18.7: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/18.7.E1 18.7.E1] || [[Item:Q5569|<math>\ultrasphpoly{\lambda}{n}@{x} = \frac{\Pochhammersym{2\lambda}{n}}{\Pochhammersym{\lambda+\frac{1}{2}}{n}}\JacobipolyP{\lambda-\frac{1}{2}}{\lambda-\frac{1}{2}}{n}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ultrasphpoly{\lambda}{n}@{x} = \frac{\Pochhammersym{2\lambda}{n}}{\Pochhammersym{\lambda+\frac{1}{2}}{n}}\JacobipolyP{\lambda-\frac{1}{2}}{\lambda-\frac{1}{2}}{n}@{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>GegenbauerC(n, lambda, x) = (pochhammer(2*lambda, n))/(pochhammer(lambda +(1)/(2), n))*JacobiP(n, lambda -(1)/(2), lambda -(1)/(2), x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>GegenbauerC[n, \[Lambda], x] == Divide[Pochhammer[2*\[Lambda], n],Pochhammer[\[Lambda]+Divide[1,2], n]]*JacobiP[n, \[Lambda]-Divide[1,2], \[Lambda]-Divide[1,2], x]</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [15 / 90]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
| [https://dlmf.nist.gov/18.7.E1 18.7.E1] || <math qid="Q5569">\ultrasphpoly{\lambda}{n}@{x} = \frac{\Pochhammersym{2\lambda}{n}}{\Pochhammersym{\lambda+\frac{1}{2}}{n}}\JacobipolyP{\lambda-\frac{1}{2}}{\lambda-\frac{1}{2}}{n}@{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ultrasphpoly{\lambda}{n}@{x} = \frac{\Pochhammersym{2\lambda}{n}}{\Pochhammersym{\lambda+\frac{1}{2}}{n}}\JacobipolyP{\lambda-\frac{1}{2}}{\lambda-\frac{1}{2}}{n}@{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>GegenbauerC(n, lambda, x) = (pochhammer(2*lambda, n))/(pochhammer(lambda +(1)/(2), n))*JacobiP(n, lambda -(1)/(2), lambda -(1)/(2), x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>GegenbauerC[n, \[Lambda], x] == Divide[Pochhammer[2*\[Lambda], n],Pochhammer[\[Lambda]+Divide[1,2], n]]*JacobiP[n, \[Lambda]-Divide[1,2], \[Lambda]-Divide[1,2], x]</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [15 / 90]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[n, 2], Rule[x, 1.5], Rule[λ, -1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[n, 2], Rule[x, 1.5], Rule[λ, -1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[n, 3], Rule[x, 1.5], Rule[λ, -1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[n, 3], Rule[x, 1.5], Rule[λ, -1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/18.7.E2 18.7.E2] || [[Item:Q5570|<math>\JacobipolyP{\alpha}{\alpha}{n}@{x} = \frac{\Pochhammersym{\alpha+1}{n}}{\Pochhammersym{2\alpha+1}{n}}\ultrasphpoly{\alpha+\frac{1}{2}}{n}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\JacobipolyP{\alpha}{\alpha}{n}@{x} = \frac{\Pochhammersym{\alpha+1}{n}}{\Pochhammersym{2\alpha+1}{n}}\ultrasphpoly{\alpha+\frac{1}{2}}{n}@{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>JacobiP(n, alpha, alpha, x) = (pochhammer(alpha + 1, n))/(pochhammer(2*alpha + 1, n))*GegenbauerC(n, alpha +(1)/(2), x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>JacobiP[n, \[Alpha], \[Alpha], x] == Divide[Pochhammer[\[Alpha]+ 1, n],Pochhammer[2*\[Alpha]+ 1, n]]*GegenbauerC[n, \[Alpha]+Divide[1,2], x]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 27]
| [https://dlmf.nist.gov/18.7.E2 18.7.E2] || <math qid="Q5570">\JacobipolyP{\alpha}{\alpha}{n}@{x} = \frac{\Pochhammersym{\alpha+1}{n}}{\Pochhammersym{2\alpha+1}{n}}\ultrasphpoly{\alpha+\frac{1}{2}}{n}@{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\JacobipolyP{\alpha}{\alpha}{n}@{x} = \frac{\Pochhammersym{\alpha+1}{n}}{\Pochhammersym{2\alpha+1}{n}}\ultrasphpoly{\alpha+\frac{1}{2}}{n}@{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>JacobiP(n, alpha, alpha, x) = (pochhammer(alpha + 1, n))/(pochhammer(2*alpha + 1, n))*GegenbauerC(n, alpha +(1)/(2), x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>JacobiP[n, \[Alpha], \[Alpha], x] == Divide[Pochhammer[\[Alpha]+ 1, n],Pochhammer[2*\[Alpha]+ 1, n]]*GegenbauerC[n, \[Alpha]+Divide[1,2], x]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 27]
|-  
|-  
| [https://dlmf.nist.gov/18.7.E3 18.7.E3] || [[Item:Q5571|<math>\ChebyshevpolyT{n}@{x} = \ifrac{\JacobipolyP{-\frac{1}{2}}{-\frac{1}{2}}{n}@{x}}{\JacobipolyP{-\frac{1}{2}}{-\frac{1}{2}}{n}@{1}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ChebyshevpolyT{n}@{x} = \ifrac{\JacobipolyP{-\frac{1}{2}}{-\frac{1}{2}}{n}@{x}}{\JacobipolyP{-\frac{1}{2}}{-\frac{1}{2}}{n}@{1}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ChebyshevT(n, x) = (JacobiP(n, -(1)/(2), -(1)/(2), x))/(JacobiP(n, -(1)/(2), -(1)/(2), 1))</syntaxhighlight> || <syntaxhighlight lang=mathematica>ChebyshevT[n, x] == Divide[JacobiP[n, -Divide[1,2], -Divide[1,2], x],JacobiP[n, -Divide[1,2], -Divide[1,2], 1]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 9]
| [https://dlmf.nist.gov/18.7.E3 18.7.E3] || <math qid="Q5571">\ChebyshevpolyT{n}@{x} = \ifrac{\JacobipolyP{-\frac{1}{2}}{-\frac{1}{2}}{n}@{x}}{\JacobipolyP{-\frac{1}{2}}{-\frac{1}{2}}{n}@{1}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ChebyshevpolyT{n}@{x} = \ifrac{\JacobipolyP{-\frac{1}{2}}{-\frac{1}{2}}{n}@{x}}{\JacobipolyP{-\frac{1}{2}}{-\frac{1}{2}}{n}@{1}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ChebyshevT(n, x) = (JacobiP(n, -(1)/(2), -(1)/(2), x))/(JacobiP(n, -(1)/(2), -(1)/(2), 1))</syntaxhighlight> || <syntaxhighlight lang=mathematica>ChebyshevT[n, x] == Divide[JacobiP[n, -Divide[1,2], -Divide[1,2], x],JacobiP[n, -Divide[1,2], -Divide[1,2], 1]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 9]
|-  
|-  
| [https://dlmf.nist.gov/18.7.E4 18.7.E4] || [[Item:Q5572|<math>\ChebyshevpolyU{n}@{x} = \ultrasphpoly{1}{n}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ChebyshevpolyU{n}@{x} = \ultrasphpoly{1}{n}@{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ChebyshevU(n, x) = GegenbauerC(n, 1, x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ChebyshevU[n, x] == GegenbauerC[n, 1, x]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 9]
| [https://dlmf.nist.gov/18.7.E4 18.7.E4] || <math qid="Q5572">\ChebyshevpolyU{n}@{x} = \ultrasphpoly{1}{n}@{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ChebyshevpolyU{n}@{x} = \ultrasphpoly{1}{n}@{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ChebyshevU(n, x) = GegenbauerC(n, 1, x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ChebyshevU[n, x] == GegenbauerC[n, 1, x]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 9]
|-  
|-  
| [https://dlmf.nist.gov/18.7.E4 18.7.E4] || [[Item:Q5572|<math>\ultrasphpoly{1}{n}@{x} = \ifrac{(n+1)\JacobipolyP{\frac{1}{2}}{\frac{1}{2}}{n}@{x}}{\JacobipolyP{\frac{1}{2}}{\frac{1}{2}}{n}@{1}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ultrasphpoly{1}{n}@{x} = \ifrac{(n+1)\JacobipolyP{\frac{1}{2}}{\frac{1}{2}}{n}@{x}}{\JacobipolyP{\frac{1}{2}}{\frac{1}{2}}{n}@{1}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>GegenbauerC(n, 1, x) = ((n + 1)*JacobiP(n, (1)/(2), (1)/(2), x))/(JacobiP(n, (1)/(2), (1)/(2), 1))</syntaxhighlight> || <syntaxhighlight lang=mathematica>GegenbauerC[n, 1, x] == Divide[(n + 1)*JacobiP[n, Divide[1,2], Divide[1,2], x],JacobiP[n, Divide[1,2], Divide[1,2], 1]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 9]
| [https://dlmf.nist.gov/18.7.E4 18.7.E4] || <math qid="Q5572">\ultrasphpoly{1}{n}@{x} = \ifrac{(n+1)\JacobipolyP{\frac{1}{2}}{\frac{1}{2}}{n}@{x}}{\JacobipolyP{\frac{1}{2}}{\frac{1}{2}}{n}@{1}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ultrasphpoly{1}{n}@{x} = \ifrac{(n+1)\JacobipolyP{\frac{1}{2}}{\frac{1}{2}}{n}@{x}}{\JacobipolyP{\frac{1}{2}}{\frac{1}{2}}{n}@{1}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>GegenbauerC(n, 1, x) = ((n + 1)*JacobiP(n, (1)/(2), (1)/(2), x))/(JacobiP(n, (1)/(2), (1)/(2), 1))</syntaxhighlight> || <syntaxhighlight lang=mathematica>GegenbauerC[n, 1, x] == Divide[(n + 1)*JacobiP[n, Divide[1,2], Divide[1,2], x],JacobiP[n, Divide[1,2], Divide[1,2], 1]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 9]
|-  
|-  
| [https://dlmf.nist.gov/18.7.E9 18.7.E9] || [[Item:Q5577|<math>\LegendrepolyP{n}@{x} = \ultrasphpoly{\frac{1}{2}}{n}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\LegendrepolyP{n}@{x} = \ultrasphpoly{\frac{1}{2}}{n}@{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>LegendreP(n, x) = GegenbauerC(n, (1)/(2), x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>LegendreP[n, x] == GegenbauerC[n, Divide[1,2], x]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 9]
