17.5: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/17.5.E1 17.5.E1] || [[Item:Q5363|<math>\qgenhyperphi{0}{0}@{-}{-}{q}{z} = \sum_{n=0}^{\infty}\frac{(-1)^{n}q^{\binom{n}{2}}z^{n}}{\qPochhammer{q}{q}{n}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\qgenhyperphi{0}{0}@{-}{-}{q}{z} = \sum_{n=0}^{\infty}\frac{(-1)^{n}q^{\binom{n}{2}}z^{n}}{\qPochhammer{q}{q}{n}}</syntaxhighlight> || <math>|z| < 1</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>QHypergeometricPFQ[{-},{-},q,z] == Sum[Divide[(- 1)^(n)* (q)^(Binomial[n,2])* (z)^(n),QPochhammer[q, q, n]], {n, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || Skip - symbolical successful subtest || Error
| [https://dlmf.nist.gov/17.5.E1 17.5.E1] || <math qid="Q5363">\qgenhyperphi{0}{0}@{-}{-}{q}{z} = \sum_{n=0}^{\infty}\frac{(-1)^{n}q^{\binom{n}{2}}z^{n}}{\qPochhammer{q}{q}{n}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\qgenhyperphi{0}{0}@{-}{-}{q}{z} = \sum_{n=0}^{\infty}\frac{(-1)^{n}q^{\binom{n}{2}}z^{n}}{\qPochhammer{q}{q}{n}}</syntaxhighlight> || <math>|z| < 1</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>QHypergeometricPFQ[{-},{-},q,z] == Sum[Divide[(- 1)^(n)* (q)^(Binomial[n,2])* (z)^(n),QPochhammer[q, q, n]], {n, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || Skip - symbolical successful subtest || Error
|-  
|-  
| [https://dlmf.nist.gov/17.5.E1 17.5.E1] || [[Item:Q5363|<math>\sum_{n=0}^{\infty}\frac{(-1)^{n}q^{\binom{n}{2}}z^{n}}{\qPochhammer{q}{q}{n}} = \qPochhammer{z}{q}{\infty}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{n=0}^{\infty}\frac{(-1)^{n}q^{\binom{n}{2}}z^{n}}{\qPochhammer{q}{q}{n}} = \qPochhammer{z}{q}{\infty}</syntaxhighlight> || <math>|z| < 1</math> || <syntaxhighlight lang=mathematica>sum(((- 1)^(n)* (q)^(binomial(n,2))* (z)^(n))/(QPochhammer(q, q, n)), n = 0..infinity) = QPochhammer(z, q, infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[Divide[(- 1)^(n)* (q)^(Binomial[n,2])* (z)^(n),QPochhammer[q, q, n]], {n, 0, Infinity}, GenerateConditions->None] == QPochhammer[z, q, Infinity]</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [8 / 10]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[QPochhammer[0.5, Complex[0.8660254037844387, 0.49999999999999994]], Times[-1.0, QPochhammer[0.5, Complex[0.8660254037844387, 0.49999999999999994], DirectedInfinity[1]]]]
| [https://dlmf.nist.gov/17.5.E1 17.5.E1] || <math qid="Q5363">\sum_{n=0}^{\infty}\frac{(-1)^{n}q^{\binom{n}{2}}z^{n}}{\qPochhammer{q}{q}{n}} = \qPochhammer{z}{q}{\infty}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{n=0}^{\infty}\frac{(-1)^{n}q^{\binom{n}{2}}z^{n}}{\qPochhammer{q}{q}{n}} = \qPochhammer{z}{q}{\infty}</syntaxhighlight> || <math>|z| < 1</math> || <syntaxhighlight lang=mathematica>sum(((- 1)^(n)* (q)^(binomial(n,2))* (z)^(n))/(QPochhammer(q, q, n)), n = 0..infinity) = QPochhammer(z, q, infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[Divide[(- 1)^(n)* (q)^(Binomial[n,2])* (z)^(n),QPochhammer[q, q, n]], {n, 0, Infinity}, GenerateConditions->None] == QPochhammer[z, q, Infinity]</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [8 / 10]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[QPochhammer[0.5, Complex[0.8660254037844387, 0.49999999999999994]], Times[-1.0, QPochhammer[0.5, Complex[0.8660254037844387, 0.49999999999999994], DirectedInfinity[1]]]]
