18.14: Difference between revisions
Jump to navigation
Jump to search
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
||
Line 14: | Line 14: | ||
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ||
|- | |- | ||
| [https://dlmf.nist.gov/18.14.E1 18.14.E1] | | | [https://dlmf.nist.gov/18.14.E1 18.14.E1] || <math qid="Q5664">|\JacobipolyP{\alpha}{\beta}{n}@{x}| \leq \JacobipolyP{\alpha}{\beta}{n}@{1}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\JacobipolyP{\alpha}{\beta}{n}@{x}| \leq \JacobipolyP{\alpha}{\beta}{n}@{1}</syntaxhighlight> || <math>-1 \leq x, x \leq 1, \alpha \geq \beta, \beta > -1</math> || <syntaxhighlight lang=mathematica>abs(JacobiP(n, alpha, beta, x)) <= JacobiP(n, alpha, beta, 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[JacobiP[n, \[Alpha], \[Beta], x]] <= JacobiP[n, \[Alpha], \[Beta], 1]</syntaxhighlight> || Failure || Failure || Successful [Tested: 9] || Successful [Tested: 9] | ||
|- | |- | ||
| [https://dlmf.nist.gov/18.14.E1 18.14.E1] | | | [https://dlmf.nist.gov/18.14.E1 18.14.E1] || <math qid="Q5664">\JacobipolyP{\alpha}{\beta}{n}@{1} = \frac{\Pochhammersym{\alpha+1}{n}}{n!}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\JacobipolyP{\alpha}{\beta}{n}@{1} = \frac{\Pochhammersym{\alpha+1}{n}}{n!}</syntaxhighlight> || <math>-1 \leq x, x \leq 1, \alpha \geq \beta, \beta > -1</math> || <syntaxhighlight lang=mathematica>JacobiP(n, alpha, beta, 1) = (pochhammer(alpha + 1, n))/(factorial(n))</syntaxhighlight> || <syntaxhighlight lang=mathematica>JacobiP[n, \[Alpha], \[Beta], 1] == Divide[Pochhammer[\[Alpha]+ 1, n],(n)!]</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || Successful [Tested: 9] | ||
|- | |- | ||
| [https://dlmf.nist.gov/18.14.E2 18.14.E2] | | | [https://dlmf.nist.gov/18.14.E2 18.14.E2] || <math qid="Q5665">|\JacobipolyP{\alpha}{\beta}{n}@{x}| \leq |\JacobipolyP{\alpha}{\beta}{n}@{-1}|=\frac{\Pochhammersym{\beta+1}{n}}{n!}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\JacobipolyP{\alpha}{\beta}{n}@{x}| \leq |\JacobipolyP{\alpha}{\beta}{n}@{-1}|=\frac{\Pochhammersym{\beta+1}{n}}{n!}</syntaxhighlight> || <math>-1 \leq x, x \leq 1, \beta \geq \alpha, \alpha > -1</math> || <syntaxhighlight lang=mathematica>abs(JacobiP(n, alpha, beta, x)) <= abs(JacobiP(n, alpha, beta, - 1)) = (pochhammer(beta + 1, n))/(factorial(n))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[JacobiP[n, \[Alpha], \[Beta], x]] <= Abs[JacobiP[n, \[Alpha], \[Beta], - 1]] == Divide[Pochhammer[\[Beta]+ 1, n],(n)!]</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 9]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: False | ||
Test Values: {Rule[n, 1], Rule[x, 0.5], Rule[α, 2], Rule[β, Rational[1, 2]]}</syntaxhighlight><br></div></div> | Test Values: {Rule[n, 1], Rule[x, 0.5], Rule[α, 2], Rule[β, Rational[1, 2]]}</syntaxhighlight><br></div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/18.14.E4 18.14.E4] | | | [https://dlmf.nist.gov/18.14.E4 18.14.E4] || <math qid="Q5667">|\ultrasphpoly{\lambda}{n}@{x}| \leq \ultrasphpoly{\lambda}{n}@{1}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\ultrasphpoly{\lambda}{n}@{x}| \leq \ultrasphpoly{\lambda}{n}@{1}</syntaxhighlight> || <math>-1 \leq x, x \leq 1, \lambda > 0</math> || <syntaxhighlight lang=mathematica>abs(GegenbauerC(n, lambda, x)) <= GegenbauerC(n, lambda, 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[GegenbauerC[n, \[Lambda], x]] <= GegenbauerC[n, \[Lambda], 1]</syntaxhighlight> || Failure || Failure || Successful [Tested: 9] || Successful [Tested: 9] | ||
|- | |- | ||
| [https://dlmf.nist.gov/18.14.E4 18.14.E4] | | | [https://dlmf.nist.gov/18.14.E4 18.14.E4] || <math qid="Q5667">\ultrasphpoly{\lambda}{n}@{1} = \frac{\Pochhammersym{2\lambda}{n}}{n!}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ultrasphpoly{\lambda}{n}@{1} = \frac{\Pochhammersym{2\lambda}{n}}{n!}</syntaxhighlight> || <math>-1 \leq x, x \leq 1, \lambda > 0</math> || <syntaxhighlight lang=mathematica>GegenbauerC(n, lambda, 1) = (pochhammer(2*lambda, n))/(factorial(n))</syntaxhighlight> || <syntaxhighlight lang=mathematica>GegenbauerC[n, \[Lambda], 1] == Divide[Pochhammer[2*\[Lambda], n],(n)!]</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || Successful [Tested: 9] | ||
|- | |- | ||
| [https://dlmf.nist.gov/18.14.E5 18.14.E5] | | | [https://dlmf.nist.gov/18.14.E5 18.14.E5] || <math qid="Q5668">|\ultrasphpoly{\lambda}{2m}@{x}| \leq |\ultrasphpoly{\lambda}{2m}@{0}|=\left|\frac{\Pochhammersym{\lambda}{m}}{m!}\right|</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\ultrasphpoly{\lambda}{2m}@{x}| \leq |\ultrasphpoly{\lambda}{2m}@{0}|=\left|\frac{\Pochhammersym{\lambda}{m}}{m!}\right|</syntaxhighlight> || <math>-1 \leq x, x \leq 1, -\tfrac{1}{2} < \lambda, \lambda < 0</math> || <syntaxhighlight lang=mathematica>abs(GegenbauerC(2*m, lambda, x)) <= abs(GegenbauerC(2*m, lambda, 0)) = abs((pochhammer(lambda, m))/(factorial(m)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[GegenbauerC[2*m, \[Lambda], x]] <= Abs[GegenbauerC[2*m, \[Lambda], 0]] == Abs[Divide[Pochhammer[\[Lambda], m],(m)!]]</syntaxhighlight> || Failure || Failure || Error || Skip - No test values generated | ||
|- | |- | ||
| [https://dlmf.nist.gov/18.14.E6 18.14.E6] | | | [https://dlmf.nist.gov/18.14.E6 18.14.E6] || <math qid="Q5669">|\ultrasphpoly{\lambda}{2m+1}@{x}| < \frac{-2\Pochhammersym{\lambda}{m+1}}{\left((2m+1)(2\lambda+2m+1)\right)^{\frac{1}{2}}m!}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\ultrasphpoly{\lambda}{2m+1}@{x}| < \frac{-2\Pochhammersym{\lambda}{m+1}}{\left((2m+1)(2\lambda+2m+1)\right)^{\frac{1}{2}}m!}</syntaxhighlight> || <math>-1 \leq x, x \leq 1, -\tfrac{1}{2} < \lambda, \lambda < 0</math> || <syntaxhighlight lang=mathematica>abs(GegenbauerC(2*m + 1, lambda, x)) < (- 2*pochhammer(lambda, m + 1))/(((2*m + 1)*(2*lambda + 2*m + 1))^((1)/(2))* factorial(m))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[GegenbauerC[2*m + 1, \[Lambda], x]] < Divide[- 2*Pochhammer[\[Lambda], m + 1],((2*m + 1)*(2*\[Lambda]+ 2*m + 1))^(Divide[1,2])* (m)!]</syntaxhighlight> || Failure || Failure || Error || Skip - No test values generated | ||