| [https://dlmf.nist.gov/18.7.E9 18.7.E9] || <math qid="Q5577">\LegendrepolyP{n}@{x} = \ultrasphpoly{\frac{1}{2}}{n}@{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\LegendrepolyP{n}@{x} = \ultrasphpoly{\frac{1}{2}}{n}@{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>LegendreP(n, x) = GegenbauerC(n, (1)/(2), x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>LegendreP[n, x] == GegenbauerC[n, Divide[1,2], x]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 9]
|-  
|-  
| [https://dlmf.nist.gov/18.7.E9 18.7.E9] || [[Item:Q5577|<math>\ultrasphpoly{\frac{1}{2}}{n}@{x} = \JacobipolyP{0}{0}{n}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ultrasphpoly{\frac{1}{2}}{n}@{x} = \JacobipolyP{0}{0}{n}@{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>GegenbauerC(n, (1)/(2), x) = JacobiP(n, 0, 0, x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>GegenbauerC[n, Divide[1,2], x] == JacobiP[n, 0, 0, x]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 9]
| [https://dlmf.nist.gov/18.7.E9 18.7.E9] || <math qid="Q5577">\ultrasphpoly{\frac{1}{2}}{n}@{x} = \JacobipolyP{0}{0}{n}@{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ultrasphpoly{\frac{1}{2}}{n}@{x} = \JacobipolyP{0}{0}{n}@{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>GegenbauerC(n, (1)/(2), x) = JacobiP(n, 0, 0, x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>GegenbauerC[n, Divide[1,2], x] == JacobiP[n, 0, 0, x]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 9]
|-  
|-  
| [https://dlmf.nist.gov/18.7.E10 18.7.E10] || [[Item:Q5578|<math>\shiftLegendrepolyP{n}@{x} = \LegendrepolyP{n}@{2x-1}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\shiftLegendrepolyP{n}@{x} = \LegendrepolyP{n}@{2x-1}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>LegendreP(n, 2*(x) - 1) = LegendreP(n, 2*x - 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || Successful || Missing Macro Error || - || -
| [https://dlmf.nist.gov/18.7.E10 18.7.E10] || <math qid="Q5578">\shiftLegendrepolyP{n}@{x} = \LegendrepolyP{n}@{2x-1}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\shiftLegendrepolyP{n}@{x} = \LegendrepolyP{n}@{2x-1}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>LegendreP(n, 2*(x) - 1) = LegendreP(n, 2*x - 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || Successful || Missing Macro Error || - || -
|-  
|-  
| [https://dlmf.nist.gov/18.7.E13 18.7.E13] || [[Item:Q5581|<math>\frac{\JacobipolyP{\alpha}{\alpha}{2n}@{x}}{\JacobipolyP{\alpha}{\alpha}{2n}@{1}} = \frac{\JacobipolyP{\alpha}{-\frac{1}{2}}{n}@{2x^{2}-1}}{\JacobipolyP{\alpha}{-\frac{1}{2}}{n}@{1}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{\JacobipolyP{\alpha}{\alpha}{2n}@{x}}{\JacobipolyP{\alpha}{\alpha}{2n}@{1}} = \frac{\JacobipolyP{\alpha}{-\frac{1}{2}}{n}@{2x^{2}-1}}{\JacobipolyP{\alpha}{-\frac{1}{2}}{n}@{1}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(JacobiP(2*n, alpha, alpha, x))/(JacobiP(2*n, alpha, alpha, 1)) = (JacobiP(n, alpha, -(1)/(2), 2*(x)^(2)- 1))/(JacobiP(n, alpha, -(1)/(2), 1))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[JacobiP[2*n, \[Alpha], \[Alpha], x],JacobiP[2*n, \[Alpha], \[Alpha], 1]] == Divide[JacobiP[n, \[Alpha], -Divide[1,2], 2*(x)^(2)- 1],JacobiP[n, \[Alpha], -Divide[1,2], 1]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 27] || Successful [Tested: 27]
| [https://dlmf.nist.gov/18.7.E13 18.7.E13] || <math qid="Q5581">\frac{\JacobipolyP{\alpha}{\alpha}{2n}@{x}}{\JacobipolyP{\alpha}{\alpha}{2n}@{1}} = \frac{\JacobipolyP{\alpha}{-\frac{1}{2}}{n}@{2x^{2}-1}}{\JacobipolyP{\alpha}{-\frac{1}{2}}{n}@{1}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{\JacobipolyP{\alpha}{\alpha}{2n}@{x}}{\JacobipolyP{\alpha}{\alpha}{2n}@{1}} = \frac{\JacobipolyP{\alpha}{-\frac{1}{2}}{n}@{2x^{2}-1}}{\JacobipolyP{\alpha}{-\frac{1}{2}}{n}@{1}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(JacobiP(2*n, alpha, alpha, x))/(JacobiP(2*n, alpha, alpha, 1)) = (JacobiP(n, alpha, -(1)/(2), 2*(x)^(2)- 1))/(JacobiP(n, alpha, -(1)/(2), 1))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[JacobiP[2*n, \[Alpha], \[Alpha], x],JacobiP[2*n, \[Alpha], \[Alpha], 1]] == Divide[JacobiP[n, \[Alpha], -Divide[1,2], 2*(x)^(2)- 1],JacobiP[n, \[Alpha], -Divide[1,2], 1]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 27] || Successful [Tested: 27]
|-  
|-  
| [https://dlmf.nist.gov/18.7.E14 18.7.E14] || [[Item:Q5582|<math>\frac{\JacobipolyP{\alpha}{\alpha}{2n+1}@{x}}{\JacobipolyP{\alpha}{\alpha}{2n+1}@{1}} = \frac{x\JacobipolyP{\alpha}{\frac{1}{2}}{n}@{2x^{2}-1}}{\JacobipolyP{\alpha}{\frac{1}{2}}{n}@{1}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{\JacobipolyP{\alpha}{\alpha}{2n+1}@{x}}{\JacobipolyP{\alpha}{\alpha}{2n+1}@{1}} = \frac{x\JacobipolyP{\alpha}{\frac{1}{2}}{n}@{2x^{2}-1}}{\JacobipolyP{\alpha}{\frac{1}{2}}{n}@{1}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(JacobiP(2*n + 1, alpha, alpha, x))/(JacobiP(2*n + 1, alpha, alpha, 1)) = (x*JacobiP(n, alpha, (1)/(2), 2*(x)^(2)- 1))/(JacobiP(n, alpha, (1)/(2), 1))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[JacobiP[2*n + 1, \[Alpha], \[Alpha], x],JacobiP[2*n + 1, \[Alpha], \[Alpha], 1]] == Divide[x*JacobiP[n, \[Alpha], Divide[1,2], 2*(x)^(2)- 1],JacobiP[n, \[Alpha], Divide[1,2], 1]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 27] || Successful [Tested: 27]
| [https://dlmf.nist.gov/18.7.E14 18.7.E14] || <math qid="Q5582">\frac{\JacobipolyP{\alpha}{\alpha}{2n+1}@{x}}{\JacobipolyP{\alpha}{\alpha}{2n+1}@{1}} = \frac{x\JacobipolyP{\alpha}{\frac{1}{2}}{n}@{2x^{2}-1}}{\JacobipolyP{\alpha}{\frac{1}{2}}{n}@{1}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{\JacobipolyP{\alpha}{\alpha}{2n+1}@{x}}{\JacobipolyP{\alpha}{\alpha}{2n+1}@{1}} = \frac{x\JacobipolyP{\alpha}{\frac{1}{2}}{n}@{2x^{2}-1}}{\JacobipolyP{\alpha}{\frac{1}{2}}{n}@{1}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(JacobiP(2*n + 1, alpha, alpha, x))/(JacobiP(2*n + 1, alpha, alpha, 1)) = (x*JacobiP(n, alpha, (1)/(2), 2*(x)^(2)- 1))/(JacobiP(n, alpha, (1)/(2), 1))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[JacobiP[2*n + 1, \[Alpha], \[Alpha], x],JacobiP[2*n + 1, \[Alpha], \[Alpha], 1]] == Divide[x*JacobiP[n, \[Alpha], Divide[1,2], 2*(x)^(2)- 1],JacobiP[n, \[Alpha], Divide[1,2], 1]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 27] || Successful [Tested: 27]
|-  
|-  
| [https://dlmf.nist.gov/18.7.E15 18.7.E15] || [[Item:Q5583|<math>\ultrasphpoly{\lambda}{2n}@{x} = \frac{\Pochhammersym{\lambda}{n}}{\Pochhammersym{\tfrac{1}{2}}{n}}\JacobipolyP{\lambda-\frac{1}{2}}{-\frac{1}{2}}{n}@{2x^{2}-1}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ultrasphpoly{\lambda}{2n}@{x} = \frac{\Pochhammersym{\lambda}{n}}{\Pochhammersym{\tfrac{1}{2}}{n}}\JacobipolyP{\lambda-\frac{1}{2}}{-\frac{1}{2}}{n}@{2x^{2}-1}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>GegenbauerC(2*n, lambda, x) = (pochhammer(lambda, n))/(pochhammer((1)/(2), n))*JacobiP(n, lambda -(1)/(2), -(1)/(2), 2*(x)^(2)- 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>GegenbauerC[2*n, \[Lambda], x] == Divide[Pochhammer[\[Lambda], n],Pochhammer[Divide[1,2], n]]*JacobiP[n, \[Lambda]-Divide[1,2], -Divide[1,2], 2*(x)^(2)- 1]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [15 / 90]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Float(infinity)+Float(infinity)*I
| [https://dlmf.nist.gov/18.7.E15 18.7.E15] || <math qid="Q5583">\ultrasphpoly{\lambda}{2n}@{x} = \frac{\Pochhammersym{\lambda}{n}}{\Pochhammersym{\tfrac{1}{2}}{n}}\JacobipolyP{\lambda-\frac{1}{2}}{-\frac{1}{2}}{n}@{2x^{2}-1}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ultrasphpoly{\lambda}{2n}@{x} = \frac{\Pochhammersym{\lambda}{n}}{\Pochhammersym{\tfrac{1}{2}}{n}}\JacobipolyP{\lambda-\frac{1}{2}}{-\frac{1}{2}}{n}@{2x^{2}-1}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>GegenbauerC(2*n, lambda, x) = (pochhammer(lambda, n))/(pochhammer((1)/(2), n))*JacobiP(n, lambda -(1)/(2), -(1)/(2), 2*(x)^(2)- 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>GegenbauerC[2*n, \[Lambda], x] == Divide[Pochhammer[\[Lambda], n],Pochhammer[Divide[1,2], n]]*JacobiP[n, \[Lambda]-Divide[1,2], -Divide[1,2], 2*(x)^(2)- 1]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [15 / 90]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Float(infinity)+Float(infinity)*I
