19.26: Difference between revisions
Jump to navigation
Jump to search
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
||
Line 14: | Line 14: | ||
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ||
|- | |- | ||
| [https://dlmf.nist.gov/19.26.E1 19.26.E1] | | | [https://dlmf.nist.gov/19.26.E1 19.26.E1] || <math qid="Q6552">\CarlsonsymellintRF@{x+\lambda}{y+\lambda}{z+\lambda}+\CarlsonsymellintRF@{x+\mu}{y+\mu}{z+\mu} = \CarlsonsymellintRF@{x}{y}{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\CarlsonsymellintRF@{x+\lambda}{y+\lambda}{z+\lambda}+\CarlsonsymellintRF@{x+\mu}{y+\mu}{z+\mu} = \CarlsonsymellintRF@{x}{y}{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>0.5*int(1/(sqrt(t+x + lambda)*sqrt(t+y + lambda)*sqrt(t+(x + y*I)+ lambda)), t = 0..infinity)+ 0.5*int(1/(sqrt(t+x + mu)*sqrt(t+y + mu)*sqrt(t+(x + y*I)+ mu)), t = 0..infinity) = 0.5*int(1/(sqrt(t+x)*sqrt(t+y)*sqrt(t+x + y*I)), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>EllipticF[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])]/Sqrt[(x + y*I)+ \[Lambda]-x + \[Lambda]]+ EllipticF[ArcCos[Sqrt[x + \[Mu]/(x + y*I)+ \[Mu]]],((x + y*I)+ \[Mu]-y + \[Mu])/((x + y*I)+ \[Mu]-x + \[Mu])]/Sqrt[(x + y*I)+ \[Mu]-x + \[Mu]] == EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x]</syntaxhighlight> || Aborted || Failure || Skipped - Because timed out || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.6992255245511445, -1.8246422705609677] | ||
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[μ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.2162365888422955, -0.7585970772170993] | Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[μ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.2162365888422955, -0.7585970772170993] | ||
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[μ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[μ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- style="background: #dfe6e9;" | |- style="background: #dfe6e9;" | ||
| [https://dlmf.nist.gov/19.26.E2 19.26.E2] | | | [https://dlmf.nist.gov/19.26.E2 19.26.E2] || <math qid="Q6553">x+\mu = \lambda^{-2}\left(\sqrt{(x+\lambda)yz}+\sqrt{x(y+\lambda)(z+\lambda)}\right)^{2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>x+\mu = \lambda^{-2}\left(\sqrt{(x+\lambda)yz}+\sqrt{x(y+\lambda)(z+\lambda)}\right)^{2}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">x + mu = (lambda)^(- 2)*(sqrt((x + lambda)*y*(x + y*I))+sqrt(x*(y + lambda)*((x + y*I)+ lambda)))^(2)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">x + \[Mu] == \[Lambda]^(- 2)*(Sqrt[(x + \[Lambda])*y*(x + y*I)]+Sqrt[x*(y + \[Lambda])*((x + y*I)+ \[Lambda])])^(2)</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | ||
|- style="background: #dfe6e9;" | |- style="background: #dfe6e9;" | ||
| [https://dlmf.nist.gov/19.26#Ex1 19.26#Ex1] | | | [https://dlmf.nist.gov/19.26#Ex1 19.26#Ex1] || <math qid="Q6555">(\xi,\eta,\zeta) = (x+\lambda,y+\lambda,z+\lambda)</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>(\xi,\eta,\zeta) = (x+\lambda,y+\lambda,z+\lambda)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(xi , eta , zeta) = (x + lambda , y + lambda ,(x + y*I)+ lambda)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(\[Xi], \[Eta], \[Zeta]) == (x + \[Lambda], y + \[Lambda],(x + y*I)+ \[Lambda])</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | ||
|- style="background: #dfe6e9;" | |- style="background: #dfe6e9;" | ||
| [https://dlmf.nist.gov/19.26.E5 19.26.E5] | | | [https://dlmf.nist.gov/19.26.E5 19.26.E5] || <math qid="Q6557">\mu = \lambda^{-2}\left(\sqrt{xyz}+\sqrt{(x+\lambda)(y+\lambda)(z+\lambda)}\right)^{2}-\lambda-x-y-z</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\mu = \lambda^{-2}\left(\sqrt{xyz}+\sqrt{(x+\lambda)(y+\lambda)(z+\lambda)}\right)^{2}-\lambda-x-y-z</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">mu = (lambda)^(- 2)*(sqrt(x*y*(x + y*I))+sqrt((x + lambda)*(y + lambda)*((x + y*I)+ lambda)))^(2)- lambda - x - y -(x + y*I)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">\[Mu] == \[Lambda]^(- 2)*(Sqrt[x*y*(x + y*I)]+Sqrt[(x + \[Lambda])*(y + \[Lambda])*((x + y*I)+ \[Lambda])])^(2)- \[Lambda]- x - y -(x + y*I)</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | ||
|- style="background: #dfe6e9;" | |- style="background: #dfe6e9;" | ||
| [https://dlmf.nist.gov/19.26.E6 19.26.E6] | | | [https://dlmf.nist.gov/19.26.E6 19.26.E6] || <math qid="Q6558">(\lambda\mu-xy-xz-yz)^{2} = 4xyz(\lambda+\mu+x+y+z)</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>(\lambda\mu-xy-xz-yz)^{2} = 4xyz(\lambda+\mu+x+y+z)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(lambda*mu - x*y - x*(x + y*I)- y*(x + y*I))^(2) = 4*x*y*(x + y*I)*(lambda + mu + x + y +(x + y*I))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(\[Lambda]*\[Mu]- x*y - x*(x + y*I)- y*(x + y*I))^(2) == 4*x*y*(x + y*I)*(\[Lambda]+ \[Mu]+ x + y +(x + y*I))</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | ||
|- | |- | ||
| [https://dlmf.nist.gov/19.26.E7 19.26.E7] | | | [https://dlmf.nist.gov/19.26.E7 19.26.E7] || <math qid="Q6559">\CarlsonsymellintRD@{x+\lambda}{y+\lambda}{z+\lambda}+\CarlsonsymellintRD@{x+\mu}{y+\mu}{z+\mu} = \CarlsonsymellintRD@{x}{y}{z}-\frac{3}{\sqrt{z(z+\lambda)(z+\mu)}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\CarlsonsymellintRD@{x+\lambda}{y+\lambda}{z+\lambda}+\CarlsonsymellintRD@{x+\mu}{y+\mu}{z+\mu} = \CarlsonsymellintRD@{x}{y}{z}-\frac{3}{\sqrt{z(z+\lambda)(z+\mu)}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>3*(EllipticF[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])]-EllipticE[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])])/(((x + y*I)+ \[Lambda]-y + \[Lambda])*((x + y*I)+ \[Lambda]-x + \[Lambda])^(1/2))+ 3*(EllipticF[ArcCos[Sqrt[x + \[Mu]/(x + y*I)+ \[Mu]]],((x + y*I)+ \[Mu]-y + \[Mu])/((x + y*I)+ \[Mu]-x + \[Mu])]-EllipticE[ArcCos[Sqrt[x + \[Mu]/(x + y*I)+ \[Mu]]],((x + y*I)+ \[Mu]-y + \[Mu])/((x + y*I)+ \[Mu]-x + \[Mu])])/(((x + y*I)+ \[Mu]-y + \[Mu])*((x + y*I)+ \[Mu]-x + \[Mu])^(1/2)) == 3*(EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/((x + y*I-y)*(x + y*I-x)^(1/2))-Divide[3,Sqrt[(x + y*I)*((x + y*I)+ \[Lambda])*((x + y*I)+ \[Mu])]]</syntaxhighlight> || Missing Macro Error || Aborted || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.4984590390126629, 1.2092907867192135] | ||
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[μ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.01924185171185039, 1.9974068077017313] | Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[μ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.01924185171185039, 1.9974068077017313] | ||