|- | |- | ||
| [https://dlmf.nist.gov/18.14.E7 18.14.E7] | | | [https://dlmf.nist.gov/18.14.E7 18.14.E7] || <math qid="Q5670">(n+\lambda)^{1-\lambda}(1-x^{2})^{\frac{1}{2}\lambda}|\ultrasphpoly{\lambda}{n}@{x}| < \frac{2^{1-\lambda}}{\EulerGamma@{\lambda}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>(n+\lambda)^{1-\lambda}(1-x^{2})^{\frac{1}{2}\lambda}|\ultrasphpoly{\lambda}{n}@{x}| < \frac{2^{1-\lambda}}{\EulerGamma@{\lambda}}</syntaxhighlight> || <math>-1 \leq x, x \leq 1, 0 < \lambda, \lambda < 1, \realpart@@{(\lambda)} > 0</math> || <syntaxhighlight lang=mathematica>(n + lambda)^(1 - lambda)*(1 - (x)^(2))^((1)/(2)*lambda)*abs(GegenbauerC(n, lambda, x)) < ((2)^(1 - lambda))/(GAMMA(lambda))</syntaxhighlight> || <syntaxhighlight lang=mathematica>(n + \[Lambda])^(1 - \[Lambda])*(1 - (x)^(2))^(Divide[1,2]*\[Lambda])*Abs[GegenbauerC[n, \[Lambda], x]] < Divide[(2)^(1 - \[Lambda]),Gamma[\[Lambda]]]</syntaxhighlight> || Skipped - Unable to analyze test case: Null || Skipped - Unable to analyze test case: Null || - || - | ||
|- | |- | ||
| [https://dlmf.nist.gov/18.14.E8 18.14.E8] | | | [https://dlmf.nist.gov/18.14.E8 18.14.E8] || <math qid="Q5671">e^{-\frac{1}{2}x}\left|\LaguerrepolyL[\alpha]{n}@{x}\right| \leq \LaguerrepolyL[\alpha]{n}@{0}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{-\frac{1}{2}x}\left|\LaguerrepolyL[\alpha]{n}@{x}\right| \leq \LaguerrepolyL[\alpha]{n}@{0}</syntaxhighlight> || <math>0 \leq x, x < \infty, \alpha \geq 0</math> || <syntaxhighlight lang=mathematica>exp(-(1)/(2)*x)*abs(LaguerreL(n, alpha, x)) <= LaguerreL(n, alpha, 0)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[-Divide[1,2]*x]*Abs[LaguerreL[n, \[Alpha], x]] <= LaguerreL[n, \[Alpha], 0]</syntaxhighlight> || Missing Macro Error || Failure || - || Successful [Tested: 27] | ||
|- | |- | ||
| [https://dlmf.nist.gov/18.14.E8 18.14.E8] | | | [https://dlmf.nist.gov/18.14.E8 18.14.E8] || <math qid="Q5671">\LaguerrepolyL[\alpha]{n}@{0} = \frac{\Pochhammersym{\alpha+1}{n}}{n!}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\LaguerrepolyL[\alpha]{n}@{0} = \frac{\Pochhammersym{\alpha+1}{n}}{n!}</syntaxhighlight> || <math>0 \leq x, x < \infty, \alpha \geq 0</math> || <syntaxhighlight lang=mathematica>LaguerreL(n, alpha, 0) = (pochhammer(alpha + 1, n))/(factorial(n))</syntaxhighlight> || <syntaxhighlight lang=mathematica>LaguerreL[n, \[Alpha], 0] == Divide[Pochhammer[\[Alpha]+ 1, n],(n)!]</syntaxhighlight> || Missing Macro Error || Successful || - || Successful [Tested: 9] | ||
|- | |- | ||
| [https://dlmf.nist.gov/18.14.E9 18.14.E9] | | | [https://dlmf.nist.gov/18.14.E9 18.14.E9] || <math qid="Q5672">\frac{1}{(2^{n}n!)^{\frac{1}{2}}}e^{-\frac{1}{2}x^{2}}|\HermitepolyH{n}@{x}| \leq 1</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1}{(2^{n}n!)^{\frac{1}{2}}}e^{-\frac{1}{2}x^{2}}|\HermitepolyH{n}@{x}| \leq 1</syntaxhighlight> || <math>-\infty < x, x < \infty</math> || <syntaxhighlight lang=mathematica>(1)/(((2)^(n)* factorial(n))^((1)/(2)))*exp(-(1)/(2)*(x)^(2))*abs(HermiteH(n, x)) <= 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,((2)^(n)* (n)!)^(Divide[1,2])]*Exp[-Divide[1,2]*(x)^(2)]*Abs[HermiteH[n, x]] <= 1</syntaxhighlight> || Failure || Failure || Successful [Tested: 9] || Successful [Tested: 9] | ||
|- | |- | ||
| [https://dlmf.nist.gov/18.14.E10 18.14.E10] | | | [https://dlmf.nist.gov/18.14.E10 18.14.E10] || <math qid="Q5673">(\LegendrepolyP{n}@{x})^{2} \geq \LegendrepolyP{n-1}@{x}\LegendrepolyP{n+1}@{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>(\LegendrepolyP{n}@{x})^{2} \geq \LegendrepolyP{n-1}@{x}\LegendrepolyP{n+1}@{x}</syntaxhighlight> || <math>-1 \leq x, x \leq 1</math> || <syntaxhighlight lang=mathematica>(LegendreP(n, x))^(2) >= LegendreP(n - 1, x)*LegendreP(n + 1, x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(LegendreP[n, x])^(2) >= LegendreP[n - 1, x]*LegendreP[n + 1, x]</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3] | ||
|- style="background: #dfe6e9;" | |- style="background: #dfe6e9;" | ||
| [https://dlmf.nist.gov/18.14.E11 18.14.E11] | | | [https://dlmf.nist.gov/18.14.E11 18.14.E11] || <math qid="Q5674">(R_{n}(x))^{2} \geq R_{n-1}(x)R_{n+1}(x)</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>(R_{n}(x))^{2} \geq R_{n-1}(x)R_{n+1}(x)</syntaxhighlight> || <math>-1 \leq x, x \leq 1, \beta \geq \alpha, \alpha > -1</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(R[n](x))^(2) >= R[n - 1](x)* R[n + 1](x)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(Subscript[R, n][x])^(2) >= Subscript[R, n - 1][x]* Subscript[R, n + 1][x]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | ||
|- | |- | ||
| [https://dlmf.nist.gov/18.14.E12 18.14.E12] | | | [https://dlmf.nist.gov/18.14.E12 18.14.E12] || <math qid="Q5675">(\LaguerrepolyL[\alpha]{n}@{x})^{2} \geq \LaguerrepolyL[\alpha]{n-1}@{x}\LaguerrepolyL[\alpha]{n+1}@{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>(\LaguerrepolyL[\alpha]{n}@{x})^{2} \geq \LaguerrepolyL[\alpha]{n-1}@{x}\LaguerrepolyL[\alpha]{n+1}@{x}</syntaxhighlight> || <math>0 \leq x, x < \infty, \alpha \geq 0</math> || <syntaxhighlight lang=mathematica>(LaguerreL(n, alpha, x))^(2) >= LaguerreL(n - 1, alpha, x)*LaguerreL(n + 1, alpha, x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(LaguerreL[n, \[Alpha], x])^(2) >= LaguerreL[n - 1, \[Alpha], x]*LaguerreL[n + 1, \[Alpha], x]</syntaxhighlight> || Missing Macro Error || Failure || - || Successful [Tested: 27] | ||
|- | |- | ||