Test Values: {lambda = -3/2, x = 3/2, n = 2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Float(undefined)+Float(undefined)*I
Test Values: {lambda = -3/2, x = 3/2, n = 2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Float(undefined)+Float(undefined)*I
Test Values: {lambda = -3/2, x = 3/2, n = 3}</syntaxhighlight><br>... skip entries to safe data</div></div> || Successful [Tested: 90]
Test Values: {lambda = -3/2, x = 3/2, n = 3}</syntaxhighlight><br>... skip entries to safe data</div></div> || Successful [Tested: 90]
|-  
|-  
| [https://dlmf.nist.gov/18.7.E16 18.7.E16] || [[Item:Q5584|<math>\ultrasphpoly{\lambda}{2n+1}@{x} = \frac{\Pochhammersym{\lambda}{n+1}}{\Pochhammersym{\frac{1}{2}}{n+1}}x\JacobipolyP{\lambda-\frac{1}{2}}{\frac{1}{2}}{n}@{2x^{2}-1}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ultrasphpoly{\lambda}{2n+1}@{x} = \frac{\Pochhammersym{\lambda}{n+1}}{\Pochhammersym{\frac{1}{2}}{n+1}}x\JacobipolyP{\lambda-\frac{1}{2}}{\frac{1}{2}}{n}@{2x^{2}-1}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>GegenbauerC(2*n + 1, lambda, x) = (pochhammer(lambda, n + 1))/(pochhammer((1)/(2), n + 1))*x*JacobiP(n, lambda -(1)/(2), (1)/(2), 2*(x)^(2)- 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>GegenbauerC[2*n + 1, \[Lambda], x] == Divide[Pochhammer[\[Lambda], n + 1],Pochhammer[Divide[1,2], n + 1]]*x*JacobiP[n, \[Lambda]-Divide[1,2], Divide[1,2], 2*(x)^(2)- 1]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [15 / 90]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Float(infinity)+Float(infinity)*I
| [https://dlmf.nist.gov/18.7.E16 18.7.E16] || <math qid="Q5584">\ultrasphpoly{\lambda}{2n+1}@{x} = \frac{\Pochhammersym{\lambda}{n+1}}{\Pochhammersym{\frac{1}{2}}{n+1}}x\JacobipolyP{\lambda-\frac{1}{2}}{\frac{1}{2}}{n}@{2x^{2}-1}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ultrasphpoly{\lambda}{2n+1}@{x} = \frac{\Pochhammersym{\lambda}{n+1}}{\Pochhammersym{\frac{1}{2}}{n+1}}x\JacobipolyP{\lambda-\frac{1}{2}}{\frac{1}{2}}{n}@{2x^{2}-1}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>GegenbauerC(2*n + 1, lambda, x) = (pochhammer(lambda, n + 1))/(pochhammer((1)/(2), n + 1))*x*JacobiP(n, lambda -(1)/(2), (1)/(2), 2*(x)^(2)- 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>GegenbauerC[2*n + 1, \[Lambda], x] == Divide[Pochhammer[\[Lambda], n + 1],Pochhammer[Divide[1,2], n + 1]]*x*JacobiP[n, \[Lambda]-Divide[1,2], Divide[1,2], 2*(x)^(2)- 1]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [15 / 90]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Float(infinity)+Float(infinity)*I
Test Values: {lambda = -3/2, x = 3/2, n = 2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Float(undefined)+Float(undefined)*I
Test Values: {lambda = -3/2, x = 3/2, n = 2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Float(undefined)+Float(undefined)*I
Test Values: {lambda = -3/2, x = 3/2, n = 3}</syntaxhighlight><br>... skip entries to safe data</div></div> || Successful [Tested: 90]
Test Values: {lambda = -3/2, x = 3/2, n = 3}</syntaxhighlight><br>... skip entries to safe data</div></div> || Successful [Tested: 90]
|-  
|-  
| [https://dlmf.nist.gov/18.7.E19 18.7.E19] || [[Item:Q5587|<math>\HermitepolyH{2n}@{x} = (-1)^{n}2^{2n}n!\LaguerrepolyL[-\frac{1}{2}]{n}@{x^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\HermitepolyH{2n}@{x} = (-1)^{n}2^{2n}n!\LaguerrepolyL[-\frac{1}{2}]{n}@{x^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>HermiteH(2*n, x) = (- 1)^(n)* (2)^(2*n)* factorial(n)*LaguerreL(n, -(1)/(2), (x)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>HermiteH[2*n, x] == (- 1)^(n)* (2)^(2*n)* (n)!*LaguerreL[n, -Divide[1,2], (x)^(2)]</syntaxhighlight> || Missing Macro Error || Failure || - || Successful [Tested: 9]
| [https://dlmf.nist.gov/18.7.E19 18.7.E19] || <math qid="Q5587">\HermitepolyH{2n}@{x} = (-1)^{n}2^{2n}n!\LaguerrepolyL[-\frac{1}{2}]{n}@{x^{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\HermitepolyH{2n}@{x} = (-1)^{n}2^{2n}n!\LaguerrepolyL[-\frac{1}{2}]{n}@{x^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>HermiteH(2*n, x) = (- 1)^(n)* (2)^(2*n)* factorial(n)*LaguerreL(n, -(1)/(2), (x)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>HermiteH[2*n, x] == (- 1)^(n)* (2)^(2*n)* (n)!*LaguerreL[n, -Divide[1,2], (x)^(2)]</syntaxhighlight> || Missing Macro Error || Failure || - || Successful [Tested: 9]
|-  
|-  
| [https://dlmf.nist.gov/18.7.E20 18.7.E20] || [[Item:Q5588|<math>\HermitepolyH{2n+1}@{x} = (-1)^{n}2^{2n+1}n!\,x\LaguerrepolyL[\frac{1}{2}]{n}@{x^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\HermitepolyH{2n+1}@{x} = (-1)^{n}2^{2n+1}n!\,x\LaguerrepolyL[\frac{1}{2}]{n}@{x^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>HermiteH(2*n + 1, x) = (- 1)^(n)* (2)^(2*n + 1)* factorial(n)*x*LaguerreL(n, (1)/(2), (x)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>HermiteH[2*n + 1, x] == (- 1)^(n)* (2)^(2*n + 1)* (n)!*x*LaguerreL[n, Divide[1,2], (x)^(2)]</syntaxhighlight> || Missing Macro Error || Failure || - || Successful [Tested: 9]
| [https://dlmf.nist.gov/18.7.E20 18.7.E20] || <math qid="Q5588">\HermitepolyH{2n+1}@{x} = (-1)^{n}2^{2n+1}n!\,x\LaguerrepolyL[\frac{1}{2}]{n}@{x^{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\HermitepolyH{2n+1}@{x} = (-1)^{n}2^{2n+1}n!\,x\LaguerrepolyL[\frac{1}{2}]{n}@{x^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>HermiteH(2*n + 1, x) = (- 1)^(n)* (2)^(2*n + 1)* factorial(n)*x*LaguerreL(n, (1)/(2), (x)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>HermiteH[2*n + 1, x] == (- 1)^(n)* (2)^(2*n + 1)* (n)!*x*LaguerreL[n, Divide[1,2], (x)^(2)]</syntaxhighlight> || Missing Macro Error || Failure || - || Successful [Tested: 9]
|-  
|-  
| [https://dlmf.nist.gov/18.7.E21 18.7.E21] || [[Item:Q5589|<math>\lim_{\beta\to\infty}\JacobipolyP{\alpha}{\beta}{n}@{1-(\ifrac{2x}{\beta})} = \LaguerrepolyL[\alpha]{n}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\lim_{\beta\to\infty}\JacobipolyP{\alpha}{\beta}{n}@{1-(\ifrac{2x}{\beta})} = \LaguerrepolyL[\alpha]{n}@{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>limit(JacobiP(n, alpha, beta, 1 -((2*x)/(beta))), beta = infinity) = LaguerreL(n, alpha, x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Limit[JacobiP[n, \[Alpha], \[Beta], 1 -(Divide[2*x,\[Beta]])], \[Beta] -> Infinity, GenerateConditions->None] == LaguerreL[n, \[Alpha], x]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [27 / 27]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
| [https://dlmf.nist.gov/18.7.E21 18.7.E21] || <math qid="Q5589">\lim_{\beta\to\infty}\JacobipolyP{\alpha}{\beta}{n}@{1-(\ifrac{2x}{\beta})} = \LaguerrepolyL[\alpha]{n}@{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\lim_{\beta\to\infty}\JacobipolyP{\alpha}{\beta}{n}@{1-(\ifrac{2x}{\beta})} = \LaguerrepolyL[\alpha]{n}@{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>limit(JacobiP(n, alpha, beta, 1 -((2*x)/(beta))), beta = infinity) = LaguerreL(n, alpha, x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Limit[JacobiP[n, \[Alpha], \[Beta], 1 -(Divide[2*x,\[Beta]])], \[Beta] -> Infinity, GenerateConditions->None] == LaguerreL[n, \[Alpha], x]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [27 / 27]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[n, 1], Rule[x, 1.5], Rule[α, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[n, 1], Rule[x, 1.5], Rule[α, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[n, 2], Rule[x, 1.5], Rule[α, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[n, 2], Rule[x, 1.5], Rule[α, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/18.7.E22 18.7.E22] || [[Item:Q5590|<math>\lim_{\alpha\to\infty}\JacobipolyP{\alpha}{\beta}{n}@{(2x/\alpha)-1} = (-1)^{n}\LaguerrepolyL[\beta]{n}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\lim_{\alpha\to\infty}\JacobipolyP{\alpha}{\beta}{n}@{(2x/\alpha)-1} = (-1)^{n}\LaguerrepolyL[\beta]{n}@{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>limit(JacobiP(n, alpha, beta, (2*x/alpha)- 1), alpha = infinity) = (- 1)^(n)* LaguerreL(n, beta, x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Limit[JacobiP[n, \[Alpha], \[Beta], (2*x/\[Alpha])- 1], \[Alpha] -> Infinity, GenerateConditions->None] == (- 1)^(n)* LaguerreL[n, \[Beta], x]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [27 / 27]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