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[μ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[μ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/19.26.E8 19.26.E8] | | | [https://dlmf.nist.gov/19.26.E8 19.26.E8] || <math qid="Q6560">2\CarlsonsymellintRG@{x+\lambda}{y+\lambda}{z+\lambda}+2\CarlsonsymellintRG@{x+\mu}{y+\mu}{z+\mu} = 2\CarlsonsymellintRG@{x}{y}{z}+\lambda\CarlsonsymellintRF@{x+\lambda}{y+\lambda}{z+\lambda}+\mu\CarlsonsymellintRF@{x+\mu}{y+\mu}{z+\mu}+\sqrt{\lambda+\mu+x+y+z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>2\CarlsonsymellintRG@{x+\lambda}{y+\lambda}{z+\lambda}+2\CarlsonsymellintRG@{x+\mu}{y+\mu}{z+\mu} = 2\CarlsonsymellintRG@{x}{y}{z}+\lambda\CarlsonsymellintRF@{x+\lambda}{y+\lambda}{z+\lambda}+\mu\CarlsonsymellintRF@{x+\mu}{y+\mu}{z+\mu}+\sqrt{\lambda+\mu+x+y+z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>2*Sqrt[(x + y*I)+ \[Lambda]-x + \[Lambda]]*(EllipticE[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])]+(Cot[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]]])^2*EllipticF[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])]+Cot[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]]]^2])+ 2*Sqrt[(x + y*I)+ \[Mu]-x + \[Mu]]*(EllipticE[ArcCos[Sqrt[x + \[Mu]/(x + y*I)+ \[Mu]]],((x + y*I)+ \[Mu]-y + \[Mu])/((x + y*I)+ \[Mu]-x + \[Mu])]+(Cot[ArcCos[Sqrt[x + \[Mu]/(x + y*I)+ \[Mu]]]])^2*EllipticF[ArcCos[Sqrt[x + \[Mu]/(x + y*I)+ \[Mu]]],((x + y*I)+ \[Mu]-y + \[Mu])/((x + y*I)+ \[Mu]-x + \[Mu])]+Cot[ArcCos[Sqrt[x + \[Mu]/(x + y*I)+ \[Mu]]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[x + \[Mu]/(x + y*I)+ \[Mu]]]]^2]) == 2*Sqrt[x + y*I-x]*(EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+(Cot[ArcCos[Sqrt[x/x + y*I]]])^2*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+Cot[ArcCos[Sqrt[x/x + y*I]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[x/x + y*I]]]^2])+ \[Lambda]*EllipticF[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])]/Sqrt[(x + y*I)+ \[Lambda]-x + \[Lambda]]+ \[Mu]*EllipticF[ArcCos[Sqrt[x + \[Mu]/(x + y*I)+ \[Mu]]],((x + y*I)+ \[Mu]-y + \[Mu])/((x + y*I)+ \[Mu]-x + \[Mu])]/Sqrt[(x + y*I)+ \[Mu]-x + \[Mu]]+Sqrt[\[Lambda]+ \[Mu]+ x + y +(x + y*I)]</syntaxhighlight> || Missing Macro Error || Aborted || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[-2.0898920996046204, 0.6803615706262403], Times[Complex[-1.7320508075688772, 1.732050807568877], Plus[Complex[0.9985512968581824, 0.2012315241723115], Times[Complex[0.3176872874027722, -1.049249833251038], Power[Plus[1.0, Times[Complex[0.0, -1.5], Power[k, 2]]], Rational[1, 2]]]]], Times[Complex[4.184639587172815, -1.9117536488739475], Plus[Complex[0.7424137617640161, 0.220635885032481], Times[Complex[0.14483575015411373, 1.3558262394954135], Power[Plus[1.0, Times[Complex[0.9940169358562925, 0.4776709006307397], Power[k, 2]]], Rational[1, 2]]]]]] | ||
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[μ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[-1.182728387586514, 0.2705509888970101], Times[Complex[-1.7320508075688772, 1.732050807568877], Plus[Complex[0.9985512968581824, 0.2012315241723115], Times[Complex[0.3176872874027722, -1.049249833251038], Power[Plus[1.0, Times[Complex[0.0, -1.5], Power[k, 2]]], Rational[1, 2]]]]], Times[Complex[0.7841147574434748, -1.6170454393246465], Plus[Complex[0.3473840661116648, 1.4426085854555293], Times[Complex[0.7761183239980944, 1.3014092542459557], Power[Plus[1.0, Times[Complex[0.02232909936926042, 0.49401693585629247], Power[k, 2]]], Rational[1, 2]]]]], Times[Complex[2.0923197935864075, -0.9558768244369737], Plus[Complex[0.7424137617640161, 0.220635885032481], Times[Complex[0.14483575015411373, 1.3558262394954135], Power[Plus[1.0, Times[Complex[0.9940169358562925, 0.4776709006307397], Power[k, 2]]], Rational[1, 2]]]]]] | Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[μ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[-1.182728387586514, 0.2705509888970101], Times[Complex[-1.7320508075688772, 1.732050807568877], Plus[Complex[0.9985512968581824, 0.2012315241723115], Times[Complex[0.3176872874027722, -1.049249833251038], Power[Plus[1.0, Times[Complex[0.0, -1.5], Power[k, 2]]], Rational[1, 2]]]]], Times[Complex[0.7841147574434748, -1.6170454393246465], Plus[Complex[0.3473840661116648, 1.4426085854555293], Times[Complex[0.7761183239980944, 1.3014092542459557], Power[Plus[1.0, Times[Complex[0.02232909936926042, 0.49401693585629247], Power[k, 2]]], Rational[1, 2]]]]], Times[Complex[2.0923197935864075, -0.9558768244369737], Plus[Complex[0.7424137617640161, 0.220635885032481], Times[Complex[0.14483575015411373, 1.3558262394954135], Power[Plus[1.0, Times[Complex[0.9940169358562925, 0.4776709006307397], Power[k, 2]]], Rational[1, 2]]]]]] | ||
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[μ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[μ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/19.26.E9 19.26.E9] | | | [https://dlmf.nist.gov/19.26.E9 19.26.E9] || <math qid="Q6561">\CarlsonsymellintRJ@{x+\lambda}{y+\lambda}{z+\lambda}{p+\lambda}+\CarlsonsymellintRJ@{x+\mu}{y+\mu}{z+\mu}{p+\mu} = \CarlsonsymellintRJ@{x}{y}{z}{p}-3\CarlsonellintRC@{\gamma-\delta}{\gamma}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\CarlsonsymellintRJ@{x+\lambda}{y+\lambda}{z+\lambda}{p+\lambda}+\CarlsonsymellintRJ@{x+\mu}{y+\mu}{z+\mu}{p+\mu} = \CarlsonsymellintRJ@{x}{y}{z}{p}-3\CarlsonellintRC@{\gamma-\delta}{\gamma}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>3*((x + y*I)+ \[Lambda]-x + \[Lambda])/((x + y*I)+ \[Lambda]-p + \[Lambda])*(EllipticPi[((x + y*I)+ \[Lambda]-p + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda]),ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])]-EllipticF[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])])/Sqrt[(x + y*I)+ \[Lambda]-x + \[Lambda]]+ 3*((x + y*I)+ \[Mu]-x + \[Mu])/((x + y*I)+ \[Mu]-p + \[Mu])*(EllipticPi[((x + y*I)+ \[Mu]-p + \[Mu])/((x + y*I)+ \[Mu]-x + \[Mu]),ArcCos[Sqrt[x + \[Mu]/(x + y*I)+ \[Mu]]],((x + y*I)+ \[Mu]-y + \[Mu])/((x + y*I)+ \[Mu]-x + \[Mu])]-EllipticF[ArcCos[Sqrt[x + \[Mu]/(x + y*I)+ \[Mu]]],((x + y*I)+ \[Mu]-y + \[Mu])/((x + y*I)+ \[Mu]-x + \[Mu])])/Sqrt[(x + y*I)+ \[Mu]-x + \[Mu]] == 3*(x + y*I-x)/(x + y*I-p)*(EllipticPi[(x + y*I-p)/(x + y*I-x),ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/Sqrt[x + y*I-x]- 3*1/Sqrt[\[Gamma]]*Hypergeometric2F1[1/2,1/2,3/2,1-(\[Gamma]- \[Delta])/(\[Gamma])]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[6.482970499990588, -0.8807575715831795] | ||
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5], Rule[γ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[μ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[7.020988185402777, -1.8389880807014276] | Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5], Rule[γ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[μ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[7.020988185402777, -1.8389880807014276] | ||
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5], Rule[γ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[μ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5], Rule[γ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[μ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- style="background: #dfe6e9;" | |- style="background: #dfe6e9;" | ||
| [https://dlmf.nist.gov/19.26#Ex3 19.26#Ex3] | | | [https://dlmf.nist.gov/19.26#Ex3 19.26#Ex3] || <math qid="Q6562">\gamma = p(p+\lambda)(p+\mu)</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\gamma = p(p+\lambda)(p+\mu)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">gamma = p*(p + lambda)*(p + mu)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">\[Gamma] == p*(p + \[Lambda])*(p + \[Mu])</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | ||
|- style="background: #dfe6e9;" | |- style="background: #dfe6e9;" | ||
| [https://dlmf.nist.gov/19.26#Ex4 19.26#Ex4] | | | [https://dlmf.nist.gov/19.26#Ex4 19.26#Ex4] || <math qid="Q6563">\delta = (p-x)(p-y)(p-z)</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\delta = (p-x)(p-y)(p-z)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">delta = (p - x)*(p - y)*(p -(x + y*I))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">\[Delta] == (p - x)*(p - y)*(p -(x + y*I))</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | ||
|- | |- | ||
| [https://dlmf.nist.gov/19.26.E11 19.26.E11] | | | [https://dlmf.nist.gov/19.26.E11 19.26.E11] || <math qid="Q6564">\CarlsonellintRC@{x+\lambda}{y+\lambda}+\CarlsonellintRC@{x+\mu}{y+\mu} = \CarlsonellintRC@{x}{y}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\CarlsonellintRC@{x+\lambda}{y+\lambda}+\CarlsonellintRC@{x+\mu}{y+\mu} = \CarlsonellintRC@{x}{y}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>1/Sqrt[y + \[Lambda]]*Hypergeometric2F1[1/2,1/2,3/2,1-(x + \[Lambda])/(y + \[Lambda])]+ 1/Sqrt[y + \[Mu]]*Hypergeometric2F1[1/2,1/2,3/2,1-(x + \[Mu])/(y + \[Mu])] == 1/Sqrt[y]*Hypergeometric2F1[1/2,1/2,3/2,1-(x)/(y)]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.7722794006718585, -0.740880873447254] | ||
