17.12: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/17.12.E1 17.12.E1] || [[Item:Q5457|<math>\sum_{n=0}^{\infty}\alpha_{n}\gamma_{n} = \sum_{n=0}^{\infty}\beta_{n}\delta_{n}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\sum_{n=0}^{\infty}\alpha_{n}\gamma_{n} = \sum_{n=0}^{\infty}\beta_{n}\delta_{n}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">sum(alpha[n]*gamma[n], n = 0..infinity) = sum(beta[n]*delta[n], n = 0..infinity)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Sum[Subscript[\[Alpha], n]*Subscript[\[Gamma], n], {n, 0, Infinity}, GenerateConditions->None] == Sum[Subscript[\[Beta], n]*Subscript[\[Delta], n], {n, 0, Infinity}, GenerateConditions->None]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/17.12.E1 17.12.E1] || <math qid="Q5457">\sum_{n=0}^{\infty}\alpha_{n}\gamma_{n} = \sum_{n=0}^{\infty}\beta_{n}\delta_{n}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\sum_{n=0}^{\infty}\alpha_{n}\gamma_{n} = \sum_{n=0}^{\infty}\beta_{n}\delta_{n}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">sum(alpha[n]*gamma[n], n = 0..infinity) = sum(beta[n]*delta[n], n = 0..infinity)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Sum[Subscript[\[Alpha], n]*Subscript[\[Gamma], n], {n, 0, Infinity}, GenerateConditions->None] == Sum[Subscript[\[Beta], n]*Subscript[\[Delta], n], {n, 0, Infinity}, GenerateConditions->None]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/17.12#Ex1 17.12#Ex1] || [[Item:Q5458|<math>\beta_{n} = \sum_{j=0}^{n}\alpha_{j}u_{n-j}v_{n+j}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\beta_{n} = \sum_{j=0}^{n}\alpha_{j}u_{n-j}v_{n+j}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">beta[n] = sum(alpha[j]*u[n - j]*v[n + j], j = 0..n)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[\[Beta], n] == Sum[Subscript[\[Alpha], j]*Subscript[u, n - j]*Subscript[v, n + j], {j, 0, n}, GenerateConditions->None]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/17.12#Ex1 17.12#Ex1] || <math qid="Q5458">\beta_{n} = \sum_{j=0}^{n}\alpha_{j}u_{n-j}v_{n+j}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\beta_{n} = \sum_{j=0}^{n}\alpha_{j}u_{n-j}v_{n+j}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">beta[n] = sum(alpha[j]*u[n - j]*v[n + j], j = 0..n)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[\[Beta], n] == Sum[Subscript[\[Alpha], j]*Subscript[u, n - j]*Subscript[v, n + j], {j, 0, n}, GenerateConditions->None]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/17.12#Ex2 17.12#Ex2] || [[Item:Q5459|<math>\gamma_{n} = \sum_{j=n}^{\infty}\delta_{j}u_{j-n}v_{j+n}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\gamma_{n} = \sum_{j=n}^{\infty}\delta_{j}u_{j-n}v_{j+n}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">gamma[n] = sum(delta[j]*u[j - n]*v[j + n], j = n..infinity)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[\[Gamma], n] == Sum[Subscript[\[Delta], j]*Subscript[u, j - n]*Subscript[v, j + n], {j, n, Infinity}, GenerateConditions->None]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/17.12#Ex2 17.12#Ex2] || <math qid="Q5459">\gamma_{n} = \sum_{j=n}^{\infty}\delta_{j}u_{j-n}v_{j+n}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\gamma_{n} = \sum_{j=n}^{\infty}\delta_{j}u_{j-n}v_{j+n}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">gamma[n] = sum(delta[j]*u[j - n]*v[j + n], j = n..infinity)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[\[Gamma], n] == Sum[Subscript[\[Delta], j]*Subscript[u, j - n]*Subscript[v, j + n], {j, n, Infinity}, GenerateConditions->None]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-  