| [https://dlmf.nist.gov/18.7.E22 18.7.E22] || <math qid="Q5590">\lim_{\alpha\to\infty}\JacobipolyP{\alpha}{\beta}{n}@{(2x/\alpha)-1} = (-1)^{n}\LaguerrepolyL[\beta]{n}@{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\lim_{\alpha\to\infty}\JacobipolyP{\alpha}{\beta}{n}@{(2x/\alpha)-1} = (-1)^{n}\LaguerrepolyL[\beta]{n}@{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>limit(JacobiP(n, alpha, beta, (2*x/alpha)- 1), alpha = infinity) = (- 1)^(n)* LaguerreL(n, beta, x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Limit[JacobiP[n, \[Alpha], \[Beta], (2*x/\[Alpha])- 1], \[Alpha] -> Infinity, GenerateConditions->None] == (- 1)^(n)* LaguerreL[n, \[Beta], x]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [27 / 27]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[n, 1], Rule[x, 1.5], Rule[β, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[n, 1], Rule[x, 1.5], Rule[β, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[n, 2], Rule[x, 1.5], Rule[β, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[n, 2], Rule[x, 1.5], Rule[β, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/18.7.E23 18.7.E23] || [[Item:Q5591|<math>\lim_{\alpha\to\infty}\alpha^{-\frac{1}{2}n}\JacobipolyP{\alpha}{\alpha}{n}@{\alpha^{-\frac{1}{2}}x} = \frac{\HermitepolyH{n}@{x}}{2^{n}n!}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\lim_{\alpha\to\infty}\alpha^{-\frac{1}{2}n}\JacobipolyP{\alpha}{\alpha}{n}@{\alpha^{-\frac{1}{2}}x} = \frac{\HermitepolyH{n}@{x}}{2^{n}n!}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>limit((alpha)^(-(1)/(2)*n)* JacobiP(n, alpha, alpha, (alpha)^(-(1)/(2))* x), alpha = infinity) = (HermiteH(n, x))/((2)^(n)* factorial(n))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Limit[\[Alpha]^(-Divide[1,2]*n)* JacobiP[n, \[Alpha], \[Alpha], \[Alpha]^(-Divide[1,2])* x], \[Alpha] -> Infinity, GenerateConditions->None] == Divide[HermiteH[n, x],(2)^(n)* (n)!]</syntaxhighlight> || Failure || Aborted || Error || Successful [Tested: 9]
| [https://dlmf.nist.gov/18.7.E23 18.7.E23] || <math qid="Q5591">\lim_{\alpha\to\infty}\alpha^{-\frac{1}{2}n}\JacobipolyP{\alpha}{\alpha}{n}@{\alpha^{-\frac{1}{2}}x} = \frac{\HermitepolyH{n}@{x}}{2^{n}n!}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\lim_{\alpha\to\infty}\alpha^{-\frac{1}{2}n}\JacobipolyP{\alpha}{\alpha}{n}@{\alpha^{-\frac{1}{2}}x} = \frac{\HermitepolyH{n}@{x}}{2^{n}n!}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>limit((alpha)^(-(1)/(2)*n)* JacobiP(n, alpha, alpha, (alpha)^(-(1)/(2))* x), alpha = infinity) = (HermiteH(n, x))/((2)^(n)* factorial(n))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Limit[\[Alpha]^(-Divide[1,2]*n)* JacobiP[n, \[Alpha], \[Alpha], \[Alpha]^(-Divide[1,2])* x], \[Alpha] -> Infinity, GenerateConditions->None] == Divide[HermiteH[n, x],(2)^(n)* (n)!]</syntaxhighlight> || Failure || Aborted || Error || Successful [Tested: 9]
|-  
|-  
| [https://dlmf.nist.gov/18.7.E24 18.7.E24] || [[Item:Q5592|<math>\lim_{\lambda\to\infty}\lambda^{-\frac{1}{2}n}\ultrasphpoly{\lambda}{n}@{\lambda^{-\frac{1}{2}}x} = \frac{\HermitepolyH{n}@{x}}{n!}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\lim_{\lambda\to\infty}\lambda^{-\frac{1}{2}n}\ultrasphpoly{\lambda}{n}@{\lambda^{-\frac{1}{2}}x} = \frac{\HermitepolyH{n}@{x}}{n!}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>limit((lambda)^(-(1)/(2)*n)* GegenbauerC(n, lambda, (lambda)^(-(1)/(2))* x), lambda = infinity) = (HermiteH(n, x))/(factorial(n))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Limit[\[Lambda]^(-Divide[1,2]*n)* GegenbauerC[n, \[Lambda], \[Lambda]^(-Divide[1,2])* x], \[Lambda] -> Infinity, GenerateConditions->None] == Divide[HermiteH[n, x],(n)!]</syntaxhighlight> || Failure || Aborted || Successful [Tested: 9] || Successful [Tested: 9]
| [https://dlmf.nist.gov/18.7.E24 18.7.E24] || <math qid="Q5592">\lim_{\lambda\to\infty}\lambda^{-\frac{1}{2}n}\ultrasphpoly{\lambda}{n}@{\lambda^{-\frac{1}{2}}x} = \frac{\HermitepolyH{n}@{x}}{n!}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\lim_{\lambda\to\infty}\lambda^{-\frac{1}{2}n}\ultrasphpoly{\lambda}{n}@{\lambda^{-\frac{1}{2}}x} = \frac{\HermitepolyH{n}@{x}}{n!}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>limit((lambda)^(-(1)/(2)*n)* GegenbauerC(n, lambda, (lambda)^(-(1)/(2))* x), lambda = infinity) = (HermiteH(n, x))/(factorial(n))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Limit[\[Lambda]^(-Divide[1,2]*n)* GegenbauerC[n, \[Lambda], \[Lambda]^(-Divide[1,2])* x], \[Lambda] -> Infinity, GenerateConditions->None] == Divide[HermiteH[n, x],(n)!]</syntaxhighlight> || Failure || Aborted || Successful [Tested: 9] || Successful [Tested: 9]
|-  
|-  
| [https://dlmf.nist.gov/18.7.E25 18.7.E25] || [[Item:Q5593|<math>\lim_{\lambda\to 0}\frac{1}{\lambda}\ultrasphpoly{\lambda}{n}@{x} = \frac{2}{n}\ChebyshevpolyT{n}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\lim_{\lambda\to 0}\frac{1}{\lambda}\ultrasphpoly{\lambda}{n}@{x} = \frac{2}{n}\ChebyshevpolyT{n}@{x}</syntaxhighlight> || <math>n \geq 1</math> || <syntaxhighlight lang=mathematica>limit((1)/(lambda)*GegenbauerC(n, lambda, x), lambda = 0) = (2)/(n)*ChebyshevT(n, x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Limit[Divide[1,\[Lambda]]*GegenbauerC[n, \[Lambda], x], \[Lambda] -> 0, GenerateConditions->None] == Divide[2,n]*ChebyshevT[n, x]</syntaxhighlight> || Failure || Failure || Successful [Tested: 9] || Successful [Tested: 9]
| [https://dlmf.nist.gov/18.7.E25 18.7.E25] || <math qid="Q5593">\lim_{\lambda\to 0}\frac{1}{\lambda}\ultrasphpoly{\lambda}{n}@{x} = \frac{2}{n}\ChebyshevpolyT{n}@{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\lim_{\lambda\to 0}\frac{1}{\lambda}\ultrasphpoly{\lambda}{n}@{x} = \frac{2}{n}\ChebyshevpolyT{n}@{x}</syntaxhighlight> || <math>n \geq 1</math> || <syntaxhighlight lang=mathematica>limit((1)/(lambda)*GegenbauerC(n, lambda, x), lambda = 0) = (2)/(n)*ChebyshevT(n, x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Limit[Divide[1,\[Lambda]]*GegenbauerC[n, \[Lambda], x], \[Lambda] -> 0, GenerateConditions->None] == Divide[2,n]*ChebyshevT[n, x]</syntaxhighlight> || Failure || Failure || Successful [Tested: 9] || Successful [Tested: 9]
|-  
|-  
| [https://dlmf.nist.gov/18.7.E26 18.7.E26] || [[Item:Q5594|<math>\lim_{\alpha\to\infty}\left(\frac{2}{\alpha}\right)^{\frac{1}{2}n}\LaguerrepolyL[\alpha]{n}@{(2\alpha)^{\frac{1}{2}}x+\alpha} = \frac{(-1)^{n}}{n!}\HermitepolyH{n}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\lim_{\alpha\to\infty}\left(\frac{2}{\alpha}\right)^{\frac{1}{2}n}\LaguerrepolyL[\alpha]{n}@{(2\alpha)^{\frac{1}{2}}x+\alpha} = \frac{(-1)^{n}}{n!}\HermitepolyH{n}@{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>limit(((2)/(alpha))^((1)/(2)*n)* LaguerreL(n, alpha, (2*alpha)^((1)/(2))* x + alpha), alpha = infinity) = ((- 1)^(n))/(factorial(n))*HermiteH(n, x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Limit[(Divide[2,\[Alpha]])^(Divide[1,2]*n)* LaguerreL[n, \[Alpha], (2*\[Alpha])^(Divide[1,2])* x + \[Alpha]], \[Alpha] -> Infinity, GenerateConditions->None] == Divide[(- 1)^(n),(n)!]*HermiteH[n, x]</syntaxhighlight> || Missing Macro Error || Aborted || - || Successful [Tested: 9]
| [https://dlmf.nist.gov/18.7.E26 18.7.E26] || <math qid="Q5594">\lim_{\alpha\to\infty}\left(\frac{2}{\alpha}\right)^{\frac{1}{2}n}\LaguerrepolyL[\alpha]{n}@{(2\alpha)^{\frac{1}{2}}x+\alpha} = \frac{(-1)^{n}}{n!}\HermitepolyH{n}@{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\lim_{\alpha\to\infty}\left(\frac{2}{\alpha}\right)^{\frac{1}{2}n}\LaguerrepolyL[\alpha]{n}@{(2\alpha)^{\frac{1}{2}}x+\alpha} = \frac{(-1)^{n}}{n!}\HermitepolyH{n}@{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>limit(((2)/(alpha))^((1)/(2)*n)* LaguerreL(n, alpha, (2*alpha)^((1)/(2))* x + alpha), alpha = infinity) = ((- 1)^(n))/(factorial(n))*HermiteH(n, x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Limit[(Divide[2,\[Alpha]])^(Divide[1,2]*n)* LaguerreL[n, \[Alpha], (2*\[Alpha])^(Divide[1,2])* x + \[Alpha]], \[Alpha] -> Infinity, GenerateConditions->None] == Divide[(- 1)^(n),(n)!]*HermiteH[n, x]</syntaxhighlight> || Missing Macro Error || Aborted || - || Successful [Tested: 9]
|}
|}
</div>
</div>