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[μ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.579678795390187, -0.7154745309495683] | Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[μ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.579678795390187, -0.7154745309495683] | ||
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[μ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[μ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- style="background: #dfe6e9;" | |- style="background: #dfe6e9;" | ||
| [https://dlmf.nist.gov/19.26#Ex5 19.26#Ex5] | | | [https://dlmf.nist.gov/19.26#Ex5 19.26#Ex5] || <math qid="Q6565">x+\mu = \lambda^{-2}(\sqrt{x+\lambda}y+\sqrt{x}(y+\lambda))^{2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>x+\mu = \lambda^{-2}(\sqrt{x+\lambda}y+\sqrt{x}(y+\lambda))^{2}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">x + mu = (lambda)^(- 2)*(sqrt(x + lambda)*y +sqrt(x)*(y + lambda))^(2)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">x + \[Mu] == \[Lambda]^(- 2)*(Sqrt[x + \[Lambda]]*y +Sqrt[x]*(y + \[Lambda]))^(2)</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | ||
|- style="background: #dfe6e9;" | |- style="background: #dfe6e9;" | ||
| [https://dlmf.nist.gov/19.26#Ex6 19.26#Ex6] | | | [https://dlmf.nist.gov/19.26#Ex6 19.26#Ex6] || <math qid="Q6566">y+\mu = (y(y+\lambda)/\lambda^{2})(\sqrt{x}+\sqrt{x+\lambda})^{2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>y+\mu = (y(y+\lambda)/\lambda^{2})(\sqrt{x}+\sqrt{x+\lambda})^{2}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">y + mu = (y*(y + lambda)/(lambda)^(2))*(sqrt(x)+sqrt(x + lambda))^(2)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">y + \[Mu] == (y*(y + \[Lambda])/\[Lambda]^(2))*(Sqrt[x]+Sqrt[x + \[Lambda]])^(2)</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | ||
|- | |- | ||
| [https://dlmf.nist.gov/19.26.E13 19.26.E13] | | | [https://dlmf.nist.gov/19.26.E13 19.26.E13] || <math qid="Q6567">\CarlsonellintRC@{\alpha^{2}}{\alpha^{2}-\theta}+\CarlsonellintRC@{\beta^{2}}{\beta^{2}-\theta} = \CarlsonellintRC@{\sigma^{2}}{\sigma^{2}-\theta}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\CarlsonellintRC@{\alpha^{2}}{\alpha^{2}-\theta}+\CarlsonellintRC@{\beta^{2}}{\beta^{2}-\theta} = \CarlsonellintRC@{\sigma^{2}}{\sigma^{2}-\theta}</syntaxhighlight> || <math>\sigma = (\alpha\beta+\theta)/(\alpha+\beta)</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>1/Sqrt[\[Alpha]^(2)- \[Theta]]*Hypergeometric2F1[1/2,1/2,3/2,1-(\[Alpha]^(2))/(\[Alpha]^(2)- \[Theta])]+ 1/Sqrt[\[Beta]^(2)- \[Theta]]*Hypergeometric2F1[1/2,1/2,3/2,1-(\[Beta]^(2))/(\[Beta]^(2)- \[Theta])] == 1/Sqrt[\[Sigma]^(2)- \[Theta]]*Hypergeometric2F1[1/2,1/2,3/2,1-(\[Sigma]^(2))/(\[Sigma]^(2)- \[Theta])]</syntaxhighlight> || Missing Macro Error || Aborted || - || Successful [Tested: 2] | ||
|- | |- | ||
| [https://dlmf.nist.gov/19.26.E14 19.26.E14] | | | [https://dlmf.nist.gov/19.26.E14 19.26.E14] || <math qid="Q6568">(p-y)\CarlsonellintRC@{x}{p}+(q-y)\CarlsonellintRC@{x}{q} = (\eta-\xi)\CarlsonellintRC@{\xi}{\eta}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>(p-y)\CarlsonellintRC@{x}{p}+(q-y)\CarlsonellintRC@{x}{q} = (\eta-\xi)\CarlsonellintRC@{\xi}{\eta}</syntaxhighlight> || <math>x \geq 0, y \geq 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>(p - y)*1/Sqrt[p]*Hypergeometric2F1[1/2,1/2,3/2,1-(x)/(p)]+(q - y)*1/Sqrt[q]*Hypergeometric2F1[1/2,1/2,3/2,1-(x)/(q)] == (\[Eta]- \[Xi])*1/Sqrt[\[Eta]]*Hypergeometric2F1[1/2,1/2,3/2,1-(\[Xi])/(\[Eta])]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[q, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, 1.5], Rule[η, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ξ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-3.0971074607887266, 1.6817857583573725] | Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[q, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, 1.5], Rule[η, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ξ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-3.0971074607887266, 1.6817857583573725] | ||
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[q, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, 1.5], Rule[η, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ξ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[q, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, 1.5], Rule[η, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ξ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- style="background: #dfe6e9;" | |- style="background: #dfe6e9;" | ||
| [https://dlmf.nist.gov/19.26#Ex7 19.26#Ex7] | | | [https://dlmf.nist.gov/19.26#Ex7 19.26#Ex7] || <math qid="Q6569">(p-x)(q-x) = (y-x)^{2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>(p-x)(q-x) = (y-x)^{2}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(p - x)*(q - x) = (y - x)^(2)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(p - x)*(q - x) == (y - x)^(2)</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | ||
|- style="background: #dfe6e9;" | |- style="background: #dfe6e9;" | ||
| [https://dlmf.nist.gov/19.26#Ex8 19.26#Ex8] | | | [https://dlmf.nist.gov/19.26#Ex8 19.26#Ex8] || <math qid="Q6570">\xi = y^{2}/x</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\xi = y^{2}/x</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">xi = (y)^(2)/x</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">\[Xi] == (y)^(2)/x</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | ||
|- style="background: #dfe6e9;" | |- style="background: #dfe6e9;" | ||
| [https://dlmf.nist.gov/19.26#Ex9 19.26#Ex9] | | | [https://dlmf.nist.gov/19.26#Ex9 19.26#Ex9] || <math qid="Q6571">\eta = pq/x</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\eta = pq/x</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">eta = p*q/x</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">\[Eta] == p*q/x</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | ||
|- style="background: #dfe6e9;" | |- style="background: #dfe6e9;" | ||
| [https://dlmf.nist.gov/19.26#Ex10 19.26#Ex10] | | | [https://dlmf.nist.gov/19.26#Ex10 19.26#Ex10] || <math qid="Q6572">\eta-\xi = p+q-2y</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\eta-\xi = p+q-2y</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">eta - xi = p + q - 2*y</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">\[Eta]- \[Xi] == p + q - 2*y</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | ||
|- | |- | ||
| [https://dlmf.nist.gov/19.26.E16 19.26.E16] | | | [https://dlmf.nist.gov/19.26.E16 19.26.E16] || <math qid="Q6573">\CarlsonsymellintRF@{\lambda}{y+\lambda}{z+\lambda} = {\CarlsonsymellintRF@{0}{y}{z}-\CarlsonsymellintRF@{\mu}{y+\mu}{z+\mu},}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\CarlsonsymellintRF@{\lambda}{y+\lambda}{z+\lambda} = {\CarlsonsymellintRF@{0}{y}{z}-\CarlsonsymellintRF@{\mu}{y+\mu}{z+\mu},}</syntaxhighlight> || <math>\lambda\mu = yz</math> || <syntaxhighlight lang=mathematica>0.5*int(1/(sqrt(t+lambda)*sqrt(t+y + lambda)*sqrt(t+(x + y*I)+ lambda)), t = 0..infinity) = 0.5*int(1/(sqrt(t+0)*sqrt(t+y)*sqrt(t+x + y*I)), t = 0..infinity)- 0.5*int(1/(sqrt(t+mu)*sqrt(t+y + mu)*sqrt(t+(x + y*I)+ mu)), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>EllipticF[ArcCos[Sqrt[\[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-\[Lambda])]/Sqrt[(x + y*I)+ \[Lambda]-\[Lambda]] == EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]/Sqrt[x + y*I-0]- EllipticF[ArcCos[Sqrt[\[Mu]/(x + y*I)+ \[Mu]]],((x + y*I)+ \[Mu]-y + \[Mu])/((x + y*I)+ \[Mu]-\[Mu])]/Sqrt[(x + y*I)+ \[Mu]-\[Mu]]</syntaxhighlight> || Error || Failure || - || Error | ||