| [https://dlmf.nist.gov/18.14.E13 18.14.E13] | | | [https://dlmf.nist.gov/18.14.E13 18.14.E13] || <math qid="Q5676">(\HermitepolyH{n}@{x})^{2} \geq \HermitepolyH{n-1}@{x}\HermitepolyH{n+1}@{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>(\HermitepolyH{n}@{x})^{2} \geq \HermitepolyH{n-1}@{x}\HermitepolyH{n+1}@{x}</syntaxhighlight> || <math>-\infty < x, x < \infty</math> || <syntaxhighlight lang=mathematica>(HermiteH(n, x))^(2) >= HermiteH(n - 1, x)*HermiteH(n + 1, x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(HermiteH[n, x])^(2) >= HermiteH[n - 1, x]*HermiteH[n + 1, x]</syntaxhighlight> || Failure || Failure || Successful [Tested: 9] || Successful [Tested: 9] | ||
|- style="background: #dfe6e9;" | |- style="background: #dfe6e9;" | ||
| [https://dlmf.nist.gov/18.14.E14 18.14.E14] | | | [https://dlmf.nist.gov/18.14.E14 18.14.E14] || <math qid="Q5677">-1 = x_{n,0}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>-1 = x_{n,0}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">- 1 = x[n , 0]</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">- 1 == Subscript[x, n , 0]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | ||
|- style="background: #dfe6e9;" | |- style="background: #dfe6e9;" | ||
| [https://dlmf.nist.gov/18.14.E15 18.14.E15] | | | [https://dlmf.nist.gov/18.14.E15 18.14.E15] || <math qid="Q5678">x_{n,m} \leq (\beta-\alpha)/(\alpha+\beta+1)\leq x_{n,m+1}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>x_{n,m} \leq (\beta-\alpha)/(\alpha+\beta+1)\leq x_{n,m+1}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">x[n , m] <= (beta - alpha)/(alpha + beta + 1) <= x[n , m + 1]</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[x, n , m] <= (\[Beta]- \[Alpha])/(\[Alpha]+ \[Beta]+ 1) <= Subscript[x, n , m + 1]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | ||
|- | |- | ||
| [https://dlmf.nist.gov/18.14#Ex1 18.14#Ex1] | | | [https://dlmf.nist.gov/18.14#Ex1 18.14#Ex1] || <math qid="Q5679">|\JacobipolyP{\alpha}{\beta}{n}@{x_{n,0}}| > |\JacobipolyP{\alpha}{\beta}{n}@{x_{n,1}}|</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\JacobipolyP{\alpha}{\beta}{n}@{x_{n,0}}| > |\JacobipolyP{\alpha}{\beta}{n}@{x_{n,1}}|</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs(JacobiP(n, alpha, beta, x[n , 0])) > abs(JacobiP(n, alpha, beta, x[n , 1]))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[JacobiP[n, \[Alpha], \[Beta], Subscript[x, n , 0]]] > Abs[JacobiP[n, \[Alpha], \[Beta], Subscript[x, n , 1]]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [184 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 2.500000000 < 2.500000000 | ||
Test Values: {alpha = 3/2, beta = 3/2, x[n,0] = 1/2*3^(1/2)+1/2*I, x[n,1] = 1/2*3^(1/2)+1/2*I, n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 4.871793818 < 4.871793818 | Test Values: {alpha = 3/2, beta = 3/2, x[n,0] = 1/2*3^(1/2)+1/2*I, x[n,1] = 1/2*3^(1/2)+1/2*I, n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 4.871793818 < 4.871793818 | ||
Test Values: {alpha = 3/2, beta = 3/2, x[n,0] = 1/2*3^(1/2)+1/2*I, x[n,1] = 1/2*3^(1/2)+1/2*I, n = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [184 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: False | Test Values: {alpha = 3/2, beta = 3/2, x[n,0] = 1/2*3^(1/2)+1/2*I, x[n,1] = 1/2*3^(1/2)+1/2*I, n = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [184 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: False | ||
Line 55: | Line 55: | ||
Test Values: {Rule[n, 2], Rule[α, 1.5], Rule[β, 1.5], Rule[Subscript[x, n, 0], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, n, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[n, 2], Rule[α, 1.5], Rule[β, 1.5], Rule[Subscript[x, n, 0], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, n, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/18.14#Ex2 18.14#Ex2] | | | [https://dlmf.nist.gov/18.14#Ex2 18.14#Ex2] || <math qid="Q5680">|\JacobipolyP{\alpha}{\beta}{n}@{x_{n,n}}| > |\JacobipolyP{\alpha}{\beta}{n}@{x_{n,n-1}}|</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\JacobipolyP{\alpha}{\beta}{n}@{x_{n,n}}| > |\JacobipolyP{\alpha}{\beta}{n}@{x_{n,n-1}}|</syntaxhighlight> || <math>\alpha > -\tfrac{1}{2}, \beta > -\tfrac{1}{2}.</math> || <syntaxhighlight lang=mathematica>abs(JacobiP(n, alpha, beta, x[n , n])) > abs(JacobiP(n, alpha, beta, x[n , n - 1]))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[JacobiP[n, \[Alpha], \[Beta], Subscript[x, n , n]]] > Abs[JacobiP[n, \[Alpha], \[Beta], Subscript[x, n , n - 1]]]</syntaxhighlight> || Error || Failure || - || Skip - No test values generated | ||
|- | |- | ||
| [https://dlmf.nist.gov/18.14#Ex3 18.14#Ex3] | | | [https://dlmf.nist.gov/18.14#Ex3 18.14#Ex3] || <math qid="Q5681">|\JacobipolyP{\alpha}{\beta}{n}@{x_{n,0}}| < |\JacobipolyP{\alpha}{\beta}{n}@{x_{n,1}}|</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\JacobipolyP{\alpha}{\beta}{n}@{x_{n,0}}| < |\JacobipolyP{\alpha}{\beta}{n}@{x_{n,1}}|</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs(JacobiP(n, alpha, beta, x[n , 0])) < abs(JacobiP(n, alpha, beta, x[n , 1]))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[JacobiP[n, \[Alpha], \[Beta], Subscript[x, n , 0]]] < Abs[JacobiP[n, \[Alpha], \[Beta], Subscript[x, n , 1]]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [184 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 2.500000000 < 2.500000000 | ||
Test Values: {alpha = 3/2, beta = 3/2, x[n,0] = 1/2*3^(1/2)+1/2*I, x[n,1] = 1/2*3^(1/2)+1/2*I, n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 4.871793820 < 4.871793820 | Test Values: {alpha = 3/2, beta = 3/2, x[n,0] = 1/2*3^(1/2)+1/2*I, x[n,1] = 1/2*3^(1/2)+1/2*I, n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 4.871793820 < 4.871793820 | ||
