomial[n + k,k - j]* StirlingS1[k + j, j], {j, 0, k}, GenerateConditions->None]
Failure Failure Successful [Tested: 9]
Failed [3 / 9]
Result: StirlingS2[1.0, -1.0]
Test Values: {Rule[k, 2], Rule[n, 1]}

Result: StirlingS2[1.0, -2.0]
Test Values: {Rule[k, 3], Rule[n, 1]}

... skip entries to safe data
26.8.E34 j = 0 n j k x j = j = 0 k S ( k , j ) x j d j d x j ( 1 - x n + 1 1 - x ) superscript subscript 𝑗 0 𝑛 superscript 𝑗 𝑘 superscript 𝑥 𝑗 superscript subscript 𝑗 0 𝑘 Stirling-number-second-kind-S 𝑘 𝑗 superscript 𝑥 𝑗 derivative 𝑥 𝑗 1 superscript 𝑥 𝑛 1 1 𝑥 {\displaystyle{\displaystyle\sum_{j=0}^{n}j^{k}x^{j}=\sum_{j=0}^{k}S\left(k,j% \right)x^{j}\frac{{\mathrm{d}}^{j}}{{\mathrm{d}x}^{j}}\left(\frac{1-x^{n+1}}{1% -x}\right)}}
\sum_{j=0}^{n}j^{k}x^{j} = \sum_{j=0}^{k}\StirlingnumberS@{k}{j}x^{j}\deriv[j]{}{x}\left(\frac{1-x^{n+1}}{1-x}\right)

sum((j)^(k)* (x)^(j), j = 0..n) = sum(Stirling2(k, j)*(x)^(j)* diff((1 - (x)^(n + 1))/(1 - x), [x$(j)]), j = 0..k)
Sum[(j)^(k)* (x)^(j), {j, 0, n}, GenerateConditions->None] == Sum[StirlingS2[k, j]*(x)^(j)* D[Divide[1 - (x)^(n + 1),1 - x], {x, j}], {j, 0, k}, GenerateConditions->None]
Aborted Failure Skipped - Because timed out Skipped - Because timed out
26.8.E35 j = 0 n j k = j = 0 k j ! S ( k , j ) ( n + 1 j + 1 ) superscript subscript 𝑗 0 𝑛 superscript 𝑗 𝑘 superscript subscript 𝑗 0 𝑘 𝑗 Stirling-number-second-kind-S 𝑘 𝑗 binomial 𝑛 1 𝑗 1 {\displaystyle{\displaystyle\sum_{j=0}^{n}j^{k}=\sum_{j=0}^{k}j!S\left(k,j% \right)\genfrac{(}{)}{0.0pt}{}{n+1}{j+1}}}
\sum_{j=0}^{n}j^{k} = \sum_{j=0}^{k}j!\StirlingnumberS@{k}{j}\binom{n+1}{j+1}

sum((j)^(k), j = 0..n) = sum(factorial(j)*Stirling2(k, j)*binomial(n + 1,j + 1), j = 0..k)
Sum[(j)^(k), {j, 0, n}, GenerateConditions->None] == Sum[(j)!*StirlingS2[k, j]*Binomial[n + 1,j + 1], {j, 0, k}, GenerateConditions->None]
Failure Failure Successful [Tested: 9] Successful [Tested: 9]
26.8.E36 k = 0 n ( - 1 ) n - k k ! S ( n , k ) = 1 superscript subscript 𝑘 0 𝑛 superscript 1 𝑛 𝑘 𝑘 Stirling-number-second-kind-S 𝑛 𝑘 1 {\displaystyle{\displaystyle\sum_{k=0}^{n}(-1)^{n-k}k!S\left(n,k\right)=1}}
\sum_{k=0}^{n}(-1)^{n-k}k!\StirlingnumberS@{n}{k} = 1

sum((- 1)^(n - k)* factorial(k)*Stirling2(n, k), k = 0..n) = 1
Sum[(- 1)^(n - k)* (k)!*StirlingS2[n, k], {k, 0, n}, GenerateConditions->None] == 1
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
26.8.E38 A - 1 = B superscript 𝐴 1 𝐵 {\displaystyle{\displaystyle A^{-1}=B}}
A^{-1} = B

(A)^(- 1) = B
(A)^(- 1) == B
Skipped - no semantic math Skipped - no semantic math - -
26.8.E39 j = k n s ( j , k ) S ( n , j ) = j = k n s ( n , j ) S ( j , k ) superscript subscript 𝑗 𝑘 𝑛 Stirling-number-first-kind-S 𝑗 𝑘 Stirling-number-second-kind-S 𝑛 𝑗 superscript subscript 𝑗 𝑘 𝑛 Stirling-number-first-kind-S 𝑛 𝑗 Stirling-number-second-kind-S 𝑗 𝑘 {\displaystyle{\displaystyle\sum_{j=k}^{n}s\left(j,k\right)S\left(n,j\right)=% \sum_{j=k}^{n}s\left(n,j\right)S\left(j,k\right)}}
\sum_{j=k}^{n}\Stirlingnumbers@{j}{k}\StirlingnumberS@{n}{j} = \sum_{j=k}^{n}\Stirlingnumbers@{n}{j}\StirlingnumberS@{j}{k}

sum(Stirling1(j, k)*Stirling2(n, j), j = k..n) = sum(Stirling1(n, j)*Stirling2(j, k), j = k..n)
Sum[StirlingS1[j, k]*StirlingS2[n, j], {j, k, n}, GenerateConditions->None] == Sum[StirlingS1[n, j]*StirlingS2[j, k], {j, k, n}, GenerateConditions->None]
Failure Failure Successful [Tested: 9] Successful [Tested: 9]
26.8.E39 j = k n s ( n , j ) S ( j , k ) = δ n , k superscript subscript 𝑗 𝑘 𝑛 Stirling-number-first-kind-S 𝑛 𝑗 Stirling-number-second-kind-S 𝑗 𝑘 Kronecker 𝑛 𝑘 {\displaystyle{\displaystyle\sum_{j=k}^{n}s\left(n,j\right)S\left(j,k\right)=% \delta_{n,k}}}
\sum_{j=k}^{n}\Stirlingnumbers@{n}{j}\StirlingnumberS@{j}{k} = \Kroneckerdelta{n}{k}

sum(Stirling1(n, j)*Stirling2(j, k), j = k..n) = KroneckerDelta[n, k]
Sum[StirlingS1[n, j]*StirlingS2[j, k], {j, k, n}, GenerateConditions->None] == KroneckerDelta[n, k]
Failure Failure Successful [Tested: 9] Successful [Tested: 9]