|- | |- | ||
| [https://dlmf.nist.gov/19.26.E17 19.26.E17] | | | [https://dlmf.nist.gov/19.26.E17 19.26.E17] || <math qid="Q6574">\sqrt{\alpha}\CarlsonellintRC@{\beta}{\alpha+\beta}+\sqrt{\beta}\CarlsonellintRC@{\alpha}{\alpha+\beta} = \pi/2</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sqrt{\alpha}\CarlsonellintRC@{\beta}{\alpha+\beta}+\sqrt{\beta}\CarlsonellintRC@{\alpha}{\alpha+\beta} = \pi/2</syntaxhighlight> || <math>\alpha+\beta > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[\[Alpha]]*1/Sqrt[\[Alpha]+ \[Beta]]*Hypergeometric2F1[1/2,1/2,3/2,1-(\[Beta])/(\[Alpha]+ \[Beta])]+Sqrt[\[Beta]]*1/Sqrt[\[Alpha]+ \[Beta]]*Hypergeometric2F1[1/2,1/2,3/2,1-(\[Alpha])/(\[Alpha]+ \[Beta])] == Pi/2</syntaxhighlight> || Missing Macro Error || Failure || - || Successful [Tested: 9] | ||
|- | |- | ||
| [https://dlmf.nist.gov/19.26.E18 19.26.E18] | | | [https://dlmf.nist.gov/19.26.E18 19.26.E18] || <math qid="Q6575">\CarlsonsymellintRF@{x}{y}{z} = 2\CarlsonsymellintRF@{x+\lambda}{y+\lambda}{z+\lambda}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\CarlsonsymellintRF@{x}{y}{z} = 2\CarlsonsymellintRF@{x+\lambda}{y+\lambda}{z+\lambda}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>0.5*int(1/(sqrt(t+x)*sqrt(t+y)*sqrt(t+x + y*I)), t = 0..infinity) = 2*0.5*int(1/(sqrt(t+x + lambda)*sqrt(t+y + lambda)*sqrt(t+(x + y*I)+ lambda)), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x] == 2*EllipticF[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])]/Sqrt[(x + y*I)+ \[Lambda]-x + \[Lambda]]</syntaxhighlight> || Aborted || Failure || Skipped - Because timed out || <div class="toccolours mw-collapsible mw-collapsed">Failed [180 / 180]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.6992255245511445, 1.8246422705609677] | ||
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-1.7332476531334464, -0.3074481161267689] | Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-1.7332476531334464, -0.3074481161267689] | ||
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/19.26.E18 19.26.E18] | | | [https://dlmf.nist.gov/19.26.E18 19.26.E18] || <math qid="Q6575">2\CarlsonsymellintRF@{x+\lambda}{y+\lambda}{z+\lambda} = \CarlsonsymellintRF@{\frac{x+\lambda}{4}}{\frac{y+\lambda}{4}}{\frac{z+\lambda}{4}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>2\CarlsonsymellintRF@{x+\lambda}{y+\lambda}{z+\lambda} = \CarlsonsymellintRF@{\frac{x+\lambda}{4}}{\frac{y+\lambda}{4}}{\frac{z+\lambda}{4}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>2*0.5*int(1/(sqrt(t+x + lambda)*sqrt(t+y + lambda)*sqrt(t+(x + y*I)+ lambda)), t = 0..infinity) = 0.5*int(1/(sqrt(t+(x + lambda)/(4))*sqrt(t+(y + lambda)/(4))*sqrt(t+((x + y*I)+ lambda)/(4))), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>2*EllipticF[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])]/Sqrt[(x + y*I)+ \[Lambda]-x + \[Lambda]] == EllipticF[ArcCos[Sqrt[Divide[x + \[Lambda],4]/Divide[(x + y*I)+ \[Lambda],4]]],(Divide[(x + y*I)+ \[Lambda],4]-Divide[y + \[Lambda],4])/(Divide[(x + y*I)+ \[Lambda],4]-Divide[x + \[Lambda],4])]/Sqrt[Divide[(x + y*I)+ \[Lambda],4]-Divide[x + \[Lambda],4]]</syntaxhighlight> || Failure || Failure || Skipped - Because timed out || <div class="toccolours mw-collapsible mw-collapsed">Failed [180 / 180]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-1.1343270456997319, -2.101834604175173] | ||
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.07907692856233961, -0.3004487668798371] | Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.07907692856233961, -0.3004487668798371] | ||
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- style="background: #dfe6e9;" | |- style="background: #dfe6e9;" | ||
| [https://dlmf.nist.gov/19.26.E19 19.26.E19] | | | [https://dlmf.nist.gov/19.26.E19 19.26.E19] || <math qid="Q6576">\lambda = \sqrt{x}\sqrt{y}+\sqrt{y}\sqrt{z}+\sqrt{z}\sqrt{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\lambda = \sqrt{x}\sqrt{y}+\sqrt{y}\sqrt{z}+\sqrt{z}\sqrt{x}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">lambda = sqrt(x)*sqrt(y)+sqrt(y)*sqrt(x + y*I)+sqrt(x + y*I)*sqrt(x)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">\[Lambda] == Sqrt[x]*Sqrt[y]+Sqrt[y]*Sqrt[x + y*I]+Sqrt[x + y*I]*Sqrt[x]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | ||
|- | |- | ||
| [https://dlmf.nist.gov/19.26.E20 19.26.E20] | | | [https://dlmf.nist.gov/19.26.E20 19.26.E20] || <math qid="Q6577">\CarlsonsymellintRD@{x}{y}{z} = 2\CarlsonsymellintRD@{x+\lambda}{y+\lambda}{z+\lambda}+\frac{3}{\sqrt{z}(z+\lambda)}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\CarlsonsymellintRD@{x}{y}{z} = 2\CarlsonsymellintRD@{x+\lambda}{y+\lambda}{z+\lambda}+\frac{3}{\sqrt{z}(z+\lambda)}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>3*(EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/((x + y*I-y)*(x + y*I-x)^(1/2)) == 2*3*(EllipticF[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])]-EllipticE[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])])/(((x + y*I)+ \[Lambda]-y + \[Lambda])*((x + y*I)+ \[Lambda]-x + \[Lambda])^(1/2))+Divide[3,Sqrt[x + y*I]*((x + y*I)+ \[Lambda])]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [180 / 180]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.4984590390126629, -1.2092907867192135] | ||
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.5295690158190058, -2.8195127867822802] | Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.5295690158190058, -2.8195127867822802] | ||
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/19.26.E21 19.26.E21] | | | [https://dlmf.nist.gov/19.26.E21 19.26.E21] || <math qid="Q6578">2\CarlsonsymellintRG@{x}{y}{z} = 4\CarlsonsymellintRG@{x+\lambda}{y+\lambda}{z+\lambda}-\lambda\CarlsonsymellintRF@{x}{y}{z}-\sqrt{x}-\sqrt{y}-\sqrt{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>2\CarlsonsymellintRG@{x}{y}{z} = 4\CarlsonsymellintRG@{x+\lambda}{y+\lambda}{z+\lambda}-\lambda\CarlsonsymellintRF@{x}{y}{z}-\sqrt{x}-\sqrt{y}-\sqrt{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>2*Sqrt[x + y*I-x]*(EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+(Cot[ArcCos[Sqrt[x/x + y*I]]])^2*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+Cot[ArcCos[Sqrt[x/x + y*I]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[x/x + y*I]]]^2]) == 4*Sqrt[(x + y*I)+ \[Lambda]-x + \[Lambda]]*(EllipticE[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])]+(Cot[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]]])^2*EllipticF[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])]+Cot[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]]]^2])- \[Lambda]*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x]-Sqrt[x]-Sqrt[y]-Sqrt[x + y*I]</syntaxhighlight> || Missing Macro Error || Aborted || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [180 / 180]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[2.330530943809637, 0.9206144902290859], Times[Complex[1.7320508075688772, -1.732050807568877], Plus[Complex[0.9985512968581824, 0.2012315241723115], Times[Complex[0.3176872874027722, -1.049249833251038], Power[Plus[1.0, Times[Complex[0.0, -1.5], Power[k, 2]]], Rational[1, 2]]]]], Times[Complex[-4.184639587172815, 1.9117536488739475], Plus[Complex[0.7424137617640161, 0.220635885032481], Times[Complex[0.14483575015411373, 1.3558262394954135], Power[Plus[1.0, Times[Complex[0.9940169358562925, 0.4776709006307397], Power[k, 2]]], Rational[1, 2]]]]]] | ||