|-  
| [https://dlmf.nist.gov/17.12.E3 17.12.E3] || [[Item:Q5460|<math>\beta_{n} = \sum_{j=0}^{n}\frac{\alpha_{j}}{\qPochhammer{q}{q}{n-j}\qPochhammer{aq}{q}{n+j}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\beta_{n} = \sum_{j=0}^{n}\frac{\alpha_{j}}{\qPochhammer{q}{q}{n-j}\qPochhammer{aq}{q}{n+j}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>beta[n] = sum((alpha[j])/(QPochhammer(q, q, n - j)*QPochhammer(a*q, q, n + j)), j = 0..n)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Subscript[\[Beta], n] == Sum[Divide[Subscript[\[Alpha], j],QPochhammer[q, q, n - j]*QPochhammer[a*q, q, n + j]], {j, 0, n}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.6508376433032488, -0.21856268949920582]
| [https://dlmf.nist.gov/17.12.E3 17.12.E3] || <math qid="Q5460">\beta_{n} = \sum_{j=0}^{n}\frac{\alpha_{j}}{\qPochhammer{q}{q}{n-j}\qPochhammer{aq}{q}{n+j}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\beta_{n} = \sum_{j=0}^{n}\frac{\alpha_{j}}{\qPochhammer{q}{q}{n-j}\qPochhammer{aq}{q}{n+j}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>beta[n] = sum((alpha[j])/(QPochhammer(q, q, n - j)*QPochhammer(a*q, q, n + j)), j = 0..n)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Subscript[\[Beta], n] == Sum[Divide[Subscript[\[Alpha], j],QPochhammer[q, q, n - j]*QPochhammer[a*q, q, n + j]], {j, 0, n}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.6508376433032488, -0.21856268949920582]
Test Values: {Rule[a, -1.5], Rule[n, 1], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5], Rule[β, 1.5], Rule[Subscript[α, j], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[β, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.8660402331469415, 0.20457300495175623]
Test Values: {Rule[a, -1.5], Rule[n, 1], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5], Rule[β, 1.5], Rule[Subscript[α, j], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[β, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.8660402331469415, 0.20457300495175623]
Test Values: {Rule[a, -1.5], Rule[n, 2], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5], Rule[β, 1.5], Rule[Subscript[α, j], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[β, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[a, -1.5], Rule[n, 2], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5], Rule[β, 1.5], Rule[Subscript[α, j], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[β, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/17.12.E4 17.12.E4] || [[Item:Q5461|<math>\sum_{n=0}^{\infty}q^{n^{2}}a^{n}\beta_{n} = \frac{1}{\qPochhammer{aq}{q}{\infty}}\sum_{n=0}^{\infty}q^{n^{2}}a^{n}\alpha_{n}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{n=0}^{\infty}q^{n^{2}}a^{n}\beta_{n} = \frac{1}{\qPochhammer{aq}{q}{\infty}}\sum_{n=0}^{\infty}q^{n^{2}}a^{n}\alpha_{n}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sum((q)^((n)^(2))* (a)^(n)* beta[n], n = 0..infinity) = (1)/(QPochhammer(a*q, q, infinity))*sum((q)^((n)^(2))* (a)^(n)* alpha[n], n = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[(q)^((n)^(2))* (a)^(n)* Subscript[\[Beta], n], {n, 0, Infinity}, GenerateConditions->None] == Divide[1,QPochhammer[a*q, q, Infinity]]*Sum[(q)^((n)^(2))* (a)^(n)* Subscript[\[Alpha], n], {n, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out
| [https://dlmf.nist.gov/17.12.E4 17.12.E4] || <math qid="Q5461">\sum_{n=0}^{\infty}q^{n^{2}}a^{n}\beta_{n} = \frac{1}{\qPochhammer{aq}{q}{\infty}}\sum_{n=0}^{\infty}q^{n^{2}}a^{n}\alpha_{n}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{n=0}^{\infty}q^{n^{2}}a^{n}\beta_{n} = \frac{1}{\qPochhammer{aq}{q}{\infty}}\sum_{n=0}^{\infty}q^{n^{2}}a^{n}\alpha_{n}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sum((q)^((n)^(2))* (a)^(n)* beta[n], n = 0..infinity) = (1)/(QPochhammer(a*q, q, infinity))*sum((q)^((n)^(2))* (a)^(n)* alpha[n], n = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[(q)^((n)^(2))* (a)^(n)* Subscript[\[Beta], n], {n, 0, Infinity}, GenerateConditions->None] == Divide[1,QPochhammer[a*q, q, Infinity]]*Sum[(q)^((n)^(2))* (a)^(n)* Subscript[\[Alpha], n], {n, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/17.12#Ex5 17.12#Ex5] || [[Item:Q5464|<math>\alpha_{n} = \frac{\qPochhammer{a}{q}{n}(1-aq^{2n})(-1)^{n}q^{n(3n-1)/2}a^{n}}{\qPochhammer{q}{q}{n}(1-a)}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\alpha_{n} = \frac{\qPochhammer{a}{q}{n}(1-aq^{2n})(-1)^{n}q^{n(3n-1)/2}a^{n}}{\qPochhammer{q}{q}{n}(1-a)}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>alpha[n] = (QPochhammer(a, q, n)*(1 - a*(q)^(2*n))*(- 1)^(n)* (q)^(n*(3*n - 1)/2)* (a)^(n))/(QPochhammer(q, q, n)*(1 - a))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Subscript[\[Alpha], n] == Divide[QPochhammer[a, q, n]*(1 - a*(q)^(2*n))*(- 1)^(n)* (q)^(n*(3*n - 1)/2)* (a)^(n),QPochhammer[q, q, n]*(1 - a)]</syntaxhighlight> || Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[5.814582562299427, -3.4240381056766607]
| [https://dlmf.nist.gov/17.12#Ex5 17.12#Ex5] || <math qid="Q5464">\alpha_{n} = \frac{\qPochhammer{a}{q}{n}(1-aq^{2n})(-1)^{n}q^{n(3n-1)/2}a^{n}}{\qPochhammer{q}{q}{n}(1-a)}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\alpha_{n} = \frac{\qPochhammer{a}{q}{n}(1-aq^{2n})(-1)^{n}q^{n(3n-1)/2}a^{n}}{\qPochhammer{q}{q}{n}(1-a)}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>alpha[n] = (QPochhammer(a, q, n)*(1 - a*(q)^(2*n))*(- 1)^(n)* (q)^(n*(3*n - 1)/2)* (a)^(n))/(QPochhammer(q, q, n)*(1 - a))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Subscript[\[Alpha], n] == Divide[QPochhammer[a, q, n]*(1 - a*(q)^(2*n))*(- 1)^(n)* (q)^(n*(3*n - 1)/2)* (a)^(n),QPochhammer[q, q, n]*(1 - a)]</syntaxhighlight> || Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[5.814582562299427, -3.4240381056766607]
Test Values: {Rule[a, -1.5], Rule[n, 1], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5], Rule[Subscript[α, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-12.010896071760529, -4.7481964481437355]
Test Values: {Rule[a, -1.5], Rule[n, 1], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5], Rule[Subscript[α, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-12.010896071760529, -4.7481964481437355]
Test Values: {Rule[a, -1.5], Rule[n, 2], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5], Rule[Subscript[α, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[a, -1.5], Rule[n, 2], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5], Rule[Subscript[α, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/17.12#Ex6 17.12#Ex6] || [[Item:Q5465|<math>\beta_{n} = \frac{1}{\qPochhammer{q}{q}{n}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\beta_{n} = \frac{1}{\qPochhammer{q}{q}{n}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>beta[n] = (1)/(QPochhammer(q, q, n))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Subscript[\[Beta], n] == Divide[1,QPochhammer[q, q, n]]</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [297 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.3660254037844387, -1.366025403784439]
| [https://dlmf.nist.gov/17.12#Ex6 17.12#Ex6] || <math qid="Q5465">\beta_{n} = \frac{1}{\qPochhammer{q}{q}{n}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\beta_{n} = \frac{1}{\qPochhammer{q}{q}{n}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>beta[n] = (1)/(QPochhammer(q, q, n))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Subscript[\[Beta], n] == Divide[1,QPochhammer[q, q, n]]</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [297 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.3660254037844387, -1.366025403784439]
Test Values: {Rule[n, 1], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[β, 1.5], Rule[Subscript[β, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[2.232050807568878, -0.8660254037844388]
Test Values: {Rule[n, 1], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[β, 1.5], Rule[Subscript[β, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[2.232050807568878, -0.8660254037844388]
Test Values: {Rule[n, 2], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[β, 1.5], Rule[Subscript[β, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[n, 2], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[β, 1.5], Rule[Subscript[β, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|}
|}
</div>
</div>

Latest revision as of 11:43, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
17.12.E1 n = 0 α n γ n = n = 0 β n δ n superscript subscript 𝑛 0 subscript 𝛼 𝑛 subscript 𝛾 𝑛 superscript subscript 𝑛 0 subscript 𝛽 𝑛 subscript 𝛿 𝑛 {\displaystyle{\displaystyle\sum_{n=0}^{\infty}\alpha_{n}\gamma_{n}=\sum_{n=0}% ^{\infty}\beta_{n}\delta_{n}}}
\sum_{n=0}^{\infty}\alpha_{n}\gamma_{n} = \sum_{n=0}^{\infty}\beta_{n}\delta_{n}

sum(alpha[n]*gamma[n], n = 0..infinity) = sum(beta[n]*delta[n], n = 0..infinity)
Sum[Subscript[\[Alpha], n]*Subscript[\[Gamma], n], {n, 0, Infinity}, GenerateConditions->None] == Sum[Subscript[\[Beta], n]*Subscript[\[Delta], n], {n, 0, Infinity}, GenerateConditions->None]
Skipped - no semantic math Skipped - no semantic math - -
17.12#Ex1 β n = j = 0 n α j u n - j v n + j subscript 𝛽 𝑛 superscript subscript 𝑗 0 𝑛 subscript 𝛼 𝑗 subscript 𝑢 𝑛 𝑗 subscript 𝑣 𝑛 𝑗 {\displaystyle{\displaystyle\beta_{n}=\sum_{j=0}^{n}\alpha_{j}u_{n-j}v_{n+j}}}
\beta_{n} = \sum_{j=0}^{n}\alpha_{j}u_{n-j}v_{n+j}

beta[n] = sum(alpha[j]*u[n - j]*v[n + j], j = 0..n)
Subscript[\[Beta], n] == Sum[Subscript[\[Alpha], j]*Subscript[u, n - j]*Subscript[v, n + j], {j, 0, n}, GenerateConditions->None]
Skipped - no semantic math Skipped - no semantic math - -
17.12#Ex2 γ n = j = n δ j u j - n v j + n subscript 𝛾 𝑛 superscript subscript 𝑗 𝑛 subscript 𝛿 𝑗 subscript 𝑢 𝑗 𝑛 subscript 𝑣 𝑗 𝑛 {\displaystyle{\displaystyle\gamma_{n}=\sum_{j=n}^{\infty}\delta_{j}u_{j-n}v_{% j+n}}}
\gamma_{n} = \sum_{j=n}^{\infty}\delta_{j}u_{j-n}v_{j+n}

gamma[n] = sum(delta[j]*u[j - n]*v[j + n], j = n..infinity)
Subscript[\[Gamma], n] == Sum[Subscript[\[Delta], j]*Subscript[u, j - n]*Subscript[v, j + n], {j, n, Infinity}, GenerateConditions->None]
Skipped - no semantic math Skipped - no semantic math - -
17.12.E3 β n = j = 0 n α j ( q ; q ) n - j ( a q ; q ) n + j subscript 𝛽 𝑛 superscript subscript 𝑗 0 𝑛 subscript 𝛼 𝑗 q-Pochhammer-symbol 𝑞 𝑞 𝑛 𝑗 q-Pochhammer-symbol 𝑎 𝑞 𝑞 𝑛 𝑗 {\displaystyle{\displaystyle\beta_{n}=\sum_{j=0}^{n}\frac{\alpha_{j}}{\left(q;% q\right)_{n-j}\left(aq;q\right)_{n+j}}}}
\beta_{n} = \sum_{j=0}^{n}\frac{\alpha_{j}}{\qPochhammer{q}{q}{n-j}\qPochhammer{aq}{q}{n+j}}

beta[n] = sum((alpha[j])/(QPochhammer(q, q, n - j)*QPochhammer(a*q, q, n + j)), j = 0..n)
Subscript[\[Beta], n] == Sum[Divide[Subscript[\[Alpha], j],QPochhammer[q, q, n - j]*QPochhammer[a*q, q, n + j]], {j, 0, n}, GenerateConditions->None]
Failure Aborted Error
Failed [300 / 300]
Result: Complex[0.6508376433032488, -0.21856268949920582]
Test Values: {Rule[a, -1.5], Rule[n, 1], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5], Rule[β, 1.5], Rule[Subscript[α, j], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[β, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.8660402331469415, 0.20457300495175623]
Test Values: {Rule[a, -1.5], Rule[n, 2], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5], Rule[β, 1.5], Rule[Subscript[α, j], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[β, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
17.12.E4 n = 0 q n 2 a n β n = 1 ( a q ; q ) n = 0 q n 2 a n α n superscript subscript 𝑛 0 superscript 𝑞 superscript 𝑛 2 superscript 𝑎 𝑛 subscript 𝛽 𝑛 1 q-Pochhammer-symbol 𝑎 𝑞 𝑞 superscript subscript 𝑛 0 superscript 𝑞 superscript 𝑛 2 superscript 𝑎 𝑛 subscript 𝛼 𝑛 {\displaystyle{\displaystyle\sum_{n=0}^{\infty}q^{n^{2}}a^{n}\beta_{n}=\frac{1% }{\left(aq;q\right)_{\infty}}\sum_{n=0}^{\infty}q^{n^{2}}a^{n}\alpha_{n}}}
\sum_{n=0}^{\infty}q^{n^{2}}a^{n}\beta_{n} = \frac{1}{\qPochhammer{aq}{q}{\infty}}\sum_{n=0}^{\infty}q^{n^{2}}a^{n}\alpha_{n}

sum((q)^((n)^(2))* (a)^(n)* beta[n], n = 0..infinity) = (1)/(QPochhammer(a*q, q, infinity))*sum((q)^((n)^(2))* (a)^(n)* alpha[n], n = 0..infinity)
Sum[(q)^((n)^(2))* (a)^(n)* Subscript[\[Beta], n], {n, 0, Infinity}, GenerateConditions->None] == Divide[1,QPochhammer[a*q, q, Infinity]]*Sum[(q)^((n)^(2))* (a)^(n)* Subscript[\[Alpha], n], {n, 0, Infinity}, GenerateConditions->None]
Failure Aborted Skipped - Because timed out Skipped - Because timed out
17.12#Ex5 α n = ( a ; q ) n ( 1 - a q 2 n ) ( - 1 ) n q n ( 3 n - 1 ) / 2 a n ( q ; q ) n ( 1 - a ) subscript 𝛼 𝑛 q-Pochhammer-symbol 𝑎 𝑞 𝑛 1 𝑎 superscript 𝑞 2 𝑛 superscript 1 𝑛 superscript 𝑞 𝑛 3 𝑛 1 2 superscript 𝑎 𝑛 q-Pochhammer-symbol 𝑞 𝑞 𝑛 1 𝑎 {\displaystyle{\displaystyle\alpha_{n}=\frac{\left(a;q\right)_{n}(1-aq^{2n})(-% 1)^{n}q^{n(3n-1)/2}a^{n}}{\left(q;q\right)_{n}(1-a)}}}
\alpha_{n} = \frac{\qPochhammer{a}{q}{n}(1-aq^{2n})(-1)^{n}q^{n(3n-1)/2}a^{n}}{\qPochhammer{q}{q}{n}(1-a)}

alpha[n] = (QPochhammer(a, q, n)*(1 - a*(q)^(2*n))*(- 1)^(n)* (q)^(n*(3*n - 1)/2)* (a)^(n))/(QPochhammer(q, q, n)*(1 - a))
Subscript[\[Alpha], n] == Divide[QPochhammer[a, q, n]*(1 - a*(q)^(2*n))*(- 1)^(n)* (q)^(n*(3*n - 1)/2)* (a)^(n),QPochhammer[q, q, n]*(1 - a)]
Error Failure -
Failed [300 / 300]
Result: Complex[5.814582562299427, -3.4240381056766607]
Test Values: {Rule[a, -1.5], Rule[n, 1], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5], Rule[Subscript[α, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-12.010896071760529, -4.7481964481437355]
Test Values: {Rule[a, -1.5], Rule[n, 2], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5], Rule[Subscript[α, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
17.12#Ex6 β n = 1 ( q ; q ) n subscript 𝛽 𝑛 1 q-Pochhammer-symbol 𝑞 𝑞 𝑛 {\displaystyle{\displaystyle\beta_{n}=\frac{1}{\left(q;q\right)_{n}}}}
\beta_{n} = \frac{1}{\qPochhammer{q}{q}{n}}

beta[n] = (1)/(QPochhammer(q, q, n))
Subscript[\[Beta], n] == Divide[1,QPochhammer[q, q, n]]
Failure Failure Error
Failed [297 / 300]
Result: Complex[0.3660254037844387, -1.366025403784439]
Test Values: {Rule[n, 1], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[β, 1.5], Rule[Subscript[β, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[2.232050807568878, -0.8660254037844388]
Test Values: {Rule[n, 2], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[β, 1.5], Rule[Subscript[β, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data