15.4: Difference between revisions
Jump to navigation
Jump to search
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
||
Line 14: | Line 14: | ||
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ||
|- | |- | ||
| [https://dlmf.nist.gov/15.4.E1 15.4.E1] | | | [https://dlmf.nist.gov/15.4.E1 15.4.E1] || <math qid="Q4984">\hyperF@{1}{1}{2}{z} = -z^{-1}\ln@{1-z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{1}{1}{2}{z} = -z^{-1}\ln@{1-z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([1, 1], [2], z) = - (z)^(- 1)* ln(1 - z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[1, 1, 2, z] == - (z)^(- 1)* Log[1 - z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/15.4.E2 15.4.E2] | | | [https://dlmf.nist.gov/15.4.E2 15.4.E2] || <math qid="Q4985">\hyperF@{\tfrac{1}{2}}{1}{\tfrac{3}{2}}{z^{2}} = \frac{1}{2z}\ln@{\frac{1+z}{1-z}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{\tfrac{1}{2}}{1}{\tfrac{3}{2}}{z^{2}} = \frac{1}{2z}\ln@{\frac{1+z}{1-z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([(1)/(2), 1], [(3)/(2)], (z)^(2)) = (1)/(2*z)*ln((1 + z)/(1 - z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[Divide[1,2], 1, Divide[3,2], (z)^(2)] == Divide[1,2*z]*Log[Divide[1 + z,1 - z]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .1e-9-2.094395103*I | ||
Test Values: {z = 3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.-1.570796327*I | Test Values: {z = 3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.-1.570796327*I | ||
Test Values: {z = 2}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.1102230246251565*^-16, -2.0943951023931953] | Test Values: {z = 2}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.1102230246251565*^-16, -2.0943951023931953] | ||
Line 22: | Line 22: | ||
Test Values: {Rule[z, 2]}</syntaxhighlight><br></div></div> | Test Values: {Rule[z, 2]}</syntaxhighlight><br></div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/15.4.E3 15.4.E3] | | | [https://dlmf.nist.gov/15.4.E3 15.4.E3] || <math qid="Q4986">\hyperF@{\tfrac{1}{2}}{1}{\tfrac{3}{2}}{-z^{2}} = z^{-1}\atan@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{\tfrac{1}{2}}{1}{\tfrac{3}{2}}{-z^{2}} = z^{-1}\atan@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([(1)/(2), 1], [(3)/(2)], - (z)^(2)) = (z)^(- 1)* arctan(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[Divide[1,2], 1, Divide[3,2], - (z)^(2)] == (z)^(- 1)* ArcTan[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/15.4.E4 15.4.E4] | | | [https://dlmf.nist.gov/15.4.E4 15.4.E4] || <math qid="Q4987">\hyperF@{\tfrac{1}{2}}{\tfrac{1}{2}}{\tfrac{3}{2}}{z^{2}} = z^{-1}\asin@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{\tfrac{1}{2}}{\tfrac{1}{2}}{\tfrac{3}{2}}{z^{2}} = z^{-1}\asin@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([(1)/(2), (1)/(2)], [(3)/(2)], (z)^(2)) = (z)^(- 1)* arcsin(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[Divide[1,2], Divide[1,2], Divide[3,2], (z)^(2)] == (z)^(- 1)* ArcSin[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/15.4.E5 15.4.E5] | | | [https://dlmf.nist.gov/15.4.E5 15.4.E5] || <math qid="Q4988">\hyperF@{\tfrac{1}{2}}{\tfrac{1}{2}}{\tfrac{3}{2}}{-z^{2}} = z^{-1}\ln@{z+\sqrt{1+z^{2}}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{\tfrac{1}{2}}{\tfrac{1}{2}}{\tfrac{3}{2}}{-z^{2}} = z^{-1}\ln@{z+\sqrt{1+z^{2}}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([(1)/(2), (1)/(2)], [(3)/(2)], - (z)^(2)) = (z)^(- 1)* ln(z +sqrt(1 + (z)^(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[Divide[1,2], Divide[1,2], Divide[3,2], - (z)^(2)] == (z)^(- 1)* Log[z +Sqrt[1 + (z)^(2)]]</syntaxhighlight> || Failure || Successful || Successful [Tested: 7] || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/15.4#Ex1 15.4#Ex1] | | | [https://dlmf.nist.gov/15.4#Ex1 15.4#Ex1] || <math qid="Q4989">\hyperF@{a}{b}{a}{z} = (1-z)^{-b}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{a}{b}{a}{z} = (1-z)^{-b}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([a, b], [a], z) = (1 - z)^(- b)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[a, b, a, z] == (1 - z)^(- b)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 252] | ||
|- | |- | ||
| [https://dlmf.nist.gov/15.4#Ex2 15.4#Ex2] | | | [https://dlmf.nist.gov/15.4#Ex2 15.4#Ex2] || <math qid="Q4990">\hyperF@{a}{b}{b}{z} = (1-z)^{-a}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{a}{b}{b}{z} = (1-z)^{-a}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([a, b], [b], z) = (1 - z)^(- a)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[a, b, b, z] == (1 - z)^(- a)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 252] | ||
|- | |- | ||
| [https://dlmf.nist.gov/15.4.E7 15.4.E7] | | | [https://dlmf.nist.gov/15.4.E7 15.4.E7] || <math qid="Q4991">\hyperF@{a}{\tfrac{1}{2}+a}{\tfrac{1}{2}}{z^{2}} = \tfrac{1}{2}\left((1+z)^{-2a}+(1-z)^{-2a}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{a}{\tfrac{1}{2}+a}{\tfrac{1}{2}}{z^{2}} = \tfrac{1}{2}\left((1+z)^{-2a}+(1-z)^{-2a}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([a, (1)/(2)+ a], [(1)/(2)], (z)^(2)) = (1)/(2)*((1 + z)^(- 2*a)+(1 - z)^(- 2*a))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[a, Divide[1,2]+ a, Divide[1,2], (z)^(2)] == Divide[1,2]*((1 + z)^(- 2*a)+(1 - z)^(- 2*a))</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 42] | ||
|- | |- | ||
| [https://dlmf.nist.gov/15.4.E8 15.4.E8] | | | [https://dlmf.nist.gov/15.4.E8 15.4.E8] || <math qid="Q4992">\hyperF@{a}{\tfrac{1}{2}+a}{\tfrac{1}{2}}{-\tan^{2}@@{z}} = (\cos@@{z})^{2a}\cos@{2az}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{a}{\tfrac{1}{2}+a}{\tfrac{1}{2}}{-\tan^{2}@@{z}} = (\cos@@{z})^{2a}\cos@{2az}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([a, (1)/(2)+ a], [(1)/(2)], - (tan(z))^(2)) = (cos(z))^(2*a)* cos(2*a*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[a, Divide[1,2]+ a, Divide[1,2], - (Tan[z])^(2)] == (Cos[z])^(2*a)* Cos[2*a*z]</syntaxhighlight> || Failure || Failure || Successful [Tested: 42] || Successful [Tested: 42] | ||
|- | |- | ||
| [https://dlmf.nist.gov/15.4.E9 15.4.E9] | | | [https://dlmf.nist.gov/15.4.E9 15.4.E9] || <math qid="Q4993">\hyperF@{a}{\tfrac{1}{2}+a}{\tfrac{3}{2}}{z^{2}} = \frac{1}{(2-4a)z}\left((1+z)^{1-2a}-(1-z)^{1-2a}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{a}{\tfrac{1}{2}+a}{\tfrac{3}{2}}{z^{2}} = \frac{1}{(2-4a)z}\left((1+z)^{1-2a}-(1-z)^{1-2a}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([a, (1)/(2)+ a], [(3)/(2)], (z)^(2)) = (1)/((2 - 4*a)*z)*((1 + z)^(1 - 2*a)-(1 - z)^(1 - 2*a))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[a, Divide[1,2]+ a, Divide[3,2], (z)^(2)] == Divide[1,(2 - 4*a)*z]*((1 + z)^(1 - 2*a)-(1 - z)^(1 - 2*a))</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[a, 0.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | Test Values: {Rule[a, 0.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[a, 0.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[a, 0.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/15.4.E10 15.4.E10] | | | [https://dlmf.nist.gov/15.4.E10 15.4.E10] || <math qid="Q4994">\hyperF@{a}{\tfrac{1}{2}+a}{\tfrac{3}{2}}{-\tan^{2}@@{z}} = (\cos@@{z})^{2a}\frac{\sin@{(1-2a)z}}{(1-2a)\sin@@{z}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{a}{\tfrac{1}{2}+a}{\tfrac{3}{2}}{-\tan^{2}@@{z}} = (\cos@@{z})^{2a}\frac{\sin@{(1-2a)z}}{(1-2a)\sin@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([a, (1)/(2)+ a], [(3)/(2)], - (tan(z))^(2)) = (cos(z))^(2*a)*(sin((1 - 2*a)*z))/((1 - 2*a)*sin(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[a, Divide[1,2]+ a, Divide[3,2], - (Tan[z])^(2)] == (Cos[z])^(2*a)*Divide[Sin[(1 - 2*a)*z],(1 - 2*a)*Sin[z]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Float(undefined)+Float(undefined)*I | ||
Test Values: {a = 1/2, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Float(undefined)+Float(undefined)*I | Test Values: {a = 1/2, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Float(undefined)+Float(undefined)*I | ||
Test Values: {a = 1/2, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | Test Values: {a = 1/2, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Line 46: | Line 46: | ||
Test Values: {Rule[a, 0.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[a, 0.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/15.4.E11 15.4.E11] | | | [https://dlmf.nist.gov/15.4.E11 15.4.E11] || <math qid="Q4995">\hyperF@{-a}{a}{\tfrac{1}{2}}{-z^{2}} = \tfrac{1}{2}\left(\left(\sqrt{1+z^{2}}+z\right)^{2a}+\left(\sqrt{1+z^{2}}-z\right)^{2a}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{-a}{a}{\tfrac{1}{2}}{-z^{2}} = \tfrac{1}{2}\left(\left(\sqrt{1+z^{2}}+z\right)^{2a}+\left(\sqrt{1+z^{2}}-z\right)^{2a}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([- a, a], [(1)/(2)], - (z)^(2)) = (1)/(2)*((sqrt(1 + (z)^(2))+ z)^(2*a)+(sqrt(1 + (z)^(2))- z)^(2*a))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[- a, a, Divide[1,2], - (z)^(2)] == Divide[1,2]*((Sqrt[1 + (z)^(2)]+ z)^(2*a)+(Sqrt[1 + (z)^(2)]- z)^(2*a))</syntaxhighlight> || Failure || Failure || Successful [Tested: 42] || Successful [Tested: 42] | ||
|- | |- | ||
| [https://dlmf.nist.gov/15.4.E12 15.4.E12] | | | [https://dlmf.nist.gov/15.4.E12 15.4.E12] || <math qid="Q4996">\hyperF@{-a}{a}{\tfrac{1}{2}}{\sin^{2}@@{z}} = \cos@{2az}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{-a}{a}{\tfrac{1}{2}}{\sin^{2}@@{z}} = \cos@{2az}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([- a, a], [(1)/(2)], (sin(z))^(2)) = cos(2*a*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[- a, a, Divide[1,2], (Sin[z])^(2)] == Cos[2*a*z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [4 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -1.920340573 | ||
Test Values: {a = -3/2, z = 2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.920340573 | Test Values: {a = -3/2, z = 2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.920340573 | ||
Test Values: {a = 3/2, z = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [4 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -1.9203405733007322 | Test Values: {a = 3/2, z = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [4 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -1.9203405733007322 | ||
Line 54: | Line 54: | ||
Test Values: {Rule[a, 1.5], Rule[z, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[a, 1.5], Rule[z, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/15.4.E13 15.4.E13] | | | [https://dlmf.nist.gov/15.4.E13 15.4.E13] || <math qid="Q4997">\hyperF@{a}{1-a}{\tfrac{1}{2}}{-z^{2}} = \frac{1}{2\sqrt{1+z^{2}}}\left(\left(\sqrt{1+z^{2}}+z\right)^{2a-1}+\left(\sqrt{1+z^{2}}-z\right)^{2a-1}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{a}{1-a}{\tfrac{1}{2}}{-z^{2}} = \frac{1}{2\sqrt{1+z^{2}}}\left(\left(\sqrt{1+z^{2}}+z\right)^{2a-1}+\left(\sqrt{1+z^{2}}-z\right)^{2a-1}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([a, 1 - a], [(1)/(2)], - (z)^(2)) = (1)/(2*sqrt(1 + (z)^(2)))*((sqrt(1 + (z)^(2))+ z)^(2*a - 1)+(sqrt(1 + (z)^(2))- z)^(2*a - 1))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[a, 1 - a, Divide[1,2], - (z)^(2)] == Divide[1,2*Sqrt[1 + (z)^(2)]]*((Sqrt[1 + (z)^(2)]+ z)^(2*a - 1)+(Sqrt[1 + (z)^(2)]- z)^(2*a - 1))</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 42] | ||
|- | |- | ||
| [https://dlmf.nist.gov/15.4.E14 15.4.E14] | | | [https://dlmf.nist.gov/15.4.E14 15.4.E14] || <math qid="Q4998">\hyperF@{a}{1-a}{\tfrac{1}{2}}{\sin^{2}@@{z}} = \frac{\cos@{(2a-1)z}}{\cos@@{z}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{a}{1-a}{\tfrac{1}{2}}{\sin^{2}@@{z}} = \frac{\cos@{(2a-1)z}}{\cos@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([a, 1 - a], [(1)/(2)], (sin(z))^(2)) = (cos((2*a - 1)*z))/(cos(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[a, 1 - a, Divide[1,2], (Sin[z])^(2)] == Divide[Cos[(2*a - 1)*z],Cos[z]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [4 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.6992725697 | ||
Test Values: {a = -3/2, z = 2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -3.141408577 | Test Values: {a = -3/2, z = 2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -3.141408577 | ||
Test Values: {a = 3/2, z = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [4 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -0.6992725693452728 | Test Values: {a = 3/2, z = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [4 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -0.6992725693452728 | ||
Line 62: | Line 62: | ||
Test Values: {Rule[a, 1.5], Rule[z, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[a, 1.5], Rule[z, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/15.4.E15 15.4.E15] | | | [https://dlmf.nist.gov/15.4.E15 15.4.E15] || <math qid="Q4999">\hyperF@{a}{1-a}{\tfrac{3}{2}}{-z^{2}} = \frac{1}{(2-4a)z}\left(\left(\sqrt{1+z^{2}}+z\right)^{1-2a}-\left(\sqrt{1+z^{2}}-z\right)^{1-2a}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{a}{1-a}{\tfrac{3}{2}}{-z^{2}} = \frac{1}{(2-4a)z}\left(\left(\sqrt{1+z^{2}}+z\right)^{1-2a}-\left(\sqrt{1+z^{2}}-z\right)^{1-2a}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([a, 1 - a], [(3)/(2)], - (z)^(2)) = (1)/((2 - 4*a)*z)*((sqrt(1 + (z)^(2))+ z)^(1 - 2*a)-(sqrt(1 + (z)^(2))- z)^(1 - 2*a))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[a, 1 - a, Divide[3,2], - (z)^(2)] == Divide[1,(2 - 4*a)*z]*((Sqrt[1 + (z)^(2)]+ z)^(1 - 2*a)-(Sqrt[1 + (z)^(2)]- z)^(1 - 2*a))</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Float(undefined)+Float(undefined)*I | ||
Test Values: {a = 1/2, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Float(undefined)+Float(undefined)*I | Test Values: {a = 1/2, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Float(undefined)+Float(undefined)*I | ||
Test Values: {a = 1/2, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | Test Values: {a = 1/2, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Line 68: | Line 68: | ||
Test Values: {Rule[a, 0.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[a, 0.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/15.4.E16 15.4.E16] | | | [https://dlmf.nist.gov/15.4.E16 15.4.E16] || <math qid="Q5000">\hyperF@{a}{1-a}{\tfrac{3}{2}}{\sin^{2}@@{z}} = \frac{\sin@{(2a-1)z}}{(2a-1)\sin@@{z}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{a}{1-a}{\tfrac{3}{2}}{\sin^{2}@@{z}} = \frac{\sin@{(2a-1)z}}{(2a-1)\sin@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([a, 1 - a], [(3)/(2)], (sin(z))^(2)) = (sin((2*a - 1)*z))/((2*a - 1)*sin(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[a, 1 - a, Divide[3,2], (Sin[z])^(2)] == Divide[Sin[(2*a - 1)*z],(2*a - 1)*Sin[z]]</syntaxhighlight> || Successful || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [10 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -0.5440234501032235 | ||
Test Values: {Rule[a, -1.5], Rule[z, 2]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.8322936730942848 | Test Values: {Rule[a, -1.5], Rule[z, 2]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.8322936730942848 | ||
Test Values: {Rule[a, 1.5], Rule[z, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[a, 1.5], Rule[z, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/15.4.E17 15.4.E17] | | | [https://dlmf.nist.gov/15.4.E17 15.4.E17] || <math qid="Q5001">\hyperF@{a}{\tfrac{1}{2}+a}{1+2a}{z} = \left(\tfrac{1}{2}+\tfrac{1}{2}\sqrt{1-z}\right)^{-2a}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{a}{\tfrac{1}{2}+a}{1+2a}{z} = \left(\tfrac{1}{2}+\tfrac{1}{2}\sqrt{1-z}\right)^{-2a}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([a, (1)/(2)+ a], [1 + 2*a], z) = ((1)/(2)+(1)/(2)*sqrt(1 - z))^(- 2*a)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[a, Divide[1,2]+ a, 1 + 2*a, z] == (Divide[1,2]+Divide[1,2]*Sqrt[1 - z])^(- 2*a)</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [20 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.02099232729741518, 0.019754284780044207] | ||
Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.009306933376070914, 0.00445671804147707] | Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.009306933376070914, 0.00445671804147707] | ||
Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/15.4.E18 15.4.E18] | | | [https://dlmf.nist.gov/15.4.E18 15.4.E18] || <math qid="Q5002">\hyperF@{a}{\tfrac{1}{2}+a}{2a}{z} = \frac{1}{\sqrt{1-z}}\left(\tfrac{1}{2}+\tfrac{1}{2}\sqrt{1-z}\right)^{1-2a}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{a}{\tfrac{1}{2}+a}{2a}{z} = \frac{1}{\sqrt{1-z}}\left(\tfrac{1}{2}+\tfrac{1}{2}\sqrt{1-z}\right)^{1-2a}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([a, (1)/(2)+ a], [2*a], z) = (1)/(sqrt(1 - z))*((1)/(2)+(1)/(2)*sqrt(1 - z))^(1 - 2*a)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[a, Divide[1,2]+ a, 2*a, z] == Divide[1,Sqrt[1 - z]]*(Divide[1,2]+Divide[1,2]*Sqrt[1 - z])^(1 - 2*a)</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [17 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.009435141098616318, 0.007866769593881467] | ||
Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.0016763074528445276, -3.2228425612285116*^-4] | Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.0016763074528445276, -3.2228425612285116*^-4] | ||
Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/15.4.E19 15.4.E19] | | | [https://dlmf.nist.gov/15.4.E19 15.4.E19] || <math qid="Q5003">\hyperF@{a+1}{b}{a}{z} = \left(1-(1-(\ifrac{b}{a}))z\right)(1-z)^{-1-b}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{a+1}{b}{a}{z} = \left(1-(1-(\ifrac{b}{a}))z\right)(1-z)^{-1-b}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([a + 1, b], [a], z) = (1 -(1 -((b)/(a)))*z)*(1 - z)^(- 1 - b)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[a + 1, b, a, z] == (1 -(1 -(Divide[b,a]))*z)*(1 - z)^(- 1 - b)</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [34 / 252]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.041984654594830306, 0.03950856956008836] | ||
Test Values: {Rule[a, -2], Rule[b, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.018613866752141828, 0.008913436082954251] | Test Values: {Rule[a, -2], Rule[b, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.018613866752141828, 0.008913436082954251] | ||
Test Values: {Rule[a, -2], Rule[b, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[a, -2], Rule[b, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/15.4.E20 15.4.E20] | | | [https://dlmf.nist.gov/15.4.E20 15.4.E20] || <math qid="Q5004">\hyperF@{a}{b}{c}{1} = \frac{\EulerGamma@{c}\EulerGamma@{c-a-b}}{\EulerGamma@{c-a}\EulerGamma@{c-b}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{a}{b}{c}{1} = \frac{\EulerGamma@{c}\EulerGamma@{c-a-b}}{\EulerGamma@{c-a}\EulerGamma@{c-b}}</syntaxhighlight> || <math>\realpart@@{c} > 0, \realpart@@{(c-a-b)} > 0, \realpart@@{(c-a)} > 0, \realpart@@{(c-b)} > 0</math> || <syntaxhighlight lang=mathematica>hypergeom([a, b], [c], 1) = (GAMMA(c)*GAMMA(c - a - b))/(GAMMA(c - a)*GAMMA(c - b))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[a, b, c, 1] == Divide[Gamma[c]*Gamma[c - a - b],Gamma[c - a]*Gamma[c - b]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 47] || Successful [Tested: 47] | ||
|- | |- | ||
| [https://dlmf.nist.gov/15.4.E21 15.4.E21] | | | [https://dlmf.nist.gov/15.4.E21 15.4.E21] || <math qid="Q5005">\lim_{z\to 1-}\frac{\hyperF@{a}{b}{a+b}{z}}{-\ln@{1-z}} = \frac{\EulerGamma@{a+b}}{\EulerGamma@{a}\EulerGamma@{b}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\lim_{z\to 1-}\frac{\hyperF@{a}{b}{a+b}{z}}{-\ln@{1-z}} = \frac{\EulerGamma@{a+b}}{\EulerGamma@{a}\EulerGamma@{b}}</syntaxhighlight> || <math>\realpart@@{(a+b)} > 0, \realpart@@{a} > 0, \realpart@@{b} > 0</math> || <syntaxhighlight lang=mathematica>limit((hypergeom([a, b], [a + b], z))/(- ln(1 - z)), z = 1, left) = (GAMMA(a + b))/(GAMMA(a)*GAMMA(b))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Limit[Divide[Hypergeometric2F1[a, b, a + b, z],- Log[1 - z]], z -> 1, Direction -> "FromBelow", GenerateConditions->None] == Divide[Gamma[a + b],Gamma[a]*Gamma[b]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 9] | ||
|- | |- | ||
| [https://dlmf.nist.gov/15.4.E22 15.4.E22] | | | [https://dlmf.nist.gov/15.4.E22 15.4.E22] || <math qid="Q5006">\lim_{z\to 1-}(1-z)^{a+b-c}\left(\hyperF@{a}{b}{c}{z}-\frac{\EulerGamma@{c}\EulerGamma@{c-a-b}}{\EulerGamma@{c-a}\EulerGamma@{c-b}}\right) = \frac{\EulerGamma@{c}\EulerGamma@{a+b-c}}{\EulerGamma@{a}\EulerGamma@{b}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\lim_{z\to 1-}(1-z)^{a+b-c}\left(\hyperF@{a}{b}{c}{z}-\frac{\EulerGamma@{c}\EulerGamma@{c-a-b}}{\EulerGamma@{c-a}\EulerGamma@{c-b}}\right) = \frac{\EulerGamma@{c}\EulerGamma@{a+b-c}}{\EulerGamma@{a}\EulerGamma@{b}}</syntaxhighlight> || <math>\realpart@@{c} > 0, \realpart@@{(c-a-b)} > 0, \realpart@@{(c-a)} > 0, \realpart@@{(c-b)} > 0, \realpart@@{(a+b-c)} > 0, \realpart@@{a} > 0, \realpart@@{b} > 0</math> || <syntaxhighlight lang=mathematica>limit((1 - z)^(a + b - c)*(hypergeom([a, b], [c], z)-(GAMMA(c)*GAMMA(c - a - b))/(GAMMA(c - a)*GAMMA(c - b))), z = 1, left) = (GAMMA(c)*GAMMA(a + b - c))/(GAMMA(a)*GAMMA(b))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Limit[(1 - z)^(a + b - c)*(Hypergeometric2F1[a, b, c, z]-Divide[Gamma[c]*Gamma[c - a - b],Gamma[c - a]*Gamma[c - b]]), z -> 1, Direction -> "FromBelow", GenerateConditions->None] == Divide[Gamma[c]*Gamma[a + b - c],Gamma[a]*Gamma[b]]</syntaxhighlight> || Failure || Aborted || Error || Skipped - Because timed out | ||
|- | |- | ||
| [https://dlmf.nist.gov/15.4.E23 15.4.E23] | | | [https://dlmf.nist.gov/15.4.E23 15.4.E23] || <math qid="Q5007">\lim_{z\to 1-}\frac{\hyperF@{a}{b}{c}{z}}{(1-z)^{c-a-b}} = \frac{\EulerGamma@{c}\EulerGamma@{a+b-c}}{\EulerGamma@{a}\EulerGamma@{b}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\lim_{z\to 1-}\frac{\hyperF@{a}{b}{c}{z}}{(1-z)^{c-a-b}} = \frac{\EulerGamma@{c}\EulerGamma@{a+b-c}}{\EulerGamma@{a}\EulerGamma@{b}}</syntaxhighlight> || <math>\realpart@@{c} > 0, \realpart@@{(a+b-c)} > 0, \realpart@@{a} > 0, \realpart@@{b} > 0</math> || <syntaxhighlight lang=mathematica>limit((hypergeom([a, b], [c], z))/((1 - z)^(c - a - b)), z = 1, left) = (GAMMA(c)*GAMMA(a + b - c))/(GAMMA(a)*GAMMA(b))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Limit[Divide[Hypergeometric2F1[a, b, c, z],(1 - z)^(c - a - b)], z -> 1, Direction -> "FromBelow", GenerateConditions->None] == Divide[Gamma[c]*Gamma[a + b - c],Gamma[a]*Gamma[b]]</syntaxhighlight> || Failure || Failure || Manual Skip! || Successful [Tested: 23] | ||
|- | |- | ||
| [https://dlmf.nist.gov/15.4.E24 15.4.E24] | | | [https://dlmf.nist.gov/15.4.E24 15.4.E24] || <math qid="Q5008">\hyperF@{-n}{b}{c}{1} = \frac{\Pochhammersym{c-b}{n}}{\Pochhammersym{c}{n}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{-n}{b}{c}{1} = \frac{\Pochhammersym{c-b}{n}}{\Pochhammersym{c}{n}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([- n, b], [c], 1) = (pochhammer(c - b, n))/(pochhammer(c, n))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[- n, b, c, 1] == Divide[Pochhammer[c - b, n],Pochhammer[c, n]]</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 36]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[b, -1.5], Rule[c, -2], Rule[n, 3]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | Test Values: {Rule[b, -1.5], Rule[c, -2], Rule[n, 3]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[b, 1.5], Rule[c, -2], Rule[n, 3]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[b, 1.5], Rule[c, -2], Rule[n, 3]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/15.4.E25 15.4.E25] | | | [https://dlmf.nist.gov/15.4.E25 15.4.E25] || <math qid="Q5009">\sum_{n=-\infty}^{\infty}\frac{\EulerGamma@{a+n}\EulerGamma@{b+n}}{\EulerGamma@{c+n}\EulerGamma@{d+n}} = \frac{\pi^{2}}{\sin@{\pi a}\sin@{\pi b}}\*\frac{\EulerGamma@{c+d-a-b-1}}{\EulerGamma@{c-a}\EulerGamma@{d-a}\EulerGamma@{c-b}\EulerGamma@{d-b}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{n=-\infty}^{\infty}\frac{\EulerGamma@{a+n}\EulerGamma@{b+n}}{\EulerGamma@{c+n}\EulerGamma@{d+n}} = \frac{\pi^{2}}{\sin@{\pi a}\sin@{\pi b}}\*\frac{\EulerGamma@{c+d-a-b-1}}{\EulerGamma@{c-a}\EulerGamma@{d-a}\EulerGamma@{c-b}\EulerGamma@{d-b}}</syntaxhighlight> || <math>\realpart@@{(a+n)} > 0, \realpart@@{(b+n)} > 0, \realpart@@{(c+n)} > 0, \realpart@@{(d+n)} > 0, \realpart@@{(c+d-a-b-1)} > 0, \realpart@@{(c-a)} > 0, \realpart@@{(d-a)} > 0, \realpart@@{(c-b)} > 0, \realpart@@{(d-b)} > 0</math> || <syntaxhighlight lang=mathematica>sum((GAMMA(a + n)*GAMMA(b + n))/(GAMMA(c + n)*GAMMA(d + n)), n = - infinity..infinity) = ((Pi)^(2))/(sin(Pi*a)*sin(Pi*b))*(GAMMA(c + d - a - b - 1))/(GAMMA(c - a)*GAMMA(d - a)*GAMMA(c - b)*GAMMA(d - b))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[Divide[Gamma[a + n]*Gamma[b + n],Gamma[c + n]*Gamma[d + n]], {n, - Infinity, Infinity}, GenerateConditions->None] == Divide[(Pi)^(2),Sin[Pi*a]*Sin[Pi*b]]*Divide[Gamma[c + d - a - b - 1],Gamma[c - a]*Gamma[d - a]*Gamma[c - b]*Gamma[d - b]]</syntaxhighlight> || Failure || Aborted || Manual Skip! || <div class="toccolours mw-collapsible mw-collapsed">Failed [160 / 281]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[a, -1.5], Rule[b, -2], Rule[c, 1.5], Rule[d, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | Test Values: {Rule[a, -1.5], Rule[b, -2], Rule[c, 1.5], Rule[d, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[a, -1.5], Rule[b, -2], Rule[c, 1.5], Rule[d, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[a, -1.5], Rule[b, -2], Rule[c, 1.5], Rule[d, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/15.4.E26 15.4.E26] | | | [https://dlmf.nist.gov/15.4.E26 15.4.E26] || <math qid="Q5010">\hyperF@{a}{b}{a-b+1}{-1} = \frac{\EulerGamma@{a-b+1}\EulerGamma@{\tfrac{1}{2}a+1}}{\EulerGamma@{a+1}\EulerGamma@{\tfrac{1}{2}a-b+1}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{a}{b}{a-b+1}{-1} = \frac{\EulerGamma@{a-b+1}\EulerGamma@{\tfrac{1}{2}a+1}}{\EulerGamma@{a+1}\EulerGamma@{\tfrac{1}{2}a-b+1}}</syntaxhighlight> || <math>\realpart@@{(a-b+1)} > 0, \realpart@@{(\tfrac{1}{2}a+1)} > 0, \realpart@@{(a+1)} > 0, \realpart@@{(\tfrac{1}{2}a-b+1)} > 0</math> || <syntaxhighlight lang=mathematica>hypergeom([a, b], [a - b + 1], - 1) = (GAMMA(a - b + 1)*GAMMA((1)/(2)*a + 1))/(GAMMA(a + 1)*GAMMA((1)/(2)*a - b + 1))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[a, b, a - b + 1, - 1] == Divide[Gamma[a - b + 1]*Gamma[Divide[1,2]*a + 1],Gamma[a + 1]*Gamma[Divide[1,2]*a - b + 1]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 17] | ||
|- | |- | ||
| [https://dlmf.nist.gov/15.4.E27 15.4.E27] | | | [https://dlmf.nist.gov/15.4.E27 15.4.E27] || <math qid="Q5011">\hyperF@{1}{a}{a+1}{-1} = \tfrac{1}{2}a\left(\digamma@{\tfrac{1}{2}a+\tfrac{1}{2}}-\digamma@{\tfrac{1}{2}a}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{1}{a}{a+1}{-1} = \tfrac{1}{2}a\left(\digamma@{\tfrac{1}{2}a+\tfrac{1}{2}}-\digamma@{\tfrac{1}{2}a}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([1, a], [a + 1], - 1) = (1)/(2)*a*(Psi((1)/(2)*a +(1)/(2))- Psi((1)/(2)*a))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[1, a, a + 1, - 1] == Divide[1,2]*a*(PolyGamma[Divide[1,2]*a +Divide[1,2]]- PolyGamma[Divide[1,2]*a])</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 6] | ||
|- | |- | ||
| [https://dlmf.nist.gov/15.4.E28 15.4.E28] | | | [https://dlmf.nist.gov/15.4.E28 15.4.E28] || <math qid="Q5012">\hyperF@{a}{b}{\tfrac{1}{2}a+\tfrac{1}{2}b+\tfrac{1}{2}}{\tfrac{1}{2}} = \sqrt{\pi}\frac{\EulerGamma@{\tfrac{1}{2}a+\tfrac{1}{2}b+\tfrac{1}{2}}}{\EulerGamma@{\tfrac{1}{2}a+\tfrac{1}{2}}\EulerGamma@{\tfrac{1}{2}b+\tfrac{1}{2}}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{a}{b}{\tfrac{1}{2}a+\tfrac{1}{2}b+\tfrac{1}{2}}{\tfrac{1}{2}} = \sqrt{\pi}\frac{\EulerGamma@{\tfrac{1}{2}a+\tfrac{1}{2}b+\tfrac{1}{2}}}{\EulerGamma@{\tfrac{1}{2}a+\tfrac{1}{2}}\EulerGamma@{\tfrac{1}{2}b+\tfrac{1}{2}}}</syntaxhighlight> || <math>\realpart@@{(\tfrac{1}{2}a+\tfrac{1}{2}b+\tfrac{1}{2})} > 0, \realpart@@{(\tfrac{1}{2}a+\tfrac{1}{2})} > 0, \realpart@@{(\tfrac{1}{2}b+\tfrac{1}{2})} > 0</math> || <syntaxhighlight lang=mathematica>hypergeom([a, b], [(1)/(2)*a +(1)/(2)*b +(1)/(2)], (1)/(2)) = sqrt(Pi)*(GAMMA((1)/(2)*a +(1)/(2)*b +(1)/(2)))/(GAMMA((1)/(2)*a +(1)/(2))*GAMMA((1)/(2)*b +(1)/(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[a, b, Divide[1,2]*a +Divide[1,2]*b +Divide[1,2], Divide[1,2]] == Sqrt[Pi]*Divide[Gamma[Divide[1,2]*a +Divide[1,2]*b +Divide[1,2]],Gamma[Divide[1,2]*a +Divide[1,2]]*Gamma[Divide[1,2]*b +Divide[1,2]]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 15] | ||
|- | |- | ||
| [https://dlmf.nist.gov/15.4.E29 15.4.E29] | | | [https://dlmf.nist.gov/15.4.E29 15.4.E29] || <math qid="Q5013">\hyperF@{a}{b}{\tfrac{1}{2}a+\tfrac{1}{2}b+1}{\tfrac{1}{2}} = \frac{2\sqrt{\pi}}{a-b}\EulerGamma@{\tfrac{1}{2}a+\tfrac{1}{2}b+1}\*\left(\frac{1}{\EulerGamma@{\tfrac{1}{2}a}\EulerGamma@{\tfrac{1}{2}b+\tfrac{1}{2}}}-\frac{1}{\EulerGamma@{\tfrac{1}{2}a+\tfrac{1}{2}}\EulerGamma@{\tfrac{1}{2}b}}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{a}{b}{\tfrac{1}{2}a+\tfrac{1}{2}b+1}{\tfrac{1}{2}} = \frac{2\sqrt{\pi}}{a-b}\EulerGamma@{\tfrac{1}{2}a+\tfrac{1}{2}b+1}\*\left(\frac{1}{\EulerGamma@{\tfrac{1}{2}a}\EulerGamma@{\tfrac{1}{2}b+\tfrac{1}{2}}}-\frac{1}{\EulerGamma@{\tfrac{1}{2}a+\tfrac{1}{2}}\EulerGamma@{\tfrac{1}{2}b}}\right)</syntaxhighlight> || <math>\realpart@@{(\tfrac{1}{2}a+\tfrac{1}{2}b+1)} > 0, \realpart@@{(\tfrac{1}{2}a)} > 0, \realpart@@{(\tfrac{1}{2}b+\tfrac{1}{2})} > 0, \realpart@@{(\tfrac{1}{2}a+\tfrac{1}{2})} > 0, \realpart@@{(\tfrac{1}{2}b)} > 0</math> || <syntaxhighlight lang=mathematica>hypergeom([a, b], [(1)/(2)*a +(1)/(2)*b + 1], (1)/(2)) = (2*sqrt(Pi))/(a - b)*GAMMA((1)/(2)*a +(1)/(2)*b + 1)*((1)/(GAMMA((1)/(2)*a)*GAMMA((1)/(2)*b +(1)/(2)))-(1)/(GAMMA((1)/(2)*a +(1)/(2))*GAMMA((1)/(2)*b)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[a, b, Divide[1,2]*a +Divide[1,2]*b + 1, Divide[1,2]] == Divide[2*Sqrt[Pi],a - b]*Gamma[Divide[1,2]*a +Divide[1,2]*b + 1]*(Divide[1,Gamma[Divide[1,2]*a]*Gamma[Divide[1,2]*b +Divide[1,2]]]-Divide[1,Gamma[Divide[1,2]*a +Divide[1,2]]*Gamma[Divide[1,2]*b]])</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 9]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Float(-infinity) | ||
Test Values: {a = 3/2, b = 3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Float(undefined) | Test Values: {a = 3/2, b = 3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Float(undefined) | ||
Test Values: {a = 1/2, b = 1/2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 9]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | Test Values: {a = 1/2, b = 1/2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 9]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Line 112: | Line 112: | ||
Test Values: {Rule[a, 0.5], Rule[b, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[a, 0.5], Rule[b, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/15.4.E30 15.4.E30] | | | [https://dlmf.nist.gov/15.4.E30 15.4.E30] || <math qid="Q5014">\hyperF@{a}{1-a}{b}{\tfrac{1}{2}} = \frac{2^{1-b}\sqrt{\pi}\EulerGamma@{b}}{\EulerGamma@{\tfrac{1}{2}a+\tfrac{1}{2}b}\EulerGamma@{\tfrac{1}{2}b-\tfrac{1}{2}a+\tfrac{1}{2}}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{a}{1-a}{b}{\tfrac{1}{2}} = \frac{2^{1-b}\sqrt{\pi}\EulerGamma@{b}}{\EulerGamma@{\tfrac{1}{2}a+\tfrac{1}{2}b}\EulerGamma@{\tfrac{1}{2}b-\tfrac{1}{2}a+\tfrac{1}{2}}}</syntaxhighlight> || <math>\realpart@@{b} > 0, \realpart@@{(\tfrac{1}{2}a+\tfrac{1}{2}b)} > 0, \realpart@@{(\tfrac{1}{2}b-\tfrac{1}{2}a+\tfrac{1}{2})} > 0</math> || <syntaxhighlight lang=mathematica>hypergeom([a, 1 - a], [b], (1)/(2)) = ((2)^(1 - b)*sqrt(Pi)*GAMMA(b))/(GAMMA((1)/(2)*a +(1)/(2)*b)*GAMMA((1)/(2)*b -(1)/(2)*a +(1)/(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[a, 1 - a, b, Divide[1,2]] == Divide[(2)^(1 - b)*Sqrt[Pi]*Gamma[b],Gamma[Divide[1,2]*a +Divide[1,2]*b]*Gamma[Divide[1,2]*b -Divide[1,2]*a +Divide[1,2]]]</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 10] | ||
|- | |- | ||
| [https://dlmf.nist.gov/15.4.E31 15.4.E31] | | | [https://dlmf.nist.gov/15.4.E31 15.4.E31] || <math qid="Q5015">\hyperF@{a}{\tfrac{1}{2}+a}{\tfrac{3}{2}-2a}{-\tfrac{1}{3}} = \left(\frac{8}{9}\right)^{-2a}\frac{\EulerGamma@{\tfrac{4}{3}}\EulerGamma@{\tfrac{3}{2}-2a}}{\EulerGamma@{\tfrac{3}{2}}\EulerGamma@{\tfrac{4}{3}-2a}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{a}{\tfrac{1}{2}+a}{\tfrac{3}{2}-2a}{-\tfrac{1}{3}} = \left(\frac{8}{9}\right)^{-2a}\frac{\EulerGamma@{\tfrac{4}{3}}\EulerGamma@{\tfrac{3}{2}-2a}}{\EulerGamma@{\tfrac{3}{2}}\EulerGamma@{\tfrac{4}{3}-2a}}</syntaxhighlight> || <math>\realpart@@{(\tfrac{3}{2}-2a)} > 0, \realpart@@{(\tfrac{4}{3}-2a)} > 0</math> || <syntaxhighlight lang=mathematica>hypergeom([a, (1)/(2)+ a], [(3)/(2)- 2*a], -(1)/(3)) = ((8)/(9))^(- 2*a)*(GAMMA((4)/(3))*GAMMA((3)/(2)- 2*a))/(GAMMA((3)/(2))*GAMMA((4)/(3)- 2*a))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[a, Divide[1,2]+ a, Divide[3,2]- 2*a, -Divide[1,3]] == (Divide[8,9])^(- 2*a)*Divide[Gamma[Divide[4,3]]*Gamma[Divide[3,2]- 2*a],Gamma[Divide[3,2]]*Gamma[Divide[4,3]- 2*a]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 4] || Successful [Tested: 4] | ||
|- | |- | ||
| [https://dlmf.nist.gov/15.4.E32 15.4.E32] | | | [https://dlmf.nist.gov/15.4.E32 15.4.E32] || <math qid="Q5016">\hyperF@{a}{\tfrac{1}{2}+a}{\tfrac{5}{6}+\tfrac{2}{3}a}{\tfrac{1}{9}} = \sqrt{\pi}\left(\frac{3}{4}\right)^{a}\frac{\EulerGamma@{\tfrac{5}{6}+\tfrac{2}{3}a}}{\EulerGamma@{\tfrac{1}{2}+\tfrac{1}{3}a}\EulerGamma@{\tfrac{5}{6}+\tfrac{1}{3}a}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{a}{\tfrac{1}{2}+a}{\tfrac{5}{6}+\tfrac{2}{3}a}{\tfrac{1}{9}} = \sqrt{\pi}\left(\frac{3}{4}\right)^{a}\frac{\EulerGamma@{\tfrac{5}{6}+\tfrac{2}{3}a}}{\EulerGamma@{\tfrac{1}{2}+\tfrac{1}{3}a}\EulerGamma@{\tfrac{5}{6}+\tfrac{1}{3}a}}</syntaxhighlight> || <math>\realpart@@{(\tfrac{5}{6}+\tfrac{2}{3}a)} > 0, \realpart@@{(\tfrac{1}{2}+\tfrac{1}{3}a)} > 0, \realpart@@{(\tfrac{5}{6}+\tfrac{1}{3}a)} > 0</math> || <syntaxhighlight lang=mathematica>hypergeom([a, (1)/(2)+ a], [(5)/(6)+(2)/(3)*a], (1)/(9)) = sqrt(Pi)*((3)/(4))^(a)*(GAMMA((5)/(6)+(2)/(3)*a))/(GAMMA((1)/(2)+(1)/(3)*a)*GAMMA((5)/(6)+(1)/(3)*a))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[a, Divide[1,2]+ a, Divide[5,6]+Divide[2,3]*a, Divide[1,9]] == Sqrt[Pi]*(Divide[3,4])^(a)*Divide[Gamma[Divide[5,6]+Divide[2,3]*a],Gamma[Divide[1,2]+Divide[1,3]*a]*Gamma[Divide[5,6]+Divide[1,3]*a]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 4] || Successful [Tested: 4] | ||
|- | |- | ||
| [https://dlmf.nist.gov/15.4.E33 15.4.E33] | | | [https://dlmf.nist.gov/15.4.E33 15.4.E33] || <math qid="Q5017">\hyperF@{3a}{\tfrac{1}{3}+a}{\tfrac{2}{3}+2a}{e^{\ifrac{\iunit\pi}{3}}} = \sqrt{\pi}e^{\ifrac{\iunit\pi a}{2}}\left(\frac{16}{27}\right)^{(3a+1)/6}\frac{\EulerGamma@{\frac{5}{6}+a}}{\EulerGamma@{\frac{2}{3}+a}\EulerGamma@{\frac{2}{3}}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{3a}{\tfrac{1}{3}+a}{\tfrac{2}{3}+2a}{e^{\ifrac{\iunit\pi}{3}}} = \sqrt{\pi}e^{\ifrac{\iunit\pi a}{2}}\left(\frac{16}{27}\right)^{(3a+1)/6}\frac{\EulerGamma@{\frac{5}{6}+a}}{\EulerGamma@{\frac{2}{3}+a}\EulerGamma@{\frac{2}{3}}}</syntaxhighlight> || <math>\realpart@@{(\frac{5}{6}+a)} > 0, \realpart@@{(\frac{2}{3}+a)} > 0</math> || <syntaxhighlight lang=mathematica>hypergeom([3*a, (1)/(3)+ a], [(2)/(3)+ 2*a], exp((I*Pi)/(3))) = sqrt(Pi)*exp((I*Pi*a)/(2))*((16)/(27))^((3*a + 1)/6)*(GAMMA((5)/(6)+ a))/(GAMMA((2)/(3)+ a)*GAMMA((2)/(3)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[3*a, Divide[1,3]+ a, Divide[2,3]+ 2*a, Exp[Divide[I*Pi,3]]] == Sqrt[Pi]*Exp[Divide[I*Pi*a,2]]*(Divide[16,27])^((3*a + 1)/6)*Divide[Gamma[Divide[5,6]+ a],Gamma[Divide[2,3]+ a]*Gamma[Divide[2,3]]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 4] || Successful [Tested: 4] | ||
|} | |} | ||
</div> | </div> |
Latest revision as of 11:38, 28 June 2021
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
15.4.E1 | \hyperF@{1}{1}{2}{z} = -z^{-1}\ln@{1-z} |
|
hypergeom([1, 1], [2], z) = - (z)^(- 1)* ln(1 - z)
|
Hypergeometric2F1[1, 1, 2, z] == - (z)^(- 1)* Log[1 - z]
|
Successful | Successful | - | Successful [Tested: 7] |
15.4.E2 | \hyperF@{\tfrac{1}{2}}{1}{\tfrac{3}{2}}{z^{2}} = \frac{1}{2z}\ln@{\frac{1+z}{1-z}} |
|
hypergeom([(1)/(2), 1], [(3)/(2)], (z)^(2)) = (1)/(2*z)*ln((1 + z)/(1 - z))
|
Hypergeometric2F1[Divide[1,2], 1, Divide[3,2], (z)^(2)] == Divide[1,2*z]*Log[Divide[1 + z,1 - z]]
|
Failure | Failure | Failed [2 / 7] Result: .1e-9-2.094395103*I
Test Values: {z = 3/2}
Result: 0.-1.570796327*I
Test Values: {z = 2}
|
Failed [2 / 7]
Result: Complex[1.1102230246251565*^-16, -2.0943951023931953]
Test Values: {Rule[z, 1.5]}
Result: Complex[0.0, -1.5707963267948966]
Test Values: {Rule[z, 2]}
|
15.4.E3 | \hyperF@{\tfrac{1}{2}}{1}{\tfrac{3}{2}}{-z^{2}} = z^{-1}\atan@@{z} |
|
hypergeom([(1)/(2), 1], [(3)/(2)], - (z)^(2)) = (z)^(- 1)* arctan(z)
|
Hypergeometric2F1[Divide[1,2], 1, Divide[3,2], - (z)^(2)] == (z)^(- 1)* ArcTan[z]
|
Successful | Successful | - | Successful [Tested: 7] |
15.4.E4 | \hyperF@{\tfrac{1}{2}}{\tfrac{1}{2}}{\tfrac{3}{2}}{z^{2}} = z^{-1}\asin@@{z} |
|
hypergeom([(1)/(2), (1)/(2)], [(3)/(2)], (z)^(2)) = (z)^(- 1)* arcsin(z)
|
Hypergeometric2F1[Divide[1,2], Divide[1,2], Divide[3,2], (z)^(2)] == (z)^(- 1)* ArcSin[z]
|
Successful | Successful | - | Successful [Tested: 7] |
15.4.E5 | \hyperF@{\tfrac{1}{2}}{\tfrac{1}{2}}{\tfrac{3}{2}}{-z^{2}} = z^{-1}\ln@{z+\sqrt{1+z^{2}}} |
|
hypergeom([(1)/(2), (1)/(2)], [(3)/(2)], - (z)^(2)) = (z)^(- 1)* ln(z +sqrt(1 + (z)^(2)))
|
Hypergeometric2F1[Divide[1,2], Divide[1,2], Divide[3,2], - (z)^(2)] == (z)^(- 1)* Log[z +Sqrt[1 + (z)^(2)]]
|
Failure | Successful | Successful [Tested: 7] | Successful [Tested: 7] |
15.4#Ex1 | \hyperF@{a}{b}{a}{z} = (1-z)^{-b} |
|
hypergeom([a, b], [a], z) = (1 - z)^(- b)
|
Hypergeometric2F1[a, b, a, z] == (1 - z)^(- b)
|
Successful | Successful | - | Successful [Tested: 252] |
15.4#Ex2 | \hyperF@{a}{b}{b}{z} = (1-z)^{-a} |
|
hypergeom([a, b], [b], z) = (1 - z)^(- a)
|
Hypergeometric2F1[a, b, b, z] == (1 - z)^(- a)
|
Successful | Successful | - | Successful [Tested: 252] |
15.4.E7 | \hyperF@{a}{\tfrac{1}{2}+a}{\tfrac{1}{2}}{z^{2}} = \tfrac{1}{2}\left((1+z)^{-2a}+(1-z)^{-2a}\right) |
|
hypergeom([a, (1)/(2)+ a], [(1)/(2)], (z)^(2)) = (1)/(2)*((1 + z)^(- 2*a)+(1 - z)^(- 2*a))
|
Hypergeometric2F1[a, Divide[1,2]+ a, Divide[1,2], (z)^(2)] == Divide[1,2]*((1 + z)^(- 2*a)+(1 - z)^(- 2*a))
|
Successful | Successful | - | Successful [Tested: 42] |
15.4.E8 | \hyperF@{a}{\tfrac{1}{2}+a}{\tfrac{1}{2}}{-\tan^{2}@@{z}} = (\cos@@{z})^{2a}\cos@{2az} |
|
hypergeom([a, (1)/(2)+ a], [(1)/(2)], - (tan(z))^(2)) = (cos(z))^(2*a)* cos(2*a*z)
|
Hypergeometric2F1[a, Divide[1,2]+ a, Divide[1,2], - (Tan[z])^(2)] == (Cos[z])^(2*a)* Cos[2*a*z]
|
Failure | Failure | Successful [Tested: 42] | Successful [Tested: 42] |
15.4.E9 | \hyperF@{a}{\tfrac{1}{2}+a}{\tfrac{3}{2}}{z^{2}} = \frac{1}{(2-4a)z}\left((1+z)^{1-2a}-(1-z)^{1-2a}\right) |
|
hypergeom([a, (1)/(2)+ a], [(3)/(2)], (z)^(2)) = (1)/((2 - 4*a)*z)*((1 + z)^(1 - 2*a)-(1 - z)^(1 - 2*a))
|
Hypergeometric2F1[a, Divide[1,2]+ a, Divide[3,2], (z)^(2)] == Divide[1,(2 - 4*a)*z]*((1 + z)^(1 - 2*a)-(1 - z)^(1 - 2*a))
|
Successful | Successful | - | Failed [7 / 42]
Result: Indeterminate
Test Values: {Rule[a, 0.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Indeterminate
Test Values: {Rule[a, 0.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
15.4.E10 | \hyperF@{a}{\tfrac{1}{2}+a}{\tfrac{3}{2}}{-\tan^{2}@@{z}} = (\cos@@{z})^{2a}\frac{\sin@{(1-2a)z}}{(1-2a)\sin@@{z}} |
|
hypergeom([a, (1)/(2)+ a], [(3)/(2)], - (tan(z))^(2)) = (cos(z))^(2*a)*(sin((1 - 2*a)*z))/((1 - 2*a)*sin(z))
|
Hypergeometric2F1[a, Divide[1,2]+ a, Divide[3,2], - (Tan[z])^(2)] == (Cos[z])^(2*a)*Divide[Sin[(1 - 2*a)*z],(1 - 2*a)*Sin[z]]
|
Failure | Failure | Failed [7 / 42] Result: Float(undefined)+Float(undefined)*I
Test Values: {a = 1/2, z = 1/2*3^(1/2)+1/2*I}
Result: Float(undefined)+Float(undefined)*I
Test Values: {a = 1/2, z = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [7 / 42]
Result: Indeterminate
Test Values: {Rule[a, 0.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Result: Indeterminate
Test Values: {Rule[a, 0.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
... skip entries to safe data |
15.4.E11 | \hyperF@{-a}{a}{\tfrac{1}{2}}{-z^{2}} = \tfrac{1}{2}\left(\left(\sqrt{1+z^{2}}+z\right)^{2a}+\left(\sqrt{1+z^{2}}-z\right)^{2a}\right) |
|
hypergeom([- a, a], [(1)/(2)], - (z)^(2)) = (1)/(2)*((sqrt(1 + (z)^(2))+ z)^(2*a)+(sqrt(1 + (z)^(2))- z)^(2*a))
|
Hypergeometric2F1[- a, a, Divide[1,2], - (z)^(2)] == Divide[1,2]*((Sqrt[1 + (z)^(2)]+ z)^(2*a)+(Sqrt[1 + (z)^(2)]- z)^(2*a))
|
Failure | Failure | Successful [Tested: 42] | Successful [Tested: 42] |
15.4.E12 | \hyperF@{-a}{a}{\tfrac{1}{2}}{\sin^{2}@@{z}} = \cos@{2az} |
|
hypergeom([- a, a], [(1)/(2)], (sin(z))^(2)) = cos(2*a*z)
|
Hypergeometric2F1[- a, a, Divide[1,2], (Sin[z])^(2)] == Cos[2*a*z]
|
Failure | Failure | Failed [4 / 42] Result: -1.920340573
Test Values: {a = -3/2, z = 2}
Result: -1.920340573
Test Values: {a = 3/2, z = 2}
... skip entries to safe data |
Failed [4 / 42]
Result: -1.9203405733007322
Test Values: {Rule[a, -1.5], Rule[z, 2]}
Result: -1.9203405733007322
Test Values: {Rule[a, 1.5], Rule[z, 2]}
... skip entries to safe data |
15.4.E13 | \hyperF@{a}{1-a}{\tfrac{1}{2}}{-z^{2}} = \frac{1}{2\sqrt{1+z^{2}}}\left(\left(\sqrt{1+z^{2}}+z\right)^{2a-1}+\left(\sqrt{1+z^{2}}-z\right)^{2a-1}\right) |
|
hypergeom([a, 1 - a], [(1)/(2)], - (z)^(2)) = (1)/(2*sqrt(1 + (z)^(2)))*((sqrt(1 + (z)^(2))+ z)^(2*a - 1)+(sqrt(1 + (z)^(2))- z)^(2*a - 1))
|
Hypergeometric2F1[a, 1 - a, Divide[1,2], - (z)^(2)] == Divide[1,2*Sqrt[1 + (z)^(2)]]*((Sqrt[1 + (z)^(2)]+ z)^(2*a - 1)+(Sqrt[1 + (z)^(2)]- z)^(2*a - 1))
|
Successful | Failure | - | Successful [Tested: 42] |
15.4.E14 | \hyperF@{a}{1-a}{\tfrac{1}{2}}{\sin^{2}@@{z}} = \frac{\cos@{(2a-1)z}}{\cos@@{z}} |
|
hypergeom([a, 1 - a], [(1)/(2)], (sin(z))^(2)) = (cos((2*a - 1)*z))/(cos(z))
|
Hypergeometric2F1[a, 1 - a, Divide[1,2], (Sin[z])^(2)] == Divide[Cos[(2*a - 1)*z],Cos[z]]
|
Failure | Failure | Failed [4 / 42] Result: -.6992725697
Test Values: {a = -3/2, z = 2}
Result: -3.141408577
Test Values: {a = 3/2, z = 2}
... skip entries to safe data |
Failed [4 / 42]
Result: -0.6992725693452728
Test Values: {Rule[a, -1.5], Rule[z, 2]}
Result: -3.1414085772561924
Test Values: {Rule[a, 1.5], Rule[z, 2]}
... skip entries to safe data |
15.4.E15 | \hyperF@{a}{1-a}{\tfrac{3}{2}}{-z^{2}} = \frac{1}{(2-4a)z}\left(\left(\sqrt{1+z^{2}}+z\right)^{1-2a}-\left(\sqrt{1+z^{2}}-z\right)^{1-2a}\right) |
|
hypergeom([a, 1 - a], [(3)/(2)], - (z)^(2)) = (1)/((2 - 4*a)*z)*((sqrt(1 + (z)^(2))+ z)^(1 - 2*a)-(sqrt(1 + (z)^(2))- z)^(1 - 2*a))
|
Hypergeometric2F1[a, 1 - a, Divide[3,2], - (z)^(2)] == Divide[1,(2 - 4*a)*z]*((Sqrt[1 + (z)^(2)]+ z)^(1 - 2*a)-(Sqrt[1 + (z)^(2)]- z)^(1 - 2*a))
|
Failure | Failure | Failed [7 / 42] Result: Float(undefined)+Float(undefined)*I
Test Values: {a = 1/2, z = 1/2*3^(1/2)+1/2*I}
Result: Float(undefined)+Float(undefined)*I
Test Values: {a = 1/2, z = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [7 / 42]
Result: Indeterminate
Test Values: {Rule[a, 0.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Result: Indeterminate
Test Values: {Rule[a, 0.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
... skip entries to safe data |
15.4.E16 | \hyperF@{a}{1-a}{\tfrac{3}{2}}{\sin^{2}@@{z}} = \frac{\sin@{(2a-1)z}}{(2a-1)\sin@@{z}} |
|
hypergeom([a, 1 - a], [(3)/(2)], (sin(z))^(2)) = (sin((2*a - 1)*z))/((2*a - 1)*sin(z))
|
Hypergeometric2F1[a, 1 - a, Divide[3,2], (Sin[z])^(2)] == Divide[Sin[(2*a - 1)*z],(2*a - 1)*Sin[z]]
|
Successful | Failure | - | Failed [10 / 42]
Result: -0.5440234501032235
Test Values: {Rule[a, -1.5], Rule[z, 2]}
Result: 0.8322936730942848
Test Values: {Rule[a, 1.5], Rule[z, 2]}
... skip entries to safe data |
15.4.E17 | \hyperF@{a}{\tfrac{1}{2}+a}{1+2a}{z} = \left(\tfrac{1}{2}+\tfrac{1}{2}\sqrt{1-z}\right)^{-2a} |
|
hypergeom([a, (1)/(2)+ a], [1 + 2*a], z) = ((1)/(2)+(1)/(2)*sqrt(1 - z))^(- 2*a)
|
Hypergeometric2F1[a, Divide[1,2]+ a, 1 + 2*a, z] == (Divide[1,2]+Divide[1,2]*Sqrt[1 - z])^(- 2*a)
|
Successful | Successful | - | Failed [20 / 42]
Result: Complex[-0.02099232729741518, 0.019754284780044207]
Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[0.009306933376070914, 0.00445671804147707]
Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
15.4.E18 | \hyperF@{a}{\tfrac{1}{2}+a}{2a}{z} = \frac{1}{\sqrt{1-z}}\left(\tfrac{1}{2}+\tfrac{1}{2}\sqrt{1-z}\right)^{1-2a} |
|
hypergeom([a, (1)/(2)+ a], [2*a], z) = (1)/(sqrt(1 - z))*((1)/(2)+(1)/(2)*sqrt(1 - z))^(1 - 2*a)
|
Hypergeometric2F1[a, Divide[1,2]+ a, 2*a, z] == Divide[1,Sqrt[1 - z]]*(Divide[1,2]+Divide[1,2]*Sqrt[1 - z])^(1 - 2*a)
|
Successful | Successful | - | Failed [17 / 42]
Result: Complex[0.009435141098616318, 0.007866769593881467]
Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[0.0016763074528445276, -3.2228425612285116*^-4]
Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
15.4.E19 | \hyperF@{a+1}{b}{a}{z} = \left(1-(1-(\ifrac{b}{a}))z\right)(1-z)^{-1-b} |
|
hypergeom([a + 1, b], [a], z) = (1 -(1 -((b)/(a)))*z)*(1 - z)^(- 1 - b)
|
Hypergeometric2F1[a + 1, b, a, z] == (1 -(1 -(Divide[b,a]))*z)*(1 - z)^(- 1 - b)
|
Successful | Successful | - | Failed [34 / 252]
Result: Complex[-0.041984654594830306, 0.03950856956008836]
Test Values: {Rule[a, -2], Rule[b, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[0.018613866752141828, 0.008913436082954251]
Test Values: {Rule[a, -2], Rule[b, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
15.4.E20 | \hyperF@{a}{b}{c}{1} = \frac{\EulerGamma@{c}\EulerGamma@{c-a-b}}{\EulerGamma@{c-a}\EulerGamma@{c-b}} |
hypergeom([a, b], [c], 1) = (GAMMA(c)*GAMMA(c - a - b))/(GAMMA(c - a)*GAMMA(c - b))
|
Hypergeometric2F1[a, b, c, 1] == Divide[Gamma[c]*Gamma[c - a - b],Gamma[c - a]*Gamma[c - b]]
|
Failure | Failure | Successful [Tested: 47] | Successful [Tested: 47] | |
15.4.E21 | \lim_{z\to 1-}\frac{\hyperF@{a}{b}{a+b}{z}}{-\ln@{1-z}} = \frac{\EulerGamma@{a+b}}{\EulerGamma@{a}\EulerGamma@{b}} |
limit((hypergeom([a, b], [a + b], z))/(- ln(1 - z)), z = 1, left) = (GAMMA(a + b))/(GAMMA(a)*GAMMA(b))
|
Limit[Divide[Hypergeometric2F1[a, b, a + b, z],- Log[1 - z]], z -> 1, Direction -> "FromBelow", GenerateConditions->None] == Divide[Gamma[a + b],Gamma[a]*Gamma[b]]
|
Successful | Successful | - | Successful [Tested: 9] | |
15.4.E22 | \lim_{z\to 1-}(1-z)^{a+b-c}\left(\hyperF@{a}{b}{c}{z}-\frac{\EulerGamma@{c}\EulerGamma@{c-a-b}}{\EulerGamma@{c-a}\EulerGamma@{c-b}}\right) = \frac{\EulerGamma@{c}\EulerGamma@{a+b-c}}{\EulerGamma@{a}\EulerGamma@{b}} |
limit((1 - z)^(a + b - c)*(hypergeom([a, b], [c], z)-(GAMMA(c)*GAMMA(c - a - b))/(GAMMA(c - a)*GAMMA(c - b))), z = 1, left) = (GAMMA(c)*GAMMA(a + b - c))/(GAMMA(a)*GAMMA(b))
|
Limit[(1 - z)^(a + b - c)*(Hypergeometric2F1[a, b, c, z]-Divide[Gamma[c]*Gamma[c - a - b],Gamma[c - a]*Gamma[c - b]]), z -> 1, Direction -> "FromBelow", GenerateConditions->None] == Divide[Gamma[c]*Gamma[a + b - c],Gamma[a]*Gamma[b]]
|
Failure | Aborted | Error | Skipped - Because timed out | |
15.4.E23 | \lim_{z\to 1-}\frac{\hyperF@{a}{b}{c}{z}}{(1-z)^{c-a-b}} = \frac{\EulerGamma@{c}\EulerGamma@{a+b-c}}{\EulerGamma@{a}\EulerGamma@{b}} |
limit((hypergeom([a, b], [c], z))/((1 - z)^(c - a - b)), z = 1, left) = (GAMMA(c)*GAMMA(a + b - c))/(GAMMA(a)*GAMMA(b)) |
Limit[Divide[Hypergeometric2F1[a, b, c, z],(1 - z)^(c - a - b)], z -> 1, Direction -> "FromBelow", GenerateConditions->None] == Divide[Gamma[c]*Gamma[a + b - c],Gamma[a]*Gamma[b]] |
Failure | Failure | Manual Skip! | Successful [Tested: 23] | |
15.4.E24 | \hyperF@{-n}{b}{c}{1} = \frac{\Pochhammersym{c-b}{n}}{\Pochhammersym{c}{n}} |
|
hypergeom([- n, b], [c], 1) = (pochhammer(c - b, n))/(pochhammer(c, n)) |
Hypergeometric2F1[- n, b, c, 1] == Divide[Pochhammer[c - b, n],Pochhammer[c, n]] |
Failure | Failure | Error | Failed [6 / 36]
Result: Indeterminate
Test Values: {Rule[b, -1.5], Rule[c, -2], Rule[n, 3]} Result: Indeterminate
Test Values: {Rule[b, 1.5], Rule[c, -2], Rule[n, 3]} ... skip entries to safe data |
15.4.E25 | \sum_{n=-\infty}^{\infty}\frac{\EulerGamma@{a+n}\EulerGamma@{b+n}}{\EulerGamma@{c+n}\EulerGamma@{d+n}} = \frac{\pi^{2}}{\sin@{\pi a}\sin@{\pi b}}\*\frac{\EulerGamma@{c+d-a-b-1}}{\EulerGamma@{c-a}\EulerGamma@{d-a}\EulerGamma@{c-b}\EulerGamma@{d-b}} |
sum((GAMMA(a + n)*GAMMA(b + n))/(GAMMA(c + n)*GAMMA(d + n)), n = - infinity..infinity) = ((Pi)^(2))/(sin(Pi*a)*sin(Pi*b))*(GAMMA(c + d - a - b - 1))/(GAMMA(c - a)*GAMMA(d - a)*GAMMA(c - b)*GAMMA(d - b)) |
Sum[Divide[Gamma[a + n]*Gamma[b + n],Gamma[c + n]*Gamma[d + n]], {n, - Infinity, Infinity}, GenerateConditions->None] == Divide[(Pi)^(2),Sin[Pi*a]*Sin[Pi*b]]*Divide[Gamma[c + d - a - b - 1],Gamma[c - a]*Gamma[d - a]*Gamma[c - b]*Gamma[d - b]] |
Failure | Aborted | Manual Skip! | Failed [160 / 281]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -2], Rule[c, 1.5], Rule[d, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -2], Rule[c, 1.5], Rule[d, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]} ... skip entries to safe data | |
15.4.E26 | \hyperF@{a}{b}{a-b+1}{-1} = \frac{\EulerGamma@{a-b+1}\EulerGamma@{\tfrac{1}{2}a+1}}{\EulerGamma@{a+1}\EulerGamma@{\tfrac{1}{2}a-b+1}} |
hypergeom([a, b], [a - b + 1], - 1) = (GAMMA(a - b + 1)*GAMMA((1)/(2)*a + 1))/(GAMMA(a + 1)*GAMMA((1)/(2)*a - b + 1)) |
Hypergeometric2F1[a, b, a - b + 1, - 1] == Divide[Gamma[a - b + 1]*Gamma[Divide[1,2]*a + 1],Gamma[a + 1]*Gamma[Divide[1,2]*a - b + 1]] |
Successful | Successful | - | Successful [Tested: 17] | |
15.4.E27 | \hyperF@{1}{a}{a+1}{-1} = \tfrac{1}{2}a\left(\digamma@{\tfrac{1}{2}a+\tfrac{1}{2}}-\digamma@{\tfrac{1}{2}a}\right) |
|
hypergeom([1, a], [a + 1], - 1) = (1)/(2)*a*(Psi((1)/(2)*a +(1)/(2))- Psi((1)/(2)*a)) |
Hypergeometric2F1[1, a, a + 1, - 1] == Divide[1,2]*a*(PolyGamma[Divide[1,2]*a +Divide[1,2]]- PolyGamma[Divide[1,2]*a]) |
Successful | Successful | - | Successful [Tested: 6] |
15.4.E28 | \hyperF@{a}{b}{\tfrac{1}{2}a+\tfrac{1}{2}b+\tfrac{1}{2}}{\tfrac{1}{2}} = \sqrt{\pi}\frac{\EulerGamma@{\tfrac{1}{2}a+\tfrac{1}{2}b+\tfrac{1}{2}}}{\EulerGamma@{\tfrac{1}{2}a+\tfrac{1}{2}}\EulerGamma@{\tfrac{1}{2}b+\tfrac{1}{2}}} |
hypergeom([a, b], [(1)/(2)*a +(1)/(2)*b +(1)/(2)], (1)/(2)) = sqrt(Pi)*(GAMMA((1)/(2)*a +(1)/(2)*b +(1)/(2)))/(GAMMA((1)/(2)*a +(1)/(2))*GAMMA((1)/(2)*b +(1)/(2))) |
Hypergeometric2F1[a, b, Divide[1,2]*a +Divide[1,2]*b +Divide[1,2], Divide[1,2]] == Sqrt[Pi]*Divide[Gamma[Divide[1,2]*a +Divide[1,2]*b +Divide[1,2]],Gamma[Divide[1,2]*a +Divide[1,2]]*Gamma[Divide[1,2]*b +Divide[1,2]]] |
Successful | Successful | - | Successful [Tested: 15] | |
15.4.E29 | \hyperF@{a}{b}{\tfrac{1}{2}a+\tfrac{1}{2}b+1}{\tfrac{1}{2}} = \frac{2\sqrt{\pi}}{a-b}\EulerGamma@{\tfrac{1}{2}a+\tfrac{1}{2}b+1}\*\left(\frac{1}{\EulerGamma@{\tfrac{1}{2}a}\EulerGamma@{\tfrac{1}{2}b+\tfrac{1}{2}}}-\frac{1}{\EulerGamma@{\tfrac{1}{2}a+\tfrac{1}{2}}\EulerGamma@{\tfrac{1}{2}b}}\right) |
hypergeom([a, b], [(1)/(2)*a +(1)/(2)*b + 1], (1)/(2)) = (2*sqrt(Pi))/(a - b)*GAMMA((1)/(2)*a +(1)/(2)*b + 1)*((1)/(GAMMA((1)/(2)*a)*GAMMA((1)/(2)*b +(1)/(2)))-(1)/(GAMMA((1)/(2)*a +(1)/(2))*GAMMA((1)/(2)*b))) |
Hypergeometric2F1[a, b, Divide[1,2]*a +Divide[1,2]*b + 1, Divide[1,2]] == Divide[2*Sqrt[Pi],a - b]*Gamma[Divide[1,2]*a +Divide[1,2]*b + 1]*(Divide[1,Gamma[Divide[1,2]*a]*Gamma[Divide[1,2]*b +Divide[1,2]]]-Divide[1,Gamma[Divide[1,2]*a +Divide[1,2]]*Gamma[Divide[1,2]*b]]) |
Failure | Failure | Failed [3 / 9] Result: Float(-infinity)
Test Values: {a = 3/2, b = 3/2} Result: Float(undefined)
Test Values: {a = 1/2, b = 1/2} ... skip entries to safe data |
Failed [3 / 9]
Result: Indeterminate
Test Values: {Rule[a, 1.5], Rule[b, 1.5]} Result: Indeterminate
Test Values: {Rule[a, 0.5], Rule[b, 0.5]} ... skip entries to safe data | |
15.4.E30 | \hyperF@{a}{1-a}{b}{\tfrac{1}{2}} = \frac{2^{1-b}\sqrt{\pi}\EulerGamma@{b}}{\EulerGamma@{\tfrac{1}{2}a+\tfrac{1}{2}b}\EulerGamma@{\tfrac{1}{2}b-\tfrac{1}{2}a+\tfrac{1}{2}}} |
hypergeom([a, 1 - a], [b], (1)/(2)) = ((2)^(1 - b)*sqrt(Pi)*GAMMA(b))/(GAMMA((1)/(2)*a +(1)/(2)*b)*GAMMA((1)/(2)*b -(1)/(2)*a +(1)/(2))) |
Hypergeometric2F1[a, 1 - a, b, Divide[1,2]] == Divide[(2)^(1 - b)*Sqrt[Pi]*Gamma[b],Gamma[Divide[1,2]*a +Divide[1,2]*b]*Gamma[Divide[1,2]*b -Divide[1,2]*a +Divide[1,2]]] |
Successful | Failure | - | Successful [Tested: 10] | |
15.4.E31 | \hyperF@{a}{\tfrac{1}{2}+a}{\tfrac{3}{2}-2a}{-\tfrac{1}{3}} = \left(\frac{8}{9}\right)^{-2a}\frac{\EulerGamma@{\tfrac{4}{3}}\EulerGamma@{\tfrac{3}{2}-2a}}{\EulerGamma@{\tfrac{3}{2}}\EulerGamma@{\tfrac{4}{3}-2a}} |
hypergeom([a, (1)/(2)+ a], [(3)/(2)- 2*a], -(1)/(3)) = ((8)/(9))^(- 2*a)*(GAMMA((4)/(3))*GAMMA((3)/(2)- 2*a))/(GAMMA((3)/(2))*GAMMA((4)/(3)- 2*a)) |
Hypergeometric2F1[a, Divide[1,2]+ a, Divide[3,2]- 2*a, -Divide[1,3]] == (Divide[8,9])^(- 2*a)*Divide[Gamma[Divide[4,3]]*Gamma[Divide[3,2]- 2*a],Gamma[Divide[3,2]]*Gamma[Divide[4,3]- 2*a]] |
Failure | Failure | Successful [Tested: 4] | Successful [Tested: 4] | |
15.4.E32 | \hyperF@{a}{\tfrac{1}{2}+a}{\tfrac{5}{6}+\tfrac{2}{3}a}{\tfrac{1}{9}} = \sqrt{\pi}\left(\frac{3}{4}\right)^{a}\frac{\EulerGamma@{\tfrac{5}{6}+\tfrac{2}{3}a}}{\EulerGamma@{\tfrac{1}{2}+\tfrac{1}{3}a}\EulerGamma@{\tfrac{5}{6}+\tfrac{1}{3}a}} |
hypergeom([a, (1)/(2)+ a], [(5)/(6)+(2)/(3)*a], (1)/(9)) = sqrt(Pi)*((3)/(4))^(a)*(GAMMA((5)/(6)+(2)/(3)*a))/(GAMMA((1)/(2)+(1)/(3)*a)*GAMMA((5)/(6)+(1)/(3)*a)) |
Hypergeometric2F1[a, Divide[1,2]+ a, Divide[5,6]+Divide[2,3]*a, Divide[1,9]] == Sqrt[Pi]*(Divide[3,4])^(a)*Divide[Gamma[Divide[5,6]+Divide[2,3]*a],Gamma[Divide[1,2]+Divide[1,3]*a]*Gamma[Divide[5,6]+Divide[1,3]*a]] |
Failure | Failure | Successful [Tested: 4] | Successful [Tested: 4] | |
15.4.E33 | \hyperF@{3a}{\tfrac{1}{3}+a}{\tfrac{2}{3}+2a}{e^{\ifrac{\iunit\pi}{3}}} = \sqrt{\pi}e^{\ifrac{\iunit\pi a}{2}}\left(\frac{16}{27}\right)^{(3a+1)/6}\frac{\EulerGamma@{\frac{5}{6}+a}}{\EulerGamma@{\frac{2}{3}+a}\EulerGamma@{\frac{2}{3}}} |
hypergeom([3*a, (1)/(3)+ a], [(2)/(3)+ 2*a], exp((I*Pi)/(3))) = sqrt(Pi)*exp((I*Pi*a)/(2))*((16)/(27))^((3*a + 1)/6)*(GAMMA((5)/(6)+ a))/(GAMMA((2)/(3)+ a)*GAMMA((2)/(3))) |
Hypergeometric2F1[3*a, Divide[1,3]+ a, Divide[2,3]+ 2*a, Exp[Divide[I*Pi,3]]] == Sqrt[Pi]*Exp[Divide[I*Pi*a,2]]*(Divide[16,27])^((3*a + 1)/6)*Divide[Gamma[Divide[5,6]+ a],Gamma[Divide[2,3]+ a]*Gamma[Divide[2,3]]] |
Failure | Failure | Successful [Tested: 4] | Successful [Tested: 4] |