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[2.3171140130573056, 0.42755423781462054], Times[Complex[1.7320508075688772, -1.732050807568877], Plus[Complex[0.9985512968581824, 0.2012315241723115], Times[Complex[0.3176872874027722, -1.049249833251038], Power[Plus[1.0, Times[Complex[0.0, -1.5], Power[k, 2]]], Rational[1, 2]]]]], Times[Complex[-1.5682295148869496, 3.234090878649293], Plus[Complex[0.3473840661116648, 1.4426085854555293], Times[Complex[0.7761183239980944, 1.3014092542459557], Power[Plus[1.0, Times[Complex[0.02232909936926042, 0.49401693585629247], Power[k, 2]]], Rational[1, 2]]]]]] | Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[2.3171140130573056, 0.42755423781462054], Times[Complex[1.7320508075688772, -1.732050807568877], Plus[Complex[0.9985512968581824, 0.2012315241723115], Times[Complex[0.3176872874027722, -1.049249833251038], Power[Plus[1.0, Times[Complex[0.0, -1.5], Power[k, 2]]], Rational[1, 2]]]]], Times[Complex[-1.5682295148869496, 3.234090878649293], Plus[Complex[0.3473840661116648, 1.4426085854555293], Times[Complex[0.7761183239980944, 1.3014092542459557], Power[Plus[1.0, Times[Complex[0.02232909936926042, 0.49401693585629247], Power[k, 2]]], Rational[1, 2]]]]]] | ||
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/19.26.E22 19.26.E22] | | | [https://dlmf.nist.gov/19.26.E22 19.26.E22] || <math qid="Q6579">\CarlsonsymellintRJ@{x}{y}{z}{p} = 2\CarlsonsymellintRJ@{x+\lambda}{y+\lambda}{z+\lambda}{p+\lambda}+3\CarlsonellintRC@{\alpha^{2}}{\beta^{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\CarlsonsymellintRJ@{x}{y}{z}{p} = 2\CarlsonsymellintRJ@{x+\lambda}{y+\lambda}{z+\lambda}{p+\lambda}+3\CarlsonellintRC@{\alpha^{2}}{\beta^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>3*(x + y*I-x)/(x + y*I-p)*(EllipticPi[(x + y*I-p)/(x + y*I-x),ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/Sqrt[x + y*I-x] == 2*3*((x + y*I)+ \[Lambda]-x + \[Lambda])/((x + y*I)+ \[Lambda]-p + \[Lambda])*(EllipticPi[((x + y*I)+ \[Lambda]-p + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda]),ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])]-EllipticF[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])])/Sqrt[(x + y*I)+ \[Lambda]-x + \[Lambda]]+ 3*1/Sqrt[\[Beta]^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-(\[Alpha]^(2))/(\[Beta]^(2))]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5], Rule[α, 1.5], Rule[β, 1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5], Rule[α, 1.5], Rule[β, 1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5], Rule[α, 1.5], Rule[β, 1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5], Rule[α, 1.5], Rule[β, 1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- style="background: #dfe6e9;" | |- style="background: #dfe6e9;" | ||
| [https://dlmf.nist.gov/19.26#Ex11 19.26#Ex11] | | | [https://dlmf.nist.gov/19.26#Ex11 19.26#Ex11] || <math qid="Q6580">\alpha = p(\sqrt{x}+\sqrt{y}+\sqrt{z})+\sqrt{x}\sqrt{y}\sqrt{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\alpha = p(\sqrt{x}+\sqrt{y}+\sqrt{z})+\sqrt{x}\sqrt{y}\sqrt{z}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">alpha = p*(sqrt(x)+sqrt(y)+sqrt(x + y*I))+sqrt(x)*sqrt(y)*sqrt(x + y*I)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">\[Alpha] == p*(Sqrt[x]+Sqrt[y]+Sqrt[x + y*I])+Sqrt[x]*Sqrt[y]*Sqrt[x + y*I]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | ||
|- style="background: #dfe6e9;" | |- style="background: #dfe6e9;" | ||
| [https://dlmf.nist.gov/19.26#Ex12 19.26#Ex12] | | | [https://dlmf.nist.gov/19.26#Ex12 19.26#Ex12] || <math qid="Q6581">\beta = \sqrt{p}(p+\lambda)</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\beta = \sqrt{p}(p+\lambda)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">beta = sqrt(p)*(p + lambda)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">\[Beta] == Sqrt[p]*(p + \[Lambda])</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | ||
|- style="background: #dfe6e9;" | |- style="background: #dfe6e9;" | ||
| [https://dlmf.nist.gov/19.26#Ex13 19.26#Ex13] | | | [https://dlmf.nist.gov/19.26#Ex13 19.26#Ex13] || <math qid="Q6582">\beta+\alpha = (\sqrt{p}+\sqrt{x})(\sqrt{p}+\sqrt{y})(\sqrt{p}+\sqrt{z})</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\beta+\alpha = (\sqrt{p}+\sqrt{x})(\sqrt{p}+\sqrt{y})(\sqrt{p}+\sqrt{z})</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">beta + alpha = (sqrt(p)+sqrt(x))*(sqrt(p)+sqrt(y))*(sqrt(p)+sqrt(x + y*I))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">\[Beta]+ \[Alpha] == (Sqrt[p]+Sqrt[x])*(Sqrt[p]+Sqrt[y])*(Sqrt[p]+Sqrt[x + y*I])</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | ||
|- style="background: #dfe6e9;" | |- style="background: #dfe6e9;" | ||
| [https://dlmf.nist.gov/19.26#Ex14 19.26#Ex14] | | | [https://dlmf.nist.gov/19.26#Ex14 19.26#Ex14] || <math qid="Q6583">\beta^{2}-\alpha^{2} = (p-x)(p-y)(p-z)</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\beta^{2}-\alpha^{2} = (p-x)(p-y)(p-z)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(beta)^(2)- (alpha)^(2) = (p - x)*(p - y)*(p -(x + y*I))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">\[Beta]^(2)- \[Alpha]^(2) == (p - x)*(p - y)*(p -(x + y*I))</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | ||
|- style="background: #dfe6e9;" | |- style="background: #dfe6e9;" | ||
| [https://dlmf.nist.gov/19.26.E24 19.26.E24] | | | [https://dlmf.nist.gov/19.26.E24 19.26.E24] || <math qid="Q6584">z = (\xi\zeta+\eta\zeta-\xi\eta)^{2}/(4\xi\eta\zeta)</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>z = (\xi\zeta+\eta\zeta-\xi\eta)^{2}/(4\xi\eta\zeta)</syntaxhighlight> || <math>(\xi = (x+\lambda, \eta = (x+\lambda, \zeta) = (x+\lambda</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">z = (xi*zeta + eta*zeta - xi*eta)^(2)/(4*xi*eta*zeta)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">z == (\[Xi]*\[Zeta]+ \[Eta]*\[Zeta]- \[Xi]*\[Eta])^(2)/(4*\[Xi]*\[Eta]*\[Zeta])</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | ||
|- | |- | ||
| [https://dlmf.nist.gov/19.26.E25 19.26.E25] | | | [https://dlmf.nist.gov/19.26.E25 19.26.E25] || <math qid="Q6585">\CarlsonellintRC@{x}{y} = 2\CarlsonellintRC@{x+\lambda}{y+\lambda}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\CarlsonellintRC@{x}{y} = 2\CarlsonellintRC@{x+\lambda}{y+\lambda}</syntaxhighlight> || <math>\lambda = y+2\sqrt{x}\sqrt{y}</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>1/Sqrt[y]*Hypergeometric2F1[1/2,1/2,3/2,1-(x)/(y)] == 2*1/Sqrt[y + \[Lambda]]*Hypergeometric2F1[1/2,1/2,3/2,1-(x + \[Lambda])/(y + \[Lambda])]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 1]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[x, 0.5], Rule[y, 0.5], Rule[λ, 1.5]}</syntaxhighlight><br></div></div> | Test Values: {Rule[x, 0.5], Rule[y, 0.5], Rule[λ, 1.5]}</syntaxhighlight><br></div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/19.26.E26 19.26.E26] | | | [https://dlmf.nist.gov/19.26.E26 19.26.E26] || <math qid="Q6586">\CarlsonellintRC@{x^{2}}{y^{2}} = \CarlsonellintRC@{a^{2}}{ay}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\CarlsonellintRC@{x^{2}}{y^{2}} = \CarlsonellintRC@{a^{2}}{ay}</syntaxhighlight> || <math>a = (x+y)/2, \realpart@@{x} \geq 0, \realpart@@{y} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>1/Sqrt[(y)^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-((x)^(2))/((y)^(2))] == 1/Sqrt[a*y]*Hypergeometric2F1[1/2,1/2,3/2,1-((a)^(2))/(a*y)]</syntaxhighlight> || Missing Macro Error || Aborted || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[a, 1.5], Rule[x, 1.5], Rule[y, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | Test Values: {Rule[a, 1.5], Rule[x, 1.5], Rule[y, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[a, 0.5], Rule[x, 0.5], Rule[y, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[a, 0.5], Rule[x, 0.5], Rule[y, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/19.26.E27 19.26.E27] | | | [https://dlmf.nist.gov/19.26.E27 19.26.E27] || <math qid="Q6587">\CarlsonellintRC@{x^{2}}{x^{2}-\theta} = 2\CarlsonellintRC@{s^{2}}{s^{2}-\theta}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\CarlsonellintRC@{x^{2}}{x^{2}-\theta} = 2\CarlsonellintRC@{s^{2}}{s^{2}-\theta}</syntaxhighlight> || <math>s = x+\sqrt{x^{2}-\theta}, \theta \neq x^{2}</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>1/Sqrt[(x)^(2)- \[Theta]]*Hypergeometric2F1[1/2,1/2,3/2,1-((x)^(2))/((x)^(2)- \[Theta])] == 2*1/Sqrt[(s)^(2)- \[Theta]]*Hypergeometric2F1[1/2,1/2,3/2,1-((s)^(2))/((s)^(2)- \[Theta])]</syntaxhighlight> || Missing Macro Error || Failure || - || Successful [Tested: 2] | ||