Test Values: {alpha = 3/2, beta = 3/2, x[n,0] = 1/2*3^(1/2)+1/2*I, x[n,1] = 1/2*3^(1/2)+1/2*I, n = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [184 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: False | Test Values: {alpha = 3/2, beta = 3/2, x[n,0] = 1/2*3^(1/2)+1/2*I, x[n,1] = 1/2*3^(1/2)+1/2*I, n = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [184 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: False | ||
Line 63: | Line 63: | ||
Test Values: {Rule[n, 2], Rule[α, 1.5], Rule[β, 1.5], Rule[Subscript[x, n, 0], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, n, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[n, 2], Rule[α, 1.5], Rule[β, 1.5], Rule[Subscript[x, n, 0], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, n, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/18.14#Ex4 18.14#Ex4] | | | [https://dlmf.nist.gov/18.14#Ex4 18.14#Ex4] || <math qid="Q5682">|\JacobipolyP{\alpha}{\beta}{n}@{x_{n,n}}| < |\JacobipolyP{\alpha}{\beta}{n}@{x_{n,n-1}}|</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\JacobipolyP{\alpha}{\beta}{n}@{x_{n,n}}| < |\JacobipolyP{\alpha}{\beta}{n}@{x_{n,n-1}}|</syntaxhighlight> || <math>-1 < \alpha, \alpha < -\tfrac{1}{2}, -1 < \beta, \beta < -\tfrac{1}{2}.</math> || <syntaxhighlight lang=mathematica>abs(JacobiP(n, alpha, beta, x[n , n])) < abs(JacobiP(n, alpha, beta, x[n , n - 1]))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[JacobiP[n, \[Alpha], \[Beta], Subscript[x, n , n]]] < Abs[JacobiP[n, \[Alpha], \[Beta], Subscript[x, n , n - 1]]]</syntaxhighlight> || Error || Failure || - || Skip - No test values generated | ||
|- | |- | ||
| [https://dlmf.nist.gov/18.14.E18 18.14.E18] | | | [https://dlmf.nist.gov/18.14.E18 18.14.E18] || <math qid="Q5683">|\JacobipolyP{\alpha}{\beta}{n}@{x_{n,0}}| < |\JacobipolyP{\alpha}{\beta}{n}@{x_{n,1}}|</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\JacobipolyP{\alpha}{\beta}{n}@{x_{n,0}}| < |\JacobipolyP{\alpha}{\beta}{n}@{x_{n,1}}|</syntaxhighlight> || <math>-1 < \beta, \beta \leq -\tfrac{1}{2}</math> || <syntaxhighlight lang=mathematica>abs(JacobiP(n, alpha, beta, x[n , 0])) < abs(JacobiP(n, alpha, beta, x[n , 1]))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[JacobiP[n, \[Alpha], \[Beta], Subscript[x, n , 0]]] < Abs[JacobiP[n, \[Alpha], \[Beta], Subscript[x, n , 1]]]</syntaxhighlight> || Failure || Failure || Error || Skip - No test values generated | ||
|- | |- | ||
| [https://dlmf.nist.gov/18.14.E19 18.14.E19] | | | [https://dlmf.nist.gov/18.14.E19 18.14.E19] || <math qid="Q5684">|\JacobipolyP{\alpha}{\beta}{n}@{x_{n,0}}| > |\JacobipolyP{\alpha}{\beta}{n}@{x_{n,1}}|</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\JacobipolyP{\alpha}{\beta}{n}@{x_{n,0}}| > |\JacobipolyP{\alpha}{\beta}{n}@{x_{n,1}}|</syntaxhighlight> || <math>-1 < \alpha, \alpha \leq -\tfrac{1}{2}</math> || <syntaxhighlight lang=mathematica>abs(JacobiP(n, alpha, beta, x[n , 0])) > abs(JacobiP(n, alpha, beta, x[n , 1]))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[JacobiP[n, \[Alpha], \[Beta], Subscript[x, n , 0]]] > Abs[JacobiP[n, \[Alpha], \[Beta], Subscript[x, n , 1]]]</syntaxhighlight> || Failure || Failure || Error || Skip - No test values generated | ||
|- | |- | ||
| [https://dlmf.nist.gov/18.14.E20 18.14.E20] | | | [https://dlmf.nist.gov/18.14.E20 18.14.E20] || <math qid="Q5685">\left|\frac{\JacobipolyP{\alpha}{\beta}{n}@{x_{n,n-m}}}{\JacobipolyP{\alpha}{\beta}{n}@{1}}\right| > \left|\frac{\JacobipolyP{\alpha}{\beta}{n+1}@{x_{n+1,n-m+1}}}{\JacobipolyP{\alpha}{\beta}{n+1}@{1}}\right|</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\left|\frac{\JacobipolyP{\alpha}{\beta}{n}@{x_{n,n-m}}}{\JacobipolyP{\alpha}{\beta}{n}@{1}}\right| > \left|\frac{\JacobipolyP{\alpha}{\beta}{n+1}@{x_{n+1,n-m+1}}}{\JacobipolyP{\alpha}{\beta}{n+1}@{1}}\right|</syntaxhighlight> || <math>\alpha = \beta, \beta > -\tfrac{1}{2}, m = 1</math> || <syntaxhighlight lang=mathematica>abs((JacobiP(n, alpha, beta, x[n , n - m]))/(JacobiP(n, alpha, beta, 1))) > abs((JacobiP(n + 1, alpha, beta, x[n + 1 , n - m + 1]))/(JacobiP(n + 1, alpha, beta, 1)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Divide[JacobiP[n, \[Alpha], \[Beta], Subscript[x, n , n - m]],JacobiP[n, \[Alpha], \[Beta], 1]]] > Abs[Divide[JacobiP[n + 1, \[Alpha], \[Beta], Subscript[x, n + 1 , n - m + 1]],JacobiP[n + 1, \[Alpha], \[Beta], 1]]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [188 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.113552873 < 1.000000000 | ||
Test Values: {alpha = 3/2, beta = 3/2, x[n,n-m] = 1/2*3^(1/2)+1/2*I, x[n+1,n-m+1] = 1/2*3^(1/2)+1/2*I, m = 1, n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.400000001 < 1.113552873 | Test Values: {alpha = 3/2, beta = 3/2, x[n,n-m] = 1/2*3^(1/2)+1/2*I, x[n+1,n-m+1] = 1/2*3^(1/2)+1/2*I, m = 1, n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.400000001 < 1.113552873 | ||
Test Values: {alpha = 3/2, beta = 3/2, x[n,n-m] = 1/2*3^(1/2)+1/2*I, x[n+1,n-m+1] = 1/2*3^(1/2)+1/2*I, m = 1, n = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [234 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: False | Test Values: {alpha = 3/2, beta = 3/2, x[n,n-m] = 1/2*3^(1/2)+1/2*I, x[n+1,n-m+1] = 1/2*3^(1/2)+1/2*I, m = 1, n = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [234 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: False | ||
Line 75: | Line 75: | ||
Test Values: {Rule[m, 1], Rule[n, 2], Rule[α, 1.5], Rule[β, 1.5], Rule[Subscript[x, n, Plus[Times[-1, m], n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, Plus[1, n], Plus[1, Times[-1, m], n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[m, 1], Rule[n, 2], Rule[α, 1.5], Rule[β, 1.5], Rule[Subscript[x, n, Plus[Times[-1, m], n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, Plus[1, n], Plus[1, Times[-1, m], n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- style="background: #dfe6e9;" | |- style="background: #dfe6e9;" | ||