Latest revision as of 11:44, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
18.7.E1 C n ( λ ) ( x ) = ( 2 λ ) n ( λ + 1 2 ) n P n ( λ - 1 2 , λ - 1 2 ) ( x ) ultraspherical-Gegenbauer-polynomial 𝜆 𝑛 𝑥 Pochhammer 2 𝜆 𝑛 Pochhammer 𝜆 1 2 𝑛 Jacobi-polynomial-P 𝜆 1 2 𝜆 1 2 𝑛 𝑥 {\displaystyle{\displaystyle C^{(\lambda)}_{n}\left(x\right)=\frac{{\left(2% \lambda\right)_{n}}}{{\left(\lambda+\frac{1}{2}\right)_{n}}}P^{(\lambda-\frac{% 1}{2},\lambda-\frac{1}{2})}_{n}\left(x\right)}}
\ultrasphpoly{\lambda}{n}@{x} = \frac{\Pochhammersym{2\lambda}{n}}{\Pochhammersym{\lambda+\frac{1}{2}}{n}}\JacobipolyP{\lambda-\frac{1}{2}}{\lambda-\frac{1}{2}}{n}@{x}

GegenbauerC(n, lambda, x) = (pochhammer(2*lambda, n))/(pochhammer(lambda +(1)/(2), n))*JacobiP(n, lambda -(1)/(2), lambda -(1)/(2), x)
GegenbauerC[n, \[Lambda], x] == Divide[Pochhammer[2*\[Lambda], n],Pochhammer[\[Lambda]+Divide[1,2], n]]*JacobiP[n, \[Lambda]-Divide[1,2], \[Lambda]-Divide[1,2], x]
Successful Successful -
Failed [15 / 90]
Result: Indeterminate
Test Values: {Rule[n, 2], Rule[x, 1.5], Rule[λ, -1.5]}

Result: Indeterminate
Test Values: {Rule[n, 3], Rule[x, 1.5], Rule[λ, -1.5]}

... skip entries to safe data
18.7.E2 P n ( α , α ) ( x ) = ( α + 1 ) n ( 2 α + 1 ) n C n ( α + 1 2 ) ( x ) Jacobi-polynomial-P 𝛼 𝛼 𝑛 𝑥 Pochhammer 𝛼 1 𝑛 Pochhammer 2 𝛼 1 𝑛 ultraspherical-Gegenbauer-polynomial 𝛼 1 2 𝑛 𝑥 {\displaystyle{\displaystyle P^{(\alpha,\alpha)}_{n}\left(x\right)=\frac{{% \left(\alpha+1\right)_{n}}}{{\left(2\alpha+1\right)_{n}}}C^{(\alpha+\frac{1}{2% })}_{n}\left(x\right)}}
\JacobipolyP{\alpha}{\alpha}{n}@{x} = \frac{\Pochhammersym{\alpha+1}{n}}{\Pochhammersym{2\alpha+1}{n}}\ultrasphpoly{\alpha+\frac{1}{2}}{n}@{x}

JacobiP(n, alpha, alpha, x) = (pochhammer(alpha + 1, n))/(pochhammer(2*alpha + 1, n))*GegenbauerC(n, alpha +(1)/(2), x)
JacobiP[n, \[Alpha], \[Alpha], x] == Divide[Pochhammer[\[Alpha]+ 1, n],Pochhammer[2*\[Alpha]+ 1, n]]*GegenbauerC[n, \[Alpha]+Divide[1,2], x]
Successful Successful - Successful [Tested: 27]
18.7.E3 T n ( x ) = P n ( - 1 2 , - 1 2 ) ( x ) / P n ( - 1 2 , - 1 2 ) ( 1 ) Chebyshev-polynomial-first-kind-T 𝑛 𝑥 Jacobi-polynomial-P 1 2 1 2 𝑛 𝑥 Jacobi-polynomial-P 1 2 1 2 𝑛 1 {\displaystyle{\displaystyle T_{n}\left(x\right)=\ifrac{P^{(-\frac{1}{2},-% \frac{1}{2})}_{n}\left(x\right)}{P^{(-\frac{1}{2},-\frac{1}{2})}_{n}\left(1% \right)}}}
\ChebyshevpolyT{n}@{x} = \ifrac{\JacobipolyP{-\frac{1}{2}}{-\frac{1}{2}}{n}@{x}}{\JacobipolyP{-\frac{1}{2}}{-\frac{1}{2}}{n}@{1}}

ChebyshevT(n, x) = (JacobiP(n, -(1)/(2), -(1)/(2), x))/(JacobiP(n, -(1)/(2), -(1)/(2), 1))
ChebyshevT[n, x] == Divide[JacobiP[n, -Divide[1,2], -Divide[1,2], x],JacobiP[n, -Divide[1,2], -Divide[1,2], 1]]
Successful Successful - Successful [Tested: 9]
18.7.E4 U n ( x ) = C n ( 1 ) ( x ) Chebyshev-polynomial-second-kind-U 𝑛 𝑥 ultraspherical-Gegenbauer-polynomial 1 𝑛 𝑥 {\displaystyle{\displaystyle U_{n}\left(x\right)=C^{(1)}_{n}\left(x\right)}}
\ChebyshevpolyU{n}@{x} = \ultrasphpoly{1}{n}@{x}

ChebyshevU(n, x) = GegenbauerC(n, 1, x)
ChebyshevU[n, x] == GegenbauerC[n, 1, x]
Successful Successful - Successful [Tested: 9]
18.7.E4 C n ( 1 ) ( x ) = ( n + 1 ) P n ( 1 2 , 1 2 ) ( x ) / P n ( 1 2 , 1 2 ) ( 1 ) ultraspherical-Gegenbauer-polynomial 1 𝑛 𝑥 𝑛 1 Jacobi-polynomial-P 1 2 1 2 𝑛 𝑥 Jacobi-polynomial-P 1 2 1 2 𝑛 1 {\displaystyle{\displaystyle C^{(1)}_{n}\left(x\right)=\ifrac{(n+1)P^{(\frac{1% }{2},\frac{1}{2})}_{n}\left(x\right)}{P^{(\frac{1}{2},\frac{1}{2})}_{n}\left(1% \right)}}}
\ultrasphpoly{1}{n}@{x} = \ifrac{(n+1)\JacobipolyP{\frac{1}{2}}{\frac{1}{2}}{n}@{x}}{\JacobipolyP{\frac{1}{2}}{\frac{1}{2}}{n}@{1}}

GegenbauerC(n, 1, x) = ((n + 1)*JacobiP(n, (1)/(2), (1)/(2), x))/(JacobiP(n, (1)/(2), (1)/(2), 1))
GegenbauerC[n, 1, x] == Divide[(n + 1)*JacobiP[n, Divide[1,2], Divide[1,2], x],JacobiP[n, Divide[1,2], Divide[1,2], 1]]
Successful Successful - Successful [Tested: 9]
18.7.E9 P n ( x ) = C n ( 1 2 ) ( x ) Legendre-spherical-polynomial 𝑛 𝑥 ultraspherical-Gegenbauer-polynomial 1 2 𝑛 𝑥 {\displaystyle{\displaystyle P_{n}\left(x\right)=C^{(\frac{1}{2})}_{n}\left(x% \right)}}
\LegendrepolyP{n}@{x} = \ultrasphpoly{\frac{1}{2}}{n}@{x}

LegendreP(n, x) = GegenbauerC(n, (1)/(2), x)
LegendreP[n, x] == GegenbauerC[n, Divide[1,2], x]
Successful Successful - Successful [Tested: 9]
18.7.E9 C n ( 1 2 ) ( x ) = P n ( 0 , 0 ) ( x ) ultraspherical-Gegenbauer-polynomial 1 2 𝑛 𝑥 Jacobi-polynomial-P 0 0 𝑛 𝑥 {\displaystyle{\displaystyle C^{(\frac{1}{2})}_{n}\left(x\right)=P^{(0,0)}_{n}% \left(x\right)}}
\ultrasphpoly{\frac{1}{2}}{n}@{x} = \JacobipolyP{0}{0}{n}@{x}

GegenbauerC(n, (1)/(2), x) = JacobiP(n, 0, 0, x)
GegenbauerC[n, Divide[1,2], x] == JacobiP[n, 0, 0, x]
Successful Successful - Successful [Tested: 9]
18.7.E10 P n * ( x ) = P n ( 2 x - 1 ) shifted-spherical-Legendre-polynomial-s 𝑛 𝑥 Legendre-spherical-polynomial 𝑛 2 𝑥 1 {\displaystyle{\displaystyle P^{*}_{n}\left(x\right)=P_{n}\left(2x-1\right)}}
\shiftLegendrepolyP{n}@{x} = \LegendrepolyP{n}@{2x-1}

LegendreP(n, 2*(x) - 1) = LegendreP(n, 2*x - 1)
Error
Successful Missing Macro Error - -
18.7.E13 P 2 n ( α , α ) ( x ) P 2 n ( α , α ) ( 1 ) = P n ( α , - 1 2 ) ( 2 x 2 - 1 ) P n ( α , - 1 2 ) ( 1 ) Jacobi-polynomial-P 𝛼 𝛼 2 𝑛 𝑥 Jacobi-polynomial-P 𝛼 𝛼 2 𝑛 1 Jacobi-polynomial-P 𝛼 1 2 𝑛 2 superscript 𝑥 2 1 Jacobi-polynomial-P 𝛼 1 2 𝑛 1 {\displaystyle{\displaystyle\frac{P^{(\alpha,\alpha)}_{2n}\left(x\right)}{P^{(% \alpha,\alpha)}_{2n}\left(1\right)}=\frac{P^{(\alpha,-\frac{1}{2})}_{n}\left(2% x^{2}-1\right)}{P^{(\alpha,-\frac{1}{2})}_{n}\left(1\right)}}}
\frac{\JacobipolyP{\alpha}{\alpha}{2n}@{x}}{\JacobipolyP{\alpha}{\alpha}{2n}@{1}} = \frac{\JacobipolyP{\alpha}{-\frac{1}{2}}{n}@{2x^{2}-1}}{\JacobipolyP{\alpha}{-\frac{1}{2}}{n}@{1}}

(JacobiP(2*n, alpha, alpha, x))/(JacobiP(2*n, alpha, alpha, 1)) = (JacobiP(n, alpha, -(1)/(2), 2*(x)^(2)- 1))/(JacobiP(n, alpha, -(1)/(2), 1))
Divide[JacobiP[2*n, \[Alpha], \[Alpha], x],JacobiP[2*n, \[Alpha], \[Alpha], 1]] == Divide[JacobiP[n, \[Alpha], -Divide[1,2], 2*(x)^(2)- 1],JacobiP[n, \[Alpha], -Divide[1,2], 1]]
Failure Failure Successful [Tested: 27] Successful [Tested: 27]
18.7.E14 P 2 n + 1 ( α , α ) ( x ) P 2 n + 1 ( α , α ) ( 1 ) = x P n ( α , 1 2 ) ( 2 x 2 - 1 ) P n ( α , 1 2 ) ( 1 ) Jacobi-polynomial-P 𝛼 𝛼 2 𝑛 1 𝑥 Jacobi-polynomial-P 𝛼 𝛼 2 𝑛 1 1 𝑥 Jacobi-polynomial-P 𝛼 1 2 𝑛 2 superscript 𝑥 2 1 Jacobi-polynomial-P 𝛼 1 2 𝑛 1 {\displaystyle{\displaystyle\frac{P^{(\alpha,\alpha)}_{2n+1}\left(x\right)}{P^% {(\alpha,\alpha)}_{2n+1}\left(1\right)}=\frac{xP^{(\alpha,\frac{1}{2})}_{n}% \left(2x^{2}-1\right)}{P^{(\alpha,\frac{1}{2})}_{n}\left(1\right)}}}
\frac{\JacobipolyP{\alpha}{\alpha}{2n+1}@{x}}{\JacobipolyP{\alpha}{\alpha}{2n+1}@{1}} = \frac{x\JacobipolyP{\alpha}{\frac{1}{2}}{n}@{2x^{2}-1}}{\JacobipolyP{\alpha}{\frac{1}{2}}{n}@{1}}

(JacobiP(2*n + 1, alpha, alpha, x))/(JacobiP(2*n + 1, alpha, alpha, 1)) = (x*JacobiP(n, alpha, (1)/(2), 2*(x)^(2)- 1))/(JacobiP(n, alpha, (1)/(2), 1))
Divide[JacobiP[2*n + 1, \[Alpha], \[Alpha], x],JacobiP[2*n + 1, \[Alpha], \[Alpha], 1]] == Divide[x*JacobiP[n, \[Alpha], Divide[1,2], 2*(x)^(2)- 1],JacobiP[n, \[Alpha], Divide[1,2], 1]]
Failure Failure Successful [Tested: 27] Successful [Tested: 27]
18.7.E15 C 2 n ( λ ) ( x ) = ( λ ) n ( 1 2 ) n P n ( λ - 1 2 , - 1 2 ) ( 2 x 2 - 1 ) ultraspherical-Gegenbauer-polynomial 𝜆 2 𝑛 𝑥 Pochhammer 𝜆 𝑛 Pochhammer 1 2 𝑛 Jacobi-polynomial-P 𝜆 1 2 1 2 𝑛 2 superscript 𝑥 2 1 {\displaystyle{\displaystyle C^{(\lambda)}_{2n}\left(x\right)=\frac{{\left(% \lambda\right)_{n}}}{{\left(\tfrac{1}{2}\right)_{n}}}P^{(\lambda-\frac{1}{2},-% \frac{1}{2})}_{n}\left(2x^{2}-1\right)}}
\ultrasphpoly{\lambda}{2n}@{x} = \frac{\Pochhammersym{\lambda}{n}}{\Pochhammersym{\tfrac{1}{2}}{n}}\JacobipolyP{\lambda-\frac{1}{2}}{-\frac{1}{2}}{n}@{2x^{2}-1}

GegenbauerC(2*n, lambda, x) = (pochhammer(lambda, n))/(pochhammer((1)/(2), n))*JacobiP(n, lambda -(1)/(2), -(1)/(2), 2*(x)^(2)- 1)
GegenbauerC[2*n, \[Lambda], x] == Divide[Pochhammer[\[Lambda], n],Pochhammer[Divide[1,2], n]]*JacobiP[n, \[Lambda]-Divide[1,2], -Divide[1,2], 2*(x)^(2)- 1]
Failure Failure
Failed [15 / 90]
Result: Float(infinity)+Float(infinity)*I
Test Values: {lambda = -3/2, x = 3/2, n = 2}

Result: Float(undefined)+Float(undefined)*I
Test Values: {lambda = -3/2, x = 3/2, n = 3}

... skip entries to safe data
Successful [Tested: 90]
18.7.E16 C 2 n + 1 ( λ ) ( x ) = ( λ ) n + 1 ( 1 2 ) n + 1 x P n ( λ - 1 2 , 1 2 ) ( 2 x 2 - 1 ) ultraspherical-Gegenbauer-polynomial 𝜆 2 𝑛 1 𝑥 Pochhammer 𝜆 𝑛 1 Pochhammer 1 2 𝑛 1 𝑥 Jacobi-polynomial-P 𝜆 1 2 1 2 𝑛 2 superscript 𝑥 2 1 {\displaystyle{\displaystyle C^{(\lambda)}_{2n+1}\left(x\right)=\frac{{\left(% \lambda\right)_{n+1}}}{{\left(\frac{1}{2}\right)_{n+1}}}xP^{(\lambda-\frac{1}{% 2},\frac{1}{2})}_{n}\left(2x^{2}-1\right)}}
\ultrasphpoly{\lambda}{2n+1}@{x} = \frac{\Pochhammersym{\lambda}{n+1}}{\Pochhammersym{\frac{1}{2}}{n+1}}x\JacobipolyP{\lambda-\frac{1}{2}}{\frac{1}{2}}{n}@{2x^{2}-1}

GegenbauerC(2*n + 1, lambda, x) = (pochhammer(lambda, n + 1))/(pochhammer((1)/(2), n + 1))*x*JacobiP(n, lambda -(1)/(2), (1)/(2), 2*(x)^(2)- 1)
GegenbauerC[2*n + 1, \[Lambda], x] == Divide[Pochhammer[\[Lambda], n + 1],Pochhammer[Divide[1,2], n + 1]]*x*JacobiP[n, \[Lambda]-Divide[1,2], Divide[1,2], 2*(x)^(2)- 1]
Failure Failure
Failed [15 / 90]
Result: Float(infinity)+Float(infinity)*I
Test Values: {lambda = -3/2, x = 3/2, n = 2}

Result: Float(undefined)+Float(undefined)*I
Test Values: {lambda = -3/2, x = 3/2, n = 3}

... skip entries to safe data
Successful [Tested: 90]
18.7.E19 H 2 n ( x ) = ( - 1 ) n 2 2 n n ! L n ( - 1 2 ) ( x 2 ) Hermite-polynomial-H 2 𝑛 𝑥 superscript 1 𝑛 superscript 2 2 𝑛 𝑛 Laguerre-polynomial-L 1 2 𝑛 superscript 𝑥 2 {\displaystyle{\displaystyle H_{2n}\left(x\right)=(-1)^{n}2^{2n}n!L^{(-\frac{1% }{2})}_{n}\left(x^{2}\right)}}
\HermitepolyH{2n}@{x} = (-1)^{n}2^{2n}n!\LaguerrepolyL[-\frac{1}{2}]{n}@{x^{2}}

HermiteH(2*n, x) = (- 1)^(n)* (2)^(2*n)* factorial(n)*LaguerreL(n, -(1)/(2), (x)^(2))
HermiteH[2*n, x] == (- 1)^(n)* (2)^(2*n)* (n)!*LaguerreL[n, -Divide[1,2], (x)^(2)]
Missing Macro Error Failure - Successful [Tested: 9]
18.7.E20 H 2 n + 1 ( x ) = ( - 1 ) n 2 2 n + 1 n ! x L n ( 1 2 ) ( x 2 ) Hermite-polynomial-H 2 𝑛 1 𝑥 superscript 1 𝑛 superscript 2 2 𝑛 1 𝑛 𝑥 Laguerre-polynomial-L 1 2 𝑛 superscript 𝑥 2 {\displaystyle{\displaystyle H_{2n+1}\left(x\right)=(-1)^{n}2^{2n+1}n!\,xL^{(% \frac{1}{2})}_{n}\left(x^{2}\right)}}
\HermitepolyH{2n+1}@{x} = (-1)^{n}2^{2n+1}n!\,x\LaguerrepolyL[\frac{1}{2}]{n}@{x^{2}}

HermiteH(2*n + 1, x) = (- 1)^(n)* (2)^(2*n + 1)* factorial(n)*x*LaguerreL(n, (1)/(2), (x)^(2))
HermiteH[2*n + 1, x] == (- 1)^(n)* (2)^(2*n + 1)* (n)!*x*LaguerreL[n, Divide[1,2], (x)^(2)]
Missing Macro Error Failure - Successful [Tested: 9]
18.7.E21 lim β P n ( α , β ) ( 1 - ( 2 x / β ) ) = L n ( α ) ( x ) subscript 𝛽 Jacobi-polynomial-P 𝛼 𝛽 𝑛 1 2 𝑥 𝛽 Laguerre-polynomial-L 𝛼 𝑛 𝑥 {\displaystyle{\displaystyle\lim_{\beta\to\infty}P^{(\alpha,\beta)}_{n}\left(1% -(\ifrac{2x}{\beta})\right)=L^{(\alpha)}_{n}\left(x\right)}}
\lim_{\beta\to\infty}\JacobipolyP{\alpha}{\beta}{n}@{1-(\ifrac{2x}{\beta})} = \LaguerrepolyL[\alpha]{n}@{x}

limit(JacobiP(n, alpha, beta, 1 -((2*x)/(beta))), beta = infinity) = LaguerreL(n, alpha, x)
Limit[JacobiP[n, \[Alpha], \[Beta], 1 -(Divide[2*x,\[Beta]])], \[Beta] -> Infinity, GenerateConditions->None] == LaguerreL[n, \[Alpha], x]
Missing Macro Error Failure -
Failed [27 / 27]
Result: Indeterminate
Test Values: {Rule[n, 1], Rule[x, 1.5], Rule[α, 1.5]}

Result: Indeterminate
Test Values: {Rule[n, 2], Rule[x, 1.5], Rule[α, 1.5]}

... skip entries to safe data
18.7.E22 lim α P n ( α , β ) ( ( 2 x / α ) - 1 ) = ( - 1 ) n L n ( β ) ( x ) subscript 𝛼 Jacobi-polynomial-P 𝛼 𝛽 𝑛 2 𝑥 𝛼 1 superscript 1 𝑛 Laguerre-polynomial-L 𝛽 𝑛 𝑥 {\displaystyle{\displaystyle\lim_{\alpha\to\infty}P^{(\alpha,\beta)}_{n}\left(% (2x/\alpha)-1\right)=(-1)^{n}L^{(\beta)}_{n}\left(x\right)}}
\lim_{\alpha\to\infty}\JacobipolyP{\alpha}{\beta}{n}@{(2x/\alpha)-1} = (-1)^{n}\LaguerrepolyL[\beta]{n}@{x}

limit(JacobiP(n, alpha, beta, (2*x/alpha)- 1), alpha = infinity) = (- 1)^(n)* LaguerreL(n, beta, x)
Limit[JacobiP[n, \[Alpha], \[Beta], (2*x/\[Alpha])- 1], \[Alpha] -> Infinity, GenerateConditions->None] == (- 1)^(n)* LaguerreL[n, \[Beta], x]
Missing Macro Error Failure -
Failed [27 / 27]
Result: Indeterminate
Test Values: {Rule[n, 1], Rule[x, 1.5], Rule[β, 1.5]}

Result: Indeterminate
Test Values: {Rule[n, 2], Rule[x, 1.5], Rule[β, 1.5]}

... skip entries to safe data
18.7.E23 lim α α - 1 2 n P n ( α , α ) ( α - 1 2 x ) = H n ( x ) 2 n n ! subscript 𝛼 superscript 𝛼 1 2 𝑛 Jacobi-polynomial-P 𝛼 𝛼 𝑛 superscript 𝛼 1 2 𝑥 Hermite-polynomial-H 𝑛 𝑥 superscript 2 𝑛 𝑛 {\displaystyle{\displaystyle\lim_{\alpha\to\infty}\alpha^{-\frac{1}{2}n}P^{(% \alpha,\alpha)}_{n}\left(\alpha^{-\frac{1}{2}}x\right)=\frac{H_{n}\left(x% \right)}{2^{n}n!}}}
\lim_{\alpha\to\infty}\alpha^{-\frac{1}{2}n}\JacobipolyP{\alpha}{\alpha}{n}@{\alpha^{-\frac{1}{2}}x} = \frac{\HermitepolyH{n}@{x}}{2^{n}n!}

limit((alpha)^(-(1)/(2)*n)* JacobiP(n, alpha, alpha, (alpha)^(-(1)/(2))* x), alpha = infinity) = (HermiteH(n, x))/((2)^(n)* factorial(n))
Limit[\[Alpha]^(-Divide[1,2]*n)* JacobiP[n, \[Alpha], \[Alpha], \[Alpha]^(-Divide[1,2])* x], \[Alpha] -> Infinity, GenerateConditions->None] == Divide[HermiteH[n, x],(2)^(n)* (n)!]
Failure Aborted Error Successful [Tested: 9]
18.7.E24 lim λ λ - 1 2 n C n ( λ ) ( λ - 1 2 x ) = H n ( x ) n ! subscript 𝜆 superscript 𝜆 1 2 𝑛 ultraspherical-Gegenbauer-polynomial 𝜆 𝑛 superscript 𝜆 1 2 𝑥 Hermite-polynomial-H 𝑛 𝑥 𝑛 {\displaystyle{\displaystyle\lim_{\lambda\to\infty}\lambda^{-\frac{1}{2}n}C^{(% \lambda)}_{n}\left(\lambda^{-\frac{1}{2}}x\right)=\frac{H_{n}\left(x\right)}{n% !}}}
\lim_{\lambda\to\infty}\lambda^{-\frac{1}{2}n}\ultrasphpoly{\lambda}{n}@{\lambda^{-\frac{1}{2}}x} = \frac{\HermitepolyH{n}@{x}}{n!}

limit((lambda)^(-(1)/(2)*n)* GegenbauerC(n, lambda, (lambda)^(-(1)/(2))* x), lambda = infinity) = (HermiteH(n, x))/(factorial(n))
Limit[\[Lambda]^(-Divide[1,2]*n)* GegenbauerC[n, \[Lambda], \[Lambda]^(-Divide[1,2])* x], \[Lambda] -> Infinity, GenerateConditions->None] == Divide[HermiteH[n, x],(n)!]
Failure Aborted Successful [Tested: 9] Successful [Tested: 9]
18.7.E25 lim λ 0 1 λ C n ( λ ) ( x ) = 2 n T n ( x ) subscript 𝜆 0 1 𝜆 ultraspherical-Gegenbauer-polynomial 𝜆 𝑛 𝑥 2 𝑛 Chebyshev-polynomial-first-kind-T 𝑛 𝑥 {\displaystyle{\displaystyle\lim_{\lambda\to 0}\frac{1}{\lambda}C^{(\lambda)}_% {n}\left(x\right)=\frac{2}{n}T_{n}\left(x\right)}}
\lim_{\lambda\to 0}\frac{1}{\lambda}\ultrasphpoly{\lambda}{n}@{x} = \frac{2}{n}\ChebyshevpolyT{n}@{x}
n 1 𝑛 1 {\displaystyle{\displaystyle n\geq 1}}
limit((1)/(lambda)*GegenbauerC(n, lambda, x), lambda = 0) = (2)/(n)*ChebyshevT(n, x)
Limit[Divide[1,\[Lambda]]*GegenbauerC[n, \[Lambda], x], \[Lambda] -> 0, GenerateConditions->None] == Divide[2,n]*ChebyshevT[n, x]
Failure Failure Successful [Tested: 9] Successful [Tested: 9]
18.7.E26 lim α ( 2 α ) 1 2 n L n ( α ) ( ( 2 α ) 1 2 x + α ) = ( - 1 ) n n ! H n ( x ) subscript 𝛼 superscript 2 𝛼 1 2 𝑛 Laguerre-polynomial-L 𝛼 𝑛 superscript 2 𝛼 1 2 𝑥 𝛼 superscript 1 𝑛 𝑛 Hermite-polynomial-H 𝑛 𝑥 {\displaystyle{\displaystyle\lim_{\alpha\to\infty}\left(\frac{2}{\alpha}\right% )^{\frac{1}{2}n}L^{(\alpha)}_{n}\left((2\alpha)^{\frac{1}{2}}x+\alpha\right)=% \frac{(-1)^{n}}{n!}H_{n}\left(x\right)}}
\lim_{\alpha\to\infty}\left(\frac{2}{\alpha}\right)^{\frac{1}{2}n}\LaguerrepolyL[\alpha]{n}@{(2\alpha)^{\frac{1}{2}}x+\alpha} = \frac{(-1)^{n}}{n!}\HermitepolyH{n}@{x}

limit(((2)/(alpha))^((1)/(2)*n)* LaguerreL(n, alpha, (2*alpha)^((1)/(2))* x + alpha), alpha = infinity) = ((- 1)^(n))/(factorial(n))*HermiteH(n, x)
Limit[(Divide[2,\[Alpha]])^(Divide[1,2]*n)* LaguerreL[n, \[Alpha], (2*\[Alpha])^(Divide[1,2])* x + \[Alpha]], \[Alpha] -> Infinity, GenerateConditions->None] == Divide[(- 1)^(n),(n)!]*HermiteH[n, x]
Missing Macro Error Aborted - Successful [Tested: 9]