|} | |} | ||
</div> | </div> |
Latest revision as of 11:53, 28 June 2021
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
19.26.E1 | \CarlsonsymellintRF@{x+\lambda}{y+\lambda}{z+\lambda}+\CarlsonsymellintRF@{x+\mu}{y+\mu}{z+\mu} = \CarlsonsymellintRF@{x}{y}{z} |
|
0.5*int(1/(sqrt(t+x + lambda)*sqrt(t+y + lambda)*sqrt(t+(x + y*I)+ lambda)), t = 0..infinity)+ 0.5*int(1/(sqrt(t+x + mu)*sqrt(t+y + mu)*sqrt(t+(x + y*I)+ mu)), t = 0..infinity) = 0.5*int(1/(sqrt(t+x)*sqrt(t+y)*sqrt(t+x + y*I)), t = 0..infinity)
|
EllipticF[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])]/Sqrt[(x + y*I)+ \[Lambda]-x + \[Lambda]]+ EllipticF[ArcCos[Sqrt[x + \[Mu]/(x + y*I)+ \[Mu]]],((x + y*I)+ \[Mu]-y + \[Mu])/((x + y*I)+ \[Mu]-x + \[Mu])]/Sqrt[(x + y*I)+ \[Mu]-x + \[Mu]] == EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x]
|
Aborted | Failure | Skipped - Because timed out | Failed [300 / 300]
Result: Complex[0.6992255245511445, -1.8246422705609677]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[μ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Result: Complex[1.2162365888422955, -0.7585970772170993]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[μ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
... skip entries to safe data |
19.26.E2 | x+\mu = \lambda^{-2}\left(\sqrt{(x+\lambda)yz}+\sqrt{x(y+\lambda)(z+\lambda)}\right)^{2} |
|
x + mu = (lambda)^(- 2)*(sqrt((x + lambda)*y*(x + y*I))+sqrt(x*(y + lambda)*((x + y*I)+ lambda)))^(2) |
x + \[Mu] == \[Lambda]^(- 2)*(Sqrt[(x + \[Lambda])*y*(x + y*I)]+Sqrt[x*(y + \[Lambda])*((x + y*I)+ \[Lambda])])^(2) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.26#Ex1 | (\xi,\eta,\zeta) = (x+\lambda,y+\lambda,z+\lambda) |
|
(xi , eta , zeta) = (x + lambda , y + lambda ,(x + y*I)+ lambda) |
(\[Xi], \[Eta], \[Zeta]) == (x + \[Lambda], y + \[Lambda],(x + y*I)+ \[Lambda]) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.26.E5 | \mu = \lambda^{-2}\left(\sqrt{xyz}+\sqrt{(x+\lambda)(y+\lambda)(z+\lambda)}\right)^{2}-\lambda-x-y-z |
|
mu = (lambda)^(- 2)*(sqrt(x*y*(x + y*I))+sqrt((x + lambda)*(y + lambda)*((x + y*I)+ lambda)))^(2)- lambda - x - y -(x + y*I) |
\[Mu] == \[Lambda]^(- 2)*(Sqrt[x*y*(x + y*I)]+Sqrt[(x + \[Lambda])*(y + \[Lambda])*((x + y*I)+ \[Lambda])])^(2)- \[Lambda]- x - y -(x + y*I) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.26.E6 | (\lambda\mu-xy-xz-yz)^{2} = 4xyz(\lambda+\mu+x+y+z) |
|
(lambda*mu - x*y - x*(x + y*I)- y*(x + y*I))^(2) = 4*x*y*(x + y*I)*(lambda + mu + x + y +(x + y*I)) |
(\[Lambda]*\[Mu]- x*y - x*(x + y*I)- y*(x + y*I))^(2) == 4*x*y*(x + y*I)*(\[Lambda]+ \[Mu]+ x + y +(x + y*I)) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.26.E7 | \CarlsonsymellintRD@{x+\lambda}{y+\lambda}{z+\lambda}+\CarlsonsymellintRD@{x+\mu}{y+\mu}{z+\mu} = \CarlsonsymellintRD@{x}{y}{z}-\frac{3}{\sqrt{z(z+\lambda)(z+\mu)}} |
|
Error
|
3*(EllipticF[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])]-EllipticE[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])])/(((x + y*I)+ \[Lambda]-y + \[Lambda])*((x + y*I)+ \[Lambda]-x + \[Lambda])^(1/2))+ 3*(EllipticF[ArcCos[Sqrt[x + \[Mu]/(x + y*I)+ \[Mu]]],((x + y*I)+ \[Mu]-y + \[Mu])/((x + y*I)+ \[Mu]-x + \[Mu])]-EllipticE[ArcCos[Sqrt[x + \[Mu]/(x + y*I)+ \[Mu]]],((x + y*I)+ \[Mu]-y + \[Mu])/((x + y*I)+ \[Mu]-x + \[Mu])])/(((x + y*I)+ \[Mu]-y + \[Mu])*((x + y*I)+ \[Mu]-x + \[Mu])^(1/2)) == 3*(EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/((x + y*I-y)*(x + y*I-x)^(1/2))-Divide[3,Sqrt[(x + y*I)*((x + y*I)+ \[Lambda])*((x + y*I)+ \[Mu])]]
|
Missing Macro Error | Aborted | - | Failed [300 / 300]
Result: Complex[-0.4984590390126629, 1.2092907867192135]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[μ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Result: Complex[0.01924185171185039, 1.9974068077017313]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[μ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
... skip entries to safe data |
19.26.E8 | 2\CarlsonsymellintRG@{x+\lambda}{y+\lambda}{z+\lambda}+2\CarlsonsymellintRG@{x+\mu}{y+\mu}{z+\mu} = 2\CarlsonsymellintRG@{x}{y}{z}+\lambda\CarlsonsymellintRF@{x+\lambda}{y+\lambda}{z+\lambda}+\mu\CarlsonsymellintRF@{x+\mu}{y+\mu}{z+\mu}+\sqrt{\lambda+\mu+x+y+z} |
|
Error
|
2*Sqrt[(x + y*I)+ \[Lambda]-x + \[Lambda]]*(EllipticE[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])]+(Cot[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]]])^2*EllipticF[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])]+Cot[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]]]^2])+ 2*Sqrt[(x + y*I)+ \[Mu]-x + \[Mu]]*(EllipticE[ArcCos[Sqrt[x + \[Mu]/(x + y*I)+ \[Mu]]],((x + y*I)+ \[Mu]-y + \[Mu])/((x + y*I)+ \[Mu]-x + \[Mu])]+(Cot[ArcCos[Sqrt[x + \[Mu]/(x + y*I)+ \[Mu]]]])^2*EllipticF[ArcCos[Sqrt[x + \[Mu]/(x + y*I)+ \[Mu]]],((x + y*I)+ \[Mu]-y + \[Mu])/((x + y*I)+ \[Mu]-x + \[Mu])]+Cot[ArcCos[Sqrt[x + \[Mu]/(x + y*I)+ \[Mu]]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[x + \[Mu]/(x + y*I)+ \[Mu]]]]^2]) == 2*Sqrt[x + y*I-x]*(EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+(Cot[ArcCos[Sqrt[x/x + y*I]]])^2*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+Cot[ArcCos[Sqrt[x/x + y*I]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[x/x + y*I]]]^2])+ \[Lambda]*EllipticF[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])]/Sqrt[(x + y*I)+ \[Lambda]-x + \[Lambda]]+ \[Mu]*EllipticF[ArcCos[Sqrt[x + \[Mu]/(x + y*I)+ \[Mu]]],((x + y*I)+ \[Mu]-y + \[Mu])/((x + y*I)+ \[Mu]-x + \[Mu])]/Sqrt[(x + y*I)+ \[Mu]-x + \[Mu]]+Sqrt[\[Lambda]+ \[Mu]+ x + y +(x + y*I)]
|
Missing Macro Error | Aborted | - | Failed [300 / 300]
Result: Plus[Complex[-2.0898920996046204, 0.6803615706262403], Times[Complex[-1.7320508075688772, 1.732050807568877], Plus[Complex[0.9985512968581824, 0.2012315241723115], Times[Complex[0.3176872874027722, -1.049249833251038], Power[Plus[1.0, Times[Complex[0.0, -1.5], Power[k, 2]]], Rational[1, 2]]]]], Times[Complex[4.184639587172815, -1.9117536488739475], Plus[Complex[0.7424137617640161, 0.220635885032481], Times[Complex[0.14483575015411373, 1.3558262394954135], Power[Plus[1.0, Times[Complex[0.9940169358562925, 0.4776709006307397], Power[k, 2]]], Rational[1, 2]]]]]]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[μ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Result: Plus[Complex[-1.182728387586514, 0.2705509888970101], Times[Complex[-1.7320508075688772, 1.732050807568877], Plus[Complex[0.9985512968581824, 0.2012315241723115], Times[Complex[0.3176872874027722, -1.049249833251038], Power[Plus[1.0, Times[Complex[0.0, -1.5], Power[k, 2]]], Rational[1, 2]]]]], Times[Complex[0.7841147574434748, -1.6170454393246465], Plus[Complex[0.3473840661116648, 1.4426085854555293], Times[Complex[0.7761183239980944, 1.3014092542459557], Power[Plus[1.0, Times[Complex[0.02232909936926042, 0.49401693585629247], Power[k, 2]]], Rational[1, 2]]]]], Times[Complex[2.0923197935864075, -0.9558768244369737], Plus[Complex[0.7424137617640161, 0.220635885032481], Times[Complex[0.14483575015411373, 1.3558262394954135], Power[Plus[1.0, Times[Complex[0.9940169358562925, 0.4776709006307397], Power[k, 2]]], Rational[1, 2]]]]]]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[μ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