| [https://dlmf.nist.gov/18.14.E21 18.14.E21] | | | [https://dlmf.nist.gov/18.14.E21 18.14.E21] || <math qid="Q5686">0 = x_{n,0}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>0 = x_{n,0}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">0 = x[n , 0]</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">0 == Subscript[x, n , 0]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | ||
|- style="background: #dfe6e9;" | |- style="background: #dfe6e9;" | ||
| [https://dlmf.nist.gov/18.14.E22 18.14.E22] | | | [https://dlmf.nist.gov/18.14.E22 18.14.E22] || <math qid="Q5687">x_{n,m} \leq \alpha+\tfrac{1}{2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>x_{n,m} \leq \alpha+\tfrac{1}{2}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">x[n , m] <= alpha +(1)/(2)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[x, n , m] <= \[Alpha]+Divide[1,2]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | ||
|- | |- | ||
| [https://dlmf.nist.gov/18.14#Ex5 18.14#Ex5] | | | [https://dlmf.nist.gov/18.14#Ex5 18.14#Ex5] || <math qid="Q5688">|\LaguerrepolyL[\alpha]{n}@{x_{n,0}}| > |\LaguerrepolyL[\alpha]{n}@{x_{n,1}}|</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\LaguerrepolyL[\alpha]{n}@{x_{n,0}}| > |\LaguerrepolyL[\alpha]{n}@{x_{n,1}}|</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs(LaguerreL(n, alpha, x[n , 0])) > abs(LaguerreL(n, alpha, x[n , 1]))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[LaguerreL[n, \[Alpha], Subscript[x, n , 0]]] > Abs[LaguerreL[n, \[Alpha], Subscript[x, n , 1]]]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [165 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: False | ||
Test Values: {Rule[n, 1], Rule[α, 1.5], Rule[Subscript[x, n, 0], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, n, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: False | Test Values: {Rule[n, 1], Rule[α, 1.5], Rule[Subscript[x, n, 0], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, n, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: False | ||
Test Values: {Rule[n, 2], Rule[α, 1.5], Rule[Subscript[x, n, 0], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, n, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[n, 2], Rule[α, 1.5], Rule[Subscript[x, n, 0], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, n, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/18.14#Ex6 18.14#Ex6] | | | [https://dlmf.nist.gov/18.14#Ex6 18.14#Ex6] || <math qid="Q5689">|\LaguerrepolyL[\alpha]{n}@{x_{n,n-1}}| > |\LaguerrepolyL[\alpha]{n}@{x_{n,n-2}}|</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\LaguerrepolyL[\alpha]{n}@{x_{n,n-1}}| > |\LaguerrepolyL[\alpha]{n}@{x_{n,n-2}}|</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs(LaguerreL(n, alpha, x[n , n - 1])) > abs(LaguerreL(n, alpha, x[n , n - 2]))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[LaguerreL[n, \[Alpha], Subscript[x, n , n - 1]]] > Abs[LaguerreL[n, \[Alpha], Subscript[x, n , n - 2]]]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [165 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: False | ||
Test Values: {Rule[n, 1], Rule[α, 1.5], Rule[Subscript[x, n, Plus[-2, n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, n, Plus[-1, n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: False | Test Values: {Rule[n, 1], Rule[α, 1.5], Rule[Subscript[x, n, Plus[-2, n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, n, Plus[-1, n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: False | ||
Test Values: {Rule[n, 2], Rule[α, 1.5], Rule[Subscript[x, n, Plus[-2, n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, n, Plus[-1, n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[n, 2], Rule[α, 1.5], Rule[Subscript[x, n, Plus[-2, n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, n, Plus[-1, n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/18.14.E24 18.14.E24] | | | [https://dlmf.nist.gov/18.14.E24 18.14.E24] || <math qid="Q5690">|\LaguerrepolyL[\alpha]{n}@{x_{n,0}}| < |\LaguerrepolyL[\alpha]{n}@{x_{n,1}}|</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\LaguerrepolyL[\alpha]{n}@{x_{n,0}}| < |\LaguerrepolyL[\alpha]{n}@{x_{n,1}}|</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs(LaguerreL(n, alpha, x[n , 0])) < abs(LaguerreL(n, alpha, x[n , 1]))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[LaguerreL[n, \[Alpha], Subscript[x, n , 0]]] < Abs[LaguerreL[n, \[Alpha], Subscript[x, n , 1]]]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [165 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: False | ||
Test Values: {Rule[n, 1], Rule[α, 1.5], Rule[Subscript[x, n, 0], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, n, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: False | Test Values: {Rule[n, 1], Rule[α, 1.5], Rule[Subscript[x, n, 0], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, n, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: False | ||
Test Values: {Rule[n, 2], Rule[α, 1.5], Rule[Subscript[x, n, 0], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, n, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[n, 2], Rule[α, 1.5], Rule[Subscript[x, n, 0], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, n, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|} | |} | ||
</div> | </div> |
Latest revision as of 11:45, 28 June 2021
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
18.14.E1 | |\JacobipolyP{\alpha}{\beta}{n}@{x}| \leq \JacobipolyP{\alpha}{\beta}{n}@{1} |
abs(JacobiP(n, alpha, beta, x)) <= JacobiP(n, alpha, beta, 1)
|
Abs[JacobiP[n, \[Alpha], \[Beta], x]] <= JacobiP[n, \[Alpha], \[Beta], 1]
|
Failure | Failure | Successful [Tested: 9] | Successful [Tested: 9] | |
18.14.E1 | \JacobipolyP{\alpha}{\beta}{n}@{1} = \frac{\Pochhammersym{\alpha+1}{n}}{n!} |
JacobiP(n, alpha, beta, 1) = (pochhammer(alpha + 1, n))/(factorial(n))
|
JacobiP[n, \[Alpha], \[Beta], 1] == Divide[Pochhammer[\[Alpha]+ 1, n],(n)!]