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, 0.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, 0.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[z, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[z, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/17.5.E2 17.5.E2] || [[Item:Q5364|<math>\qgenhyperphi{1}{0}@{a}{-}{q}{z} = \frac{\qPochhammer{az}{q}{\infty}}{\qPochhammer{z}{q}{\infty}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\qgenhyperphi{1}{0}@{a}{-}{q}{z} = \frac{\qPochhammer{az}{q}{\infty}}{\qPochhammer{z}{q}{\infty}}</syntaxhighlight> || <math>|z| < 1</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>QHypergeometricPFQ[{a},{-},q,z] == Divide[QPochhammer[a*z, q, Infinity],QPochhammer[z, q, Infinity]]</syntaxhighlight> || Missing Macro Error || Failure || - || Error
| [https://dlmf.nist.gov/17.5.E2 17.5.E2] || <math qid="Q5364">\qgenhyperphi{1}{0}@{a}{-}{q}{z} = \frac{\qPochhammer{az}{q}{\infty}}{\qPochhammer{z}{q}{\infty}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\qgenhyperphi{1}{0}@{a}{-}{q}{z} = \frac{\qPochhammer{az}{q}{\infty}}{\qPochhammer{z}{q}{\infty}}</syntaxhighlight> || <math>|z| < 1</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>QHypergeometricPFQ[{a},{-},q,z] == Divide[QPochhammer[a*z, q, Infinity],QPochhammer[z, q, Infinity]]</syntaxhighlight> || Missing Macro Error || Failure || - || Error
|-  
|-  
| [https://dlmf.nist.gov/17.5.E3 17.5.E3] || [[Item:Q5365|<math>\qgenhyperphi{1}{0}@{q^{-n}}{-}{q}{z} = \qPochhammer{zq^{-n}}{q}{n}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\qgenhyperphi{1}{0}@{q^{-n}}{-}{q}{z} = \qPochhammer{zq^{-n}}{q}{n}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>QHypergeometricPFQ[{(q)^(- n)},{-},q,z] == QPochhammer[z*(q)^(- n), q, n]</syntaxhighlight> || Missing Macro Error || Failure || - || Error
| [https://dlmf.nist.gov/17.5.E3 17.5.E3] || <math qid="Q5365">\qgenhyperphi{1}{0}@{q^{-n}}{-}{q}{z} = \qPochhammer{zq^{-n}}{q}{n}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\qgenhyperphi{1}{0}@{q^{-n}}{-}{q}{z} = \qPochhammer{zq^{-n}}{q}{n}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>QHypergeometricPFQ[{(q)^(- n)},{-},q,z] == QPochhammer[z*(q)^(- n), q, n]</syntaxhighlight> || Missing Macro Error || Failure || - || Error
|-  
|-  
| [https://dlmf.nist.gov/17.5.E4 17.5.E4] || [[Item:Q5366|<math>\qgenhyperphi{1}{0}@{0}{-}{q}{z} = \sum_{n=0}^{\infty}\frac{z^{n}}{\qPochhammer{q}{q}{n}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\qgenhyperphi{1}{0}@{0}{-}{q}{z} = \sum_{n=0}^{\infty}\frac{z^{n}}{\qPochhammer{q}{q}{n}}</syntaxhighlight> || <math>|z| < 1</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>QHypergeometricPFQ[{0},{-},q,z] == Sum[Divide[(z)^(n),QPochhammer[q, q, n]], {n, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || Skip - symbolical successful subtest || Error
| [https://dlmf.nist.gov/17.5.E4 17.5.E4] || <math qid="Q5366">\qgenhyperphi{1}{0}@{0}{-}{q}{z} = \sum_{n=0}^{\infty}\frac{z^{n}}{\qPochhammer{q}{q}{n}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\qgenhyperphi{1}{0}@{0}{-}{q}{z} = \sum_{n=0}^{\infty}\frac{z^{n}}{\qPochhammer{q}{q}{n}}</syntaxhighlight> || <math>|z| < 1</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>QHypergeometricPFQ[{0},{-},q,z] == Sum[Divide[(z)^(n),QPochhammer[q, q, n]], {n, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || Skip - symbolical successful subtest || Error
|-  
|-  
| [https://dlmf.nist.gov/17.5.E4 17.5.E4] || [[Item:Q5366|<math>\sum_{n=0}^{\infty}\frac{z^{n}}{\qPochhammer{q}{q}{n}} = \frac{1}{\qPochhammer{z}{q}{\infty}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{n=0}^{\infty}\frac{z^{n}}{\qPochhammer{q}{q}{n}} = \frac{1}{\qPochhammer{z}{q}{\infty}}</syntaxhighlight> || <math>|z| < 1</math> || <syntaxhighlight lang=mathematica>sum(((z)^(n))/(QPochhammer(q, q, n)), n = 0..infinity) = (1)/(QPochhammer(z, q, infinity))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[Divide[(z)^(n),QPochhammer[q, q, n]], {n, 0, Infinity}, GenerateConditions->None] == Divide[1,QPochhammer[z, q, Infinity]]</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [8 / 10]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[QHypergeometricPFQ[{0.0}
| [https://dlmf.nist.gov/17.5.E4 17.5.E4] || <math qid="Q5366">\sum_{n=0}^{\infty}\frac{z^{n}}{\qPochhammer{q}{q}{n}} = \frac{1}{\qPochhammer{z}{q}{\infty}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{n=0}^{\infty}\frac{z^{n}}{\qPochhammer{q}{q}{n}} = \frac{1}{\qPochhammer{z}{q}{\infty}}</syntaxhighlight> || <math>|z| < 1</math> || <syntaxhighlight lang=mathematica>sum(((z)^(n))/(QPochhammer(q, q, n)), n = 0..infinity) = (1)/(QPochhammer(z, q, infinity))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[Divide[(z)^(n),QPochhammer[q, q, n]], {n, 0, Infinity}, GenerateConditions->None] == Divide[1,QPochhammer[z, q, Infinity]]</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [8 / 10]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[QHypergeometricPFQ[{0.0}
Test Values: {}, Complex[0.8660254037844387, 0.49999999999999994], 0.5], Times[-1.0, Power[QPochhammer[0.5, Complex[0.8660254037844387, 0.49999999999999994], DirectedInfinity[1]], -1]]], {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, 0.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: QHypergeometricPFQ[{0.0}
Test Values: {}, Complex[0.8660254037844387, 0.49999999999999994], 0.5], Times[-1.0, Power[QPochhammer[0.5, Complex[0.8660254037844387, 0.49999999999999994], DirectedInfinity[1]], -1]]], {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, 0.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: QHypergeometricPFQ[{0.0}
Test Values: {}, Complex[-0.4999999999999998, 0.8660254037844387], 0.5], {Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[z, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {}, Complex[-0.4999999999999998, 0.8660254037844387], 0.5], {Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[z, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/17.5.E5 17.5.E5] || [[Item:Q5367|<math>\qgenhyperphi{1}{1}@@{a}{c}{q}{c/a} = \frac{\qPochhammer{c/a}{q}{\infty}}{\qPochhammer{c}{q}{\infty}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\qgenhyperphi{1}{1}@@{a}{c}{q}{c/a} = \frac{\qPochhammer{c/a}{q}{\infty}}{\qPochhammer{c}{q}{\infty}}</syntaxhighlight> || <math>|c| < |a|</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>QHypergeometricPFQ[{a},{c},q,c/a] == Divide[QPochhammer[c/a, q, Infinity],QPochhammer[c, q, Infinity]]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [96 / 120]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[QHypergeometricPFQ[{-1.5}
| [https://dlmf.nist.gov/17.5.E5 17.5.E5] || <math qid="Q5367">\qgenhyperphi{1}{1}@@{a}{c}{q}{c/a} = \frac{\qPochhammer{c/a}{q}{\infty}}{\qPochhammer{c}{q}{\infty}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\qgenhyperphi{1}{1}@@{a}{c}{q}{c/a} = \frac{\qPochhammer{c/a}{q}{\infty}}{\qPochhammer{c}{q}{\infty}}</syntaxhighlight> || <math>|c| < |a|</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>QHypergeometricPFQ[{a},{c},q,c/a] == Divide[QPochhammer[c/a, q, Infinity],QPochhammer[c, q, Infinity]]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [96 / 120]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[QHypergeometricPFQ[{-1.5}
Test Values: {-0.5}, Complex[0.8660254037844387, 0.49999999999999994], 0.3333333333333333], Times[-1.0, Power[QPochhammer[-0.5, Complex[0.8660254037844387, 0.49999999999999994], DirectedInfinity[1]], -1], QPochhammer[0.3333333333333333, Complex[0.8660254037844387, 0.49999999999999994], DirectedInfinity[1]]]], {Rule[a, -1.5], Rule[c, -0.5], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {-0.5}, Complex[0.8660254037844387, 0.49999999999999994], 0.3333333333333333], Times[-1.0, Power[QPochhammer[-0.5, Complex[0.8660254037844387, 0.49999999999999994], DirectedInfinity[1]], -1], QPochhammer[0.3333333333333333, Complex[0.8660254037844387, 0.49999999999999994], DirectedInfinity[1]]]], {Rule[a, -1.5], Rule[c, -0.5], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[c, -0.5], Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[a, -1.5], Rule[c, -0.5], Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|}
|}
</div>
</div>

Latest revision as of 11:42, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
17.5.E1 ϕ 0 0 ( - ; - ; q , z ) = n = 0 ( - 1 ) n q ( n 2 ) z n ( q ; q ) n q-hypergeometric-rphis 0 0 𝑞 𝑧 superscript subscript 𝑛 0 superscript 1 𝑛 superscript 𝑞 binomial 𝑛 2 superscript 𝑧 𝑛 q-Pochhammer-symbol 𝑞 𝑞 𝑛 {\displaystyle{\displaystyle{{}_{0}\phi_{0}}\left(-;-;q,z\right)=\sum_{n=0}^{% \infty}\frac{(-1)^{n}q^{\genfrac{(}{)}{0.0pt}{}{n}{2}}z^{n}}{\left(q;q\right)_% {n}}}}
\qgenhyperphi{0}{0}@{-}{-}{q}{z} = \sum_{n=0}^{\infty}\frac{(-1)^{n}q^{\binom{n}{2}}z^{n}}{\qPochhammer{q}{q}{n}}
| z | < 1 𝑧 1 {\displaystyle{\displaystyle|z|<1}}
Error
QHypergeometricPFQ[{-},{-},q,z] == Sum[Divide[(- 1)^(n)* (q)^(Binomial[n,2])* (z)^(n),QPochhammer[q, q, n]], {n, 0, Infinity}, GenerateConditions->None]
Missing Macro Error Failure Skip - symbolical successful subtest Error
17.5.E1 n = 0 ( - 1 ) n q ( n 2 ) z n ( q ; q ) n = ( z ; q ) superscript subscript 𝑛 0 superscript 1 𝑛 superscript 𝑞 binomial 𝑛 2 superscript 𝑧 𝑛 q-Pochhammer-symbol 𝑞 𝑞 𝑛 q-Pochhammer-symbol 𝑧 𝑞 {\displaystyle{\displaystyle\sum_{n=0}^{\infty}\frac{(-1)^{n}q^{\genfrac{(}{)}% {0.0pt}{}{n}{2}}z^{n}}{\left(q;q\right)_{n}}=\left(z;q\right)_{\infty}}}
\sum_{n=0}^{\infty}\frac{(-1)^{n}q^{\binom{n}{2}}z^{n}}{\qPochhammer{q}{q}{n}} = \qPochhammer{z}{q}{\infty}
| z | < 1 𝑧 1 {\displaystyle{\displaystyle|z|<1}}
sum(((- 1)^(n)* (q)^(binomial(n,2))* (z)^(n))/(QPochhammer(q, q, n)), n = 0..infinity) = QPochhammer(z, q, infinity)
Sum[Divide[(- 1)^(n)* (q)^(Binomial[n,2])* (z)^(n),QPochhammer[q, q, n]], {n, 0, Infinity}, GenerateConditions->None] == QPochhammer[z, q, Infinity]
Failure Failure Error
Failed [8 / 10]
Result: Plus[QPochhammer[0.5, Complex[0.8660254037844387, 0.49999999999999994]], Times[-1.0, QPochhammer[0.5, Complex[0.8660254037844387, 0.49999999999999994], DirectedInfinity[1]]]]
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, 0.5]}

Result: Indeterminate
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[z, 0.5]}

... skip entries to safe data
17.5.E2 ϕ 0 1 ( a ; - ; q , z ) = ( a z ; q ) ( z ; q ) q-hypergeometric-rphis 1 0 𝑎 𝑞 𝑧 q-Pochhammer-symbol 𝑎 𝑧 𝑞 q-Pochhammer-symbol 𝑧 𝑞 {\displaystyle{\displaystyle{{}_{1}\phi_{0}}\left(a;-;q,z\right)=\frac{\left(% az;q\right)_{\infty}}{\left(z;q\right)_{\infty}}}}
\qgenhyperphi{1}{0}@{a}{-}{q}{z} = \frac{\qPochhammer{az}{q}{\infty}}{\qPochhammer{z}{q}{\infty}}
| z | < 1 𝑧 1 {\displaystyle{\displaystyle|z|<1}}
Error
QHypergeometricPFQ[{a},{-},q,z] == Divide[QPochhammer[a*z, q, Infinity],QPochhammer[z, q, Infinity]]
Missing Macro Error Failure - Error
17.5.E3 ϕ 0 1 ( q - n ; - ; q , z ) = ( z q - n ; q ) n q-hypergeometric-rphis 1 0 superscript 𝑞 𝑛 𝑞 𝑧 q-Pochhammer-symbol 𝑧 superscript 𝑞 𝑛 𝑞 𝑛 {\displaystyle{\displaystyle{{}_{1}\phi_{0}}\left(q^{-n};-;q,z\right)=\left(zq% ^{-n};q\right)_{n}}}
\qgenhyperphi{1}{0}@{q^{-n}}{-}{q}{z} = \qPochhammer{zq^{-n}}{q}{n}

Error
QHypergeometricPFQ[{(q)^(- n)},{-},q,z] == QPochhammer[z*(q)^(- n), q, n]
Missing Macro Error Failure - Error
17.5.E4 ϕ 0 1 ( 0 ; - ; q , z ) = n = 0 z n ( q ; q ) n q-hypergeometric-rphis 1 0 0 𝑞 𝑧 superscript subscript 𝑛 0 superscript 𝑧 𝑛 q-Pochhammer-symbol 𝑞 𝑞 𝑛 {\displaystyle{\displaystyle{{}_{1}\phi_{0}}\left(0;-;q,z\right)=\sum_{n=0}^{% \infty}\frac{z^{n}}{\left(q;q\right)_{n}}}}
\qgenhyperphi{1}{0}@{0}{-}{q}{z} = \sum_{n=0}^{\infty}\frac{z^{n}}{\qPochhammer{q}{q}{n}}
| z | < 1 𝑧 1 {\displaystyle{\displaystyle|z|<1}}
Error
QHypergeometricPFQ[{0},{-},q,z] == Sum[Divide[(z)^(n),QPochhammer[q, q, n]], {n, 0, Infinity}, GenerateConditions->None]
Missing Macro Error Failure Skip - symbolical successful subtest Error
17.5.E4 n = 0 z n ( q ; q ) n = 1 ( z ; q ) superscript subscript 𝑛 0 superscript 𝑧 𝑛 q-Pochhammer-symbol 𝑞 𝑞 𝑛 1 q-Pochhammer-symbol 𝑧 𝑞 {\displaystyle{\displaystyle\sum_{n=0}^{\infty}\frac{z^{n}}{\left(q;q\right)_{% n}}=\frac{1}{\left(z;q\right)_{\infty}}}}
\sum_{n=0}^{\infty}\frac{z^{n}}{\qPochhammer{q}{q}{n}} = \frac{1}{\qPochhammer{z}{q}{\infty}}
| z | < 1 𝑧 1 {\displaystyle{\displaystyle|z|<1}}
sum(((z)^(n))/(QPochhammer(q, q, n)), n = 0..infinity) = (1)/(QPochhammer(z, q, infinity))
Sum[Divide[(z)^(n),QPochhammer[q, q, n]], {n, 0, Infinity}, GenerateConditions->None] == Divide[1,QPochhammer[z, q, Infinity]]
Failure Failure Error
Failed [8 / 10]
Result: Plus[QHypergeometricPFQ[{0.0}
Test Values: {}, Complex[0.8660254037844387, 0.49999999999999994], 0.5], Times[-1.0, Power[QPochhammer[0.5, Complex[0.8660254037844387, 0.49999999999999994], DirectedInfinity[1]], -1]]], {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, 0.5]}

Result: QHypergeometricPFQ[{0.0}
Test Values: {}, Complex[-0.4999999999999998, 0.8660254037844387], 0.5], {Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[z, 0.5]}

... skip entries to safe data
17.5.E5 ϕ 1 1 ( a c ; q , c / a ) = ( c / a ; q ) ( c ; q ) q-hypergeometric-rphis 1 1 𝑎 𝑐 𝑞 𝑐 𝑎 q-Pochhammer-symbol 𝑐 𝑎 𝑞 q-Pochhammer-symbol 𝑐 𝑞 {\displaystyle{\displaystyle{{}_{1}\phi_{1}}\left({a\atop c};q,c/a\right)=% \frac{\left(c/a;q\right)_{\infty}}{\left(c;q\right)_{\infty}}}}
\qgenhyperphi{1}{1}@@{a}{c}{q}{c/a} = \frac{\qPochhammer{c/a}{q}{\infty}}{\qPochhammer{c}{q}{\infty}}
| c | < | a | 𝑐 𝑎 {\displaystyle{\displaystyle|c|<|a|}}
Error
QHypergeometricPFQ[{a},{c},q,c/a] == Divide[QPochhammer[c/a, q, Infinity],QPochhammer[c, q, Infinity]]
Missing Macro Error Failure -
Failed [96 / 120]
Result: Plus[QHypergeometricPFQ[{-1.5}
Test Values: {-0.5}, Complex[0.8660254037844387, 0.49999999999999994], 0.3333333333333333], Times[-1.0, Power[QPochhammer[-0.5, Complex[0.8660254037844387, 0.49999999999999994], DirectedInfinity[1]], -1], QPochhammer[0.3333333333333333, Complex[0.8660254037844387, 0.49999999999999994], DirectedInfinity[1]]]], {Rule[a, -1.5], Rule[c, -0.5], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[c, -0.5], Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data