... skip entries to safe data |
19.26.E9 | \CarlsonsymellintRJ@{x+\lambda}{y+\lambda}{z+\lambda}{p+\lambda}+\CarlsonsymellintRJ@{x+\mu}{y+\mu}{z+\mu}{p+\mu} = \CarlsonsymellintRJ@{x}{y}{z}{p}-3\CarlsonellintRC@{\gamma-\delta}{\gamma} |
|
Error
|
3*((x + y*I)+ \[Lambda]-x + \[Lambda])/((x + y*I)+ \[Lambda]-p + \[Lambda])*(EllipticPi[((x + y*I)+ \[Lambda]-p + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda]),ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])]-EllipticF[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])])/Sqrt[(x + y*I)+ \[Lambda]-x + \[Lambda]]+ 3*((x + y*I)+ \[Mu]-x + \[Mu])/((x + y*I)+ \[Mu]-p + \[Mu])*(EllipticPi[((x + y*I)+ \[Mu]-p + \[Mu])/((x + y*I)+ \[Mu]-x + \[Mu]),ArcCos[Sqrt[x + \[Mu]/(x + y*I)+ \[Mu]]],((x + y*I)+ \[Mu]-y + \[Mu])/((x + y*I)+ \[Mu]-x + \[Mu])]-EllipticF[ArcCos[Sqrt[x + \[Mu]/(x + y*I)+ \[Mu]]],((x + y*I)+ \[Mu]-y + \[Mu])/((x + y*I)+ \[Mu]-x + \[Mu])])/Sqrt[(x + y*I)+ \[Mu]-x + \[Mu]] == 3*(x + y*I-x)/(x + y*I-p)*(EllipticPi[(x + y*I-p)/(x + y*I-x),ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/Sqrt[x + y*I-x]- 3*1/Sqrt[\[Gamma]]*Hypergeometric2F1[1/2,1/2,3/2,1-(\[Gamma]- \[Delta])/(\[Gamma])]
|
Missing Macro Error | Failure | - | Failed [300 / 300]
Result: Complex[6.482970499990588, -0.8807575715831795]
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5], Rule[γ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[μ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Result: Complex[7.020988185402777, -1.8389880807014276]
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5], Rule[γ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[μ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
... skip entries to safe data |
19.26#Ex3 | \gamma = p(p+\lambda)(p+\mu) |
|
gamma = p*(p + lambda)*(p + mu) |
\[Gamma] == p*(p + \[Lambda])*(p + \[Mu]) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.26#Ex4 | \delta = (p-x)(p-y)(p-z) |
|
delta = (p - x)*(p - y)*(p -(x + y*I)) |
\[Delta] == (p - x)*(p - y)*(p -(x + y*I)) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.26.E11 | \CarlsonellintRC@{x+\lambda}{y+\lambda}+\CarlsonellintRC@{x+\mu}{y+\mu} = \CarlsonellintRC@{x}{y} |
|
Error
|
1/Sqrt[y + \[Lambda]]*Hypergeometric2F1[1/2,1/2,3/2,1-(x + \[Lambda])/(y + \[Lambda])]+ 1/Sqrt[y + \[Mu]]*Hypergeometric2F1[1/2,1/2,3/2,1-(x + \[Mu])/(y + \[Mu])] == 1/Sqrt[y]*Hypergeometric2F1[1/2,1/2,3/2,1-(x)/(y)]
|
Missing Macro Error | Failure | - | Failed [300 / 300]
Result: Complex[1.7722794006718585, -0.740880873447254]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[μ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Result: Complex[1.579678795390187, -0.7154745309495683]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[μ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
... skip entries to safe data |
19.26#Ex5 | x+\mu = \lambda^{-2}(\sqrt{x+\lambda}y+\sqrt{x}(y+\lambda))^{2} |
|
x + mu = (lambda)^(- 2)*(sqrt(x + lambda)*y +sqrt(x)*(y + lambda))^(2) |
x + \[Mu] == \[Lambda]^(- 2)*(Sqrt[x + \[Lambda]]*y +Sqrt[x]*(y + \[Lambda]))^(2) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.26#Ex6 | y+\mu = (y(y+\lambda)/\lambda^{2})(\sqrt{x}+\sqrt{x+\lambda})^{2} |
|
y + mu = (y*(y + lambda)/(lambda)^(2))*(sqrt(x)+sqrt(x + lambda))^(2) |
y + \[Mu] == (y*(y + \[Lambda])/\[Lambda]^(2))*(Sqrt[x]+Sqrt[x + \[Lambda]])^(2) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.26.E13 | \CarlsonellintRC@{\alpha^{2}}{\alpha^{2}-\theta}+\CarlsonellintRC@{\beta^{2}}{\beta^{2}-\theta} = \CarlsonellintRC@{\sigma^{2}}{\sigma^{2}-\theta} |
Error
|
1/Sqrt[\[Alpha]^(2)- \[Theta]]*Hypergeometric2F1[1/2,1/2,3/2,1-(\[Alpha]^(2))/(\[Alpha]^(2)- \[Theta])]+ 1/Sqrt[\[Beta]^(2)- \[Theta]]*Hypergeometric2F1[1/2,1/2,3/2,1-(\[Beta]^(2))/(\[Beta]^(2)- \[Theta])] == 1/Sqrt[\[Sigma]^(2)- \[Theta]]*Hypergeometric2F1[1/2,1/2,3/2,1-(\[Sigma]^(2))/(\[Sigma]^(2)- \[Theta])]
|
Missing Macro Error | Aborted | - | Successful [Tested: 2] | |
19.26.E14 | (p-y)\CarlsonellintRC@{x}{p}+(q-y)\CarlsonellintRC@{x}{q} = (\eta-\xi)\CarlsonellintRC@{\xi}{\eta} |
Error
|
(p - y)*1/Sqrt[p]*Hypergeometric2F1[1/2,1/2,3/2,1-(x)/(p)]+(q - y)*1/Sqrt[q]*Hypergeometric2F1[1/2,1/2,3/2,1-(x)/(q)] == (\[Eta]- \[Xi])*1/Sqrt[\[Eta]]*Hypergeometric2F1[1/2,1/2,3/2,1-(\[Xi])/(\[Eta])]
|
Missing Macro Error | Failure | - | Failed [300 / 300]
Result: Indeterminate
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[q, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, 1.5], Rule[η, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ξ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Result: Complex[-3.0971074607887266, 1.6817857583573725]
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[q, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, 1.5], Rule[η, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ξ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
... skip entries to safe data | |
19.26#Ex7 | (p-x)(q-x) = (y-x)^{2} |
|
(p - x)*(q - x) = (y - x)^(2) |
(p - x)*(q - x) == (y - x)^(2) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.26#Ex8 | \xi = y^{2}/x |
|
xi = (y)^(2)/x |
\[Xi] == (y)^(2)/x |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.26#Ex9 | \eta = pq/x |
|
eta = p*q/x |
\[Eta] == p*q/x |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.26#Ex10 | \eta-\xi = p+q-2y |
|
eta - xi = p + q - 2*y |
\[Eta]- \[Xi] == p + q - 2*y |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.26.E16 | \CarlsonsymellintRF@{\lambda}{y+\lambda}{z+\lambda} = {\CarlsonsymellintRF@{0}{y}{z}-\CarlsonsymellintRF@{\mu}{y+\mu}{z+\mu},} |
0.5*int(1/(sqrt(t+lambda)*sqrt(t+y + lambda)*sqrt(t+(x + y*I)+ lambda)), t = 0..infinity) = 0.5*int(1/(sqrt(t+0)*sqrt(t+y)*sqrt(t+x + y*I)), t = 0..infinity)- 0.5*int(1/(sqrt(t+mu)*sqrt(t+y + mu)*sqrt(t+(x + y*I)+ mu)), t = 0..infinity)
|
EllipticF[ArcCos[Sqrt[\[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-\[Lambda])]/Sqrt[(x + y*I)+ \[Lambda]-\[Lambda]] == EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]/Sqrt[x + y*I-0]- EllipticF[ArcCos[Sqrt[\[Mu]/(x + y*I)+ \[Mu]]],((x + y*I)+ \[Mu]-y + \[Mu])/((x + y*I)+ \[Mu]-\[Mu])]/Sqrt[(x + y*I)+ \[Mu]-\[Mu]]
|
Error | Failure | - | Error | |
19.26.E17 | \sqrt{\alpha}\CarlsonellintRC@{\beta}{\alpha+\beta}+\sqrt{\beta}\CarlsonellintRC@{\alpha}{\alpha+\beta} = \pi/2 |
Error
|
Sqrt[\[Alpha]]*1/Sqrt[\[Alpha]+ \[Beta]]*Hypergeometric2F1[1/2,1/2,3/2,1-(\[Beta])/(\[Alpha]+ \[Beta])]+Sqrt[\[Beta]]*1/Sqrt[\[Alpha]+ \[Beta]]*Hypergeometric2F1[1/2,1/2,3/2,1-(\[Alpha])/(\[Alpha]+ \[Beta])] == Pi/2
|
Missing Macro Error | Failure | - | Successful [Tested: 9] | |
19.26.E18 | \CarlsonsymellintRF@{x}{y}{z} = 2\CarlsonsymellintRF@{x+\lambda}{y+\lambda}{z+\lambda} |
|
0.5*int(1/(sqrt(t+x)*sqrt(t+y)*sqrt(t+x + y*I)), t = 0..infinity) = 2*0.5*int(1/(sqrt(t+x + lambda)*sqrt(t+y + lambda)*sqrt(t+(x + y*I)+ lambda)), t = 0..infinity)
|
EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x] == 2*EllipticF[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])]/Sqrt[(x + y*I)+ \[Lambda]-x + \[Lambda]]
|
Aborted | Failure | Skipped - Because timed out | Failed [180 / 180]
Result: Complex[-0.6992255245511445, 1.8246422705609677]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Result: Complex[-1.7332476531334464, -0.3074481161267689]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
... skip entries to safe data |
19.26.E18 | 2\CarlsonsymellintRF@{x+\lambda}{y+\lambda}{z+\lambda} = \CarlsonsymellintRF@{\frac{x+\lambda}{4}}{\frac{y+\lambda}{4}}{\frac{z+\lambda}{4}} |
|