|
Successful | Successful | Skip - symbolical successful subtest | Successful [Tested: 9] | |
18.14.E2 | |\JacobipolyP{\alpha}{\beta}{n}@{x}| \leq |\JacobipolyP{\alpha}{\beta}{n}@{-1}|=\frac{\Pochhammersym{\beta+1}{n}}{n!} |
abs(JacobiP(n, alpha, beta, x)) <= abs(JacobiP(n, alpha, beta, - 1)) = (pochhammer(beta + 1, n))/(factorial(n))
|
Abs[JacobiP[n, \[Alpha], \[Beta], x]] <= Abs[JacobiP[n, \[Alpha], \[Beta], - 1]] == Divide[Pochhammer[\[Beta]+ 1, n],(n)!]
|
Failure | Failure | Error | Failed [1 / 9]
Result: False
Test Values: {Rule[n, 1], Rule[x, 0.5], Rule[α, 2], Rule[β, Rational[1, 2]]}
| |
18.14.E4 | |\ultrasphpoly{\lambda}{n}@{x}| \leq \ultrasphpoly{\lambda}{n}@{1} |
abs(GegenbauerC(n, lambda, x)) <= GegenbauerC(n, lambda, 1)
|
Abs[GegenbauerC[n, \[Lambda], x]] <= GegenbauerC[n, \[Lambda], 1]
|
Failure | Failure | Successful [Tested: 9] | Successful [Tested: 9] | |
18.14.E4 | \ultrasphpoly{\lambda}{n}@{1} = \frac{\Pochhammersym{2\lambda}{n}}{n!} |
GegenbauerC(n, lambda, 1) = (pochhammer(2*lambda, n))/(factorial(n))
|
GegenbauerC[n, \[Lambda], 1] == Divide[Pochhammer[2*\[Lambda], n],(n)!]
|
Successful | Successful | Skip - symbolical successful subtest | Successful [Tested: 9] | |
18.14.E5 | |\ultrasphpoly{\lambda}{2m}@{x}| \leq |\ultrasphpoly{\lambda}{2m}@{0}|=\left|\frac{\Pochhammersym{\lambda}{m}}{m!}\right| |
abs(GegenbauerC(2*m, lambda, x)) <= abs(GegenbauerC(2*m, lambda, 0)) = abs((pochhammer(lambda, m))/(factorial(m)))
|
Abs[GegenbauerC[2*m, \[Lambda], x]] <= Abs[GegenbauerC[2*m, \[Lambda], 0]] == Abs[Divide[Pochhammer[\[Lambda], m],(m)!]]
|
Failure | Failure | Error | Skip - No test values generated | |
18.14.E6 | |\ultrasphpoly{\lambda}{2m+1}@{x}| < \frac{-2\Pochhammersym{\lambda}{m+1}}{\left((2m+1)(2\lambda+2m+1)\right)^{\frac{1}{2}}m!} |
abs(GegenbauerC(2*m + 1, lambda, x)) < (- 2*pochhammer(lambda, m + 1))/(((2*m + 1)*(2*lambda + 2*m + 1))^((1)/(2))* factorial(m))
|
Abs[GegenbauerC[2*m + 1, \[Lambda], x]] < Divide[- 2*Pochhammer[\[Lambda], m + 1],((2*m + 1)*(2*\[Lambda]+ 2*m + 1))^(Divide[1,2])* (m)!]
|
Failure | Failure | Error | Skip - No test values generated | |
18.14.E7 | (n+\lambda)^{1-\lambda}(1-x^{2})^{\frac{1}{2}\lambda}|\ultrasphpoly{\lambda}{n}@{x}| < \frac{2^{1-\lambda}}{\EulerGamma@{\lambda}} |
(n + lambda)^(1 - lambda)*(1 - (x)^(2))^((1)/(2)*lambda)*abs(GegenbauerC(n, lambda, x)) < ((2)^(1 - lambda))/(GAMMA(lambda))
|
(n + \[Lambda])^(1 - \[Lambda])*(1 - (x)^(2))^(Divide[1,2]*\[Lambda])*Abs[GegenbauerC[n, \[Lambda], x]] < Divide[(2)^(1 - \[Lambda]),Gamma[\[Lambda]]]
|
Skipped - Unable to analyze test case: Null | Skipped - Unable to analyze test case: Null | - | - | |
18.14.E8 | e^{-\frac{1}{2}x}\left|\LaguerrepolyL[\alpha]{n}@{x}\right| \leq \LaguerrepolyL[\alpha]{n}@{0} |
exp(-(1)/(2)*x)*abs(LaguerreL(n, alpha, x)) <= LaguerreL(n, alpha, 0)
|
Exp[-Divide[1,2]*x]*Abs[LaguerreL[n, \[Alpha], x]] <= LaguerreL[n, \[Alpha], 0]
|
Missing Macro Error | Failure | - | Successful [Tested: 27] | |
18.14.E8 | \LaguerrepolyL[\alpha]{n}@{0} = \frac{\Pochhammersym{\alpha+1}{n}}{n!} |
LaguerreL(n, alpha, 0) = (pochhammer(alpha + 1, n))/(factorial(n))
|
LaguerreL[n, \[Alpha], 0] == Divide[Pochhammer[\[Alpha]+ 1, n],(n)!]
