15.4: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/15.4.E1 15.4.E1] || [[Item:Q4984|<math>\hyperF@{1}{1}{2}{z} = -z^{-1}\ln@{1-z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{1}{1}{2}{z} = -z^{-1}\ln@{1-z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([1, 1], [2], z) = - (z)^(- 1)* ln(1 - z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[1, 1, 2, z] == - (z)^(- 1)* Log[1 - z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
| [https://dlmf.nist.gov/15.4.E1 15.4.E1] || <math qid="Q4984">\hyperF@{1}{1}{2}{z} = -z^{-1}\ln@{1-z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{1}{1}{2}{z} = -z^{-1}\ln@{1-z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([1, 1], [2], z) = - (z)^(- 1)* ln(1 - z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[1, 1, 2, z] == - (z)^(- 1)* Log[1 - z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/15.4.E2 15.4.E2] || [[Item:Q4985|<math>\hyperF@{\tfrac{1}{2}}{1}{\tfrac{3}{2}}{z^{2}} = \frac{1}{2z}\ln@{\frac{1+z}{1-z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{\tfrac{1}{2}}{1}{\tfrac{3}{2}}{z^{2}} = \frac{1}{2z}\ln@{\frac{1+z}{1-z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([(1)/(2), 1], [(3)/(2)], (z)^(2)) = (1)/(2*z)*ln((1 + z)/(1 - z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[Divide[1,2], 1, Divide[3,2], (z)^(2)] == Divide[1,2*z]*Log[Divide[1 + z,1 - z]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .1e-9-2.094395103*I
| [https://dlmf.nist.gov/15.4.E2 15.4.E2] || <math qid="Q4985">\hyperF@{\tfrac{1}{2}}{1}{\tfrac{3}{2}}{z^{2}} = \frac{1}{2z}\ln@{\frac{1+z}{1-z}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{\tfrac{1}{2}}{1}{\tfrac{3}{2}}{z^{2}} = \frac{1}{2z}\ln@{\frac{1+z}{1-z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([(1)/(2), 1], [(3)/(2)], (z)^(2)) = (1)/(2*z)*ln((1 + z)/(1 - z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[Divide[1,2], 1, Divide[3,2], (z)^(2)] == Divide[1,2*z]*Log[Divide[1 + z,1 - z]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .1e-9-2.094395103*I
Test Values: {z = 3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.-1.570796327*I
Test Values: {z = 3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.-1.570796327*I
Test Values: {z = 2}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.1102230246251565*^-16, -2.0943951023931953]
Test Values: {z = 2}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.1102230246251565*^-16, -2.0943951023931953]
Line 22: Line 22:
Test Values: {Rule[z, 2]}</syntaxhighlight><br></div></div>
Test Values: {Rule[z, 2]}</syntaxhighlight><br></div></div>
|-  
|-  
| [https://dlmf.nist.gov/15.4.E3 15.4.E3] || [[Item:Q4986|<math>\hyperF@{\tfrac{1}{2}}{1}{\tfrac{3}{2}}{-z^{2}} = z^{-1}\atan@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{\tfrac{1}{2}}{1}{\tfrac{3}{2}}{-z^{2}} = z^{-1}\atan@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([(1)/(2), 1], [(3)/(2)], - (z)^(2)) = (z)^(- 1)* arctan(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[Divide[1,2], 1, Divide[3,2], - (z)^(2)] == (z)^(- 1)* ArcTan[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
| [https://dlmf.nist.gov/15.4.E3 15.4.E3] || <math qid="Q4986">\hyperF@{\tfrac{1}{2}}{1}{\tfrac{3}{2}}{-z^{2}} = z^{-1}\atan@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{\tfrac{1}{2}}{1}{\tfrac{3}{2}}{-z^{2}} = z^{-1}\atan@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([(1)/(2), 1], [(3)/(2)], - (z)^(2)) = (z)^(- 1)* arctan(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[Divide[1,2], 1, Divide[3,2], - (z)^(2)] == (z)^(- 1)* ArcTan[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/15.4.E4 15.4.E4] || [[Item:Q4987|<math>\hyperF@{\tfrac{1}{2}}{\tfrac{1}{2}}{\tfrac{3}{2}}{z^{2}} = z^{-1}\asin@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{\tfrac{1}{2}}{\tfrac{1}{2}}{\tfrac{3}{2}}{z^{2}} = z^{-1}\asin@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([(1)/(2), (1)/(2)], [(3)/(2)], (z)^(2)) = (z)^(- 1)* arcsin(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[Divide[1,2], Divide[1,2], Divide[3,2], (z)^(2)] == (z)^(- 1)* ArcSin[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
| [https://dlmf.nist.gov/15.4.E4 15.4.E4] || <math qid="Q4987">\hyperF@{\tfrac{1}{2}}{\tfrac{1}{2}}{\tfrac{3}{2}}{z^{2}} = z^{-1}\asin@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{\tfrac{1}{2}}{\tfrac{1}{2}}{\tfrac{3}{2}}{z^{2}} = z^{-1}\asin@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([(1)/(2), (1)/(2)], [(3)/(2)], (z)^(2)) = (z)^(- 1)* arcsin(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[Divide[1,2], Divide[1,2], Divide[3,2], (z)^(2)] == (z)^(- 1)* ArcSin[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/15.4.E5 15.4.E5] || [[Item:Q4988|<math>\hyperF@{\tfrac{1}{2}}{\tfrac{1}{2}}{\tfrac{3}{2}}{-z^{2}} = z^{-1}\ln@{z+\sqrt{1+z^{2}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{\tfrac{1}{2}}{\tfrac{1}{2}}{\tfrac{3}{2}}{-z^{2}} = z^{-1}\ln@{z+\sqrt{1+z^{2}}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([(1)/(2), (1)/(2)], [(3)/(2)], - (z)^(2)) = (z)^(- 1)* ln(z +sqrt(1 + (z)^(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[Divide[1,2], Divide[1,2], Divide[3,2], - (z)^(2)] == (z)^(- 1)* Log[z +Sqrt[1 + (z)^(2)]]</syntaxhighlight> || Failure || Successful || Successful [Tested: 7] || Successful [Tested: 7]
| [https://dlmf.nist.gov/15.4.E5 15.4.E5] || <math qid="Q4988">\hyperF@{\tfrac{1}{2}}{\tfrac{1}{2}}{\tfrac{3}{2}}{-z^{2}} = z^{-1}\ln@{z+\sqrt{1+z^{2}}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{\tfrac{1}{2}}{\tfrac{1}{2}}{\tfrac{3}{2}}{-z^{2}} = z^{-1}\ln@{z+\sqrt{1+z^{2}}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([(1)/(2), (1)/(2)], [(3)/(2)], - (z)^(2)) = (z)^(- 1)* ln(z +sqrt(1 + (z)^(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[Divide[1,2], Divide[1,2], Divide[3,2], - (z)^(2)] == (z)^(- 1)* Log[z +Sqrt[1 + (z)^(2)]]</syntaxhighlight> || Failure || Successful || Successful [Tested: 7] || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/15.4#Ex1 15.4#Ex1] || [[Item:Q4989|<math>\hyperF@{a}{b}{a}{z} = (1-z)^{-b}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{a}{b}{a}{z} = (1-z)^{-b}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([a, b], [a], z) = (1 - z)^(- b)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[a, b, a, z] == (1 - z)^(- b)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 252]
| [https://dlmf.nist.gov/15.4#Ex1 15.4#Ex1] || <math qid="Q4989">\hyperF@{a}{b}{a}{z} = (1-z)^{-b}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{a}{b}{a}{z} = (1-z)^{-b}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([a, b], [a], z) = (1 - z)^(- b)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[a, b, a, z] == (1 - z)^(- b)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 252]
|-  
|-  
| [https://dlmf.nist.gov/15.4#Ex2 15.4#Ex2] || [[Item:Q4990|<math>\hyperF@{a}{b}{b}{z} = (1-z)^{-a}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{a}{b}{b}{z} = (1-z)^{-a}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([a, b], [b], z) = (1 - z)^(- a)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[a, b, b, z] == (1 - z)^(- a)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 252]
| [https://dlmf.nist.gov/15.4#Ex2 15.4#Ex2] || <math qid="Q4990">\hyperF@{a}{b}{b}{z} = (1-z)^{-a}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{a}{b}{b}{z} = (1-z)^{-a}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([a, b], [b], z) = (1 - z)^(- a)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[a, b, b, z] == (1 - z)^(- a)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 252]
|-  
|-  
| [https://dlmf.nist.gov/15.4.E7 15.4.E7] || [[Item:Q4991|<math>\hyperF@{a}{\tfrac{1}{2}+a}{\tfrac{1}{2}}{z^{2}} = \tfrac{1}{2}\left((1+z)^{-2a}+(1-z)^{-2a}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{a}{\tfrac{1}{2}+a}{\tfrac{1}{2}}{z^{2}} = \tfrac{1}{2}\left((1+z)^{-2a}+(1-z)^{-2a}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([a, (1)/(2)+ a], [(1)/(2)], (z)^(2)) = (1)/(2)*((1 + z)^(- 2*a)+(1 - z)^(- 2*a))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[a, Divide[1,2]+ a, Divide[1,2], (z)^(2)] == Divide[1,2]*((1 + z)^(- 2*a)+(1 - z)^(- 2*a))</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 42]
| [https://dlmf.nist.gov/15.4.E7 15.4.E7] || <math qid="Q4991">\hyperF@{a}{\tfrac{1}{2}+a}{\tfrac{1}{2}}{z^{2}} = \tfrac{1}{2}\left((1+z)^{-2a}+(1-z)^{-2a}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{a}{\tfrac{1}{2}+a}{\tfrac{1}{2}}{z^{2}} = \tfrac{1}{2}\left((1+z)^{-2a}+(1-z)^{-2a}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([a, (1)/(2)+ a], [(1)/(2)], (z)^(2)) = (1)/(2)*((1 + z)^(- 2*a)+(1 - z)^(- 2*a))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[a, Divide[1,2]+ a, Divide[1,2], (z)^(2)] == Divide[1,2]*((1 + z)^(- 2*a)+(1 - z)^(- 2*a))</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 42]
|-  
|-  
| [https://dlmf.nist.gov/15.4.E8 15.4.E8] || [[Item:Q4992|<math>\hyperF@{a}{\tfrac{1}{2}+a}{\tfrac{1}{2}}{-\tan^{2}@@{z}} = (\cos@@{z})^{2a}\cos@{2az}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{a}{\tfrac{1}{2}+a}{\tfrac{1}{2}}{-\tan^{2}@@{z}} = (\cos@@{z})^{2a}\cos@{2az}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([a, (1)/(2)+ a], [(1)/(2)], - (tan(z))^(2)) = (cos(z))^(2*a)* cos(2*a*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[a, Divide[1,2]+ a, Divide[1,2], - (Tan[z])^(2)] == (Cos[z])^(2*a)* Cos[2*a*z]</syntaxhighlight> || Failure || Failure || Successful [Tested: 42] || Successful [Tested: 42]
| [https://dlmf.nist.gov/15.4.E8 15.4.E8] || <math qid="Q4992">\hyperF@{a}{\tfrac{1}{2}+a}{\tfrac{1}{2}}{-\tan^{2}@@{z}} = (\cos@@{z})^{2a}\cos@{2az}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{a}{\tfrac{1}{2}+a}{\tfrac{1}{2}}{-\tan^{2}@@{z}} = (\cos@@{z})^{2a}\cos@{2az}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([a, (1)/(2)+ a], [(1)/(2)], - (tan(z))^(2)) = (cos(z))^(2*a)* cos(2*a*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[a, Divide[1,2]+ a, Divide[1,2], - (Tan[z])^(2)] == (Cos[z])^(2*a)* Cos[2*a*z]</syntaxhighlight> || Failure || Failure || Successful [Tested: 42] || Successful [Tested: 42]
|-  
|-  
| [https://dlmf.nist.gov/15.4.E9 15.4.E9] || [[Item:Q4993|<math>\hyperF@{a}{\tfrac{1}{2}+a}{\tfrac{3}{2}}{z^{2}} = \frac{1}{(2-4a)z}\left((1+z)^{1-2a}-(1-z)^{1-2a}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{a}{\tfrac{1}{2}+a}{\tfrac{3}{2}}{z^{2}} = \frac{1}{(2-4a)z}\left((1+z)^{1-2a}-(1-z)^{1-2a}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([a, (1)/(2)+ a], [(3)/(2)], (z)^(2)) = (1)/((2 - 4*a)*z)*((1 + z)^(1 - 2*a)-(1 - z)^(1 - 2*a))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[a, Divide[1,2]+ a, Divide[3,2], (z)^(2)] == Divide[1,(2 - 4*a)*z]*((1 + z)^(1 - 2*a)-(1 - z)^(1 - 2*a))</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
| [https://dlmf.nist.gov/15.4.E9 15.4.E9] || <math qid="Q4993">\hyperF@{a}{\tfrac{1}{2}+a}{\tfrac{3}{2}}{z^{2}} = \frac{1}{(2-4a)z}\left((1+z)^{1-2a}-(1-z)^{1-2a}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{a}{\tfrac{1}{2}+a}{\tfrac{3}{2}}{z^{2}} = \frac{1}{(2-4a)z}\left((1+z)^{1-2a}-(1-z)^{1-2a}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([a, (1)/(2)+ a], [(3)/(2)], (z)^(2)) = (1)/((2 - 4*a)*z)*((1 + z)^(1 - 2*a)-(1 - z)^(1 - 2*a))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[a, Divide[1,2]+ a, Divide[3,2], (z)^(2)] == Divide[1,(2 - 4*a)*z]*((1 + z)^(1 - 2*a)-(1 - z)^(1 - 2*a))</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[a, 0.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[a, 0.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[a, 0.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[a, 0.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/15.4.E10 15.4.E10] || [[Item:Q4994|<math>\hyperF@{a}{\tfrac{1}{2}+a}{\tfrac{3}{2}}{-\tan^{2}@@{z}} = (\cos@@{z})^{2a}\frac{\sin@{(1-2a)z}}{(1-2a)\sin@@{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{a}{\tfrac{1}{2}+a}{\tfrac{3}{2}}{-\tan^{2}@@{z}} = (\cos@@{z})^{2a}\frac{\sin@{(1-2a)z}}{(1-2a)\sin@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([a, (1)/(2)+ a], [(3)/(2)], - (tan(z))^(2)) = (cos(z))^(2*a)*(sin((1 - 2*a)*z))/((1 - 2*a)*sin(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[a, Divide[1,2]+ a, Divide[3,2], - (Tan[z])^(2)] == (Cos[z])^(2*a)*Divide[Sin[(1 - 2*a)*z],(1 - 2*a)*Sin[z]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Float(undefined)+Float(undefined)*I
| [https://dlmf.nist.gov/15.4.E10 15.4.E10] || <math qid="Q4994">\hyperF@{a}{\tfrac{1}{2}+a}{\tfrac{3}{2}}{-\tan^{2}@@{z}} = (\cos@@{z})^{2a}\frac{\sin@{(1-2a)z}}{(1-2a)\sin@@{z}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{a}{\tfrac{1}{2}+a}{\tfrac{3}{2}}{-\tan^{2}@@{z}} = (\cos@@{z})^{2a}\frac{\sin@{(1-2a)z}}{(1-2a)\sin@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([a, (1)/(2)+ a], [(3)/(2)], - (tan(z))^(2)) = (cos(z))^(2*a)*(sin((1 - 2*a)*z))/((1 - 2*a)*sin(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[a, Divide[1,2]+ a, Divide[3,2], - (Tan[z])^(2)] == (Cos[z])^(2*a)*Divide[Sin[(1 - 2*a)*z],(1 - 2*a)*Sin[z]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Float(undefined)+Float(undefined)*I
Test Values: {a = 1/2, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Float(undefined)+Float(undefined)*I
Test Values: {a = 1/2, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Float(undefined)+Float(undefined)*I
Test Values: {a = 1/2, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {a = 1/2, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Line 46: Line 46:
Test Values: {Rule[a, 0.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[a, 0.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/15.4.E11 15.4.E11] || [[Item:Q4995|<math>\hyperF@{-a}{a}{\tfrac{1}{2}}{-z^{2}} = \tfrac{1}{2}\left(\left(\sqrt{1+z^{2}}+z\right)^{2a}+\left(\sqrt{1+z^{2}}-z\right)^{2a}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{-a}{a}{\tfrac{1}{2}}{-z^{2}} = \tfrac{1}{2}\left(\left(\sqrt{1+z^{2}}+z\right)^{2a}+\left(\sqrt{1+z^{2}}-z\right)^{2a}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([- a, a], [(1)/(2)], - (z)^(2)) = (1)/(2)*((sqrt(1 + (z)^(2))+ z)^(2*a)+(sqrt(1 + (z)^(2))- z)^(2*a))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[- a, a, Divide[1,2], - (z)^(2)] == Divide[1,2]*((Sqrt[1 + (z)^(2)]+ z)^(2*a)+(Sqrt[1 + (z)^(2)]- z)^(2*a))</syntaxhighlight> || Failure || Failure || Successful [Tested: 42] || Successful [Tested: 42]
| [https://dlmf.nist.gov/15.4.E11 15.4.E11] || <math qid="Q4995">\hyperF@{-a}{a}{\tfrac{1}{2}}{-z^{2}} = \tfrac{1}{2}\left(\left(\sqrt{1+z^{2}}+z\right)^{2a}+\left(\sqrt{1+z^{2}}-z\right)^{2a}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{-a}{a}{\tfrac{1}{2}}{-z^{2}} = \tfrac{1}{2}\left(\left(\sqrt{1+z^{2}}+z\right)^{2a}+\left(\sqrt{1+z^{2}}-z\right)^{2a}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([- a, a], [(1)/(2)], - (z)^(2)) = (1)/(2)*((sqrt(1 + (z)^(2))+ z)^(2*a)+(sqrt(1 + (z)^(2))- z)^(2*a))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[- a, a, Divide[1,2], - (z)^(2)] == Divide[1,2]*((Sqrt[1 + (z)^(2)]+ z)^(2*a)+(Sqrt[1 + (z)^(2)]- z)^(2*a))</syntaxhighlight> || Failure || Failure || Successful [Tested: 42] || Successful [Tested: 42]
|-  
|-  
| [https://dlmf.nist.gov/15.4.E12 15.4.E12] || [[Item:Q4996|<math>\hyperF@{-a}{a}{\tfrac{1}{2}}{\sin^{2}@@{z}} = \cos@{2az}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{-a}{a}{\tfrac{1}{2}}{\sin^{2}@@{z}} = \cos@{2az}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([- a, a], [(1)/(2)], (sin(z))^(2)) = cos(2*a*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[- a, a, Divide[1,2], (Sin[z])^(2)] == Cos[2*a*z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [4 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -1.920340573
| [https://dlmf.nist.gov/15.4.E12 15.4.E12] || <math qid="Q4996">\hyperF@{-a}{a}{\tfrac{1}{2}}{\sin^{2}@@{z}} = \cos@{2az}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{-a}{a}{\tfrac{1}{2}}{\sin^{2}@@{z}} = \cos@{2az}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([- a, a], [(1)/(2)], (sin(z))^(2)) = cos(2*a*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[- a, a, Divide[1,2], (Sin[z])^(2)] == Cos[2*a*z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [4 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -1.920340573
Test Values: {a = -3/2, z = 2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.920340573
Test Values: {a = -3/2, z = 2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.920340573
Test Values: {a = 3/2, z = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [4 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -1.9203405733007322
Test Values: {a = 3/2, z = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [4 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -1.9203405733007322
Line 54: Line 54:
Test Values: {Rule[a, 1.5], Rule[z, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[a, 1.5], Rule[z, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/15.4.E13 15.4.E13] || [[Item:Q4997|<math>\hyperF@{a}{1-a}{\tfrac{1}{2}}{-z^{2}} = \frac{1}{2\sqrt{1+z^{2}}}\left(\left(\sqrt{1+z^{2}}+z\right)^{2a-1}+\left(\sqrt{1+z^{2}}-z\right)^{2a-1}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{a}{1-a}{\tfrac{1}{2}}{-z^{2}} = \frac{1}{2\sqrt{1+z^{2}}}\left(\left(\sqrt{1+z^{2}}+z\right)^{2a-1}+\left(\sqrt{1+z^{2}}-z\right)^{2a-1}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([a, 1 - a], [(1)/(2)], - (z)^(2)) = (1)/(2*sqrt(1 + (z)^(2)))*((sqrt(1 + (z)^(2))+ z)^(2*a - 1)+(sqrt(1 + (z)^(2))- z)^(2*a - 1))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[a, 1 - a, Divide[1,2], - (z)^(2)] == Divide[1,2*Sqrt[1 + (z)^(2)]]*((Sqrt[1 + (z)^(2)]+ z)^(2*a - 1)+(Sqrt[1 + (z)^(2)]- z)^(2*a - 1))</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 42]
| [https://dlmf.nist.gov/15.4.E13 15.4.E13] || <math qid="Q4997">\hyperF@{a}{1-a}{\tfrac{1}{2}}{-z^{2}} = \frac{1}{2\sqrt{1+z^{2}}}\left(\left(\sqrt{1+z^{2}}+z\right)^{2a-1}+\left(\sqrt{1+z^{2}}-z\right)^{2a-1}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{a}{1-a}{\tfrac{1}{2}}{-z^{2}} = \frac{1}{2\sqrt{1+z^{2}}}\left(\left(\sqrt{1+z^{2}}+z\right)^{2a-1}+\left(\sqrt{1+z^{2}}-z\right)^{2a-1}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([a, 1 - a], [(1)/(2)], - (z)^(2)) = (1)/(2*sqrt(1 + (z)^(2)))*((sqrt(1 + (z)^(2))+ z)^(2*a - 1)+(sqrt(1 + (z)^(2))- z)^(2*a - 1))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[a, 1 - a, Divide[1,2], - (z)^(2)] == Divide[1,2*Sqrt[1 + (z)^(2)]]*((Sqrt[1 + (z)^(2)]+ z)^(2*a - 1)+(Sqrt[1 + (z)^(2)]- z)^(2*a - 1))</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 42]
|-  
|-  
| [https://dlmf.nist.gov/15.4.E14 15.4.E14] || [[Item:Q4998|<math>\hyperF@{a}{1-a}{\tfrac{1}{2}}{\sin^{2}@@{z}} = \frac{\cos@{(2a-1)z}}{\cos@@{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{a}{1-a}{\tfrac{1}{2}}{\sin^{2}@@{z}} = \frac{\cos@{(2a-1)z}}{\cos@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([a, 1 - a], [(1)/(2)], (sin(z))^(2)) = (cos((2*a - 1)*z))/(cos(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[a, 1 - a, Divide[1,2], (Sin[z])^(2)] == Divide[Cos[(2*a - 1)*z],Cos[z]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [4 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.6992725697
| [https://dlmf.nist.gov/15.4.E14 15.4.E14] || <math qid="Q4998">\hyperF@{a}{1-a}{\tfrac{1}{2}}{\sin^{2}@@{z}} = \frac{\cos@{(2a-1)z}}{\cos@@{z}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{a}{1-a}{\tfrac{1}{2}}{\sin^{2}@@{z}} = \frac{\cos@{(2a-1)z}}{\cos@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([a, 1 - a], [(1)/(2)], (sin(z))^(2)) = (cos((2*a - 1)*z))/(cos(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[a, 1 - a, Divide[1,2], (Sin[z])^(2)] == Divide[Cos[(2*a - 1)*z],Cos[z]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [4 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.6992725697
Test Values: {a = -3/2, z = 2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -3.141408577
Test Values: {a = -3/2, z = 2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -3.141408577
Test Values: {a = 3/2, z = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [4 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -0.6992725693452728
Test Values: {a = 3/2, z = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [4 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -0.6992725693452728
Line 62: Line 62:
Test Values: {Rule[a, 1.5], Rule[z, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[a, 1.5], Rule[z, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/15.4.E15 15.4.E15] || [[Item:Q4999|<math>\hyperF@{a}{1-a}{\tfrac{3}{2}}{-z^{2}} = \frac{1}{(2-4a)z}\left(\left(\sqrt{1+z^{2}}+z\right)^{1-2a}-\left(\sqrt{1+z^{2}}-z\right)^{1-2a}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{a}{1-a}{\tfrac{3}{2}}{-z^{2}} = \frac{1}{(2-4a)z}\left(\left(\sqrt{1+z^{2}}+z\right)^{1-2a}-\left(\sqrt{1+z^{2}}-z\right)^{1-2a}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([a, 1 - a], [(3)/(2)], - (z)^(2)) = (1)/((2 - 4*a)*z)*((sqrt(1 + (z)^(2))+ z)^(1 - 2*a)-(sqrt(1 + (z)^(2))- z)^(1 - 2*a))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[a, 1 - a, Divide[3,2], - (z)^(2)] == Divide[1,(2 - 4*a)*z]*((Sqrt[1 + (z)^(2)]+ z)^(1 - 2*a)-(Sqrt[1 + (z)^(2)]- z)^(1 - 2*a))</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Float(undefined)+Float(undefined)*I
| [https://dlmf.nist.gov/15.4.E15 15.4.E15] || <math qid="Q4999">\hyperF@{a}{1-a}{\tfrac{3}{2}}{-z^{2}} = \frac{1}{(2-4a)z}\left(\left(\sqrt{1+z^{2}}+z\right)^{1-2a}-\left(\sqrt{1+z^{2}}-z\right)^{1-2a}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{a}{1-a}{\tfrac{3}{2}}{-z^{2}} = \frac{1}{(2-4a)z}\left(\left(\sqrt{1+z^{2}}+z\right)^{1-2a}-\left(\sqrt{1+z^{2}}-z\right)^{1-2a}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([a, 1 - a], [(3)/(2)], - (z)^(2)) = (1)/((2 - 4*a)*z)*((sqrt(1 + (z)^(2))+ z)^(1 - 2*a)-(sqrt(1 + (z)^(2))- z)^(1 - 2*a))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[a, 1 - a, Divide[3,2], - (z)^(2)] == Divide[1,(2 - 4*a)*z]*((Sqrt[1 + (z)^(2)]+ z)^(1 - 2*a)-(Sqrt[1 + (z)^(2)]- z)^(1 - 2*a))</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Float(undefined)+Float(undefined)*I
Test Values: {a = 1/2, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Float(undefined)+Float(undefined)*I
Test Values: {a = 1/2, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Float(undefined)+Float(undefined)*I
Test Values: {a = 1/2, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {a = 1/2, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Line 68: Line 68:
Test Values: {Rule[a, 0.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[a, 0.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/15.4.E16 15.4.E16] || [[Item:Q5000|<math>\hyperF@{a}{1-a}{\tfrac{3}{2}}{\sin^{2}@@{z}} = \frac{\sin@{(2a-1)z}}{(2a-1)\sin@@{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{a}{1-a}{\tfrac{3}{2}}{\sin^{2}@@{z}} = \frac{\sin@{(2a-1)z}}{(2a-1)\sin@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([a, 1 - a], [(3)/(2)], (sin(z))^(2)) = (sin((2*a - 1)*z))/((2*a - 1)*sin(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[a, 1 - a, Divide[3,2], (Sin[z])^(2)] == Divide[Sin[(2*a - 1)*z],(2*a - 1)*Sin[z]]</syntaxhighlight> || Successful || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [10 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -0.5440234501032235
| [https://dlmf.nist.gov/15.4.E16 15.4.E16] || <math qid="Q5000">\hyperF@{a}{1-a}{\tfrac{3}{2}}{\sin^{2}@@{z}} = \frac{\sin@{(2a-1)z}}{(2a-1)\sin@@{z}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{a}{1-a}{\tfrac{3}{2}}{\sin^{2}@@{z}} = \frac{\sin@{(2a-1)z}}{(2a-1)\sin@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([a, 1 - a], [(3)/(2)], (sin(z))^(2)) = (sin((2*a - 1)*z))/((2*a - 1)*sin(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[a, 1 - a, Divide[3,2], (Sin[z])^(2)] == Divide[Sin[(2*a - 1)*z],(2*a - 1)*Sin[z]]</syntaxhighlight> || Successful || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [10 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -0.5440234501032235
Test Values: {Rule[a, -1.5], Rule[z, 2]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.8322936730942848
Test Values: {Rule[a, -1.5], Rule[z, 2]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.8322936730942848
Test Values: {Rule[a, 1.5], Rule[z, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[a, 1.5], Rule[z, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/15.4.E17 15.4.E17] || [[Item:Q5001|<math>\hyperF@{a}{\tfrac{1}{2}+a}{1+2a}{z} = \left(\tfrac{1}{2}+\tfrac{1}{2}\sqrt{1-z}\right)^{-2a}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{a}{\tfrac{1}{2}+a}{1+2a}{z} = \left(\tfrac{1}{2}+\tfrac{1}{2}\sqrt{1-z}\right)^{-2a}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([a, (1)/(2)+ a], [1 + 2*a], z) = ((1)/(2)+(1)/(2)*sqrt(1 - z))^(- 2*a)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[a, Divide[1,2]+ a, 1 + 2*a, z] == (Divide[1,2]+Divide[1,2]*Sqrt[1 - z])^(- 2*a)</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [20 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.02099232729741518, 0.019754284780044207]
| [https://dlmf.nist.gov/15.4.E17 15.4.E17] || <math qid="Q5001">\hyperF@{a}{\tfrac{1}{2}+a}{1+2a}{z} = \left(\tfrac{1}{2}+\tfrac{1}{2}\sqrt{1-z}\right)^{-2a}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{a}{\tfrac{1}{2}+a}{1+2a}{z} = \left(\tfrac{1}{2}+\tfrac{1}{2}\sqrt{1-z}\right)^{-2a}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([a, (1)/(2)+ a], [1 + 2*a], z) = ((1)/(2)+(1)/(2)*sqrt(1 - z))^(- 2*a)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[a, Divide[1,2]+ a, 1 + 2*a, z] == (Divide[1,2]+Divide[1,2]*Sqrt[1 - z])^(- 2*a)</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [20 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.02099232729741518, 0.019754284780044207]
Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.009306933376070914, 0.00445671804147707]
Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.009306933376070914, 0.00445671804147707]
Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/15.4.E18 15.4.E18] || [[Item:Q5002|<math>\hyperF@{a}{\tfrac{1}{2}+a}{2a}{z} = \frac{1}{\sqrt{1-z}}\left(\tfrac{1}{2}+\tfrac{1}{2}\sqrt{1-z}\right)^{1-2a}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{a}{\tfrac{1}{2}+a}{2a}{z} = \frac{1}{\sqrt{1-z}}\left(\tfrac{1}{2}+\tfrac{1}{2}\sqrt{1-z}\right)^{1-2a}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([a, (1)/(2)+ a], [2*a], z) = (1)/(sqrt(1 - z))*((1)/(2)+(1)/(2)*sqrt(1 - z))^(1 - 2*a)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[a, Divide[1,2]+ a, 2*a, z] == Divide[1,Sqrt[1 - z]]*(Divide[1,2]+Divide[1,2]*Sqrt[1 - z])^(1 - 2*a)</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [17 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.009435141098616318, 0.007866769593881467]
| [https://dlmf.nist.gov/15.4.E18 15.4.E18] || <math qid="Q5002">\hyperF@{a}{\tfrac{1}{2}+a}{2a}{z} = \frac{1}{\sqrt{1-z}}\left(\tfrac{1}{2}+\tfrac{1}{2}\sqrt{1-z}\right)^{1-2a}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{a}{\tfrac{1}{2}+a}{2a}{z} = \frac{1}{\sqrt{1-z}}\left(\tfrac{1}{2}+\tfrac{1}{2}\sqrt{1-z}\right)^{1-2a}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([a, (1)/(2)+ a], [2*a], z) = (1)/(sqrt(1 - z))*((1)/(2)+(1)/(2)*sqrt(1 - z))^(1 - 2*a)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[a, Divide[1,2]+ a, 2*a, z] == Divide[1,Sqrt[1 - z]]*(Divide[1,2]+Divide[1,2]*Sqrt[1 - z])^(1 - 2*a)</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [17 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.009435141098616318, 0.007866769593881467]
Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.0016763074528445276, -3.2228425612285116*^-4]
Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.0016763074528445276, -3.2228425612285116*^-4]
Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/15.4.E19 15.4.E19] || [[Item:Q5003|<math>\hyperF@{a+1}{b}{a}{z} = \left(1-(1-(\ifrac{b}{a}))z\right)(1-z)^{-1-b}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{a+1}{b}{a}{z} = \left(1-(1-(\ifrac{b}{a}))z\right)(1-z)^{-1-b}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([a + 1, b], [a], z) = (1 -(1 -((b)/(a)))*z)*(1 - z)^(- 1 - b)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[a + 1, b, a, z] == (1 -(1 -(Divide[b,a]))*z)*(1 - z)^(- 1 - b)</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [34 / 252]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.041984654594830306, 0.03950856956008836]
| [https://dlmf.nist.gov/15.4.E19 15.4.E19] || <math qid="Q5003">\hyperF@{a+1}{b}{a}{z} = \left(1-(1-(\ifrac{b}{a}))z\right)(1-z)^{-1-b}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{a+1}{b}{a}{z} = \left(1-(1-(\ifrac{b}{a}))z\right)(1-z)^{-1-b}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([a + 1, b], [a], z) = (1 -(1 -((b)/(a)))*z)*(1 - z)^(- 1 - b)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[a + 1, b, a, z] == (1 -(1 -(Divide[b,a]))*z)*(1 - z)^(- 1 - b)</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [34 / 252]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.041984654594830306, 0.03950856956008836]
Test Values: {Rule[a, -2], Rule[b, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.018613866752141828, 0.008913436082954251]
Test Values: {Rule[a, -2], Rule[b, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.018613866752141828, 0.008913436082954251]
Test Values: {Rule[a, -2], Rule[b, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[a, -2], Rule[b, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/15.4.E20 15.4.E20] || [[Item:Q5004|<math>\hyperF@{a}{b}{c}{1} = \frac{\EulerGamma@{c}\EulerGamma@{c-a-b}}{\EulerGamma@{c-a}\EulerGamma@{c-b}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{a}{b}{c}{1} = \frac{\EulerGamma@{c}\EulerGamma@{c-a-b}}{\EulerGamma@{c-a}\EulerGamma@{c-b}}</syntaxhighlight> || <math>\realpart@@{c} > 0, \realpart@@{(c-a-b)} > 0, \realpart@@{(c-a)} > 0, \realpart@@{(c-b)} > 0</math> || <syntaxhighlight lang=mathematica>hypergeom([a, b], [c], 1) = (GAMMA(c)*GAMMA(c - a - b))/(GAMMA(c - a)*GAMMA(c - b))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[a, b, c, 1] == Divide[Gamma[c]*Gamma[c - a - b],Gamma[c - a]*Gamma[c - b]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 47] || Successful [Tested: 47]
| [https://dlmf.nist.gov/15.4.E20 15.4.E20] || <math qid="Q5004">\hyperF@{a}{b}{c}{1} = \frac{\EulerGamma@{c}\EulerGamma@{c-a-b}}{\EulerGamma@{c-a}\EulerGamma@{c-b}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{a}{b}{c}{1} = \frac{\EulerGamma@{c}\EulerGamma@{c-a-b}}{\EulerGamma@{c-a}\EulerGamma@{c-b}}</syntaxhighlight> || <math>\realpart@@{c} > 0, \realpart@@{(c-a-b)} > 0, \realpart@@{(c-a)} > 0, \realpart@@{(c-b)} > 0</math> || <syntaxhighlight lang=mathematica>hypergeom([a, b], [c], 1) = (GAMMA(c)*GAMMA(c - a - b))/(GAMMA(c - a)*GAMMA(c - b))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[a, b, c, 1] == Divide[Gamma[c]*Gamma[c - a - b],Gamma[c - a]*Gamma[c - b]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 47] || Successful [Tested: 47]
|-  
|-  
| [https://dlmf.nist.gov/15.4.E21 15.4.E21] || [[Item:Q5005|<math>\lim_{z\to 1-}\frac{\hyperF@{a}{b}{a+b}{z}}{-\ln@{1-z}} = \frac{\EulerGamma@{a+b}}{\EulerGamma@{a}\EulerGamma@{b}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\lim_{z\to 1-}\frac{\hyperF@{a}{b}{a+b}{z}}{-\ln@{1-z}} = \frac{\EulerGamma@{a+b}}{\EulerGamma@{a}\EulerGamma@{b}}</syntaxhighlight> || <math>\realpart@@{(a+b)} > 0, \realpart@@{a} > 0, \realpart@@{b} > 0</math> || <syntaxhighlight lang=mathematica>limit((hypergeom([a, b], [a + b], z))/(- ln(1 - z)), z = 1, left) = (GAMMA(a + b))/(GAMMA(a)*GAMMA(b))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Limit[Divide[Hypergeometric2F1[a, b, a + b, z],- Log[1 - z]], z -> 1, Direction -> "FromBelow", GenerateConditions->None] == Divide[Gamma[a + b],Gamma[a]*Gamma[b]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 9]
| [https://dlmf.nist.gov/15.4.E21 15.4.E21] || <math qid="Q5005">\lim_{z\to 1-}\frac{\hyperF@{a}{b}{a+b}{z}}{-\ln@{1-z}} = \frac{\EulerGamma@{a+b}}{\EulerGamma@{a}\EulerGamma@{b}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\lim_{z\to 1-}\frac{\hyperF@{a}{b}{a+b}{z}}{-\ln@{1-z}} = \frac{\EulerGamma@{a+b}}{\EulerGamma@{a}\EulerGamma@{b}}</syntaxhighlight> || <math>\realpart@@{(a+b)} > 0, \realpart@@{a} > 0, \realpart@@{b} > 0</math> || <syntaxhighlight lang=mathematica>limit((hypergeom([a, b], [a + b], z))/(- ln(1 - z)), z = 1, left) = (GAMMA(a + b))/(GAMMA(a)*GAMMA(b))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Limit[Divide[Hypergeometric2F1[a, b, a + b, z],- Log[1 - z]], z -> 1, Direction -> "FromBelow", GenerateConditions->None] == Divide[Gamma[a + b],Gamma[a]*Gamma[b]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 9]
|-  
|-  
| [https://dlmf.nist.gov/15.4.E22 15.4.E22] || [[Item:Q5006|<math>\lim_{z\to 1-}(1-z)^{a+b-c}\left(\hyperF@{a}{b}{c}{z}-\frac{\EulerGamma@{c}\EulerGamma@{c-a-b}}{\EulerGamma@{c-a}\EulerGamma@{c-b}}\right) = \frac{\EulerGamma@{c}\EulerGamma@{a+b-c}}{\EulerGamma@{a}\EulerGamma@{b}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\lim_{z\to 1-}(1-z)^{a+b-c}\left(\hyperF@{a}{b}{c}{z}-\frac{\EulerGamma@{c}\EulerGamma@{c-a-b}}{\EulerGamma@{c-a}\EulerGamma@{c-b}}\right) = \frac{\EulerGamma@{c}\EulerGamma@{a+b-c}}{\EulerGamma@{a}\EulerGamma@{b}}</syntaxhighlight> || <math>\realpart@@{c} > 0, \realpart@@{(c-a-b)} > 0, \realpart@@{(c-a)} > 0, \realpart@@{(c-b)} > 0, \realpart@@{(a+b-c)} > 0, \realpart@@{a} > 0, \realpart@@{b} > 0</math> || <syntaxhighlight lang=mathematica>limit((1 - z)^(a + b - c)*(hypergeom([a, b], [c], z)-(GAMMA(c)*GAMMA(c - a - b))/(GAMMA(c - a)*GAMMA(c - b))), z = 1, left) = (GAMMA(c)*GAMMA(a + b - c))/(GAMMA(a)*GAMMA(b))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Limit[(1 - z)^(a + b - c)*(Hypergeometric2F1[a, b, c, z]-Divide[Gamma[c]*Gamma[c - a - b],Gamma[c - a]*Gamma[c - b]]), z -> 1, Direction -> "FromBelow", GenerateConditions->None] == Divide[Gamma[c]*Gamma[a + b - c],Gamma[a]*Gamma[b]]</syntaxhighlight> || Failure || Aborted || Error || Skipped - Because timed out
| [https://dlmf.nist.gov/15.4.E22 15.4.E22] || <math qid="Q5006">\lim_{z\to 1-}(1-z)^{a+b-c}\left(\hyperF@{a}{b}{c}{z}-\frac{\EulerGamma@{c}\EulerGamma@{c-a-b}}{\EulerGamma@{c-a}\EulerGamma@{c-b}}\right) = \frac{\EulerGamma@{c}\EulerGamma@{a+b-c}}{\EulerGamma@{a}\EulerGamma@{b}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\lim_{z\to 1-}(1-z)^{a+b-c}\left(\hyperF@{a}{b}{c}{z}-\frac{\EulerGamma@{c}\EulerGamma@{c-a-b}}{\EulerGamma@{c-a}\EulerGamma@{c-b}}\right) = \frac{\EulerGamma@{c}\EulerGamma@{a+b-c}}{\EulerGamma@{a}\EulerGamma@{b}}</syntaxhighlight> || <math>\realpart@@{c} > 0, \realpart@@{(c-a-b)} > 0, \realpart@@{(c-a)} > 0, \realpart@@{(c-b)} > 0, \realpart@@{(a+b-c)} > 0, \realpart@@{a} > 0, \realpart@@{b} > 0</math> || <syntaxhighlight lang=mathematica>limit((1 - z)^(a + b - c)*(hypergeom([a, b], [c], z)-(GAMMA(c)*GAMMA(c - a - b))/(GAMMA(c - a)*GAMMA(c - b))), z = 1, left) = (GAMMA(c)*GAMMA(a + b - c))/(GAMMA(a)*GAMMA(b))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Limit[(1 - z)^(a + b - c)*(Hypergeometric2F1[a, b, c, z]-Divide[Gamma[c]*Gamma[c - a - b],Gamma[c - a]*Gamma[c - b]]), z -> 1, Direction -> "FromBelow", GenerateConditions->None] == Divide[Gamma[c]*Gamma[a + b - c],Gamma[a]*Gamma[b]]</syntaxhighlight> || Failure || Aborted || Error || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/15.4.E23 15.4.E23] || [[Item:Q5007|<math>\lim_{z\to 1-}\frac{\hyperF@{a}{b}{c}{z}}{(1-z)^{c-a-b}} = \frac{\EulerGamma@{c}\EulerGamma@{a+b-c}}{\EulerGamma@{a}\EulerGamma@{b}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\lim_{z\to 1-}\frac{\hyperF@{a}{b}{c}{z}}{(1-z)^{c-a-b}} = \frac{\EulerGamma@{c}\EulerGamma@{a+b-c}}{\EulerGamma@{a}\EulerGamma@{b}}</syntaxhighlight> || <math>\realpart@@{c} > 0, \realpart@@{(a+b-c)} > 0, \realpart@@{a} > 0, \realpart@@{b} > 0</math> || <syntaxhighlight lang=mathematica>limit((hypergeom([a, b], [c], z))/((1 - z)^(c - a - b)), z = 1, left) = (GAMMA(c)*GAMMA(a + b - c))/(GAMMA(a)*GAMMA(b))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Limit[Divide[Hypergeometric2F1[a, b, c, z],(1 - z)^(c - a - b)], z -> 1, Direction -> "FromBelow", GenerateConditions->None] == Divide[Gamma[c]*Gamma[a + b - c],Gamma[a]*Gamma[b]]</syntaxhighlight> || Failure || Failure || Manual Skip! || Successful [Tested: 23]
| [https://dlmf.nist.gov/15.4.E23 15.4.E23] || <math qid="Q5007">\lim_{z\to 1-}\frac{\hyperF@{a}{b}{c}{z}}{(1-z)^{c-a-b}} = \frac{\EulerGamma@{c}\EulerGamma@{a+b-c}}{\EulerGamma@{a}\EulerGamma@{b}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\lim_{z\to 1-}\frac{\hyperF@{a}{b}{c}{z}}{(1-z)^{c-a-b}} = \frac{\EulerGamma@{c}\EulerGamma@{a+b-c}}{\EulerGamma@{a}\EulerGamma@{b}}</syntaxhighlight> || <math>\realpart@@{c} > 0, \realpart@@{(a+b-c)} > 0, \realpart@@{a} > 0, \realpart@@{b} > 0</math> || <syntaxhighlight lang=mathematica>limit((hypergeom([a, b], [c], z))/((1 - z)^(c - a - b)), z = 1, left) = (GAMMA(c)*GAMMA(a + b - c))/(GAMMA(a)*GAMMA(b))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Limit[Divide[Hypergeometric2F1[a, b, c, z],(1 - z)^(c - a - b)], z -> 1, Direction -> "FromBelow", GenerateConditions->None] == Divide[Gamma[c]*Gamma[a + b - c],Gamma[a]*Gamma[b]]</syntaxhighlight> || Failure || Failure || Manual Skip! || Successful [Tested: 23]
|-  
|-  
| [https://dlmf.nist.gov/15.4.E24 15.4.E24] || [[Item:Q5008|<math>\hyperF@{-n}{b}{c}{1} = \frac{\Pochhammersym{c-b}{n}}{\Pochhammersym{c}{n}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{-n}{b}{c}{1} = \frac{\Pochhammersym{c-b}{n}}{\Pochhammersym{c}{n}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([- n, b], [c], 1) = (pochhammer(c - b, n))/(pochhammer(c, n))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[- n, b, c, 1] == Divide[Pochhammer[c - b, n],Pochhammer[c, n]]</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 36]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
| [https://dlmf.nist.gov/15.4.E24 15.4.E24] || <math qid="Q5008">\hyperF@{-n}{b}{c}{1} = \frac{\Pochhammersym{c-b}{n}}{\Pochhammersym{c}{n}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{-n}{b}{c}{1} = \frac{\Pochhammersym{c-b}{n}}{\Pochhammersym{c}{n}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([- n, b], [c], 1) = (pochhammer(c - b, n))/(pochhammer(c, n))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[- n, b, c, 1] == Divide[Pochhammer[c - b, n],Pochhammer[c, n]]</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 36]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[b, -1.5], Rule[c, -2], Rule[n, 3]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[b, -1.5], Rule[c, -2], Rule[n, 3]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[b, 1.5], Rule[c, -2], Rule[n, 3]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[b, 1.5], Rule[c, -2], Rule[n, 3]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/15.4.E25 15.4.E25] || [[Item:Q5009|<math>\sum_{n=-\infty}^{\infty}\frac{\EulerGamma@{a+n}\EulerGamma@{b+n}}{\EulerGamma@{c+n}\EulerGamma@{d+n}} = \frac{\pi^{2}}{\sin@{\pi a}\sin@{\pi b}}\*\frac{\EulerGamma@{c+d-a-b-1}}{\EulerGamma@{c-a}\EulerGamma@{d-a}\EulerGamma@{c-b}\EulerGamma@{d-b}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{n=-\infty}^{\infty}\frac{\EulerGamma@{a+n}\EulerGamma@{b+n}}{\EulerGamma@{c+n}\EulerGamma@{d+n}} = \frac{\pi^{2}}{\sin@{\pi a}\sin@{\pi b}}\*\frac{\EulerGamma@{c+d-a-b-1}}{\EulerGamma@{c-a}\EulerGamma@{d-a}\EulerGamma@{c-b}\EulerGamma@{d-b}}</syntaxhighlight> || <math>\realpart@@{(a+n)} > 0, \realpart@@{(b+n)} > 0, \realpart@@{(c+n)} > 0, \realpart@@{(d+n)} > 0, \realpart@@{(c+d-a-b-1)} > 0, \realpart@@{(c-a)} > 0, \realpart@@{(d-a)} > 0, \realpart@@{(c-b)} > 0, \realpart@@{(d-b)} > 0</math> || <syntaxhighlight lang=mathematica>sum((GAMMA(a + n)*GAMMA(b + n))/(GAMMA(c + n)*GAMMA(d + n)), n = - infinity..infinity) = ((Pi)^(2))/(sin(Pi*a)*sin(Pi*b))*(GAMMA(c + d - a - b - 1))/(GAMMA(c - a)*GAMMA(d - a)*GAMMA(c - b)*GAMMA(d - b))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[Divide[Gamma[a + n]*Gamma[b + n],Gamma[c + n]*Gamma[d + n]], {n, - Infinity, Infinity}, GenerateConditions->None] == Divide[(Pi)^(2),Sin[Pi*a]*Sin[Pi*b]]*Divide[Gamma[c + d - a - b - 1],Gamma[c - a]*Gamma[d - a]*Gamma[c - b]*Gamma[d - b]]</syntaxhighlight> || Failure || Aborted || Manual Skip! || <div class="toccolours mw-collapsible mw-collapsed">Failed [160 / 281]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
| [https://dlmf.nist.gov/15.4.E25 15.4.E25] || <math qid="Q5009">\sum_{n=-\infty}^{\infty}\frac{\EulerGamma@{a+n}\EulerGamma@{b+n}}{\EulerGamma@{c+n}\EulerGamma@{d+n}} = \frac{\pi^{2}}{\sin@{\pi a}\sin@{\pi b}}\*\frac{\EulerGamma@{c+d-a-b-1}}{\EulerGamma@{c-a}\EulerGamma@{d-a}\EulerGamma@{c-b}\EulerGamma@{d-b}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{n=-\infty}^{\infty}\frac{\EulerGamma@{a+n}\EulerGamma@{b+n}}{\EulerGamma@{c+n}\EulerGamma@{d+n}} = \frac{\pi^{2}}{\sin@{\pi a}\sin@{\pi b}}\*\frac{\EulerGamma@{c+d-a-b-1}}{\EulerGamma@{c-a}\EulerGamma@{d-a}\EulerGamma@{c-b}\EulerGamma@{d-b}}</syntaxhighlight> || <math>\realpart@@{(a+n)} > 0, \realpart@@{(b+n)} > 0, \realpart@@{(c+n)} > 0, \realpart@@{(d+n)} > 0, \realpart@@{(c+d-a-b-1)} > 0, \realpart@@{(c-a)} > 0, \realpart@@{(d-a)} > 0, \realpart@@{(c-b)} > 0, \realpart@@{(d-b)} > 0</math> || <syntaxhighlight lang=mathematica>sum((GAMMA(a + n)*GAMMA(b + n))/(GAMMA(c + n)*GAMMA(d + n)), n = - infinity..infinity) = ((Pi)^(2))/(sin(Pi*a)*sin(Pi*b))*(GAMMA(c + d - a - b - 1))/(GAMMA(c - a)*GAMMA(d - a)*GAMMA(c - b)*GAMMA(d - b))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[Divide[Gamma[a + n]*Gamma[b + n],Gamma[c + n]*Gamma[d + n]], {n, - Infinity, Infinity}, GenerateConditions->None] == Divide[(Pi)^(2),Sin[Pi*a]*Sin[Pi*b]]*Divide[Gamma[c + d - a - b - 1],Gamma[c - a]*Gamma[d - a]*Gamma[c - b]*Gamma[d - b]]</syntaxhighlight> || Failure || Aborted || Manual Skip! || <div class="toccolours mw-collapsible mw-collapsed">Failed [160 / 281]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -2], Rule[c, 1.5], Rule[d, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -2], Rule[c, 1.5], Rule[d, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -2], Rule[c, 1.5], Rule[d, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[a, -1.5], Rule[b, -2], Rule[c, 1.5], Rule[d, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/15.4.E26 15.4.E26] || [[Item:Q5010|<math>\hyperF@{a}{b}{a-b+1}{-1} = \frac{\EulerGamma@{a-b+1}\EulerGamma@{\tfrac{1}{2}a+1}}{\EulerGamma@{a+1}\EulerGamma@{\tfrac{1}{2}a-b+1}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{a}{b}{a-b+1}{-1} = \frac{\EulerGamma@{a-b+1}\EulerGamma@{\tfrac{1}{2}a+1}}{\EulerGamma@{a+1}\EulerGamma@{\tfrac{1}{2}a-b+1}}</syntaxhighlight> || <math>\realpart@@{(a-b+1)} > 0, \realpart@@{(\tfrac{1}{2}a+1)} > 0, \realpart@@{(a+1)} > 0, \realpart@@{(\tfrac{1}{2}a-b+1)} > 0</math> || <syntaxhighlight lang=mathematica>hypergeom([a, b], [a - b + 1], - 1) = (GAMMA(a - b + 1)*GAMMA((1)/(2)*a + 1))/(GAMMA(a + 1)*GAMMA((1)/(2)*a - b + 1))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[a, b, a - b + 1, - 1] == Divide[Gamma[a - b + 1]*Gamma[Divide[1,2]*a + 1],Gamma[a + 1]*Gamma[Divide[1,2]*a - b + 1]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 17]
| [https://dlmf.nist.gov/15.4.E26 15.4.E26] || <math qid="Q5010">\hyperF@{a}{b}{a-b+1}{-1} = \frac{\EulerGamma@{a-b+1}\EulerGamma@{\tfrac{1}{2}a+1}}{\EulerGamma@{a+1}\EulerGamma@{\tfrac{1}{2}a-b+1}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{a}{b}{a-b+1}{-1} = \frac{\EulerGamma@{a-b+1}\EulerGamma@{\tfrac{1}{2}a+1}}{\EulerGamma@{a+1}\EulerGamma@{\tfrac{1}{2}a-b+1}}</syntaxhighlight> || <math>\realpart@@{(a-b+1)} > 0, \realpart@@{(\tfrac{1}{2}a+1)} > 0, \realpart@@{(a+1)} > 0, \realpart@@{(\tfrac{1}{2}a-b+1)} > 0</math> || <syntaxhighlight lang=mathematica>hypergeom([a, b], [a - b + 1], - 1) = (GAMMA(a - b + 1)*GAMMA((1)/(2)*a + 1))/(GAMMA(a + 1)*GAMMA((1)/(2)*a - b + 1))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[a, b, a - b + 1, - 1] == Divide[Gamma[a - b + 1]*Gamma[Divide[1,2]*a + 1],Gamma[a + 1]*Gamma[Divide[1,2]*a - b + 1]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 17]
|-  
|-  
| [https://dlmf.nist.gov/15.4.E27 15.4.E27] || [[Item:Q5011|<math>\hyperF@{1}{a}{a+1}{-1} = \tfrac{1}{2}a\left(\digamma@{\tfrac{1}{2}a+\tfrac{1}{2}}-\digamma@{\tfrac{1}{2}a}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{1}{a}{a+1}{-1} = \tfrac{1}{2}a\left(\digamma@{\tfrac{1}{2}a+\tfrac{1}{2}}-\digamma@{\tfrac{1}{2}a}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([1, a], [a + 1], - 1) = (1)/(2)*a*(Psi((1)/(2)*a +(1)/(2))- Psi((1)/(2)*a))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[1, a, a + 1, - 1] == Divide[1,2]*a*(PolyGamma[Divide[1,2]*a +Divide[1,2]]- PolyGamma[Divide[1,2]*a])</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 6]
| [https://dlmf.nist.gov/15.4.E27 15.4.E27] || <math qid="Q5011">\hyperF@{1}{a}{a+1}{-1} = \tfrac{1}{2}a\left(\digamma@{\tfrac{1}{2}a+\tfrac{1}{2}}-\digamma@{\tfrac{1}{2}a}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{1}{a}{a+1}{-1} = \tfrac{1}{2}a\left(\digamma@{\tfrac{1}{2}a+\tfrac{1}{2}}-\digamma@{\tfrac{1}{2}a}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([1, a], [a + 1], - 1) = (1)/(2)*a*(Psi((1)/(2)*a +(1)/(2))- Psi((1)/(2)*a))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[1, a, a + 1, - 1] == Divide[1,2]*a*(PolyGamma[Divide[1,2]*a +Divide[1,2]]- PolyGamma[Divide[1,2]*a])</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 6]
|-  
|-  
| [https://dlmf.nist.gov/15.4.E28 15.4.E28] || [[Item:Q5012|<math>\hyperF@{a}{b}{\tfrac{1}{2}a+\tfrac{1}{2}b+\tfrac{1}{2}}{\tfrac{1}{2}} = \sqrt{\pi}\frac{\EulerGamma@{\tfrac{1}{2}a+\tfrac{1}{2}b+\tfrac{1}{2}}}{\EulerGamma@{\tfrac{1}{2}a+\tfrac{1}{2}}\EulerGamma@{\tfrac{1}{2}b+\tfrac{1}{2}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{a}{b}{\tfrac{1}{2}a+\tfrac{1}{2}b+\tfrac{1}{2}}{\tfrac{1}{2}} = \sqrt{\pi}\frac{\EulerGamma@{\tfrac{1}{2}a+\tfrac{1}{2}b+\tfrac{1}{2}}}{\EulerGamma@{\tfrac{1}{2}a+\tfrac{1}{2}}\EulerGamma@{\tfrac{1}{2}b+\tfrac{1}{2}}}</syntaxhighlight> || <math>\realpart@@{(\tfrac{1}{2}a+\tfrac{1}{2}b+\tfrac{1}{2})} > 0, \realpart@@{(\tfrac{1}{2}a+\tfrac{1}{2})} > 0, \realpart@@{(\tfrac{1}{2}b+\tfrac{1}{2})} > 0</math> || <syntaxhighlight lang=mathematica>hypergeom([a, b], [(1)/(2)*a +(1)/(2)*b +(1)/(2)], (1)/(2)) = sqrt(Pi)*(GAMMA((1)/(2)*a +(1)/(2)*b +(1)/(2)))/(GAMMA((1)/(2)*a +(1)/(2))*GAMMA((1)/(2)*b +(1)/(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[a, b, Divide[1,2]*a +Divide[1,2]*b +Divide[1,2], Divide[1,2]] == Sqrt[Pi]*Divide[Gamma[Divide[1,2]*a +Divide[1,2]*b +Divide[1,2]],Gamma[Divide[1,2]*a +Divide[1,2]]*Gamma[Divide[1,2]*b +Divide[1,2]]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 15]
| [https://dlmf.nist.gov/15.4.E28 15.4.E28] || <math qid="Q5012">\hyperF@{a}{b}{\tfrac{1}{2}a+\tfrac{1}{2}b+\tfrac{1}{2}}{\tfrac{1}{2}} = \sqrt{\pi}\frac{\EulerGamma@{\tfrac{1}{2}a+\tfrac{1}{2}b+\tfrac{1}{2}}}{\EulerGamma@{\tfrac{1}{2}a+\tfrac{1}{2}}\EulerGamma@{\tfrac{1}{2}b+\tfrac{1}{2}}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{a}{b}{\tfrac{1}{2}a+\tfrac{1}{2}b+\tfrac{1}{2}}{\tfrac{1}{2}} = \sqrt{\pi}\frac{\EulerGamma@{\tfrac{1}{2}a+\tfrac{1}{2}b+\tfrac{1}{2}}}{\EulerGamma@{\tfrac{1}{2}a+\tfrac{1}{2}}\EulerGamma@{\tfrac{1}{2}b+\tfrac{1}{2}}}</syntaxhighlight> || <math>\realpart@@{(\tfrac{1}{2}a+\tfrac{1}{2}b+\tfrac{1}{2})} > 0, \realpart@@{(\tfrac{1}{2}a+\tfrac{1}{2})} > 0, \realpart@@{(\tfrac{1}{2}b+\tfrac{1}{2})} > 0</math> || <syntaxhighlight lang=mathematica>hypergeom([a, b], [(1)/(2)*a +(1)/(2)*b +(1)/(2)], (1)/(2)) = sqrt(Pi)*(GAMMA((1)/(2)*a +(1)/(2)*b +(1)/(2)))/(GAMMA((1)/(2)*a +(1)/(2))*GAMMA((1)/(2)*b +(1)/(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[a, b, Divide[1,2]*a +Divide[1,2]*b +Divide[1,2], Divide[1,2]] == Sqrt[Pi]*Divide[Gamma[Divide[1,2]*a +Divide[1,2]*b +Divide[1,2]],Gamma[Divide[1,2]*a +Divide[1,2]]*Gamma[Divide[1,2]*b +Divide[1,2]]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 15]
|-  
|-  
| [https://dlmf.nist.gov/15.4.E29 15.4.E29] || [[Item:Q5013|<math>\hyperF@{a}{b}{\tfrac{1}{2}a+\tfrac{1}{2}b+1}{\tfrac{1}{2}} = \frac{2\sqrt{\pi}}{a-b}\EulerGamma@{\tfrac{1}{2}a+\tfrac{1}{2}b+1}\*\left(\frac{1}{\EulerGamma@{\tfrac{1}{2}a}\EulerGamma@{\tfrac{1}{2}b+\tfrac{1}{2}}}-\frac{1}{\EulerGamma@{\tfrac{1}{2}a+\tfrac{1}{2}}\EulerGamma@{\tfrac{1}{2}b}}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{a}{b}{\tfrac{1}{2}a+\tfrac{1}{2}b+1}{\tfrac{1}{2}} = \frac{2\sqrt{\pi}}{a-b}\EulerGamma@{\tfrac{1}{2}a+\tfrac{1}{2}b+1}\*\left(\frac{1}{\EulerGamma@{\tfrac{1}{2}a}\EulerGamma@{\tfrac{1}{2}b+\tfrac{1}{2}}}-\frac{1}{\EulerGamma@{\tfrac{1}{2}a+\tfrac{1}{2}}\EulerGamma@{\tfrac{1}{2}b}}\right)</syntaxhighlight> || <math>\realpart@@{(\tfrac{1}{2}a+\tfrac{1}{2}b+1)} > 0, \realpart@@{(\tfrac{1}{2}a)} > 0, \realpart@@{(\tfrac{1}{2}b+\tfrac{1}{2})} > 0, \realpart@@{(\tfrac{1}{2}a+\tfrac{1}{2})} > 0, \realpart@@{(\tfrac{1}{2}b)} > 0</math> || <syntaxhighlight lang=mathematica>hypergeom([a, b], [(1)/(2)*a +(1)/(2)*b + 1], (1)/(2)) = (2*sqrt(Pi))/(a - b)*GAMMA((1)/(2)*a +(1)/(2)*b + 1)*((1)/(GAMMA((1)/(2)*a)*GAMMA((1)/(2)*b +(1)/(2)))-(1)/(GAMMA((1)/(2)*a +(1)/(2))*GAMMA((1)/(2)*b)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[a, b, Divide[1,2]*a +Divide[1,2]*b + 1, Divide[1,2]] == Divide[2*Sqrt[Pi],a - b]*Gamma[Divide[1,2]*a +Divide[1,2]*b + 1]*(Divide[1,Gamma[Divide[1,2]*a]*Gamma[Divide[1,2]*b +Divide[1,2]]]-Divide[1,Gamma[Divide[1,2]*a +Divide[1,2]]*Gamma[Divide[1,2]*b]])</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 9]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Float(-infinity)
| [https://dlmf.nist.gov/15.4.E29 15.4.E29] || <math qid="Q5013">\hyperF@{a}{b}{\tfrac{1}{2}a+\tfrac{1}{2}b+1}{\tfrac{1}{2}} = \frac{2\sqrt{\pi}}{a-b}\EulerGamma@{\tfrac{1}{2}a+\tfrac{1}{2}b+1}\*\left(\frac{1}{\EulerGamma@{\tfrac{1}{2}a}\EulerGamma@{\tfrac{1}{2}b+\tfrac{1}{2}}}-\frac{1}{\EulerGamma@{\tfrac{1}{2}a+\tfrac{1}{2}}\EulerGamma@{\tfrac{1}{2}b}}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{a}{b}{\tfrac{1}{2}a+\tfrac{1}{2}b+1}{\tfrac{1}{2}} = \frac{2\sqrt{\pi}}{a-b}\EulerGamma@{\tfrac{1}{2}a+\tfrac{1}{2}b+1}\*\left(\frac{1}{\EulerGamma@{\tfrac{1}{2}a}\EulerGamma@{\tfrac{1}{2}b+\tfrac{1}{2}}}-\frac{1}{\EulerGamma@{\tfrac{1}{2}a+\tfrac{1}{2}}\EulerGamma@{\tfrac{1}{2}b}}\right)</syntaxhighlight> || <math>\realpart@@{(\tfrac{1}{2}a+\tfrac{1}{2}b+1)} > 0, \realpart@@{(\tfrac{1}{2}a)} > 0, \realpart@@{(\tfrac{1}{2}b+\tfrac{1}{2})} > 0, \realpart@@{(\tfrac{1}{2}a+\tfrac{1}{2})} > 0, \realpart@@{(\tfrac{1}{2}b)} > 0</math> || <syntaxhighlight lang=mathematica>hypergeom([a, b], [(1)/(2)*a +(1)/(2)*b + 1], (1)/(2)) = (2*sqrt(Pi))/(a - b)*GAMMA((1)/(2)*a +(1)/(2)*b + 1)*((1)/(GAMMA((1)/(2)*a)*GAMMA((1)/(2)*b +(1)/(2)))-(1)/(GAMMA((1)/(2)*a +(1)/(2))*GAMMA((1)/(2)*b)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[a, b, Divide[1,2]*a +Divide[1,2]*b + 1, Divide[1,2]] == Divide[2*Sqrt[Pi],a - b]*Gamma[Divide[1,2]*a +Divide[1,2]*b + 1]*(Divide[1,Gamma[Divide[1,2]*a]*Gamma[Divide[1,2]*b +Divide[1,2]]]-Divide[1,Gamma[Divide[1,2]*a +Divide[1,2]]*Gamma[Divide[1,2]*b]])</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 9]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Float(-infinity)
Test Values: {a = 3/2, b = 3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Float(undefined)
Test Values: {a = 3/2, b = 3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Float(undefined)
Test Values: {a = 1/2, b = 1/2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 9]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {a = 1/2, b = 1/2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 9]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Line 112: Line 112:
Test Values: {Rule[a, 0.5], Rule[b, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[a, 0.5], Rule[b, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/15.4.E30 15.4.E30] || [[Item:Q5014|<math>\hyperF@{a}{1-a}{b}{\tfrac{1}{2}} = \frac{2^{1-b}\sqrt{\pi}\EulerGamma@{b}}{\EulerGamma@{\tfrac{1}{2}a+\tfrac{1}{2}b}\EulerGamma@{\tfrac{1}{2}b-\tfrac{1}{2}a+\tfrac{1}{2}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{a}{1-a}{b}{\tfrac{1}{2}} = \frac{2^{1-b}\sqrt{\pi}\EulerGamma@{b}}{\EulerGamma@{\tfrac{1}{2}a+\tfrac{1}{2}b}\EulerGamma@{\tfrac{1}{2}b-\tfrac{1}{2}a+\tfrac{1}{2}}}</syntaxhighlight> || <math>\realpart@@{b} > 0, \realpart@@{(\tfrac{1}{2}a+\tfrac{1}{2}b)} > 0, \realpart@@{(\tfrac{1}{2}b-\tfrac{1}{2}a+\tfrac{1}{2})} > 0</math> || <syntaxhighlight lang=mathematica>hypergeom([a, 1 - a], [b], (1)/(2)) = ((2)^(1 - b)*sqrt(Pi)*GAMMA(b))/(GAMMA((1)/(2)*a +(1)/(2)*b)*GAMMA((1)/(2)*b -(1)/(2)*a +(1)/(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[a, 1 - a, b, Divide[1,2]] == Divide[(2)^(1 - b)*Sqrt[Pi]*Gamma[b],Gamma[Divide[1,2]*a +Divide[1,2]*b]*Gamma[Divide[1,2]*b -Divide[1,2]*a +Divide[1,2]]]</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 10]
| [https://dlmf.nist.gov/15.4.E30 15.4.E30] || <math qid="Q5014">\hyperF@{a}{1-a}{b}{\tfrac{1}{2}} = \frac{2^{1-b}\sqrt{\pi}\EulerGamma@{b}}{\EulerGamma@{\tfrac{1}{2}a+\tfrac{1}{2}b}\EulerGamma@{\tfrac{1}{2}b-\tfrac{1}{2}a+\tfrac{1}{2}}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{a}{1-a}{b}{\tfrac{1}{2}} = \frac{2^{1-b}\sqrt{\pi}\EulerGamma@{b}}{\EulerGamma@{\tfrac{1}{2}a+\tfrac{1}{2}b}\EulerGamma@{\tfrac{1}{2}b-\tfrac{1}{2}a+\tfrac{1}{2}}}</syntaxhighlight> || <math>\realpart@@{b} > 0, \realpart@@{(\tfrac{1}{2}a+\tfrac{1}{2}b)} > 0, \realpart@@{(\tfrac{1}{2}b-\tfrac{1}{2}a+\tfrac{1}{2})} > 0</math> || <syntaxhighlight lang=mathematica>hypergeom([a, 1 - a], [b], (1)/(2)) = ((2)^(1 - b)*sqrt(Pi)*GAMMA(b))/(GAMMA((1)/(2)*a +(1)/(2)*b)*GAMMA((1)/(2)*b -(1)/(2)*a +(1)/(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[a, 1 - a, b, Divide[1,2]] == Divide[(2)^(1 - b)*Sqrt[Pi]*Gamma[b],Gamma[Divide[1,2]*a +Divide[1,2]*b]*Gamma[Divide[1,2]*b -Divide[1,2]*a +Divide[1,2]]]</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 10]
|-  
|-  
| [https://dlmf.nist.gov/15.4.E31 15.4.E31] || [[Item:Q5015|<math>\hyperF@{a}{\tfrac{1}{2}+a}{\tfrac{3}{2}-2a}{-\tfrac{1}{3}} = \left(\frac{8}{9}\right)^{-2a}\frac{\EulerGamma@{\tfrac{4}{3}}\EulerGamma@{\tfrac{3}{2}-2a}}{\EulerGamma@{\tfrac{3}{2}}\EulerGamma@{\tfrac{4}{3}-2a}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{a}{\tfrac{1}{2}+a}{\tfrac{3}{2}-2a}{-\tfrac{1}{3}} = \left(\frac{8}{9}\right)^{-2a}\frac{\EulerGamma@{\tfrac{4}{3}}\EulerGamma@{\tfrac{3}{2}-2a}}{\EulerGamma@{\tfrac{3}{2}}\EulerGamma@{\tfrac{4}{3}-2a}}</syntaxhighlight> || <math>\realpart@@{(\tfrac{3}{2}-2a)} > 0, \realpart@@{(\tfrac{4}{3}-2a)} > 0</math> || <syntaxhighlight lang=mathematica>hypergeom([a, (1)/(2)+ a], [(3)/(2)- 2*a], -(1)/(3)) = ((8)/(9))^(- 2*a)*(GAMMA((4)/(3))*GAMMA((3)/(2)- 2*a))/(GAMMA((3)/(2))*GAMMA((4)/(3)- 2*a))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[a, Divide[1,2]+ a, Divide[3,2]- 2*a, -Divide[1,3]] == (Divide[8,9])^(- 2*a)*Divide[Gamma[Divide[4,3]]*Gamma[Divide[3,2]- 2*a],Gamma[Divide[3,2]]*Gamma[Divide[4,3]- 2*a]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 4] || Successful [Tested: 4]
| [https://dlmf.nist.gov/15.4.E31 15.4.E31] || <math qid="Q5015">\hyperF@{a}{\tfrac{1}{2}+a}{\tfrac{3}{2}-2a}{-\tfrac{1}{3}} = \left(\frac{8}{9}\right)^{-2a}\frac{\EulerGamma@{\tfrac{4}{3}}\EulerGamma@{\tfrac{3}{2}-2a}}{\EulerGamma@{\tfrac{3}{2}}\EulerGamma@{\tfrac{4}{3}-2a}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{a}{\tfrac{1}{2}+a}{\tfrac{3}{2}-2a}{-\tfrac{1}{3}} = \left(\frac{8}{9}\right)^{-2a}\frac{\EulerGamma@{\tfrac{4}{3}}\EulerGamma@{\tfrac{3}{2}-2a}}{\EulerGamma@{\tfrac{3}{2}}\EulerGamma@{\tfrac{4}{3}-2a}}</syntaxhighlight> || <math>\realpart@@{(\tfrac{3}{2}-2a)} > 0, \realpart@@{(\tfrac{4}{3}-2a)} > 0</math> || <syntaxhighlight lang=mathematica>hypergeom([a, (1)/(2)+ a], [(3)/(2)- 2*a], -(1)/(3)) = ((8)/(9))^(- 2*a)*(GAMMA((4)/(3))*GAMMA((3)/(2)- 2*a))/(GAMMA((3)/(2))*GAMMA((4)/(3)- 2*a))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[a, Divide[1,2]+ a, Divide[3,2]- 2*a, -Divide[1,3]] == (Divide[8,9])^(- 2*a)*Divide[Gamma[Divide[4,3]]*Gamma[Divide[3,2]- 2*a],Gamma[Divide[3,2]]*Gamma[Divide[4,3]- 2*a]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 4] || Successful [Tested: 4]
|-  
|-  
| [https://dlmf.nist.gov/15.4.E32 15.4.E32] || [[Item:Q5016|<math>\hyperF@{a}{\tfrac{1}{2}+a}{\tfrac{5}{6}+\tfrac{2}{3}a}{\tfrac{1}{9}} = \sqrt{\pi}\left(\frac{3}{4}\right)^{a}\frac{\EulerGamma@{\tfrac{5}{6}+\tfrac{2}{3}a}}{\EulerGamma@{\tfrac{1}{2}+\tfrac{1}{3}a}\EulerGamma@{\tfrac{5}{6}+\tfrac{1}{3}a}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{a}{\tfrac{1}{2}+a}{\tfrac{5}{6}+\tfrac{2}{3}a}{\tfrac{1}{9}} = \sqrt{\pi}\left(\frac{3}{4}\right)^{a}\frac{\EulerGamma@{\tfrac{5}{6}+\tfrac{2}{3}a}}{\EulerGamma@{\tfrac{1}{2}+\tfrac{1}{3}a}\EulerGamma@{\tfrac{5}{6}+\tfrac{1}{3}a}}</syntaxhighlight> || <math>\realpart@@{(\tfrac{5}{6}+\tfrac{2}{3}a)} > 0, \realpart@@{(\tfrac{1}{2}+\tfrac{1}{3}a)} > 0, \realpart@@{(\tfrac{5}{6}+\tfrac{1}{3}a)} > 0</math> || <syntaxhighlight lang=mathematica>hypergeom([a, (1)/(2)+ a], [(5)/(6)+(2)/(3)*a], (1)/(9)) = sqrt(Pi)*((3)/(4))^(a)*(GAMMA((5)/(6)+(2)/(3)*a))/(GAMMA((1)/(2)+(1)/(3)*a)*GAMMA((5)/(6)+(1)/(3)*a))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[a, Divide[1,2]+ a, Divide[5,6]+Divide[2,3]*a, Divide[1,9]] == Sqrt[Pi]*(Divide[3,4])^(a)*Divide[Gamma[Divide[5,6]+Divide[2,3]*a],Gamma[Divide[1,2]+Divide[1,3]*a]*Gamma[Divide[5,6]+Divide[1,3]*a]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 4] || Successful [Tested: 4]
| [https://dlmf.nist.gov/15.4.E32 15.4.E32] || <math qid="Q5016">\hyperF@{a}{\tfrac{1}{2}+a}{\tfrac{5}{6}+\tfrac{2}{3}a}{\tfrac{1}{9}} = \sqrt{\pi}\left(\frac{3}{4}\right)^{a}\frac{\EulerGamma@{\tfrac{5}{6}+\tfrac{2}{3}a}}{\EulerGamma@{\tfrac{1}{2}+\tfrac{1}{3}a}\EulerGamma@{\tfrac{5}{6}+\tfrac{1}{3}a}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{a}{\tfrac{1}{2}+a}{\tfrac{5}{6}+\tfrac{2}{3}a}{\tfrac{1}{9}} = \sqrt{\pi}\left(\frac{3}{4}\right)^{a}\frac{\EulerGamma@{\tfrac{5}{6}+\tfrac{2}{3}a}}{\EulerGamma@{\tfrac{1}{2}+\tfrac{1}{3}a}\EulerGamma@{\tfrac{5}{6}+\tfrac{1}{3}a}}</syntaxhighlight> || <math>\realpart@@{(\tfrac{5}{6}+\tfrac{2}{3}a)} > 0, \realpart@@{(\tfrac{1}{2}+\tfrac{1}{3}a)} > 0, \realpart@@{(\tfrac{5}{6}+\tfrac{1}{3}a)} > 0</math> || <syntaxhighlight lang=mathematica>hypergeom([a, (1)/(2)+ a], [(5)/(6)+(2)/(3)*a], (1)/(9)) = sqrt(Pi)*((3)/(4))^(a)*(GAMMA((5)/(6)+(2)/(3)*a))/(GAMMA((1)/(2)+(1)/(3)*a)*GAMMA((5)/(6)+(1)/(3)*a))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[a, Divide[1,2]+ a, Divide[5,6]+Divide[2,3]*a, Divide[1,9]] == Sqrt[Pi]*(Divide[3,4])^(a)*Divide[Gamma[Divide[5,6]+Divide[2,3]*a],Gamma[Divide[1,2]+Divide[1,3]*a]*Gamma[Divide[5,6]+Divide[1,3]*a]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 4] || Successful [Tested: 4]
|-  
|-  
| [https://dlmf.nist.gov/15.4.E33 15.4.E33] || [[Item:Q5017|<math>\hyperF@{3a}{\tfrac{1}{3}+a}{\tfrac{2}{3}+2a}{e^{\ifrac{\iunit\pi}{3}}} = \sqrt{\pi}e^{\ifrac{\iunit\pi a}{2}}\left(\frac{16}{27}\right)^{(3a+1)/6}\frac{\EulerGamma@{\frac{5}{6}+a}}{\EulerGamma@{\frac{2}{3}+a}\EulerGamma@{\frac{2}{3}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{3a}{\tfrac{1}{3}+a}{\tfrac{2}{3}+2a}{e^{\ifrac{\iunit\pi}{3}}} = \sqrt{\pi}e^{\ifrac{\iunit\pi a}{2}}\left(\frac{16}{27}\right)^{(3a+1)/6}\frac{\EulerGamma@{\frac{5}{6}+a}}{\EulerGamma@{\frac{2}{3}+a}\EulerGamma@{\frac{2}{3}}}</syntaxhighlight> || <math>\realpart@@{(\frac{5}{6}+a)} > 0, \realpart@@{(\frac{2}{3}+a)} > 0</math> || <syntaxhighlight lang=mathematica>hypergeom([3*a, (1)/(3)+ a], [(2)/(3)+ 2*a], exp((I*Pi)/(3))) = sqrt(Pi)*exp((I*Pi*a)/(2))*((16)/(27))^((3*a + 1)/6)*(GAMMA((5)/(6)+ a))/(GAMMA((2)/(3)+ a)*GAMMA((2)/(3)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[3*a, Divide[1,3]+ a, Divide[2,3]+ 2*a, Exp[Divide[I*Pi,3]]] == Sqrt[Pi]*Exp[Divide[I*Pi*a,2]]*(Divide[16,27])^((3*a + 1)/6)*Divide[Gamma[Divide[5,6]+ a],Gamma[Divide[2,3]+ a]*Gamma[Divide[2,3]]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 4] || Successful [Tested: 4]
| [https://dlmf.nist.gov/15.4.E33 15.4.E33] || <math qid="Q5017">\hyperF@{3a}{\tfrac{1}{3}+a}{\tfrac{2}{3}+2a}{e^{\ifrac{\iunit\pi}{3}}} = \sqrt{\pi}e^{\ifrac{\iunit\pi a}{2}}\left(\frac{16}{27}\right)^{(3a+1)/6}\frac{\EulerGamma@{\frac{5}{6}+a}}{\EulerGamma@{\frac{2}{3}+a}\EulerGamma@{\frac{2}{3}}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperF@{3a}{\tfrac{1}{3}+a}{\tfrac{2}{3}+2a}{e^{\ifrac{\iunit\pi}{3}}} = \sqrt{\pi}e^{\ifrac{\iunit\pi a}{2}}\left(\frac{16}{27}\right)^{(3a+1)/6}\frac{\EulerGamma@{\frac{5}{6}+a}}{\EulerGamma@{\frac{2}{3}+a}\EulerGamma@{\frac{2}{3}}}</syntaxhighlight> || <math>\realpart@@{(\frac{5}{6}+a)} > 0, \realpart@@{(\frac{2}{3}+a)} > 0</math> || <syntaxhighlight lang=mathematica>hypergeom([3*a, (1)/(3)+ a], [(2)/(3)+ 2*a], exp((I*Pi)/(3))) = sqrt(Pi)*exp((I*Pi*a)/(2))*((16)/(27))^((3*a + 1)/6)*(GAMMA((5)/(6)+ a))/(GAMMA((2)/(3)+ a)*GAMMA((2)/(3)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1[3*a, Divide[1,3]+ a, Divide[2,3]+ 2*a, Exp[Divide[I*Pi,3]]] == Sqrt[Pi]*Exp[Divide[I*Pi*a,2]]*(Divide[16,27])^((3*a + 1)/6)*Divide[Gamma[Divide[5,6]+ a],Gamma[Divide[2,3]+ a]*Gamma[Divide[2,3]]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 4] || Successful [Tested: 4]
|}
|}
</div>
</div>

Latest revision as of 11:38, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
15.4.E1 F ( 1 , 1 ; 2 ; z ) = - z - 1 ln ( 1 - z ) Gauss-hypergeometric-F 1 1 2 𝑧 superscript 𝑧 1 1 𝑧 {\displaystyle{\displaystyle F\left(1,1;2;z\right)=-z^{-1}\ln\left(1-z\right)}}
\hyperF@{1}{1}{2}{z} = -z^{-1}\ln@{1-z}

hypergeom([1, 1], [2], z) = - (z)^(- 1)* ln(1 - z)
Hypergeometric2F1[1, 1, 2, z] == - (z)^(- 1)* Log[1 - z]
Successful Successful - Successful [Tested: 7]
15.4.E2 F ( 1 2 , 1 ; 3 2 ; z 2 ) = 1 2 z ln ( 1 + z 1 - z ) Gauss-hypergeometric-F 1 2 1 3 2 superscript 𝑧 2 1 2 𝑧 1 𝑧 1 𝑧 {\displaystyle{\displaystyle F\left(\tfrac{1}{2},1;\tfrac{3}{2};z^{2}\right)=% \frac{1}{2z}\ln\left(\frac{1+z}{1-z}\right)}}
\hyperF@{\tfrac{1}{2}}{1}{\tfrac{3}{2}}{z^{2}} = \frac{1}{2z}\ln@{\frac{1+z}{1-z}}

hypergeom([(1)/(2), 1], [(3)/(2)], (z)^(2)) = (1)/(2*z)*ln((1 + z)/(1 - z))
Hypergeometric2F1[Divide[1,2], 1, Divide[3,2], (z)^(2)] == Divide[1,2*z]*Log[Divide[1 + z,1 - z]]
Failure Failure
Failed [2 / 7]
Result: .1e-9-2.094395103*I
Test Values: {z = 3/2}

Result: 0.-1.570796327*I
Test Values: {z = 2}

Failed [2 / 7]
Result: Complex[1.1102230246251565*^-16, -2.0943951023931953]
Test Values: {Rule[z, 1.5]}

Result: Complex[0.0, -1.5707963267948966]
Test Values: {Rule[z, 2]}

15.4.E3 F ( 1 2 , 1 ; 3 2 ; - z 2 ) = z - 1 arctan z Gauss-hypergeometric-F 1 2 1 3 2 superscript 𝑧 2 superscript 𝑧 1 𝑧 {\displaystyle{\displaystyle F\left(\tfrac{1}{2},1;\tfrac{3}{2};-z^{2}\right)=% z^{-1}\operatorname{arctan}z}}
\hyperF@{\tfrac{1}{2}}{1}{\tfrac{3}{2}}{-z^{2}} = z^{-1}\atan@@{z}

hypergeom([(1)/(2), 1], [(3)/(2)], - (z)^(2)) = (z)^(- 1)* arctan(z)
Hypergeometric2F1[Divide[1,2], 1, Divide[3,2], - (z)^(2)] == (z)^(- 1)* ArcTan[z]
Successful Successful - Successful [Tested: 7]
15.4.E4 F ( 1 2 , 1 2 ; 3 2 ; z 2 ) = z - 1 arcsin z Gauss-hypergeometric-F 1 2 1 2 3 2 superscript 𝑧 2 superscript 𝑧 1 𝑧 {\displaystyle{\displaystyle F\left(\tfrac{1}{2},\tfrac{1}{2};\tfrac{3}{2};z^{% 2}\right)=z^{-1}\operatorname{arcsin}z}}
\hyperF@{\tfrac{1}{2}}{\tfrac{1}{2}}{\tfrac{3}{2}}{z^{2}} = z^{-1}\asin@@{z}

hypergeom([(1)/(2), (1)/(2)], [(3)/(2)], (z)^(2)) = (z)^(- 1)* arcsin(z)
Hypergeometric2F1[Divide[1,2], Divide[1,2], Divide[3,2], (z)^(2)] == (z)^(- 1)* ArcSin[z]
Successful Successful - Successful [Tested: 7]
15.4.E5 F ( 1 2 , 1 2 ; 3 2 ; - z 2 ) = z - 1 ln ( z + 1 + z 2 ) Gauss-hypergeometric-F 1 2 1 2 3 2 superscript 𝑧 2 superscript 𝑧 1 𝑧 1 superscript 𝑧 2 {\displaystyle{\displaystyle F\left(\tfrac{1}{2},\tfrac{1}{2};\tfrac{3}{2};-z^% {2}\right)=z^{-1}\ln\left(z+\sqrt{1+z^{2}}\right)}}
\hyperF@{\tfrac{1}{2}}{\tfrac{1}{2}}{\tfrac{3}{2}}{-z^{2}} = z^{-1}\ln@{z+\sqrt{1+z^{2}}}

hypergeom([(1)/(2), (1)/(2)], [(3)/(2)], - (z)^(2)) = (z)^(- 1)* ln(z +sqrt(1 + (z)^(2)))
Hypergeometric2F1[Divide[1,2], Divide[1,2], Divide[3,2], - (z)^(2)] == (z)^(- 1)* Log[z +Sqrt[1 + (z)^(2)]]
Failure Successful Successful [Tested: 7] Successful [Tested: 7]
15.4#Ex1 F ( a , b ; a ; z ) = ( 1 - z ) - b Gauss-hypergeometric-F 𝑎 𝑏 𝑎 𝑧 superscript 1 𝑧 𝑏 {\displaystyle{\displaystyle F\left(a,b;a;z\right)=(1-z)^{-b}}}
\hyperF@{a}{b}{a}{z} = (1-z)^{-b}

hypergeom([a, b], [a], z) = (1 - z)^(- b)
Hypergeometric2F1[a, b, a, z] == (1 - z)^(- b)
Successful Successful - Successful [Tested: 252]
15.4#Ex2 F ( a , b ; b ; z ) = ( 1 - z ) - a Gauss-hypergeometric-F 𝑎 𝑏 𝑏 𝑧 superscript 1 𝑧 𝑎 {\displaystyle{\displaystyle F\left(a,b;b;z\right)=(1-z)^{-a}}}
\hyperF@{a}{b}{b}{z} = (1-z)^{-a}

hypergeom([a, b], [b], z) = (1 - z)^(- a)
Hypergeometric2F1[a, b, b, z] == (1 - z)^(- a)
Successful Successful - Successful [Tested: 252]
15.4.E7 F ( a , 1 2 + a ; 1 2 ; z 2 ) = 1 2 ( ( 1 + z ) - 2 a + ( 1 - z ) - 2 a ) Gauss-hypergeometric-F 𝑎 1 2 𝑎 1 2 superscript 𝑧 2 1 2 superscript 1 𝑧 2 𝑎 superscript 1 𝑧 2 𝑎 {\displaystyle{\displaystyle F\left(a,\tfrac{1}{2}+a;\tfrac{1}{2};z^{2}\right)% =\tfrac{1}{2}\left((1+z)^{-2a}+(1-z)^{-2a}\right)}}
\hyperF@{a}{\tfrac{1}{2}+a}{\tfrac{1}{2}}{z^{2}} = \tfrac{1}{2}\left((1+z)^{-2a}+(1-z)^{-2a}\right)

hypergeom([a, (1)/(2)+ a], [(1)/(2)], (z)^(2)) = (1)/(2)*((1 + z)^(- 2*a)+(1 - z)^(- 2*a))
Hypergeometric2F1[a, Divide[1,2]+ a, Divide[1,2], (z)^(2)] == Divide[1,2]*((1 + z)^(- 2*a)+(1 - z)^(- 2*a))
Successful Successful - Successful [Tested: 42]
15.4.E8 F ( a , 1 2 + a ; 1 2 ; - tan 2 z ) = ( cos z ) 2 a cos ( 2 a z ) Gauss-hypergeometric-F 𝑎 1 2 𝑎 1 2 2 𝑧 superscript 𝑧 2 𝑎 2 𝑎 𝑧 {\displaystyle{\displaystyle F\left(a,\tfrac{1}{2}+a;\tfrac{1}{2};-{\tan^{2}}z% \right)=(\cos z)^{2a}\cos\left(2az\right)}}
\hyperF@{a}{\tfrac{1}{2}+a}{\tfrac{1}{2}}{-\tan^{2}@@{z}} = (\cos@@{z})^{2a}\cos@{2az}

hypergeom([a, (1)/(2)+ a], [(1)/(2)], - (tan(z))^(2)) = (cos(z))^(2*a)* cos(2*a*z)
Hypergeometric2F1[a, Divide[1,2]+ a, Divide[1,2], - (Tan[z])^(2)] == (Cos[z])^(2*a)* Cos[2*a*z]
Failure Failure Successful [Tested: 42] Successful [Tested: 42]
15.4.E9 F ( a , 1 2 + a ; 3 2 ; z 2 ) = 1 ( 2 - 4 a ) z ( ( 1 + z ) 1 - 2 a - ( 1 - z ) 1 - 2 a ) Gauss-hypergeometric-F 𝑎 1 2 𝑎 3 2 superscript 𝑧 2 1 2 4 𝑎 𝑧 superscript 1 𝑧 1 2 𝑎 superscript 1 𝑧 1 2 𝑎 {\displaystyle{\displaystyle F\left(a,\tfrac{1}{2}+a;\tfrac{3}{2};z^{2}\right)% =\frac{1}{(2-4a)z}\left((1+z)^{1-2a}-(1-z)^{1-2a}\right)}}
\hyperF@{a}{\tfrac{1}{2}+a}{\tfrac{3}{2}}{z^{2}} = \frac{1}{(2-4a)z}\left((1+z)^{1-2a}-(1-z)^{1-2a}\right)

hypergeom([a, (1)/(2)+ a], [(3)/(2)], (z)^(2)) = (1)/((2 - 4*a)*z)*((1 + z)^(1 - 2*a)-(1 - z)^(1 - 2*a))
Hypergeometric2F1[a, Divide[1,2]+ a, Divide[3,2], (z)^(2)] == Divide[1,(2 - 4*a)*z]*((1 + z)^(1 - 2*a)-(1 - z)^(1 - 2*a))
Successful Successful -
Failed [7 / 42]
Result: Indeterminate
Test Values: {Rule[a, 0.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Indeterminate
Test Values: {Rule[a, 0.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
15.4.E10 F ( a , 1 2 + a ; 3 2 ; - tan 2 z ) = ( cos z ) 2 a sin ( ( 1 - 2 a ) z ) ( 1 - 2 a ) sin z Gauss-hypergeometric-F 𝑎 1 2 𝑎 3 2 2 𝑧 superscript 𝑧 2 𝑎 1 2 𝑎 𝑧 1 2 𝑎 𝑧 {\displaystyle{\displaystyle F\left(a,\tfrac{1}{2}+a;\tfrac{3}{2};-{\tan^{2}}z% \right)=(\cos z)^{2a}\frac{\sin\left((1-2a)z\right)}{(1-2a)\sin z}}}
\hyperF@{a}{\tfrac{1}{2}+a}{\tfrac{3}{2}}{-\tan^{2}@@{z}} = (\cos@@{z})^{2a}\frac{\sin@{(1-2a)z}}{(1-2a)\sin@@{z}}

hypergeom([a, (1)/(2)+ a], [(3)/(2)], - (tan(z))^(2)) = (cos(z))^(2*a)*(sin((1 - 2*a)*z))/((1 - 2*a)*sin(z))
Hypergeometric2F1[a, Divide[1,2]+ a, Divide[3,2], - (Tan[z])^(2)] == (Cos[z])^(2*a)*Divide[Sin[(1 - 2*a)*z],(1 - 2*a)*Sin[z]]
Failure Failure
Failed [7 / 42]
Result: Float(undefined)+Float(undefined)*I
Test Values: {a = 1/2, z = 1/2*3^(1/2)+1/2*I}

Result: Float(undefined)+Float(undefined)*I
Test Values: {a = 1/2, z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [7 / 42]
Result: Indeterminate
Test Values: {Rule[a, 0.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Indeterminate
Test Values: {Rule[a, 0.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
15.4.E11 F ( - a , a ; 1 2 ; - z 2 ) = 1 2 ( ( 1 + z 2 + z ) 2 a + ( 1 + z 2 - z ) 2 a ) Gauss-hypergeometric-F 𝑎 𝑎 1 2 superscript 𝑧 2 1 2 superscript 1 superscript 𝑧 2 𝑧 2 𝑎 superscript 1 superscript 𝑧 2 𝑧 2 𝑎 {\displaystyle{\displaystyle F\left(-a,a;\tfrac{1}{2};-z^{2}\right)=\tfrac{1}{% 2}\left(\left(\sqrt{1+z^{2}}+z\right)^{2a}+\left(\sqrt{1+z^{2}}-z\right)^{2a}% \right)}}
\hyperF@{-a}{a}{\tfrac{1}{2}}{-z^{2}} = \tfrac{1}{2}\left(\left(\sqrt{1+z^{2}}+z\right)^{2a}+\left(\sqrt{1+z^{2}}-z\right)^{2a}\right)

hypergeom([- a, a], [(1)/(2)], - (z)^(2)) = (1)/(2)*((sqrt(1 + (z)^(2))+ z)^(2*a)+(sqrt(1 + (z)^(2))- z)^(2*a))
Hypergeometric2F1[- a, a, Divide[1,2], - (z)^(2)] == Divide[1,2]*((Sqrt[1 + (z)^(2)]+ z)^(2*a)+(Sqrt[1 + (z)^(2)]- z)^(2*a))
Failure Failure Successful [Tested: 42] Successful [Tested: 42]
15.4.E12 F ( - a , a ; 1 2 ; sin 2 z ) = cos ( 2 a z ) Gauss-hypergeometric-F 𝑎 𝑎 1 2 2 𝑧 2 𝑎 𝑧 {\displaystyle{\displaystyle F\left(-a,a;\tfrac{1}{2};{\sin^{2}}z\right)=\cos% \left(2az\right)}}
\hyperF@{-a}{a}{\tfrac{1}{2}}{\sin^{2}@@{z}} = \cos@{2az}

hypergeom([- a, a], [(1)/(2)], (sin(z))^(2)) = cos(2*a*z)
Hypergeometric2F1[- a, a, Divide[1,2], (Sin[z])^(2)] == Cos[2*a*z]
Failure Failure
Failed [4 / 42]
Result: -1.920340573
Test Values: {a = -3/2, z = 2}

Result: -1.920340573
Test Values: {a = 3/2, z = 2}

... skip entries to safe data
Failed [4 / 42]
Result: -1.9203405733007322
Test Values: {Rule[a, -1.5], Rule[z, 2]}

Result: -1.9203405733007322
Test Values: {Rule[a, 1.5], Rule[z, 2]}

... skip entries to safe data
15.4.E13 F ( a , 1 - a ; 1 2 ; - z 2 ) = 1 2 1 + z 2 ( ( 1 + z 2 + z ) 2 a - 1 + ( 1 + z 2 - z ) 2 a - 1 ) Gauss-hypergeometric-F 𝑎 1 𝑎 1 2 superscript 𝑧 2 1 2 1 superscript 𝑧 2 superscript 1 superscript 𝑧 2 𝑧 2 𝑎 1 superscript 1 superscript 𝑧 2 𝑧 2 𝑎 1 {\displaystyle{\displaystyle F\left(a,1-a;\tfrac{1}{2};-z^{2}\right)=\frac{1}{% 2\sqrt{1+z^{2}}}\left(\left(\sqrt{1+z^{2}}+z\right)^{2a-1}+\left(\sqrt{1+z^{2}% }-z\right)^{2a-1}\right)}}
\hyperF@{a}{1-a}{\tfrac{1}{2}}{-z^{2}} = \frac{1}{2\sqrt{1+z^{2}}}\left(\left(\sqrt{1+z^{2}}+z\right)^{2a-1}+\left(\sqrt{1+z^{2}}-z\right)^{2a-1}\right)

hypergeom([a, 1 - a], [(1)/(2)], - (z)^(2)) = (1)/(2*sqrt(1 + (z)^(2)))*((sqrt(1 + (z)^(2))+ z)^(2*a - 1)+(sqrt(1 + (z)^(2))- z)^(2*a - 1))
Hypergeometric2F1[a, 1 - a, Divide[1,2], - (z)^(2)] == Divide[1,2*Sqrt[1 + (z)^(2)]]*((Sqrt[1 + (z)^(2)]+ z)^(2*a - 1)+(Sqrt[1 + (z)^(2)]- z)^(2*a - 1))
Successful Failure - Successful [Tested: 42]
15.4.E14 F ( a , 1 - a ; 1 2 ; sin 2 z ) = cos ( ( 2 a - 1 ) z ) cos z Gauss-hypergeometric-F 𝑎 1 𝑎 1 2 2 𝑧 2 𝑎 1 𝑧 𝑧 {\displaystyle{\displaystyle F\left(a,1-a;\tfrac{1}{2};{\sin^{2}}z\right)=% \frac{\cos\left((2a-1)z\right)}{\cos z}}}
\hyperF@{a}{1-a}{\tfrac{1}{2}}{\sin^{2}@@{z}} = \frac{\cos@{(2a-1)z}}{\cos@@{z}}

hypergeom([a, 1 - a], [(1)/(2)], (sin(z))^(2)) = (cos((2*a - 1)*z))/(cos(z))
Hypergeometric2F1[a, 1 - a, Divide[1,2], (Sin[z])^(2)] == Divide[Cos[(2*a - 1)*z],Cos[z]]
Failure Failure
Failed [4 / 42]
Result: -.6992725697
Test Values: {a = -3/2, z = 2}

Result: -3.141408577
Test Values: {a = 3/2, z = 2}

... skip entries to safe data
Failed [4 / 42]
Result: -0.6992725693452728
Test Values: {Rule[a, -1.5], Rule[z, 2]}

Result: -3.1414085772561924
Test Values: {Rule[a, 1.5], Rule[z, 2]}

... skip entries to safe data
15.4.E15 F ( a , 1 - a ; 3 2 ; - z 2 ) = 1 ( 2 - 4 a ) z ( ( 1 + z 2 + z ) 1 - 2 a - ( 1 + z 2 - z ) 1 - 2 a ) Gauss-hypergeometric-F 𝑎 1 𝑎 3 2 superscript 𝑧 2 1 2 4 𝑎 𝑧 superscript 1 superscript 𝑧 2 𝑧 1 2 𝑎 superscript 1 superscript 𝑧 2 𝑧 1 2 𝑎 {\displaystyle{\displaystyle F\left(a,1-a;\tfrac{3}{2};-z^{2}\right)=\frac{1}{% (2-4a)z}\left(\left(\sqrt{1+z^{2}}+z\right)^{1-2a}-\left(\sqrt{1+z^{2}}-z% \right)^{1-2a}\right)}}
\hyperF@{a}{1-a}{\tfrac{3}{2}}{-z^{2}} = \frac{1}{(2-4a)z}\left(\left(\sqrt{1+z^{2}}+z\right)^{1-2a}-\left(\sqrt{1+z^{2}}-z\right)^{1-2a}\right)

hypergeom([a, 1 - a], [(3)/(2)], - (z)^(2)) = (1)/((2 - 4*a)*z)*((sqrt(1 + (z)^(2))+ z)^(1 - 2*a)-(sqrt(1 + (z)^(2))- z)^(1 - 2*a))
Hypergeometric2F1[a, 1 - a, Divide[3,2], - (z)^(2)] == Divide[1,(2 - 4*a)*z]*((Sqrt[1 + (z)^(2)]+ z)^(1 - 2*a)-(Sqrt[1 + (z)^(2)]- z)^(1 - 2*a))
Failure Failure
Failed [7 / 42]
Result: Float(undefined)+Float(undefined)*I
Test Values: {a = 1/2, z = 1/2*3^(1/2)+1/2*I}

Result: Float(undefined)+Float(undefined)*I
Test Values: {a = 1/2, z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [7 / 42]
Result: Indeterminate
Test Values: {Rule[a, 0.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Indeterminate
Test Values: {Rule[a, 0.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
15.4.E16 F ( a , 1 - a ; 3 2 ; sin 2 z ) = sin ( ( 2 a - 1 ) z ) ( 2 a - 1 ) sin z Gauss-hypergeometric-F 𝑎 1 𝑎 3 2 2 𝑧 2 𝑎 1 𝑧 2 𝑎 1 𝑧 {\displaystyle{\displaystyle F\left(a,1-a;\tfrac{3}{2};{\sin^{2}}z\right)=% \frac{\sin\left((2a-1)z\right)}{(2a-1)\sin z}}}
\hyperF@{a}{1-a}{\tfrac{3}{2}}{\sin^{2}@@{z}} = \frac{\sin@{(2a-1)z}}{(2a-1)\sin@@{z}}

hypergeom([a, 1 - a], [(3)/(2)], (sin(z))^(2)) = (sin((2*a - 1)*z))/((2*a - 1)*sin(z))
Hypergeometric2F1[a, 1 - a, Divide[3,2], (Sin[z])^(2)] == Divide[Sin[(2*a - 1)*z],(2*a - 1)*Sin[z]]
Successful Failure -
Failed [10 / 42]
Result: -0.5440234501032235
Test Values: {Rule[a, -1.5], Rule[z, 2]}

Result: 0.8322936730942848
Test Values: {Rule[a, 1.5], Rule[z, 2]}

... skip entries to safe data
15.4.E17 F ( a , 1 2 + a ; 1 + 2 a ; z ) = ( 1 2 + 1 2 1 - z ) - 2 a Gauss-hypergeometric-F 𝑎 1 2 𝑎 1 2 𝑎 𝑧 superscript 1 2 1 2 1 𝑧 2 𝑎 {\displaystyle{\displaystyle F\left(a,\tfrac{1}{2}+a;1+2a;z\right)=\left(% \tfrac{1}{2}+\tfrac{1}{2}\sqrt{1-z}\right)^{-2a}}}
\hyperF@{a}{\tfrac{1}{2}+a}{1+2a}{z} = \left(\tfrac{1}{2}+\tfrac{1}{2}\sqrt{1-z}\right)^{-2a}

hypergeom([a, (1)/(2)+ a], [1 + 2*a], z) = ((1)/(2)+(1)/(2)*sqrt(1 - z))^(- 2*a)
Hypergeometric2F1[a, Divide[1,2]+ a, 1 + 2*a, z] == (Divide[1,2]+Divide[1,2]*Sqrt[1 - z])^(- 2*a)
Successful Successful -
Failed [20 / 42]
Result: Complex[-0.02099232729741518, 0.019754284780044207]
Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.009306933376070914, 0.00445671804147707]
Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
15.4.E18 F ( a , 1 2 + a ; 2 a ; z ) = 1 1 - z ( 1 2 + 1 2 1 - z ) 1 - 2 a Gauss-hypergeometric-F 𝑎 1 2 𝑎 2 𝑎 𝑧 1 1 𝑧 superscript 1 2 1 2 1 𝑧 1 2 𝑎 {\displaystyle{\displaystyle F\left(a,\tfrac{1}{2}+a;2a;z\right)=\frac{1}{% \sqrt{1-z}}\left(\tfrac{1}{2}+\tfrac{1}{2}\sqrt{1-z}\right)^{1-2a}}}
\hyperF@{a}{\tfrac{1}{2}+a}{2a}{z} = \frac{1}{\sqrt{1-z}}\left(\tfrac{1}{2}+\tfrac{1}{2}\sqrt{1-z}\right)^{1-2a}

hypergeom([a, (1)/(2)+ a], [2*a], z) = (1)/(sqrt(1 - z))*((1)/(2)+(1)/(2)*sqrt(1 - z))^(1 - 2*a)
Hypergeometric2F1[a, Divide[1,2]+ a, 2*a, z] == Divide[1,Sqrt[1 - z]]*(Divide[1,2]+Divide[1,2]*Sqrt[1 - z])^(1 - 2*a)
Successful Successful -
Failed [17 / 42]
Result: Complex[0.009435141098616318, 0.007866769593881467]
Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.0016763074528445276, -3.2228425612285116*^-4]
Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
15.4.E19 F ( a + 1 , b ; a ; z ) = ( 1 - ( 1 - ( b / a ) ) z ) ( 1 - z ) - 1 - b Gauss-hypergeometric-F 𝑎 1 𝑏 𝑎 𝑧 1 1 𝑏 𝑎 𝑧 superscript 1 𝑧 1 𝑏 {\displaystyle{\displaystyle F\left(a+1,b;a;z\right)=\left(1-(1-(\ifrac{b}{a})% )z\right)(1-z)^{-1-b}}}
\hyperF@{a+1}{b}{a}{z} = \left(1-(1-(\ifrac{b}{a}))z\right)(1-z)^{-1-b}

hypergeom([a + 1, b], [a], z) = (1 -(1 -((b)/(a)))*z)*(1 - z)^(- 1 - b)
Hypergeometric2F1[a + 1, b, a, z] == (1 -(1 -(Divide[b,a]))*z)*(1 - z)^(- 1 - b)
Successful Successful -
Failed [34 / 252]
Result: Complex[-0.041984654594830306, 0.03950856956008836]
Test Values: {Rule[a, -2], Rule[b, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.018613866752141828, 0.008913436082954251]
Test Values: {Rule[a, -2], Rule[b, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
15.4.E20 F ( a , b ; c ; 1 ) = Γ ( c ) Γ ( c - a - b ) Γ ( c - a ) Γ ( c - b ) Gauss-hypergeometric-F 𝑎 𝑏 𝑐 1 Euler-Gamma 𝑐 Euler-Gamma 𝑐 𝑎 𝑏 Euler-Gamma 𝑐 𝑎 Euler-Gamma 𝑐 𝑏 {\displaystyle{\displaystyle F\left(a,b;c;1\right)=\frac{\Gamma\left(c\right)% \Gamma\left(c-a-b\right)}{\Gamma\left(c-a\right)\Gamma\left(c-b\right)}}}
\hyperF@{a}{b}{c}{1} = \frac{\EulerGamma@{c}\EulerGamma@{c-a-b}}{\EulerGamma@{c-a}\EulerGamma@{c-b}}
c > 0 , ( c - a - b ) > 0 , ( c - a ) > 0 , ( c - b ) > 0 formulae-sequence 𝑐 0 formulae-sequence 𝑐 𝑎 𝑏 0 formulae-sequence 𝑐 𝑎 0 𝑐 𝑏 0 {\displaystyle{\displaystyle\Re c>0,\Re(c-a-b)>0,\Re(c-a)>0,\Re(c-b)>0}}
hypergeom([a, b], [c], 1) = (GAMMA(c)*GAMMA(c - a - b))/(GAMMA(c - a)*GAMMA(c - b))
Hypergeometric2F1[a, b, c, 1] == Divide[Gamma[c]*Gamma[c - a - b],Gamma[c - a]*Gamma[c - b]]
Failure Failure Successful [Tested: 47] Successful [Tested: 47]
15.4.E21 lim z 1 - F ( a , b ; a + b ; z ) - ln ( 1 - z ) = Γ ( a + b ) Γ ( a ) Γ ( b ) subscript 𝑧 limit-from 1 Gauss-hypergeometric-F 𝑎 𝑏 𝑎 𝑏 𝑧 1 𝑧 Euler-Gamma 𝑎 𝑏 Euler-Gamma 𝑎 Euler-Gamma 𝑏 {\displaystyle{\displaystyle\lim_{z\to 1-}\frac{F\left(a,b;a+b;z\right)}{-\ln% \left(1-z\right)}=\frac{\Gamma\left(a+b\right)}{\Gamma\left(a\right)\Gamma% \left(b\right)}}}
\lim_{z\to 1-}\frac{\hyperF@{a}{b}{a+b}{z}}{-\ln@{1-z}} = \frac{\EulerGamma@{a+b}}{\EulerGamma@{a}\EulerGamma@{b}}
( a + b ) > 0 , a > 0 , b > 0 formulae-sequence 𝑎 𝑏 0 formulae-sequence 𝑎 0 𝑏 0 {\displaystyle{\displaystyle\Re(a+b)>0,\Re a>0,\Re b>0}}
limit((hypergeom([a, b], [a + b], z))/(- ln(1 - z)), z = 1, left) = (GAMMA(a + b))/(GAMMA(a)*GAMMA(b))
Limit[Divide[Hypergeometric2F1[a, b, a + b, z],- Log[1 - z]], z -> 1, Direction -> "FromBelow", GenerateConditions->None] == Divide[Gamma[a + b],Gamma[a]*Gamma[b]]
Successful Successful - Successful [Tested: 9]
15.4.E22 lim z 1 - ( 1 - z ) a + b - c ( F ( a , b ; c ; z ) - Γ ( c ) Γ ( c - a - b ) Γ ( c - a ) Γ ( c - b ) ) = Γ ( c ) Γ ( a + b - c ) Γ ( a ) Γ ( b ) subscript 𝑧 limit-from 1 superscript 1 𝑧 𝑎 𝑏 𝑐 Gauss-hypergeometric-F 𝑎 𝑏 𝑐 𝑧 Euler-Gamma 𝑐 Euler-Gamma 𝑐 𝑎 𝑏 Euler-Gamma 𝑐 𝑎 Euler-Gamma 𝑐 𝑏 Euler-Gamma 𝑐 Euler-Gamma 𝑎 𝑏 𝑐 Euler-Gamma 𝑎 Euler-Gamma 𝑏 {\displaystyle{\displaystyle\lim_{z\to 1-}(1-z)^{a+b-c}\left(F\left(a,b;c;z% \right)-\frac{\Gamma\left(c\right)\Gamma\left(c-a-b\right)}{\Gamma\left(c-a% \right)\Gamma\left(c-b\right)}\right)=\frac{\Gamma\left(c\right)\Gamma\left(a+% b-c\right)}{\Gamma\left(a\right)\Gamma\left(b\right)}}}
\lim_{z\to 1-}(1-z)^{a+b-c}\left(\hyperF@{a}{b}{c}{z}-\frac{\EulerGamma@{c}\EulerGamma@{c-a-b}}{\EulerGamma@{c-a}\EulerGamma@{c-b}}\right) = \frac{\EulerGamma@{c}\EulerGamma@{a+b-c}}{\EulerGamma@{a}\EulerGamma@{b}}
c > 0 , ( c - a - b ) > 0 , ( c - a ) > 0 , ( c - b ) > 0 , ( a + b - c ) > 0 , a > 0 , b > 0 formulae-sequence 𝑐 0 formulae-sequence 𝑐 𝑎 𝑏 0 formulae-sequence 𝑐 𝑎 0 formulae-sequence 𝑐 𝑏 0 formulae-sequence 𝑎 𝑏 𝑐 0 formulae-sequence 𝑎 0 𝑏 0 {\displaystyle{\displaystyle\Re c>0,\Re(c-a-b)>0,\Re(c-a)>0,\Re(c-b)>0,\Re(a+b% -c)>0,\Re a>0,\Re b>0}}
limit((1 - z)^(a + b - c)*(hypergeom([a, b], [c], z)-(GAMMA(c)*GAMMA(c - a - b))/(GAMMA(c - a)*GAMMA(c - b))), z = 1, left) = (GAMMA(c)*GAMMA(a + b - c))/(GAMMA(a)*GAMMA(b))
Limit[(1 - z)^(a + b - c)*(Hypergeometric2F1[a, b, c, z]-Divide[Gamma[c]*Gamma[c - a - b],Gamma[c - a]*Gamma[c - b]]), z -> 1, Direction -> "FromBelow", GenerateConditions->None] == Divide[Gamma[c]*Gamma[a + b - c],Gamma[a]*Gamma[b]]
Failure Aborted Error Skipped - Because timed out
15.4.E23 lim z 1 - F ( a , b ; c ; z ) ( 1 - z ) c - a - b = Γ ( c ) Γ ( a + b - c ) Γ ( a ) Γ ( b ) subscript 𝑧 limit-from 1 Gauss-hypergeometric-F 𝑎 𝑏 𝑐 𝑧 superscript 1 𝑧 𝑐 𝑎 𝑏 Euler-Gamma 𝑐 Euler-Gamma 𝑎 𝑏 𝑐 Euler-Gamma 𝑎 Euler-Gamma 𝑏 {\displaystyle{\displaystyle\lim_{z\to 1-}\frac{F\left(a,b;c;z\right)}{(1-z)^{% c-a-b}}=\frac{\Gamma\left(c\right)\Gamma\left(a+b-c\right)}{\Gamma\left(a% \right)\Gamma\left(b\right)}}}
\lim_{z\to 1-}\frac{\hyperF@{a}{b}{c}{z}}{(1-z)^{c-a-b}} = \frac{\EulerGamma@{c}\EulerGamma@{a+b-c}}{\EulerGamma@{a}\EulerGamma@{b}}
c > 0 , ( a + b - c ) > 0 , a > 0 , b > 0 formulae-sequence 𝑐 0 formulae-sequence 𝑎 𝑏 𝑐 0 formulae-sequence 𝑎 0 𝑏 0 {\displaystyle{\displaystyle\Re c>0,\Re(a+b-c)>0,\Re a>0,\Re b>0}}
limit((hypergeom([a, b], [c], z))/((1 - z)^(c - a - b)), z = 1, left) = (GAMMA(c)*GAMMA(a + b - c))/(GAMMA(a)*GAMMA(b))
Limit[Divide[Hypergeometric2F1[a, b, c, z],(1 - z)^(c - a - b)], z -> 1, Direction -> "FromBelow", GenerateConditions->None] == Divide[Gamma[c]*Gamma[a + b - c],Gamma[a]*Gamma[b]]
Failure Failure Manual Skip! Successful [Tested: 23]
15.4.E24 F ( - n , b ; c ; 1 ) = ( c - b ) n ( c ) n Gauss-hypergeometric-F 𝑛 𝑏 𝑐 1 Pochhammer 𝑐 𝑏 𝑛 Pochhammer 𝑐 𝑛 {\displaystyle{\displaystyle F\left(-n,b;c;1\right)=\frac{{\left(c-b\right)_{n% }}}{{\left(c\right)_{n}}}}}
\hyperF@{-n}{b}{c}{1} = \frac{\Pochhammersym{c-b}{n}}{\Pochhammersym{c}{n}}

hypergeom([- n, b], [c], 1) = (pochhammer(c - b, n))/(pochhammer(c, n))
Hypergeometric2F1[- n, b, c, 1] == Divide[Pochhammer[c - b, n],Pochhammer[c, n]]
Failure Failure Error
Failed [6 / 36]
Result: Indeterminate
Test Values: {Rule[b, -1.5], Rule[c, -2], Rule[n, 3]}

Result: Indeterminate
Test Values: {Rule[b, 1.5], Rule[c, -2], Rule[n, 3]}

... skip entries to safe data
15.4.E25 n = - Γ ( a + n ) Γ ( b + n ) Γ ( c + n ) Γ ( d + n ) = π 2 sin ( π a ) sin ( π b ) Γ ( c + d - a - b - 1 ) Γ ( c - a ) Γ ( d - a ) Γ ( c - b ) Γ ( d - b ) superscript subscript 𝑛 Euler-Gamma 𝑎 𝑛 Euler-Gamma 𝑏 𝑛 Euler-Gamma 𝑐 𝑛 Euler-Gamma 𝑑 𝑛 superscript 𝜋 2 𝜋 𝑎 𝜋 𝑏 Euler-Gamma 𝑐 𝑑 𝑎 𝑏 1 Euler-Gamma 𝑐 𝑎 Euler-Gamma 𝑑 𝑎 Euler-Gamma 𝑐 𝑏 Euler-Gamma 𝑑 𝑏 {\displaystyle{\displaystyle\sum_{n=-\infty}^{\infty}\frac{\Gamma\left(a+n% \right)\Gamma\left(b+n\right)}{\Gamma\left(c+n\right)\Gamma\left(d+n\right)}=% \frac{\pi^{2}}{\sin\left(\pi a\right)\sin\left(\pi b\right)}\*\frac{\Gamma% \left(c+d-a-b-1\right)}{\Gamma\left(c-a\right)\Gamma\left(d-a\right)\Gamma% \left(c-b\right)\Gamma\left(d-b\right)}}}
\sum_{n=-\infty}^{\infty}\frac{\EulerGamma@{a+n}\EulerGamma@{b+n}}{\EulerGamma@{c+n}\EulerGamma@{d+n}} = \frac{\pi^{2}}{\sin@{\pi a}\sin@{\pi b}}\*\frac{\EulerGamma@{c+d-a-b-1}}{\EulerGamma@{c-a}\EulerGamma@{d-a}\EulerGamma@{c-b}\EulerGamma@{d-b}}
( a + n ) > 0 , ( b + n ) > 0 , ( c + n ) > 0 , ( d + n ) > 0 , ( c + d - a - b - 1 ) > 0 , ( c - a ) > 0 , ( d - a ) > 0 , ( c - b ) > 0 , ( d - b ) > 0 formulae-sequence 𝑎 𝑛 0 formulae-sequence 𝑏 𝑛 0 formulae-sequence 𝑐 𝑛 0 formulae-sequence 𝑑 𝑛 0 formulae-sequence 𝑐 𝑑 𝑎 𝑏 1 0 formulae-sequence 𝑐 𝑎 0 formulae-sequence 𝑑 𝑎 0 formulae-sequence 𝑐 𝑏 0 𝑑 𝑏 0 {\displaystyle{\displaystyle\Re(a+n)>0,\Re(b+n)>0,\Re(c+n)>0,\Re(d+n)>0,\Re(c+% d-a-b-1)>0,\Re(c-a)>0,\Re(d-a)>0,\Re(c-b)>0,\Re(d-b)>0}}
sum((GAMMA(a + n)*GAMMA(b + n))/(GAMMA(c + n)*GAMMA(d + n)), n = - infinity..infinity) = ((Pi)^(2))/(sin(Pi*a)*sin(Pi*b))*(GAMMA(c + d - a - b - 1))/(GAMMA(c - a)*GAMMA(d - a)*GAMMA(c - b)*GAMMA(d - b))
Sum[Divide[Gamma[a + n]*Gamma[b + n],Gamma[c + n]*Gamma[d + n]], {n, - Infinity, Infinity}, GenerateConditions->None] == Divide[(Pi)^(2),Sin[Pi*a]*Sin[Pi*b]]*Divide[Gamma[c + d - a - b - 1],Gamma[c - a]*Gamma[d - a]*Gamma[c - b]*Gamma[d - b]]
Failure Aborted Manual Skip!
Failed [160 / 281]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -2], Rule[c, 1.5], Rule[d, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -2], Rule[c, 1.5], Rule[d, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
15.4.E26 F ( a , b ; a - b + 1 ; - 1 ) = Γ ( a - b + 1 ) Γ ( 1 2 a + 1 ) Γ ( a + 1 ) Γ ( 1 2 a - b + 1 ) Gauss-hypergeometric-F 𝑎 𝑏 𝑎 𝑏 1 1 Euler-Gamma 𝑎 𝑏 1 Euler-Gamma 1 2 𝑎 1 Euler-Gamma 𝑎 1 Euler-Gamma 1 2 𝑎 𝑏 1 {\displaystyle{\displaystyle F\left(a,b;a-b+1;-1\right)=\frac{\Gamma\left(a-b+% 1\right)\Gamma\left(\tfrac{1}{2}a+1\right)}{\Gamma\left(a+1\right)\Gamma\left(% \tfrac{1}{2}a-b+1\right)}}}
\hyperF@{a}{b}{a-b+1}{-1} = \frac{\EulerGamma@{a-b+1}\EulerGamma@{\tfrac{1}{2}a+1}}{\EulerGamma@{a+1}\EulerGamma@{\tfrac{1}{2}a-b+1}}
( a - b + 1 ) > 0 , ( 1 2 a + 1 ) > 0 , ( a + 1 ) > 0 , ( 1 2 a - b + 1 ) > 0 formulae-sequence 𝑎 𝑏 1 0 formulae-sequence 1 2 𝑎 1 0 formulae-sequence 𝑎 1 0 1 2 𝑎 𝑏 1 0 {\displaystyle{\displaystyle\Re(a-b+1)>0,\Re(\tfrac{1}{2}a+1)>0,\Re(a+1)>0,\Re% (\tfrac{1}{2}a-b+1)>0}}
hypergeom([a, b], [a - b + 1], - 1) = (GAMMA(a - b + 1)*GAMMA((1)/(2)*a + 1))/(GAMMA(a + 1)*GAMMA((1)/(2)*a - b + 1))
Hypergeometric2F1[a, b, a - b + 1, - 1] == Divide[Gamma[a - b + 1]*Gamma[Divide[1,2]*a + 1],Gamma[a + 1]*Gamma[Divide[1,2]*a - b + 1]]
Successful Successful - Successful [Tested: 17]
15.4.E27 F ( 1 , a ; a + 1 ; - 1 ) = 1 2 a ( ψ ( 1 2 a + 1 2 ) - ψ ( 1 2 a ) ) Gauss-hypergeometric-F 1 𝑎 𝑎 1 1 1 2 𝑎 digamma 1 2 𝑎 1 2 digamma 1 2 𝑎 {\displaystyle{\displaystyle F\left(1,a;a+1;-1\right)=\tfrac{1}{2}a\left(\psi% \left(\tfrac{1}{2}a+\tfrac{1}{2}\right)-\psi\left(\tfrac{1}{2}a\right)\right)}}
\hyperF@{1}{a}{a+1}{-1} = \tfrac{1}{2}a\left(\digamma@{\tfrac{1}{2}a+\tfrac{1}{2}}-\digamma@{\tfrac{1}{2}a}\right)

hypergeom([1, a], [a + 1], - 1) = (1)/(2)*a*(Psi((1)/(2)*a +(1)/(2))- Psi((1)/(2)*a))
Hypergeometric2F1[1, a, a + 1, - 1] == Divide[1,2]*a*(PolyGamma[Divide[1,2]*a +Divide[1,2]]- PolyGamma[Divide[1,2]*a])
Successful Successful - Successful [Tested: 6]
15.4.E28 F ( a , b ; 1 2 a + 1 2 b + 1 2 ; 1 2 ) = π Γ ( 1 2 a + 1 2 b + 1 2 ) Γ ( 1 2 a + 1 2 ) Γ ( 1 2 b + 1 2 ) Gauss-hypergeometric-F 𝑎 𝑏 1 2 𝑎 1 2 𝑏 1 2 1 2 𝜋 Euler-Gamma 1 2 𝑎 1 2 𝑏 1 2 Euler-Gamma 1 2 𝑎 1 2 Euler-Gamma 1 2 𝑏 1 2 {\displaystyle{\displaystyle F\left(a,b;\tfrac{1}{2}a+\tfrac{1}{2}b+\tfrac{1}{% 2};\tfrac{1}{2}\right)=\sqrt{\pi}\frac{\Gamma\left(\tfrac{1}{2}a+\tfrac{1}{2}b% +\tfrac{1}{2}\right)}{\Gamma\left(\tfrac{1}{2}a+\tfrac{1}{2}\right)\Gamma\left% (\tfrac{1}{2}b+\tfrac{1}{2}\right)}}}
\hyperF@{a}{b}{\tfrac{1}{2}a+\tfrac{1}{2}b+\tfrac{1}{2}}{\tfrac{1}{2}} = \sqrt{\pi}\frac{\EulerGamma@{\tfrac{1}{2}a+\tfrac{1}{2}b+\tfrac{1}{2}}}{\EulerGamma@{\tfrac{1}{2}a+\tfrac{1}{2}}\EulerGamma@{\tfrac{1}{2}b+\tfrac{1}{2}}}
( 1 2 a + 1 2 b + 1 2 ) > 0 , ( 1 2 a + 1 2 ) > 0 , ( 1 2 b + 1 2 ) > 0 formulae-sequence 1 2 𝑎 1 2 𝑏 1 2 0 formulae-sequence 1 2 𝑎 1 2 0 1 2 𝑏 1 2 0 {\displaystyle{\displaystyle\Re(\tfrac{1}{2}a+\tfrac{1}{2}b+\tfrac{1}{2})>0,% \Re(\tfrac{1}{2}a+\tfrac{1}{2})>0,\Re(\tfrac{1}{2}b+\tfrac{1}{2})>0}}
hypergeom([a, b], [(1)/(2)*a +(1)/(2)*b +(1)/(2)], (1)/(2)) = sqrt(Pi)*(GAMMA((1)/(2)*a +(1)/(2)*b +(1)/(2)))/(GAMMA((1)/(2)*a +(1)/(2))*GAMMA((1)/(2)*b +(1)/(2)))
Hypergeometric2F1[a, b, Divide[1,2]*a +Divide[1,2]*b +Divide[1,2], Divide[1,2]] == Sqrt[Pi]*Divide[Gamma[Divide[1,2]*a +Divide[1,2]*b +Divide[1,2]],Gamma[Divide[1,2]*a +Divide[1,2]]*Gamma[Divide[1,2]*b +Divide[1,2]]]
Successful Successful - Successful [Tested: 15]
15.4.E29 F ( a , b ; 1 2 a + 1 2 b + 1 ; 1 2 ) = 2 π a - b Γ ( 1 2 a + 1 2 b + 1 ) ( 1 Γ ( 1 2 a ) Γ ( 1 2 b + 1 2 ) - 1 Γ ( 1 2 a + 1 2 ) Γ ( 1 2 b ) ) Gauss-hypergeometric-F 𝑎 𝑏 1 2 𝑎 1 2 𝑏 1 1 2 2 𝜋 𝑎 𝑏 Euler-Gamma 1 2 𝑎 1 2 𝑏 1 1 Euler-Gamma 1 2 𝑎 Euler-Gamma 1 2 𝑏 1 2 1 Euler-Gamma 1 2 𝑎 1 2 Euler-Gamma 1 2 𝑏 {\displaystyle{\displaystyle F\left(a,b;\tfrac{1}{2}a+\tfrac{1}{2}b+1;\tfrac{1% }{2}\right)=\frac{2\sqrt{\pi}}{a-b}\Gamma\left(\tfrac{1}{2}a+\tfrac{1}{2}b+1% \right)\*\left(\frac{1}{\Gamma\left(\tfrac{1}{2}a\right)\Gamma\left(\tfrac{1}{% 2}b+\tfrac{1}{2}\right)}-\frac{1}{\Gamma\left(\tfrac{1}{2}a+\tfrac{1}{2}\right% )\Gamma\left(\tfrac{1}{2}b\right)}\right)}}
\hyperF@{a}{b}{\tfrac{1}{2}a+\tfrac{1}{2}b+1}{\tfrac{1}{2}} = \frac{2\sqrt{\pi}}{a-b}\EulerGamma@{\tfrac{1}{2}a+\tfrac{1}{2}b+1}\*\left(\frac{1}{\EulerGamma@{\tfrac{1}{2}a}\EulerGamma@{\tfrac{1}{2}b+\tfrac{1}{2}}}-\frac{1}{\EulerGamma@{\tfrac{1}{2}a+\tfrac{1}{2}}\EulerGamma@{\tfrac{1}{2}b}}\right)
( 1 2 a + 1 2 b + 1 ) > 0 , ( 1 2 a ) > 0 , ( 1 2 b + 1 2 ) > 0 , ( 1 2 a + 1 2 ) > 0 , ( 1 2 b ) > 0 formulae-sequence 1 2 𝑎 1 2 𝑏 1 0 formulae-sequence 1 2 𝑎 0 formulae-sequence 1 2 𝑏 1 2 0 formulae-sequence 1 2 𝑎 1 2 0 1 2 𝑏 0 {\displaystyle{\displaystyle\Re(\tfrac{1}{2}a+\tfrac{1}{2}b+1)>0,\Re(\tfrac{1}% {2}a)>0,\Re(\tfrac{1}{2}b+\tfrac{1}{2})>0,\Re(\tfrac{1}{2}a+\tfrac{1}{2})>0,% \Re(\tfrac{1}{2}b)>0}}
hypergeom([a, b], [(1)/(2)*a +(1)/(2)*b + 1], (1)/(2)) = (2*sqrt(Pi))/(a - b)*GAMMA((1)/(2)*a +(1)/(2)*b + 1)*((1)/(GAMMA((1)/(2)*a)*GAMMA((1)/(2)*b +(1)/(2)))-(1)/(GAMMA((1)/(2)*a +(1)/(2))*GAMMA((1)/(2)*b)))
Hypergeometric2F1[a, b, Divide[1,2]*a +Divide[1,2]*b + 1, Divide[1,2]] == Divide[2*Sqrt[Pi],a - b]*Gamma[Divide[1,2]*a +Divide[1,2]*b + 1]*(Divide[1,Gamma[Divide[1,2]*a]*Gamma[Divide[1,2]*b +Divide[1,2]]]-Divide[1,Gamma[Divide[1,2]*a +Divide[1,2]]*Gamma[Divide[1,2]*b]])
Failure Failure
Failed [3 / 9]
Result: Float(-infinity)
Test Values: {a = 3/2, b = 3/2}

Result: Float(undefined)
Test Values: {a = 1/2, b = 1/2}

... skip entries to safe data
Failed [3 / 9]
Result: Indeterminate
Test Values: {Rule[a, 1.5], Rule[b, 1.5]}

Result: Indeterminate
Test Values: {Rule[a, 0.5], Rule[b, 0.5]}

... skip entries to safe data
15.4.E30 F ( a , 1 - a ; b ; 1 2 ) = 2 1 - b π Γ ( b ) Γ ( 1 2 a + 1 2 b ) Γ ( 1 2 b - 1 2 a + 1 2 ) Gauss-hypergeometric-F 𝑎 1 𝑎 𝑏 1 2 superscript 2 1 𝑏 𝜋 Euler-Gamma 𝑏 Euler-Gamma 1 2 𝑎 1 2 𝑏 Euler-Gamma 1 2 𝑏 1 2 𝑎 1 2 {\displaystyle{\displaystyle F\left(a,1-a;b;\tfrac{1}{2}\right)=\frac{2^{1-b}% \sqrt{\pi}\Gamma\left(b\right)}{\Gamma\left(\tfrac{1}{2}a+\tfrac{1}{2}b\right)% \Gamma\left(\tfrac{1}{2}b-\tfrac{1}{2}a+\tfrac{1}{2}\right)}}}
\hyperF@{a}{1-a}{b}{\tfrac{1}{2}} = \frac{2^{1-b}\sqrt{\pi}\EulerGamma@{b}}{\EulerGamma@{\tfrac{1}{2}a+\tfrac{1}{2}b}\EulerGamma@{\tfrac{1}{2}b-\tfrac{1}{2}a+\tfrac{1}{2}}}
b > 0 , ( 1 2 a + 1 2 b ) > 0 , ( 1 2 b - 1 2 a + 1 2 ) > 0 formulae-sequence 𝑏 0 formulae-sequence 1 2 𝑎 1 2 𝑏 0 1 2 𝑏 1 2 𝑎 1 2 0 {\displaystyle{\displaystyle\Re b>0,\Re(\tfrac{1}{2}a+\tfrac{1}{2}b)>0,\Re(% \tfrac{1}{2}b-\tfrac{1}{2}a+\tfrac{1}{2})>0}}
hypergeom([a, 1 - a], [b], (1)/(2)) = ((2)^(1 - b)*sqrt(Pi)*GAMMA(b))/(GAMMA((1)/(2)*a +(1)/(2)*b)*GAMMA((1)/(2)*b -(1)/(2)*a +(1)/(2)))
Hypergeometric2F1[a, 1 - a, b, Divide[1,2]] == Divide[(2)^(1 - b)*Sqrt[Pi]*Gamma[b],Gamma[Divide[1,2]*a +Divide[1,2]*b]*Gamma[Divide[1,2]*b -Divide[1,2]*a +Divide[1,2]]]
Successful Failure - Successful [Tested: 10]
15.4.E31 F ( a , 1 2 + a ; 3 2 - 2 a ; - 1 3 ) = ( 8 9 ) - 2 a Γ ( 4 3 ) Γ ( 3 2 - 2 a ) Γ ( 3 2 ) Γ ( 4 3 - 2 a ) Gauss-hypergeometric-F 𝑎 1 2 𝑎 3 2 2 𝑎 1 3 superscript 8 9 2 𝑎 Euler-Gamma 4 3 Euler-Gamma 3 2 2 𝑎 Euler-Gamma 3 2 Euler-Gamma 4 3 2 𝑎 {\displaystyle{\displaystyle F\left(a,\tfrac{1}{2}+a;\tfrac{3}{2}-2a;-\tfrac{1% }{3}\right)=\left(\frac{8}{9}\right)^{-2a}\frac{\Gamma\left(\tfrac{4}{3}\right% )\Gamma\left(\tfrac{3}{2}-2a\right)}{\Gamma\left(\tfrac{3}{2}\right)\Gamma% \left(\tfrac{4}{3}-2a\right)}}}
\hyperF@{a}{\tfrac{1}{2}+a}{\tfrac{3}{2}-2a}{-\tfrac{1}{3}} = \left(\frac{8}{9}\right)^{-2a}\frac{\EulerGamma@{\tfrac{4}{3}}\EulerGamma@{\tfrac{3}{2}-2a}}{\EulerGamma@{\tfrac{3}{2}}\EulerGamma@{\tfrac{4}{3}-2a}}
( 3 2 - 2 a ) > 0 , ( 4 3 - 2 a ) > 0 formulae-sequence 3 2 2 𝑎 0 4 3 2 𝑎 0 {\displaystyle{\displaystyle\Re(\tfrac{3}{2}-2a)>0,\Re(\tfrac{4}{3}-2a)>0}}
hypergeom([a, (1)/(2)+ a], [(3)/(2)- 2*a], -(1)/(3)) = ((8)/(9))^(- 2*a)*(GAMMA((4)/(3))*GAMMA((3)/(2)- 2*a))/(GAMMA((3)/(2))*GAMMA((4)/(3)- 2*a))
Hypergeometric2F1[a, Divide[1,2]+ a, Divide[3,2]- 2*a, -Divide[1,3]] == (Divide[8,9])^(- 2*a)*Divide[Gamma[Divide[4,3]]*Gamma[Divide[3,2]- 2*a],Gamma[Divide[3,2]]*Gamma[Divide[4,3]- 2*a]]
Failure Failure Successful [Tested: 4] Successful [Tested: 4]
15.4.E32 F ( a , 1 2 + a ; 5 6 + 2 3 a ; 1 9 ) = π ( 3 4 ) a Γ ( 5 6 + 2 3 a ) Γ ( 1 2 + 1 3 a ) Γ ( 5 6 + 1 3 a ) Gauss-hypergeometric-F 𝑎 1 2 𝑎 5 6 2 3 𝑎 1 9 𝜋 superscript 3 4 𝑎 Euler-Gamma 5 6 2 3 𝑎 Euler-Gamma 1 2 1 3 𝑎 Euler-Gamma 5 6 1 3 𝑎 {\displaystyle{\displaystyle F\left(a,\tfrac{1}{2}+a;\tfrac{5}{6}+\tfrac{2}{3}% a;\tfrac{1}{9}\right)=\sqrt{\pi}\left(\frac{3}{4}\right)^{a}\frac{\Gamma\left(% \tfrac{5}{6}+\tfrac{2}{3}a\right)}{\Gamma\left(\tfrac{1}{2}+\tfrac{1}{3}a% \right)\Gamma\left(\tfrac{5}{6}+\tfrac{1}{3}a\right)}}}
\hyperF@{a}{\tfrac{1}{2}+a}{\tfrac{5}{6}+\tfrac{2}{3}a}{\tfrac{1}{9}} = \sqrt{\pi}\left(\frac{3}{4}\right)^{a}\frac{\EulerGamma@{\tfrac{5}{6}+\tfrac{2}{3}a}}{\EulerGamma@{\tfrac{1}{2}+\tfrac{1}{3}a}\EulerGamma@{\tfrac{5}{6}+\tfrac{1}{3}a}}
( 5 6 + 2 3 a ) > 0 , ( 1 2 + 1 3 a ) > 0 , ( 5 6 + 1 3 a ) > 0 formulae-sequence 5 6 2 3 𝑎 0 formulae-sequence 1 2 1 3 𝑎 0 5 6 1 3 𝑎 0 {\displaystyle{\displaystyle\Re(\tfrac{5}{6}+\tfrac{2}{3}a)>0,\Re(\tfrac{1}{2}% +\tfrac{1}{3}a)>0,\Re(\tfrac{5}{6}+\tfrac{1}{3}a)>0}}
hypergeom([a, (1)/(2)+ a], [(5)/(6)+(2)/(3)*a], (1)/(9)) = sqrt(Pi)*((3)/(4))^(a)*(GAMMA((5)/(6)+(2)/(3)*a))/(GAMMA((1)/(2)+(1)/(3)*a)*GAMMA((5)/(6)+(1)/(3)*a))
Hypergeometric2F1[a, Divide[1,2]+ a, Divide[5,6]+Divide[2,3]*a, Divide[1,9]] == Sqrt[Pi]*(Divide[3,4])^(a)*Divide[Gamma[Divide[5,6]+Divide[2,3]*a],Gamma[Divide[1,2]+Divide[1,3]*a]*Gamma[Divide[5,6]+Divide[1,3]*a]]
Failure Failure Successful [Tested: 4] Successful [Tested: 4]
15.4.E33 F ( 3 a , 1 3 + a ; 2 3 + 2 a ; e i π / 3 ) = π e i π a / 2 ( 16 27 ) ( 3 a + 1 ) / 6 Γ ( 5 6 + a ) Γ ( 2 3 + a ) Γ ( 2 3 ) Gauss-hypergeometric-F 3 𝑎 1 3 𝑎 2 3 2 𝑎 superscript 𝑒 imaginary-unit 𝜋 3 𝜋 superscript 𝑒 imaginary-unit 𝜋 𝑎 2 superscript 16 27 3 𝑎 1 6 Euler-Gamma 5 6 𝑎 Euler-Gamma 2 3 𝑎 Euler-Gamma 2 3 {\displaystyle{\displaystyle F\left(3a,\tfrac{1}{3}+a;\tfrac{2}{3}+2a;e^{% \ifrac{\mathrm{i}\pi}{3}}\right)=\sqrt{\pi}e^{\ifrac{\mathrm{i}\pi a}{2}}\left% (\frac{16}{27}\right)^{(3a+1)/6}\frac{\Gamma\left(\frac{5}{6}+a\right)}{\Gamma% \left(\frac{2}{3}+a\right)\Gamma\left(\frac{2}{3}\right)}}}
\hyperF@{3a}{\tfrac{1}{3}+a}{\tfrac{2}{3}+2a}{e^{\ifrac{\iunit\pi}{3}}} = \sqrt{\pi}e^{\ifrac{\iunit\pi a}{2}}\left(\frac{16}{27}\right)^{(3a+1)/6}\frac{\EulerGamma@{\frac{5}{6}+a}}{\EulerGamma@{\frac{2}{3}+a}\EulerGamma@{\frac{2}{3}}}
( 5 6 + a ) > 0 , ( 2 3 + a ) > 0 formulae-sequence 5 6 𝑎 0 2 3 𝑎 0 {\displaystyle{\displaystyle\Re(\frac{5}{6}+a)>0,\Re(\frac{2}{3}+a)>0}}
hypergeom([3*a, (1)/(3)+ a], [(2)/(3)+ 2*a], exp((I*Pi)/(3))) = sqrt(Pi)*exp((I*Pi*a)/(2))*((16)/(27))^((3*a + 1)/6)*(GAMMA((5)/(6)+ a))/(GAMMA((2)/(3)+ a)*GAMMA((2)/(3)))
Hypergeometric2F1[3*a, Divide[1,3]+ a, Divide[2,3]+ 2*a, Exp[Divide[I*Pi,3]]] == Sqrt[Pi]*Exp[Divide[I*Pi*a,2]]*(Divide[16,27])^((3*a + 1)/6)*Divide[Gamma[Divide[5,6]+ a],Gamma[Divide[2,3]+ a]*Gamma[Divide[2,3]]]
Failure Failure Successful [Tested: 4] Successful [Tested: 4]