2*0.5*int(1/(sqrt(t+x + lambda)*sqrt(t+y + lambda)*sqrt(t+(x + y*I)+ lambda)), t = 0..infinity) = 0.5*int(1/(sqrt(t+(x + lambda)/(4))*sqrt(t+(y + lambda)/(4))*sqrt(t+((x + y*I)+ lambda)/(4))), t = 0..infinity)
|
2*EllipticF[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])]/Sqrt[(x + y*I)+ \[Lambda]-x + \[Lambda]] == EllipticF[ArcCos[Sqrt[Divide[x + \[Lambda],4]/Divide[(x + y*I)+ \[Lambda],4]]],(Divide[(x + y*I)+ \[Lambda],4]-Divide[y + \[Lambda],4])/(Divide[(x + y*I)+ \[Lambda],4]-Divide[x + \[Lambda],4])]/Sqrt[Divide[(x + y*I)+ \[Lambda],4]-Divide[x + \[Lambda],4]]
|
Failure | Failure | Skipped - Because timed out | Failed [180 / 180]
Result: Complex[-1.1343270456997319, -2.101834604175173]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Result: Complex[-0.07907692856233961, -0.3004487668798371]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
... skip entries to safe data |
19.26.E19 | \lambda = \sqrt{x}\sqrt{y}+\sqrt{y}\sqrt{z}+\sqrt{z}\sqrt{x} |
|
lambda = sqrt(x)*sqrt(y)+sqrt(y)*sqrt(x + y*I)+sqrt(x + y*I)*sqrt(x) |
\[Lambda] == Sqrt[x]*Sqrt[y]+Sqrt[y]*Sqrt[x + y*I]+Sqrt[x + y*I]*Sqrt[x] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.26.E20 | \CarlsonsymellintRD@{x}{y}{z} = 2\CarlsonsymellintRD@{x+\lambda}{y+\lambda}{z+\lambda}+\frac{3}{\sqrt{z}(z+\lambda)} |
|
Error
|
3*(EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/((x + y*I-y)*(x + y*I-x)^(1/2)) == 2*3*(EllipticF[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])]-EllipticE[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])])/(((x + y*I)+ \[Lambda]-y + \[Lambda])*((x + y*I)+ \[Lambda]-x + \[Lambda])^(1/2))+Divide[3,Sqrt[x + y*I]*((x + y*I)+ \[Lambda])]
|
Missing Macro Error | Failure | - | Failed [180 / 180]
Result: Complex[0.4984590390126629, -1.2092907867192135]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Result: Complex[-0.5295690158190058, -2.8195127867822802]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
... skip entries to safe data |
19.26.E21 | 2\CarlsonsymellintRG@{x}{y}{z} = 4\CarlsonsymellintRG@{x+\lambda}{y+\lambda}{z+\lambda}-\lambda\CarlsonsymellintRF@{x}{y}{z}-\sqrt{x}-\sqrt{y}-\sqrt{z} |
|
Error
|
2*Sqrt[x + y*I-x]*(EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+(Cot[ArcCos[Sqrt[x/x + y*I]]])^2*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+Cot[ArcCos[Sqrt[x/x + y*I]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[x/x + y*I]]]^2]) == 4*Sqrt[(x + y*I)+ \[Lambda]-x + \[Lambda]]*(EllipticE[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])]+(Cot[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]]])^2*EllipticF[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])]+Cot[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]]]^2])- \[Lambda]*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x]-Sqrt[x]-Sqrt[y]-Sqrt[x + y*I]
|
Missing Macro Error | Aborted | - | Failed [180 / 180]
Result: Plus[Complex[2.330530943809637, 0.9206144902290859], Times[Complex[1.7320508075688772, -1.732050807568877], Plus[Complex[0.9985512968581824, 0.2012315241723115], Times[Complex[0.3176872874027722, -1.049249833251038], Power[Plus[1.0, Times[Complex[0.0, -1.5], Power[k, 2]]], Rational[1, 2]]]]], Times[Complex[-4.184639587172815, 1.9117536488739475], Plus[Complex[0.7424137617640161, 0.220635885032481], Times[Complex[0.14483575015411373, 1.3558262394954135], Power[Plus[1.0, Times[Complex[0.9940169358562925, 0.4776709006307397], Power[k, 2]]], Rational[1, 2]]]]]]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Result: Plus[Complex[2.3171140130573056, 0.42755423781462054], Times[Complex[1.7320508075688772, -1.732050807568877], Plus[Complex[0.9985512968581824, 0.2012315241723115], Times[Complex[0.3176872874027722, -1.049249833251038], Power[Plus[1.0, Times[Complex[0.0, -1.5], Power[k, 2]]], Rational[1, 2]]]]], Times[Complex[-1.5682295148869496, 3.234090878649293], Plus[Complex[0.3473840661116648, 1.4426085854555293], Times[Complex[0.7761183239980944, 1.3014092542459557], Power[Plus[1.0, Times[Complex[0.02232909936926042, 0.49401693585629247], Power[k, 2]]], Rational[1, 2]]]]]]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
... skip entries to safe data |
19.26.E22 | \CarlsonsymellintRJ@{x}{y}{z}{p} = 2\CarlsonsymellintRJ@{x+\lambda}{y+\lambda}{z+\lambda}{p+\lambda}+3\CarlsonellintRC@{\alpha^{2}}{\beta^{2}} |
|
Error
|
3*(x + y*I-x)/(x + y*I-p)*(EllipticPi[(x + y*I-p)/(x + y*I-x),ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/Sqrt[x + y*I-x] == 2*3*((x + y*I)+ \[Lambda]-x + \[Lambda])/((x + y*I)+ \[Lambda]-p + \[Lambda])*(EllipticPi[((x + y*I)+ \[Lambda]-p + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda]),ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])]-EllipticF[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])])/Sqrt[(x + y*I)+ \[Lambda]-x + \[Lambda]]+ 3*1/Sqrt[\[Beta]^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-(\[Alpha]^(2))/(\[Beta]^(2))]
|
Missing Macro Error | Failure | - | Failed [300 / 300]
Result: Indeterminate
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5], Rule[α, 1.5], Rule[β, 1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Result: Indeterminate
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5], Rule[α, 1.5], Rule[β, 1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
... skip entries to safe data |
19.26#Ex11 | \alpha = p(\sqrt{x}+\sqrt{y}+\sqrt{z})+\sqrt{x}\sqrt{y}\sqrt{z} |
|
alpha = p*(sqrt(x)+sqrt(y)+sqrt(x + y*I))+sqrt(x)*sqrt(y)*sqrt(x + y*I) |
\[Alpha] == p*(Sqrt[x]+Sqrt[y]+Sqrt[x + y*I])+Sqrt[x]*Sqrt[y]*Sqrt[x + y*I] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.26#Ex12 | \beta = \sqrt{p}(p+\lambda) |
|
beta = sqrt(p)*(p + lambda) |
\[Beta] == Sqrt[p]*(p + \[Lambda]) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.26#Ex13 | \beta+\alpha = (\sqrt{p}+\sqrt{x})(\sqrt{p}+\sqrt{y})(\sqrt{p}+\sqrt{z}) |
|
beta + alpha = (sqrt(p)+sqrt(x))*(sqrt(p)+sqrt(y))*(sqrt(p)+sqrt(x + y*I)) |
\[Beta]+ \[Alpha] == (Sqrt[p]+Sqrt[x])*(Sqrt[p]+Sqrt[y])*(Sqrt[p]+Sqrt[x + y*I]) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.26#Ex14 | \beta^{2}-\alpha^{2} = (p-x)(p-y)(p-z) |
|
(beta)^(2)- (alpha)^(2) = (p - x)*(p - y)*(p -(x + y*I)) |
\[Beta]^(2)- \[Alpha]^(2) == (p - x)*(p - y)*(p -(x + y*I)) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.26.E24 | z = (\xi\zeta+\eta\zeta-\xi\eta)^{2}/(4\xi\eta\zeta) |
z = (xi*zeta + eta*zeta - xi*eta)^(2)/(4*xi*eta*zeta) |
z == (\[Xi]*\[Zeta]+ \[Eta]*\[Zeta]- \[Xi]*\[Eta])^(2)/(4*\[Xi]*\[Eta]*\[Zeta]) |
Skipped - no semantic math | Skipped - no semantic math | - | - | |
19.26.E25 | \CarlsonellintRC@{x}{y} = 2\CarlsonellintRC@{x+\lambda}{y+\lambda} |
Error
|
1/Sqrt[y]*Hypergeometric2F1[1/2,1/2,3/2,1-(x)/(y)] == 2*1/Sqrt[y + \[Lambda]]*Hypergeometric2F1[1/2,1/2,3/2,1-(x + \[Lambda])/(y + \[Lambda])]
|
Missing Macro Error | Failure | - | Failed [1 / 1]
Result: Indeterminate
Test Values: {Rule[x, 0.5], Rule[y, 0.5], Rule[λ, 1.5]}
| |
19.26.E26 | \CarlsonellintRC@{x^{2}}{y^{2}} = \CarlsonellintRC@{a^{2}}{ay} |
Error
|
1/Sqrt[(y)^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-((x)^(2))/((y)^(2))] == 1/Sqrt[a*y]*Hypergeometric2F1[1/2,1/2,3/2,1-((a)^(2))/(a*y)]
|
Missing Macro Error | Aborted | - | Failed [3 / 3]
Result: Indeterminate
Test Values: {Rule[a, 1.5], Rule[x, 1.5], Rule[y, 1.5]}
Result: Indeterminate
Test Values: {Rule[a, 0.5], Rule[x, 0.5], Rule[y, 0.5]}
... skip entries to safe data | |
19.26.E27 | \CarlsonellintRC@{x^{2}}{x^{2}-\theta} = 2\CarlsonellintRC@{s^{2}}{s^{2}-\theta} |
Error
|
1/Sqrt[(x)^(2)- \[Theta]]*Hypergeometric2F1[1/2,1/2,3/2,1-((x)^(2))/((x)^(2)- \[Theta])] == 2*1/Sqrt[(s)^(2)- \[Theta]]*Hypergeometric2F1[1/2,1/2,3/2,1-((s)^(2))/((s)^(2)- \[Theta])]
|
Missing Macro Error | Failure | - | Successful [Tested: 2] |