|
Missing Macro Error | Successful | - | Successful [Tested: 9] | |
18.14.E9 | \frac{1}{(2^{n}n!)^{\frac{1}{2}}}e^{-\frac{1}{2}x^{2}}|\HermitepolyH{n}@{x}| \leq 1 |
(1)/(((2)^(n)* factorial(n))^((1)/(2)))*exp(-(1)/(2)*(x)^(2))*abs(HermiteH(n, x)) <= 1
|
Divide[1,((2)^(n)* (n)!)^(Divide[1,2])]*Exp[-Divide[1,2]*(x)^(2)]*Abs[HermiteH[n, x]] <= 1
|
Failure | Failure | Successful [Tested: 9] | Successful [Tested: 9] | |
18.14.E10 | (\LegendrepolyP{n}@{x})^{2} \geq \LegendrepolyP{n-1}@{x}\LegendrepolyP{n+1}@{x} |
(LegendreP(n, x))^(2) >= LegendreP(n - 1, x)*LegendreP(n + 1, x)
|
(LegendreP[n, x])^(2) >= LegendreP[n - 1, x]*LegendreP[n + 1, x]
|
Failure | Failure | Successful [Tested: 3] | Successful [Tested: 3] | |
18.14.E11 | (R_{n}(x))^{2} \geq R_{n-1}(x)R_{n+1}(x) |
(R[n](x))^(2) >= R[n - 1](x)* R[n + 1](x) |
(Subscript[R, n][x])^(2) >= Subscript[R, n - 1][x]* Subscript[R, n + 1][x] |
Skipped - no semantic math | Skipped - no semantic math | - | - | |
18.14.E12 | (\LaguerrepolyL[\alpha]{n}@{x})^{2} \geq \LaguerrepolyL[\alpha]{n-1}@{x}\LaguerrepolyL[\alpha]{n+1}@{x} |
(LaguerreL(n, alpha, x))^(2) >= LaguerreL(n - 1, alpha, x)*LaguerreL(n + 1, alpha, x)
|
(LaguerreL[n, \[Alpha], x])^(2) >= LaguerreL[n - 1, \[Alpha], x]*LaguerreL[n + 1, \[Alpha], x]
|
Missing Macro Error | Failure | - | Successful [Tested: 27] | |
18.14.E13 | (\HermitepolyH{n}@{x})^{2} \geq \HermitepolyH{n-1}@{x}\HermitepolyH{n+1}@{x} |
(HermiteH(n, x))^(2) >= HermiteH(n - 1, x)*HermiteH(n + 1, x)
|
(HermiteH[n, x])^(2) >= HermiteH[n - 1, x]*HermiteH[n + 1, x]
|
Failure | Failure | Successful [Tested: 9] | Successful [Tested: 9] | |
18.14.E14 | -1 = x_{n,0} |
|
- 1 = x[n , 0] |
- 1 == Subscript[x, n , 0] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
18.14.E15 | x_{n,m} \leq (\beta-\alpha)/(\alpha+\beta+1)\leq x_{n,m+1} |
|
x[n , m] <= (beta - alpha)/(alpha + beta + 1) <= x[n , m + 1] |
Subscript[x, n , m] <= (\[Beta]- \[Alpha])/(\[Alpha]+ \[Beta]+ 1) <= Subscript[x, n , m + 1] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
18.14#Ex1 | |\JacobipolyP{\alpha}{\beta}{n}@{x_{n,0}}| > |\JacobipolyP{\alpha}{\beta}{n}@{x_{n,1}}| |
|
abs(JacobiP(n, alpha, beta, x[n , 0])) > abs(JacobiP(n, alpha, beta, x[n , 1]))
|
Abs[JacobiP[n, \[Alpha], \[Beta], Subscript[x, n , 0]]] > Abs[JacobiP[n, \[Alpha], \[Beta], Subscript[x, n , 1]]]
|
Failure | Failure | Failed [184 / 300] Result: 2.500000000 < 2.500000000
Test Values: {alpha = 3/2, beta = 3/2, x[n,0] = 1/2*3^(1/2)+1/2*I, x[n,1] = 1/2*3^(1/2)+1/2*I, n = 1}
Result: 4.871793818 < 4.871793818
Test Values: {alpha = 3/2, beta = 3/2, x[n,0] = 1/2*3^(1/2)+1/2*I, x[n,1] = 1/2*3^(1/2)+1/2*I, n = 2}
... skip entries to safe data |
Failed [184 / 300]
Result: False
Test Values: {Rule[n, 1], Rule[α, 1.5], Rule[β, 1.5], Rule[Subscript[x, n, 0], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, n, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: False
Test Values: {Rule[n, 2], Rule[α, 1.5], Rule[β, 1.5], Rule[Subscript[x, n, 0], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, n, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |
18.14#Ex2 | |\JacobipolyP{\alpha}{\beta}{n}@{x_{n,n}}| > |\JacobipolyP{\alpha}{\beta}{n}@{x_{n,n-1}}| |
abs(JacobiP(n, alpha, beta, x[n , n])) > abs(JacobiP(n, alpha, beta, x[n , n - 1]))
|
Abs[JacobiP[n, \[Alpha], \[Beta], Subscript[x, n , n]]] > Abs[JacobiP[n, \[Alpha], \[Beta], Subscript[x, n , n - 1]]]
|
Error | Failure | - | Skip - No test values generated | |
18.14#Ex3 | |\JacobipolyP{\alpha}{\beta}{n}@{x_{n,0}}| < |\JacobipolyP{\alpha}{\beta}{n}@{x_{n,1}}| |
|
abs(JacobiP(n, alpha, beta, x[n , 0])) < abs(JacobiP(n, alpha, beta, x[n , 1]))
|
Abs[JacobiP[n, \[Alpha], \[Beta], Subscript[x, n , 0]]] < Abs[JacobiP[n, \[Alpha], \[Beta], Subscript[x, n , 1]]]
|
Failure | Failure | Failed [184 / 300] Result: 2.500000000 < 2.500000000
Test Values: {alpha = 3/2, beta = 3/2, x[n,0] = 1/2*3^(1/2)+1/2*I, x[n,1] = 1/2*3^(1/2)+1/2*I, n = 1}
Result: 4.871793820 < 4.871793820
Test Values: {alpha = 3/2, beta = 3/2, x[n,0] = 1/2*3^(1/2)+1/2*I, x[n,1] = 1/2*3^(1/2)+1/2*I, n = 2}
... skip entries to safe data |
Failed [184 / 300]
Result: False
Test Values: {Rule[n, 1], Rule[α, 1.5], Rule[β, 1.5], Rule[Subscript[x, n, 0], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, n, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: False
Test Values: {Rule[n, 2], Rule[α, 1.5], Rule[β, 1.5], Rule[Subscript[x, n, 0], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, n, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |
18.14#Ex4 | |\JacobipolyP{\alpha}{\beta}{n}@{x_{n,n}}| < |\JacobipolyP{\alpha}{\beta}{n}@{x_{n,n-1}}| |
abs(JacobiP(n, alpha, beta, x[n , n])) < abs(JacobiP(n, alpha, beta, x[n , n - 1]))
|
Abs[JacobiP[n, \[Alpha], \[Beta], Subscript[x, n , n]]] < Abs[JacobiP[n, \[Alpha], \[Beta], Subscript[x, n , n - 1]]]
|
Error | Failure | - | Skip - No test values generated | |
18.14.E18 | |\JacobipolyP{\alpha}{\beta}{n}@{x_{n,0}}| < |\JacobipolyP{\alpha}{\beta}{n}@{x_{n,1}}| |
abs(JacobiP(n, alpha, beta, x[n , 0])) < abs(JacobiP(n, alpha, beta, x[n , 1]))
|
Abs[JacobiP[n, \[Alpha], \[Beta], Subscript[x, n , 0]]] < Abs[JacobiP[n, \[Alpha], \[Beta], Subscript[x, n , 1]]]
|
Failure | Failure | Error | Skip - No test values generated | |
18.14.E19 | |\JacobipolyP{\alpha}{\beta}{n}@{x_{n,0}}| > |\JacobipolyP{\alpha}{\beta}{n}@{x_{n,1}}| |
abs(JacobiP(n, alpha, beta, x[n , 0])) > abs(JacobiP(n, alpha, beta, x[n , 1]))
|
Abs[JacobiP[n, \[Alpha], \[Beta], Subscript[x, n , 0]]] > Abs[JacobiP[n, \[Alpha], \[Beta], Subscript[x, n , 1]]]
|
Failure | Failure | Error | Skip - No test values generated | |
18.14.E20 | \left|\frac{\JacobipolyP{\alpha}{\beta}{n}@{x_{n,n-m}}}{\JacobipolyP{\alpha}{\beta}{n}@{1}}\right| > \left|\frac{\JacobipolyP{\alpha}{\beta}{n+1}@{x_{n+1,n-m+1}}}{\JacobipolyP{\alpha}{\beta}{n+1}@{1}}\right| |
abs((JacobiP(n, alpha, beta, x[n , n - m]))/(JacobiP(n, alpha, beta, 1))) > abs((JacobiP(n + 1, alpha, beta, x[n + 1 , n - m + 1]))/(JacobiP(n + 1, alpha, beta, 1)))
|
Abs[Divide[JacobiP[n, \[Alpha], \[Beta], Subscript[x, n , n - m]],JacobiP[n, \[Alpha], \[Beta], 1]]] > Abs[Divide[JacobiP[n + 1, \[Alpha], \[Beta], Subscript[x, n + 1 , n - m + 1]],JacobiP[n + 1, \[Alpha], \[Beta], 1]]]
|
Failure | Failure | Failed [188 / 300] Result: 1.113552873 < 1.000000000
Test Values: {alpha = 3/2, beta = 3/2, x[n,n-m] = 1/2*3^(1/2)+1/2*I, x[n+1,n-m+1] = 1/2*3^(1/2)+1/2*I, m = 1, n = 1}
Result: 1.400000001 < 1.113552873
Test Values: {alpha = 3/2, beta = 3/2, x[n,n-m] = 1/2*3^(1/2)+1/2*I, x[n+1,n-m+1] = 1/2*3^(1/2)+1/2*I, m = 1, n = 2}
... skip entries to safe data |
Failed [234 / 300]
Result: False
Test Values: {Rule[m, 1], Rule[n, 1], Rule[α, 1.5], Rule[β, 1.5], Rule[Subscript[x, n, Plus[Times[-1, m], n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, Plus[1, n], Plus[1, Times[-1, m], n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: False
Test Values: {Rule[m, 1], Rule[n, 2], Rule[α, 1.5], Rule[β, 1.5], Rule[Subscript[x, n, Plus[Times[-1, m], n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, Plus[1, n], Plus[1, Times[-1, m], n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data | |
18.14.E21 | 0 = x_{n,0} |
|
0 = x[n , 0] |
0 == Subscript[x, n , 0] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
18.14.E22 | x_{n,m} \leq \alpha+\tfrac{1}{2} |
|
x[n , m] <= alpha +(1)/(2) |
Subscript[x, n , m] <= \[Alpha]+Divide[1,2] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
18.14#Ex5 | |\LaguerrepolyL[\alpha]{n}@{x_{n,0}}| > |\LaguerrepolyL[\alpha]{n}@{x_{n,1}}| |
|
abs(LaguerreL(n, alpha, x[n , 0])) > abs(LaguerreL(n, alpha, x[n , 1]))
|
Abs[LaguerreL[n, \[Alpha], Subscript[x, n , 0]]] > Abs[LaguerreL[n, \[Alpha], Subscript[x, n , 1]]]
|
Missing Macro Error | Failure | - | Failed [165 / 300]
Result: False
Test Values: {Rule[n, 1], Rule[α, 1.5], Rule[Subscript[x, n, 0], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, n, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: False
Test Values: {Rule[n, 2], Rule[α, 1.5], Rule[Subscript[x, n, 0], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, n, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |
18.14#Ex6 | |\LaguerrepolyL[\alpha]{n}@{x_{n,n-1}}| > |\LaguerrepolyL[\alpha]{n}@{x_{n,n-2}}| |
|
abs(LaguerreL(n, alpha, x[n , n - 1])) > abs(LaguerreL(n, alpha, x[n , n - 2]))
|
Abs[LaguerreL[n, \[Alpha], Subscript[x, n , n - 1]]] > Abs[LaguerreL[n, \[Alpha], Subscript[x, n , n - 2]]]
|
Missing Macro Error | Failure | - | Failed [165 / 300]
Result: False
Test Values: {Rule[n, 1], Rule[α, 1.5], Rule[Subscript[x, n, Plus[-2, n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, n, Plus[-1, n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: False
Test Values: {Rule[n, 2], Rule[α, 1.5], Rule[Subscript[x, n, Plus[-2, n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, n, Plus[-1, n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |
18.14.E24 | |\LaguerrepolyL[\alpha]{n}@{x_{n,0}}| < |\LaguerrepolyL[\alpha]{n}@{x_{n,1}}| |
|
abs(LaguerreL(n, alpha, x[n , 0])) < abs(LaguerreL(n, alpha, x[n , 1]))
|
Abs[LaguerreL[n, \[Alpha], Subscript[x, n , 0]]] < Abs[LaguerreL[n, \[Alpha], Subscript[x, n , 1]]]
|
Missing Macro Error | Failure | - | Failed [165 / 300]
Result: False
Test Values: {Rule[n, 1], Rule[α, 1.5], Rule[Subscript[x, n, 0], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, n, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: False
Test Values: {Rule[n, 2], Rule[α, 1.5], Rule[Subscript[x, n, 0], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, n, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |