13.6: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/13.6.E1 13.6.E1] || [[Item:Q4388|<math>\KummerconfhyperM@{a}{a}{z} = e^{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\KummerconfhyperM@{a}{a}{z} = e^{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>KummerM(a, a, z) = exp(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric1F1[a, a, z] == Exp[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 42]
| [https://dlmf.nist.gov/13.6.E1 13.6.E1] || <math qid="Q4388">\KummerconfhyperM@{a}{a}{z} = e^{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\KummerconfhyperM@{a}{a}{z} = e^{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>KummerM(a, a, z) = exp(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric1F1[a, a, z] == Exp[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 42]
|-  
|-  
| [https://dlmf.nist.gov/13.6.E2 13.6.E2] || [[Item:Q4389|<math>\KummerconfhyperM@{1}{2}{2z} = \frac{e^{z}}{z}\sinh@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\KummerconfhyperM@{1}{2}{2z} = \frac{e^{z}}{z}\sinh@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>KummerM(1, 2, 2*z) = (exp(z))/(z)*sinh(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric1F1[1, 2, 2*z] == Divide[Exp[z],z]*Sinh[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
| [https://dlmf.nist.gov/13.6.E2 13.6.E2] || <math qid="Q4389">\KummerconfhyperM@{1}{2}{2z} = \frac{e^{z}}{z}\sinh@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\KummerconfhyperM@{1}{2}{2z} = \frac{e^{z}}{z}\sinh@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>KummerM(1, 2, 2*z) = (exp(z))/(z)*sinh(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric1F1[1, 2, 2*z] == Divide[Exp[z],z]*Sinh[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/13.6.E3 13.6.E3] || [[Item:Q4390|<math>\KummerconfhyperM@{0}{b}{z} = \KummerconfhyperU@{0}{b}{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\KummerconfhyperM@{0}{b}{z} = \KummerconfhyperU@{0}{b}{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>KummerM(0, b, z) = KummerU(0, b, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric1F1[0, b, z] == HypergeometricU[0, b, z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 42]
| [https://dlmf.nist.gov/13.6.E3 13.6.E3] || <math qid="Q4390">\KummerconfhyperM@{0}{b}{z} = \KummerconfhyperU@{0}{b}{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\KummerconfhyperM@{0}{b}{z} = \KummerconfhyperU@{0}{b}{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>KummerM(0, b, z) = KummerU(0, b, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric1F1[0, b, z] == HypergeometricU[0, b, z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 42]
|-  
|-  
| [https://dlmf.nist.gov/13.6.E3 13.6.E3] || [[Item:Q4390|<math>\KummerconfhyperU@{0}{b}{z} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\KummerconfhyperU@{0}{b}{z} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>KummerU(0, b, z) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>HypergeometricU[0, b, z] == 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 42]
| [https://dlmf.nist.gov/13.6.E3 13.6.E3] || <math qid="Q4390">\KummerconfhyperU@{0}{b}{z} = 1</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\KummerconfhyperU@{0}{b}{z} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>KummerU(0, b, z) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>HypergeometricU[0, b, z] == 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 42]
|-  
|-  
| [https://dlmf.nist.gov/13.6.E4 13.6.E4] || [[Item:Q4391|<math>\KummerconfhyperU@{a}{a+1}{z} = z^{-a}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\KummerconfhyperU@{a}{a+1}{z} = z^{-a}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>KummerU(a, a + 1, z) = (z)^(- a)</syntaxhighlight> || <syntaxhighlight lang=mathematica>HypergeometricU[a, a + 1, z] == (z)^(- a)</syntaxhighlight> || Failure || Successful || Successful [Tested: 42] || Successful [Tested: 42]
| [https://dlmf.nist.gov/13.6.E4 13.6.E4] || <math qid="Q4391">\KummerconfhyperU@{a}{a+1}{z} = z^{-a}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\KummerconfhyperU@{a}{a+1}{z} = z^{-a}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>KummerU(a, a + 1, z) = (z)^(- a)</syntaxhighlight> || <syntaxhighlight lang=mathematica>HypergeometricU[a, a + 1, z] == (z)^(- a)</syntaxhighlight> || Failure || Successful || Successful [Tested: 42] || Successful [Tested: 42]
|-  
|-  
| [https://dlmf.nist.gov/13.6.E5 13.6.E5] || [[Item:Q4392|<math>\KummerconfhyperM@{a}{a+1}{-z} = e^{-z}\KummerconfhyperM@{1}{a+1}{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\KummerconfhyperM@{a}{a+1}{-z} = e^{-z}\KummerconfhyperM@{1}{a+1}{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>KummerM(a, a + 1, - z) = exp(- z)*KummerM(1, a + 1, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric1F1[a, a + 1, - z] == Exp[- z]*Hypergeometric1F1[1, a + 1, z]</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
| [https://dlmf.nist.gov/13.6.E5 13.6.E5] || <math qid="Q4392">\KummerconfhyperM@{a}{a+1}{-z} = e^{-z}\KummerconfhyperM@{1}{a+1}{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\KummerconfhyperM@{a}{a+1}{-z} = e^{-z}\KummerconfhyperM@{1}{a+1}{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>KummerM(a, a + 1, - z) = exp(- z)*KummerM(1, a + 1, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric1F1[a, a + 1, - z] == Exp[- z]*Hypergeometric1F1[1, a + 1, z]</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[a, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[a, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[a, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[a, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/13.6.E5 13.6.E5] || [[Item:Q4392|<math>e^{-z}\KummerconfhyperM@{1}{a+1}{z} = az^{-a}\incgamma@{a}{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{-z}\KummerconfhyperM@{1}{a+1}{z} = az^{-a}\incgamma@{a}{z}</syntaxhighlight> || <math>\realpart@@{a} > 0</math> || <syntaxhighlight lang=mathematica>exp(- z)*KummerM(1, a + 1, z) = a*(z)^(- a)* GAMMA(a)-GAMMA(a, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[- z]*Hypergeometric1F1[1, a + 1, z] == a*(z)^(- a)* Gamma[a, 0, z]</syntaxhighlight> || Failure || Successful || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .1786149082+.5798847761*I
| [https://dlmf.nist.gov/13.6.E5 13.6.E5] || <math qid="Q4392">e^{-z}\KummerconfhyperM@{1}{a+1}{z} = az^{-a}\incgamma@{a}{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{-z}\KummerconfhyperM@{1}{a+1}{z} = az^{-a}\incgamma@{a}{z}</syntaxhighlight> || <math>\realpart@@{a} > 0</math> || <syntaxhighlight lang=mathematica>exp(- z)*KummerM(1, a + 1, z) = a*(z)^(- a)* GAMMA(a)-GAMMA(a, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[- z]*Hypergeometric1F1[1, a + 1, z] == a*(z)^(- a)* Gamma[a, 0, z]</syntaxhighlight> || Failure || Successful || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .1786149082+.5798847761*I
Test Values: {a = 3/2, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 4.103691021-1.156198608*I
Test Values: {a = 3/2, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 4.103691021-1.156198608*I
Test Values: {a = 3/2, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || Successful [Tested: 21]
Test Values: {a = 3/2, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || Successful [Tested: 21]
|-  
|-  
| [https://dlmf.nist.gov/13.6.E6 13.6.E6] || [[Item:Q4393|<math>\KummerconfhyperU@{a}{a}{z} = z^{1-a}\KummerconfhyperU@{1}{2-a}{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\KummerconfhyperU@{a}{a}{z} = z^{1-a}\KummerconfhyperU@{1}{2-a}{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>KummerU(a, a, z) = (z)^(1 - a)* KummerU(1, 2 - a, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>HypergeometricU[a, a, z] == (z)^(1 - a)* HypergeometricU[1, 2 - a, z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 42]
| [https://dlmf.nist.gov/13.6.E6 13.6.E6] || <math qid="Q4393">\KummerconfhyperU@{a}{a}{z} = z^{1-a}\KummerconfhyperU@{1}{2-a}{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\KummerconfhyperU@{a}{a}{z} = z^{1-a}\KummerconfhyperU@{1}{2-a}{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>KummerU(a, a, z) = (z)^(1 - a)* KummerU(1, 2 - a, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>HypergeometricU[a, a, z] == (z)^(1 - a)* HypergeometricU[1, 2 - a, z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 42]
|-  
|-  
| [https://dlmf.nist.gov/13.6.E6 13.6.E6] || [[Item:Q4393|<math>z^{1-a}\KummerconfhyperU@{1}{2-a}{z} = z^{1-a}e^{z}\genexpintE{a}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>z^{1-a}\KummerconfhyperU@{1}{2-a}{z} = z^{1-a}e^{z}\genexpintE{a}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(z)^(1 - a)* KummerU(1, 2 - a, z) = (z)^(1 - a)* exp(z)*Ei(a, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(z)^(1 - a)* HypergeometricU[1, 2 - a, z] == (z)^(1 - a)* Exp[z]*ExpIntegralE[a, z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 42]
| [https://dlmf.nist.gov/13.6.E6 13.6.E6] || <math qid="Q4393">z^{1-a}\KummerconfhyperU@{1}{2-a}{z} = z^{1-a}e^{z}\genexpintE{a}@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>z^{1-a}\KummerconfhyperU@{1}{2-a}{z} = z^{1-a}e^{z}\genexpintE{a}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(z)^(1 - a)* KummerU(1, 2 - a, z) = (z)^(1 - a)* exp(z)*Ei(a, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(z)^(1 - a)* HypergeometricU[1, 2 - a, z] == (z)^(1 - a)* Exp[z]*ExpIntegralE[a, z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 42]
|-  
|-  
| [https://dlmf.nist.gov/13.6.E6 13.6.E6] || [[Item:Q4393|<math>z^{1-a}e^{z}\genexpintE{a}@{z} = e^{z}\incGamma@{1-a}{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>z^{1-a}e^{z}\genexpintE{a}@{z} = e^{z}\incGamma@{1-a}{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(z)^(1 - a)* exp(z)*Ei(a, z) = exp(z)*GAMMA(1 - a, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(z)^(1 - a)* Exp[z]*ExpIntegralE[a, z] == Exp[z]*Gamma[1 - a, z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 42]
| [https://dlmf.nist.gov/13.6.E6 13.6.E6] || <math qid="Q4393">z^{1-a}e^{z}\genexpintE{a}@{z} = e^{z}\incGamma@{1-a}{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>z^{1-a}e^{z}\genexpintE{a}@{z} = e^{z}\incGamma@{1-a}{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(z)^(1 - a)* exp(z)*Ei(a, z) = exp(z)*GAMMA(1 - a, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(z)^(1 - a)* Exp[z]*ExpIntegralE[a, z] == Exp[z]*Gamma[1 - a, z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 42]
|-  
|-  
| [https://dlmf.nist.gov/13.6.E7 13.6.E7] || [[Item:Q4394|<math>\KummerconfhyperM@{\tfrac{1}{2}}{\tfrac{3}{2}}{-z^{2}} = \frac{\sqrt{\pi}}{2z}\erf@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\KummerconfhyperM@{\tfrac{1}{2}}{\tfrac{3}{2}}{-z^{2}} = \frac{\sqrt{\pi}}{2z}\erf@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>KummerM((1)/(2), (3)/(2), - (z)^(2)) = (sqrt(Pi))/(2*z)*erf(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric1F1[Divide[1,2], Divide[3,2], - (z)^(2)] == Divide[Sqrt[Pi],2*z]*Erf[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
| [https://dlmf.nist.gov/13.6.E7 13.6.E7] || <math qid="Q4394">\KummerconfhyperM@{\tfrac{1}{2}}{\tfrac{3}{2}}{-z^{2}} = \frac{\sqrt{\pi}}{2z}\erf@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\KummerconfhyperM@{\tfrac{1}{2}}{\tfrac{3}{2}}{-z^{2}} = \frac{\sqrt{\pi}}{2z}\erf@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>KummerM((1)/(2), (3)/(2), - (z)^(2)) = (sqrt(Pi))/(2*z)*erf(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric1F1[Divide[1,2], Divide[3,2], - (z)^(2)] == Divide[Sqrt[Pi],2*z]*Erf[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/13.6.E8 13.6.E8] || [[Item:Q4395|<math>\KummerconfhyperU@{\tfrac{1}{2}}{\tfrac{1}{2}}{z^{2}} = \sqrt{\pi}e^{z^{2}}\erfc@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\KummerconfhyperU@{\tfrac{1}{2}}{\tfrac{1}{2}}{z^{2}} = \sqrt{\pi}e^{z^{2}}\erfc@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>KummerU((1)/(2), (1)/(2), (z)^(2)) = sqrt(Pi)*exp((z)^(2))*erfc(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>HypergeometricU[Divide[1,2], Divide[1,2], (z)^(2)] == Sqrt[Pi]*Exp[(z)^(2)]*Erfc[z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .418096912e-1+2.795226389*I
| [https://dlmf.nist.gov/13.6.E8 13.6.E8] || <math qid="Q4395">\KummerconfhyperU@{\tfrac{1}{2}}{\tfrac{1}{2}}{z^{2}} = \sqrt{\pi}e^{z^{2}}\erfc@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\KummerconfhyperU@{\tfrac{1}{2}}{\tfrac{1}{2}}{z^{2}} = \sqrt{\pi}e^{z^{2}}\erfc@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>KummerU((1)/(2), (1)/(2), (z)^(2)) = sqrt(Pi)*exp((z)^(2))*erfc(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>HypergeometricU[Divide[1,2], Divide[1,2], (z)^(2)] == Sqrt[Pi]*Exp[(z)^(2)]*Erfc[z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .418096912e-1+2.795226389*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -2.288685714-4.974950146*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -2.288685714-4.974950146*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.041809690497868646, 2.7952263885381483]
Test Values: {z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.041809690497868646, 2.7952263885381483]
Line 46: Line 46:
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br></div></div>
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br></div></div>
|-  
|-  
| [https://dlmf.nist.gov/13.6.E9 13.6.E9] || [[Item:Q4396|<math>\KummerconfhyperM@{\nu+\tfrac{1}{2}}{2\nu+1}{2z} = \EulerGamma@{1+\nu}e^{z}\left(\ifrac{z}{2}\right)^{-\nu}\modBesselI{\nu}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\KummerconfhyperM@{\nu+\tfrac{1}{2}}{2\nu+1}{2z} = \EulerGamma@{1+\nu}e^{z}\left(\ifrac{z}{2}\right)^{-\nu}\modBesselI{\nu}@{z}</syntaxhighlight> || <math>\realpart@@{(1+\nu)} > 0, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>KummerM(nu +(1)/(2), 2*nu + 1, 2*z) = GAMMA(1 + nu)*exp(z)*((z)/(2))^(- nu)* BesselI(nu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric1F1[\[Nu]+Divide[1,2], 2*\[Nu]+ 1, 2*z] == Gamma[1 + \[Nu]]*Exp[z]*(Divide[z,2])^(- \[Nu])* BesselI[\[Nu], z]</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 56]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-1.026957443693084, -2.3780953180269115]
| [https://dlmf.nist.gov/13.6.E9 13.6.E9] || <math qid="Q4396">\KummerconfhyperM@{\nu+\tfrac{1}{2}}{2\nu+1}{2z} = \EulerGamma@{1+\nu}e^{z}\left(\ifrac{z}{2}\right)^{-\nu}\modBesselI{\nu}@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\KummerconfhyperM@{\nu+\tfrac{1}{2}}{2\nu+1}{2z} = \EulerGamma@{1+\nu}e^{z}\left(\ifrac{z}{2}\right)^{-\nu}\modBesselI{\nu}@{z}</syntaxhighlight> || <math>\realpart@@{(1+\nu)} > 0, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>KummerM(nu +(1)/(2), 2*nu + 1, 2*z) = GAMMA(1 + nu)*exp(z)*((z)/(2))^(- nu)* BesselI(nu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric1F1[\[Nu]+Divide[1,2], 2*\[Nu]+ 1, 2*z] == Gamma[1 + \[Nu]]*Exp[z]*(Divide[z,2])^(- \[Nu])* BesselI[\[Nu], z]</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 56]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-1.026957443693084, -2.3780953180269115]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -0.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.5295327248436391, -0.1815534052901876]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -0.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.5295327248436391, -0.1815534052901876]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[ν, -0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[ν, -0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/13.6.E10 13.6.E10] || [[Item:Q4397|<math>\KummerconfhyperU@{\nu+\tfrac{1}{2}}{2\nu+1}{2z} = \frac{1}{\sqrt{\pi}}e^{z}\left(2z\right)^{-\nu}\modBesselK{\nu}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\KummerconfhyperU@{\nu+\tfrac{1}{2}}{2\nu+1}{2z} = \frac{1}{\sqrt{\pi}}e^{z}\left(2z\right)^{-\nu}\modBesselK{\nu}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>KummerU(nu +(1)/(2), 2*nu + 1, 2*z) = (1)/(sqrt(Pi))*exp(z)*(2*z)^(- nu)* BesselK(nu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>HypergeometricU[\[Nu]+Divide[1,2], 2*\[Nu]+ 1, 2*z] == Divide[1,Sqrt[Pi]]*Exp[z]*(2*z)^(- \[Nu])* BesselK[\[Nu], z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 70]
| [https://dlmf.nist.gov/13.6.E10 13.6.E10] || <math qid="Q4397">\KummerconfhyperU@{\nu+\tfrac{1}{2}}{2\nu+1}{2z} = \frac{1}{\sqrt{\pi}}e^{z}\left(2z\right)^{-\nu}\modBesselK{\nu}@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\KummerconfhyperU@{\nu+\tfrac{1}{2}}{2\nu+1}{2z} = \frac{1}{\sqrt{\pi}}e^{z}\left(2z\right)^{-\nu}\modBesselK{\nu}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>KummerU(nu +(1)/(2), 2*nu + 1, 2*z) = (1)/(sqrt(Pi))*exp(z)*(2*z)^(- nu)* BesselK(nu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>HypergeometricU[\[Nu]+Divide[1,2], 2*\[Nu]+ 1, 2*z] == Divide[1,Sqrt[Pi]]*Exp[z]*(2*z)^(- \[Nu])* BesselK[\[Nu], z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 70]
|-  
|-  
| [https://dlmf.nist.gov/13.6.E11 13.6.E11] || [[Item:Q4398|<math>\KummerconfhyperU@{\tfrac{5}{6}}{\tfrac{5}{3}}{\tfrac{4}{3}z^{3/2}} = \sqrt{\pi}\frac{3^{5/6}\exp@{\tfrac{2}{3}z^{3/2}}}{2^{2/3}z}\AiryAi@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\KummerconfhyperU@{\tfrac{5}{6}}{\tfrac{5}{3}}{\tfrac{4}{3}z^{3/2}} = \sqrt{\pi}\frac{3^{5/6}\exp@{\tfrac{2}{3}z^{3/2}}}{2^{2/3}z}\AiryAi@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>KummerU((5)/(6), (5)/(3), (4)/(3)*(z)^(3/2)) = sqrt(Pi)*((3)^(5/6)* exp((2)/(3)*(z)^(3/2)))/((2)^(2/3)* z)*AiryAi(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>HypergeometricU[Divide[5,6], Divide[5,3], Divide[4,3]*(z)^(3/2)] == Sqrt[Pi]*Divide[(3)^(5/6)* Exp[Divide[2,3]*(z)^(3/2)],(2)^(2/3)* z]*AiryAi[z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .7957982359-.7292249892*I
| [https://dlmf.nist.gov/13.6.E11 13.6.E11] || <math qid="Q4398">\KummerconfhyperU@{\tfrac{5}{6}}{\tfrac{5}{3}}{\tfrac{4}{3}z^{3/2}} = \sqrt{\pi}\frac{3^{5/6}\exp@{\tfrac{2}{3}z^{3/2}}}{2^{2/3}z}\AiryAi@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\KummerconfhyperU@{\tfrac{5}{6}}{\tfrac{5}{3}}{\tfrac{4}{3}z^{3/2}} = \sqrt{\pi}\frac{3^{5/6}\exp@{\tfrac{2}{3}z^{3/2}}}{2^{2/3}z}\AiryAi@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>KummerU((5)/(6), (5)/(3), (4)/(3)*(z)^(3/2)) = sqrt(Pi)*((3)^(5/6)* exp((2)/(3)*(z)^(3/2)))/((2)^(2/3)* z)*AiryAi(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>HypergeometricU[Divide[5,6], Divide[5,3], Divide[4,3]*(z)^(3/2)] == Sqrt[Pi]*Divide[(3)^(5/6)* Exp[Divide[2,3]*(z)^(3/2)],(2)^(2/3)* z]*AiryAi[z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .7957982359-.7292249892*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.7957982355202466, -0.7292249896477329]
Test Values: {z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.7957982355202466, -0.7292249896477329]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br></div></div>
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br></div></div>
|-  
|-  
| [https://dlmf.nist.gov/13.6.E12 13.6.E12] || [[Item:Q4399|<math>\KummerconfhyperU@{\tfrac{1}{2}a+\tfrac{1}{4}}{\tfrac{1}{2}}{\tfrac{1}{2}z^{2}} = 2^{\frac{1}{2}a+\frac{1}{4}}e^{\frac{1}{4}z^{2}}\paraU@{a}{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\KummerconfhyperU@{\tfrac{1}{2}a+\tfrac{1}{4}}{\tfrac{1}{2}}{\tfrac{1}{2}z^{2}} = 2^{\frac{1}{2}a+\frac{1}{4}}e^{\frac{1}{4}z^{2}}\paraU@{a}{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>KummerU((1)/(2)*a +(1)/(4), (1)/(2), (1)/(2)*(z)^(2)) = (2)^((1)/(2)*a +(1)/(4))* exp((1)/(4)*(z)^(2))*CylinderU(a, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>HypergeometricU[Divide[1,2]*a +Divide[1,4], Divide[1,2], Divide[1,2]*(z)^(2)] == (2)^(Divide[1,2]*a +Divide[1,4])* Exp[Divide[1,4]*(z)^(2)]*ParabolicCylinderD[- 1/2 -(a), z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [10 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .7071067808-1.224744871*I
| [https://dlmf.nist.gov/13.6.E12 13.6.E12] || <math qid="Q4399">\KummerconfhyperU@{\tfrac{1}{2}a+\tfrac{1}{4}}{\tfrac{1}{2}}{\tfrac{1}{2}z^{2}} = 2^{\frac{1}{2}a+\frac{1}{4}}e^{\frac{1}{4}z^{2}}\paraU@{a}{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\KummerconfhyperU@{\tfrac{1}{2}a+\tfrac{1}{4}}{\tfrac{1}{2}}{\tfrac{1}{2}z^{2}} = 2^{\frac{1}{2}a+\frac{1}{4}}e^{\frac{1}{4}z^{2}}\paraU@{a}{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>KummerU((1)/(2)*a +(1)/(4), (1)/(2), (1)/(2)*(z)^(2)) = (2)^((1)/(2)*a +(1)/(4))* exp((1)/(4)*(z)^(2))*CylinderU(a, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>HypergeometricU[Divide[1,2]*a +Divide[1,4], Divide[1,2], Divide[1,2]*(z)^(2)] == (2)^(Divide[1,2]*a +Divide[1,4])* Exp[Divide[1,4]*(z)^(2)]*ParabolicCylinderD[- 1/2 -(a), z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [10 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .7071067808-1.224744871*I
Test Values: {a = -3/2, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.224744871+.7071067810*I
Test Values: {a = -3/2, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.224744871+.7071067810*I
Test Values: {a = -3/2, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [10 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.7071067811865475, -1.224744871391589]
Test Values: {a = -3/2, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [10 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.7071067811865475, -1.224744871391589]
Line 62: Line 62:
Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/13.6.E13 13.6.E13] || [[Item:Q4400|<math>\KummerconfhyperU@{\tfrac{1}{2}a+\tfrac{3}{4}}{\tfrac{3}{2}}{\tfrac{1}{2}z^{2}} = 2^{\frac{1}{2}a+\frac{3}{4}}\frac{e^{\frac{1}{4}z^{2}}}{z}\paraU@{a}{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\KummerconfhyperU@{\tfrac{1}{2}a+\tfrac{3}{4}}{\tfrac{3}{2}}{\tfrac{1}{2}z^{2}} = 2^{\frac{1}{2}a+\frac{3}{4}}\frac{e^{\frac{1}{4}z^{2}}}{z}\paraU@{a}{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>KummerU((1)/(2)*a +(3)/(4), (3)/(2), (1)/(2)*(z)^(2)) = (2)^((1)/(2)*a +(3)/(4))*(exp((1)/(4)*(z)^(2)))/(z)*CylinderU(a, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>HypergeometricU[Divide[1,2]*a +Divide[3,4], Divide[3,2], Divide[1,2]*(z)^(2)] == (2)^(Divide[1,2]*a +Divide[3,4])*Divide[Exp[Divide[1,4]*(z)^(2)],z]*ParabolicCylinderD[- 1/2 -(a), z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [10 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 3.981039608+.280376847*I
| [https://dlmf.nist.gov/13.6.E13 13.6.E13] || <math qid="Q4400">\KummerconfhyperU@{\tfrac{1}{2}a+\tfrac{3}{4}}{\tfrac{3}{2}}{\tfrac{1}{2}z^{2}} = 2^{\frac{1}{2}a+\frac{3}{4}}\frac{e^{\frac{1}{4}z^{2}}}{z}\paraU@{a}{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\KummerconfhyperU@{\tfrac{1}{2}a+\tfrac{3}{4}}{\tfrac{3}{2}}{\tfrac{1}{2}z^{2}} = 2^{\frac{1}{2}a+\frac{3}{4}}\frac{e^{\frac{1}{4}z^{2}}}{z}\paraU@{a}{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>KummerU((1)/(2)*a +(3)/(4), (3)/(2), (1)/(2)*(z)^(2)) = (2)^((1)/(2)*a +(3)/(4))*(exp((1)/(4)*(z)^(2)))/(z)*CylinderU(a, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>HypergeometricU[Divide[1,2]*a +Divide[3,4], Divide[3,2], Divide[1,2]*(z)^(2)] == (2)^(Divide[1,2]*a +Divide[3,4])*Divide[Exp[Divide[1,4]*(z)^(2)],z]*ParabolicCylinderD[- 1/2 -(a), z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [10 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 3.981039608+.280376847*I
Test Values: {a = 3/2, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 9.425210776+2.041008108*I
Test Values: {a = 3/2, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 9.425210776+2.041008108*I
Test Values: {a = 3/2, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [10 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[3.9810396073031904, 0.2803768494018799]
Test Values: {a = 3/2, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [10 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[3.9810396073031904, 0.2803768494018799]
Line 68: Line 68:
Test Values: {Rule[a, 1.5], Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[a, 1.5], Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/13.6.E14 13.6.E14] || [[Item:Q4401|<math>\KummerconfhyperM@{\tfrac{1}{2}a+\tfrac{1}{4}}{\tfrac{1}{2}}{\tfrac{1}{2}z^{2}} = \frac{2^{\frac{1}{2}a-\frac{3}{4}}\EulerGamma@{\tfrac{1}{2}a+\tfrac{3}{4}}e^{\frac{1}{4}z^{2}}}{\sqrt{\pi}}\*\left(\paraU@{a}{z}+\paraU@{a}{-z}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\KummerconfhyperM@{\tfrac{1}{2}a+\tfrac{1}{4}}{\tfrac{1}{2}}{\tfrac{1}{2}z^{2}} = \frac{2^{\frac{1}{2}a-\frac{3}{4}}\EulerGamma@{\tfrac{1}{2}a+\tfrac{3}{4}}e^{\frac{1}{4}z^{2}}}{\sqrt{\pi}}\*\left(\paraU@{a}{z}+\paraU@{a}{-z}\right)</syntaxhighlight> || <math>\realpart@@{(\tfrac{1}{2}a+\tfrac{3}{4})} > 0</math> || <syntaxhighlight lang=mathematica>KummerM((1)/(2)*a +(1)/(4), (1)/(2), (1)/(2)*(z)^(2)) = ((2)^((1)/(2)*a -(3)/(4))* GAMMA((1)/(2)*a +(3)/(4))*exp((1)/(4)*(z)^(2)))/(sqrt(Pi))*(CylinderU(a, z)+ CylinderU(a, - z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric1F1[Divide[1,2]*a +Divide[1,4], Divide[1,2], Divide[1,2]*(z)^(2)] == Divide[(2)^(Divide[1,2]*a -Divide[3,4])* Gamma[Divide[1,2]*a +Divide[3,4]]*Exp[Divide[1,4]*(z)^(2)],Sqrt[Pi]]*(ParabolicCylinderD[- 1/2 -(a), z]+ ParabolicCylinderD[- 1/2 -(a), - z])</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 28]
| [https://dlmf.nist.gov/13.6.E14 13.6.E14] || <math qid="Q4401">\KummerconfhyperM@{\tfrac{1}{2}a+\tfrac{1}{4}}{\tfrac{1}{2}}{\tfrac{1}{2}z^{2}} = \frac{2^{\frac{1}{2}a-\frac{3}{4}}\EulerGamma@{\tfrac{1}{2}a+\tfrac{3}{4}}e^{\frac{1}{4}z^{2}}}{\sqrt{\pi}}\*\left(\paraU@{a}{z}+\paraU@{a}{-z}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\KummerconfhyperM@{\tfrac{1}{2}a+\tfrac{1}{4}}{\tfrac{1}{2}}{\tfrac{1}{2}z^{2}} = \frac{2^{\frac{1}{2}a-\frac{3}{4}}\EulerGamma@{\tfrac{1}{2}a+\tfrac{3}{4}}e^{\frac{1}{4}z^{2}}}{\sqrt{\pi}}\*\left(\paraU@{a}{z}+\paraU@{a}{-z}\right)</syntaxhighlight> || <math>\realpart@@{(\tfrac{1}{2}a+\tfrac{3}{4})} > 0</math> || <syntaxhighlight lang=mathematica>KummerM((1)/(2)*a +(1)/(4), (1)/(2), (1)/(2)*(z)^(2)) = ((2)^((1)/(2)*a -(3)/(4))* GAMMA((1)/(2)*a +(3)/(4))*exp((1)/(4)*(z)^(2)))/(sqrt(Pi))*(CylinderU(a, z)+ CylinderU(a, - z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric1F1[Divide[1,2]*a +Divide[1,4], Divide[1,2], Divide[1,2]*(z)^(2)] == Divide[(2)^(Divide[1,2]*a -Divide[3,4])* Gamma[Divide[1,2]*a +Divide[3,4]]*Exp[Divide[1,4]*(z)^(2)],Sqrt[Pi]]*(ParabolicCylinderD[- 1/2 -(a), z]+ ParabolicCylinderD[- 1/2 -(a), - z])</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 28]
|-  
|-  
| [https://dlmf.nist.gov/13.6.E15 13.6.E15] || [[Item:Q4402|<math>\KummerconfhyperM@{\tfrac{1}{2}a+\tfrac{3}{4}}{\tfrac{3}{2}}{\tfrac{1}{2}z^{2}} = \frac{2^{\frac{1}{2}a-\frac{5}{4}}\EulerGamma@{\tfrac{1}{2}a+\tfrac{1}{4}}e^{\frac{1}{4}z^{2}}}{z\sqrt{\pi}}\*\left(\paraU@{a}{-z}-\paraU@{a}{z}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\KummerconfhyperM@{\tfrac{1}{2}a+\tfrac{3}{4}}{\tfrac{3}{2}}{\tfrac{1}{2}z^{2}} = \frac{2^{\frac{1}{2}a-\frac{5}{4}}\EulerGamma@{\tfrac{1}{2}a+\tfrac{1}{4}}e^{\frac{1}{4}z^{2}}}{z\sqrt{\pi}}\*\left(\paraU@{a}{-z}-\paraU@{a}{z}\right)</syntaxhighlight> || <math>\realpart@@{(\tfrac{1}{2}a+\tfrac{1}{4})} > 0</math> || <syntaxhighlight lang=mathematica>KummerM((1)/(2)*a +(3)/(4), (3)/(2), (1)/(2)*(z)^(2)) = ((2)^((1)/(2)*a -(5)/(4))* GAMMA((1)/(2)*a +(1)/(4))*exp((1)/(4)*(z)^(2)))/(z*sqrt(Pi))*(CylinderU(a, - z)- CylinderU(a, z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric1F1[Divide[1,2]*a +Divide[3,4], Divide[3,2], Divide[1,2]*(z)^(2)] == Divide[(2)^(Divide[1,2]*a -Divide[5,4])* Gamma[Divide[1,2]*a +Divide[1,4]]*Exp[Divide[1,4]*(z)^(2)],z*Sqrt[Pi]]*(ParabolicCylinderD[- 1/2 -(a), - z]- ParabolicCylinderD[- 1/2 -(a), z])</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 21]
| [https://dlmf.nist.gov/13.6.E15 13.6.E15] || <math qid="Q4402">\KummerconfhyperM@{\tfrac{1}{2}a+\tfrac{3}{4}}{\tfrac{3}{2}}{\tfrac{1}{2}z^{2}} = \frac{2^{\frac{1}{2}a-\frac{5}{4}}\EulerGamma@{\tfrac{1}{2}a+\tfrac{1}{4}}e^{\frac{1}{4}z^{2}}}{z\sqrt{\pi}}\*\left(\paraU@{a}{-z}-\paraU@{a}{z}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\KummerconfhyperM@{\tfrac{1}{2}a+\tfrac{3}{4}}{\tfrac{3}{2}}{\tfrac{1}{2}z^{2}} = \frac{2^{\frac{1}{2}a-\frac{5}{4}}\EulerGamma@{\tfrac{1}{2}a+\tfrac{1}{4}}e^{\frac{1}{4}z^{2}}}{z\sqrt{\pi}}\*\left(\paraU@{a}{-z}-\paraU@{a}{z}\right)</syntaxhighlight> || <math>\realpart@@{(\tfrac{1}{2}a+\tfrac{1}{4})} > 0</math> || <syntaxhighlight lang=mathematica>KummerM((1)/(2)*a +(3)/(4), (3)/(2), (1)/(2)*(z)^(2)) = ((2)^((1)/(2)*a -(5)/(4))* GAMMA((1)/(2)*a +(1)/(4))*exp((1)/(4)*(z)^(2)))/(z*sqrt(Pi))*(CylinderU(a, - z)- CylinderU(a, z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric1F1[Divide[1,2]*a +Divide[3,4], Divide[3,2], Divide[1,2]*(z)^(2)] == Divide[(2)^(Divide[1,2]*a -Divide[5,4])* Gamma[Divide[1,2]*a +Divide[1,4]]*Exp[Divide[1,4]*(z)^(2)],z*Sqrt[Pi]]*(ParabolicCylinderD[- 1/2 -(a), - z]- ParabolicCylinderD[- 1/2 -(a), z])</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 21]
|-  
|-  
| [https://dlmf.nist.gov/13.6.E16 13.6.E16] || [[Item:Q4403|<math>\KummerconfhyperM@{-n}{\tfrac{1}{2}}{z^{2}} = (-1)^{n}\frac{n!}{(2n)!}\HermitepolyH{2n}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\KummerconfhyperM@{-n}{\tfrac{1}{2}}{z^{2}} = (-1)^{n}\frac{n!}{(2n)!}\HermitepolyH{2n}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>KummerM(- n, (1)/(2), (z)^(2)) = (- 1)^(n)*(factorial(n))/(factorial(2*n))*HermiteH(2*n, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric1F1[- n, Divide[1,2], (z)^(2)] == (- 1)^(n)*Divide[(n)!,(2*n)!]*HermiteH[2*n, z]</syntaxhighlight> || Failure || Failure || Successful [Tested: 21] || Successful [Tested: 21]
| [https://dlmf.nist.gov/13.6.E16 13.6.E16] || <math qid="Q4403">\KummerconfhyperM@{-n}{\tfrac{1}{2}}{z^{2}} = (-1)^{n}\frac{n!}{(2n)!}\HermitepolyH{2n}@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\KummerconfhyperM@{-n}{\tfrac{1}{2}}{z^{2}} = (-1)^{n}\frac{n!}{(2n)!}\HermitepolyH{2n}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>KummerM(- n, (1)/(2), (z)^(2)) = (- 1)^(n)*(factorial(n))/(factorial(2*n))*HermiteH(2*n, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric1F1[- n, Divide[1,2], (z)^(2)] == (- 1)^(n)*Divide[(n)!,(2*n)!]*HermiteH[2*n, z]</syntaxhighlight> || Failure || Failure || Successful [Tested: 21] || Successful [Tested: 21]
|-  
|-  
| [https://dlmf.nist.gov/13.6.E17 13.6.E17] || [[Item:Q4404|<math>\KummerconfhyperM@{-n}{\tfrac{3}{2}}{z^{2}} = (-1)^{n}\frac{n!}{(2n+1)!2z}\HermitepolyH{2n+1}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\KummerconfhyperM@{-n}{\tfrac{3}{2}}{z^{2}} = (-1)^{n}\frac{n!}{(2n+1)!2z}\HermitepolyH{2n+1}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>KummerM(- n, (3)/(2), (z)^(2)) = (- 1)^(n)*(factorial(n))/(factorial(2*n + 1)*2*z)*HermiteH(2*n + 1, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric1F1[- n, Divide[3,2], (z)^(2)] == (- 1)^(n)*Divide[(n)!,(2*n + 1)!*2*z]*HermiteH[2*n + 1, z]</syntaxhighlight> || Failure || Failure || Successful [Tested: 21] || Successful [Tested: 21]
| [https://dlmf.nist.gov/13.6.E17 13.6.E17] || <math qid="Q4404">\KummerconfhyperM@{-n}{\tfrac{3}{2}}{z^{2}} = (-1)^{n}\frac{n!}{(2n+1)!2z}\HermitepolyH{2n+1}@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\KummerconfhyperM@{-n}{\tfrac{3}{2}}{z^{2}} = (-1)^{n}\frac{n!}{(2n+1)!2z}\HermitepolyH{2n+1}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>KummerM(- n, (3)/(2), (z)^(2)) = (- 1)^(n)*(factorial(n))/(factorial(2*n + 1)*2*z)*HermiteH(2*n + 1, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric1F1[- n, Divide[3,2], (z)^(2)] == (- 1)^(n)*Divide[(n)!,(2*n + 1)!*2*z]*HermiteH[2*n + 1, z]</syntaxhighlight> || Failure || Failure || Successful [Tested: 21] || Successful [Tested: 21]
|-  
|-  
| [https://dlmf.nist.gov/13.6.E18 13.6.E18] || [[Item:Q4405|<math>\KummerconfhyperU@{\tfrac{1}{2}-\tfrac{1}{2}n}{\tfrac{3}{2}}{z^{2}} = 2^{-n}z^{-1}\HermitepolyH{n}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\KummerconfhyperU@{\tfrac{1}{2}-\tfrac{1}{2}n}{\tfrac{3}{2}}{z^{2}} = 2^{-n}z^{-1}\HermitepolyH{n}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>KummerU((1)/(2)-(1)/(2)*n, (3)/(2), (z)^(2)) = (2)^(- n)* (z)^(- 1)* HermiteH(n, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>HypergeometricU[Divide[1,2]-Divide[1,2]*n, Divide[3,2], (z)^(2)] == (2)^(- n)* (z)^(- 1)* HermiteH[n, z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .5000000003-2.598076212*I
| [https://dlmf.nist.gov/13.6.E18 13.6.E18] || <math qid="Q4405">\KummerconfhyperU@{\tfrac{1}{2}-\tfrac{1}{2}n}{\tfrac{3}{2}}{z^{2}} = 2^{-n}z^{-1}\HermitepolyH{n}@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\KummerconfhyperU@{\tfrac{1}{2}-\tfrac{1}{2}n}{\tfrac{3}{2}}{z^{2}} = 2^{-n}z^{-1}\HermitepolyH{n}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>KummerU((1)/(2)-(1)/(2)*n, (3)/(2), (z)^(2)) = (2)^(- n)* (z)^(- 1)* HermiteH(n, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>HypergeometricU[Divide[1,2]-Divide[1,2]*n, Divide[3,2], (z)^(2)] == (2)^(- n)* (z)^(- 1)* HermiteH[n, z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .5000000003-2.598076212*I
Test Values: {z = -1/2+1/2*I*3^(1/2), n = 2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .8660254044+1.500000000*I
Test Values: {z = -1/2+1/2*I*3^(1/2), n = 2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .8660254044+1.500000000*I
Test Values: {z = -1/2*3^(1/2)-1/2*I, n = 2}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.5000000000000006, -2.5980762113533156]
Test Values: {z = -1/2*3^(1/2)-1/2*I, n = 2}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.5000000000000006, -2.5980762113533156]
Line 82: Line 82:
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br></div></div>
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br></div></div>
|-  
|-  
| [https://dlmf.nist.gov/13.6.E19 13.6.E19] || [[Item:Q4406|<math>\KummerconfhyperU@{-n}{\alpha+1}{z} = (-1)^{n}\Pochhammersym{\alpha+1}{n}\KummerconfhyperM@{-n}{\alpha+1}{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\KummerconfhyperU@{-n}{\alpha+1}{z} = (-1)^{n}\Pochhammersym{\alpha+1}{n}\KummerconfhyperM@{-n}{\alpha+1}{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>KummerU(- n, alpha + 1, z) = (- 1)^(n)* pochhammer(alpha + 1, n)*KummerM(- n, alpha + 1, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>HypergeometricU[- n, \[Alpha]+ 1, z] == (- 1)^(n)* Pochhammer[\[Alpha]+ 1, n]*Hypergeometric1F1[- n, \[Alpha]+ 1, z]</syntaxhighlight> || Failure || Failure || Successful [Tested: 63] || Successful [Tested: 63]
| [https://dlmf.nist.gov/13.6.E19 13.6.E19] || <math qid="Q4406">\KummerconfhyperU@{-n}{\alpha+1}{z} = (-1)^{n}\Pochhammersym{\alpha+1}{n}\KummerconfhyperM@{-n}{\alpha+1}{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\KummerconfhyperU@{-n}{\alpha+1}{z} = (-1)^{n}\Pochhammersym{\alpha+1}{n}\KummerconfhyperM@{-n}{\alpha+1}{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>KummerU(- n, alpha + 1, z) = (- 1)^(n)* pochhammer(alpha + 1, n)*KummerM(- n, alpha + 1, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>HypergeometricU[- n, \[Alpha]+ 1, z] == (- 1)^(n)* Pochhammer[\[Alpha]+ 1, n]*Hypergeometric1F1[- n, \[Alpha]+ 1, z]</syntaxhighlight> || Failure || Failure || Successful [Tested: 63] || Successful [Tested: 63]
|-  
|-  
| [https://dlmf.nist.gov/13.6.E19 13.6.E19] || [[Item:Q4406|<math>(-1)^{n}\Pochhammersym{\alpha+1}{n}\KummerconfhyperM@{-n}{\alpha+1}{z} = (-1)^{n}n!\LaguerrepolyL[\alpha]{n}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>(-1)^{n}\Pochhammersym{\alpha+1}{n}\KummerconfhyperM@{-n}{\alpha+1}{z} = (-1)^{n}n!\LaguerrepolyL[\alpha]{n}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(- 1)^(n)* pochhammer(alpha + 1, n)*KummerM(- n, alpha + 1, z) = (- 1)^(n)* factorial(n)*LaguerreL(n, alpha, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(- 1)^(n)* Pochhammer[\[Alpha]+ 1, n]*Hypergeometric1F1[- n, \[Alpha]+ 1, z] == (- 1)^(n)* (n)!*LaguerreL[n, \[Alpha], z]</syntaxhighlight> || Missing Macro Error || Successful || Skip - symbolical successful subtest || Successful [Tested: 63]
| [https://dlmf.nist.gov/13.6.E19 13.6.E19] || <math qid="Q4406">(-1)^{n}\Pochhammersym{\alpha+1}{n}\KummerconfhyperM@{-n}{\alpha+1}{z} = (-1)^{n}n!\LaguerrepolyL[\alpha]{n}@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>(-1)^{n}\Pochhammersym{\alpha+1}{n}\KummerconfhyperM@{-n}{\alpha+1}{z} = (-1)^{n}n!\LaguerrepolyL[\alpha]{n}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(- 1)^(n)* pochhammer(alpha + 1, n)*KummerM(- n, alpha + 1, z) = (- 1)^(n)* factorial(n)*LaguerreL(n, alpha, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(- 1)^(n)* Pochhammer[\[Alpha]+ 1, n]*Hypergeometric1F1[- n, \[Alpha]+ 1, z] == (- 1)^(n)* (n)!*LaguerreL[n, \[Alpha], z]</syntaxhighlight> || Missing Macro Error || Successful || Skip - symbolical successful subtest || Successful [Tested: 63]
|-  
|-  
| [https://dlmf.nist.gov/13.6.E20 13.6.E20] || [[Item:Q4407|<math>\KummerconfhyperU@{-n}{z-n+1}{a} = \Pochhammersym{-z}{n}\KummerconfhyperM@{-n}{z-n+1}{a}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\KummerconfhyperU@{-n}{z-n+1}{a} = \Pochhammersym{-z}{n}\KummerconfhyperM@{-n}{z-n+1}{a}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>KummerU(- n, z - n + 1, a) = pochhammer(- z, n)*KummerM(- n, z - n + 1, a)</syntaxhighlight> || <syntaxhighlight lang=mathematica>HypergeometricU[- n, z - n + 1, a] == Pochhammer[- z, n]*Hypergeometric1F1[- n, z - n + 1, a]</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 126]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
| [https://dlmf.nist.gov/13.6.E20 13.6.E20] || <math qid="Q4407">\KummerconfhyperU@{-n}{z-n+1}{a} = \Pochhammersym{-z}{n}\KummerconfhyperM@{-n}{z-n+1}{a}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\KummerconfhyperU@{-n}{z-n+1}{a} = \Pochhammersym{-z}{n}\KummerconfhyperM@{-n}{z-n+1}{a}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>KummerU(- n, z - n + 1, a) = pochhammer(- z, n)*KummerM(- n, z - n + 1, a)</syntaxhighlight> || <syntaxhighlight lang=mathematica>HypergeometricU[- n, z - n + 1, a] == Pochhammer[- z, n]*Hypergeometric1F1[- n, z - n + 1, a]</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 126]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[n, 3], Rule[z, 2]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[n, 3], Rule[z, 2]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[a, 1.5], Rule[n, 3], Rule[z, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[a, 1.5], Rule[n, 3], Rule[z, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/13.6.E20 13.6.E20] || [[Item:Q4407|<math>\Pochhammersym{-z}{n}\KummerconfhyperM@{-n}{z-n+1}{a} = a^{n}\CharlierpolyC{n}@{z}{a}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Pochhammersym{-z}{n}\KummerconfhyperM@{-n}{z-n+1}{a} = a^{n}\CharlierpolyC{n}@{z}{a}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Pochhammer[- z, n]*Hypergeometric1F1[- n, z - n + 1, a] == (a)^(n)* HypergeometricPFQ[{-(n), -(z)}, {}, -Divide[1,a]]</syntaxhighlight> || Missing Macro Error || Missing Macro Error || Skip - symbolical successful subtest || Skip - symbolical successful subtest
| [https://dlmf.nist.gov/13.6.E20 13.6.E20] || <math qid="Q4407">\Pochhammersym{-z}{n}\KummerconfhyperM@{-n}{z-n+1}{a} = a^{n}\CharlierpolyC{n}@{z}{a}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Pochhammersym{-z}{n}\KummerconfhyperM@{-n}{z-n+1}{a} = a^{n}\CharlierpolyC{n}@{z}{a}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Pochhammer[- z, n]*Hypergeometric1F1[- n, z - n + 1, a] == (a)^(n)* HypergeometricPFQ[{-(n), -(z)}, {}, -Divide[1,a]]</syntaxhighlight> || Missing Macro Error || Missing Macro Error || Skip - symbolical successful subtest || Skip - symbolical successful subtest
|-  
|-  
| [https://dlmf.nist.gov/13.6.E21 13.6.E21] || [[Item:Q4408|<math>\KummerconfhyperU@{a}{b}{z} = z^{-a}\genhyperF{2}{0}@{a,a-b+1}{-}{-z^{-1}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\KummerconfhyperU@{a}{b}{z} = z^{-a}\genhyperF{2}{0}@{a,a-b+1}{-}{-z^{-1}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>KummerU(a, b, z) = (z)^(- a)* hypergeom([a , a - b + 1], [-], - (z)^(- 1))</syntaxhighlight> || <syntaxhighlight lang=mathematica>HypergeometricU[a, b, z] == (z)^(- a)* HypergeometricPFQ[{a , a - b + 1}, {-}, - (z)^(- 1)]</syntaxhighlight> || Error || Failure || - || Error
| [https://dlmf.nist.gov/13.6.E21 13.6.E21] || <math qid="Q4408">\KummerconfhyperU@{a}{b}{z} = z^{-a}\genhyperF{2}{0}@{a,a-b+1}{-}{-z^{-1}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\KummerconfhyperU@{a}{b}{z} = z^{-a}\genhyperF{2}{0}@{a,a-b+1}{-}{-z^{-1}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>KummerU(a, b, z) = (z)^(- a)* hypergeom([a , a - b + 1], [-], - (z)^(- 1))</syntaxhighlight> || <syntaxhighlight lang=mathematica>HypergeometricU[a, b, z] == (z)^(- a)* HypergeometricPFQ[{a , a - b + 1}, {-}, - (z)^(- 1)]</syntaxhighlight> || Error || Failure || - || Error
|}
|}
</div>
</div>

Latest revision as of 11:32, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
13.6.E1 M ( a , a , z ) = e z Kummer-confluent-hypergeometric-M 𝑎 𝑎 𝑧 superscript 𝑒 𝑧 {\displaystyle{\displaystyle M\left(a,a,z\right)=e^{z}}}
\KummerconfhyperM@{a}{a}{z} = e^{z}

KummerM(a, a, z) = exp(z)
Hypergeometric1F1[a, a, z] == Exp[z]
Successful Successful - Successful [Tested: 42]
13.6.E2 M ( 1 , 2 , 2 z ) = e z z sinh z Kummer-confluent-hypergeometric-M 1 2 2 𝑧 superscript 𝑒 𝑧 𝑧 𝑧 {\displaystyle{\displaystyle M\left(1,2,2z\right)=\frac{e^{z}}{z}\sinh z}}
\KummerconfhyperM@{1}{2}{2z} = \frac{e^{z}}{z}\sinh@@{z}

KummerM(1, 2, 2*z) = (exp(z))/(z)*sinh(z)
Hypergeometric1F1[1, 2, 2*z] == Divide[Exp[z],z]*Sinh[z]
Successful Successful - Successful [Tested: 7]
13.6.E3 M ( 0 , b , z ) = U ( 0 , b , z ) Kummer-confluent-hypergeometric-M 0 𝑏 𝑧 Kummer-confluent-hypergeometric-U 0 𝑏 𝑧 {\displaystyle{\displaystyle M\left(0,b,z\right)=U\left(0,b,z\right)}}
\KummerconfhyperM@{0}{b}{z} = \KummerconfhyperU@{0}{b}{z}

KummerM(0, b, z) = KummerU(0, b, z)
Hypergeometric1F1[0, b, z] == HypergeometricU[0, b, z]
Successful Successful - Successful [Tested: 42]
13.6.E3 U ( 0 , b , z ) = 1 Kummer-confluent-hypergeometric-U 0 𝑏 𝑧 1 {\displaystyle{\displaystyle U\left(0,b,z\right)=1}}
\KummerconfhyperU@{0}{b}{z} = 1

KummerU(0, b, z) = 1
HypergeometricU[0, b, z] == 1
Successful Successful - Successful [Tested: 42]
13.6.E4 U ( a , a + 1 , z ) = z - a Kummer-confluent-hypergeometric-U 𝑎 𝑎 1 𝑧 superscript 𝑧 𝑎 {\displaystyle{\displaystyle U\left(a,a+1,z\right)=z^{-a}}}
\KummerconfhyperU@{a}{a+1}{z} = z^{-a}

KummerU(a, a + 1, z) = (z)^(- a)
HypergeometricU[a, a + 1, z] == (z)^(- a)
Failure Successful Successful [Tested: 42] Successful [Tested: 42]
13.6.E5 M ( a , a + 1 , - z ) = e - z M ( 1 , a + 1 , z ) Kummer-confluent-hypergeometric-M 𝑎 𝑎 1 𝑧 superscript 𝑒 𝑧 Kummer-confluent-hypergeometric-M 1 𝑎 1 𝑧 {\displaystyle{\displaystyle M\left(a,a+1,-z\right)=e^{-z}M\left(1,a+1,z\right% )}}
\KummerconfhyperM@{a}{a+1}{-z} = e^{-z}\KummerconfhyperM@{1}{a+1}{z}

KummerM(a, a + 1, - z) = exp(- z)*KummerM(1, a + 1, z)
Hypergeometric1F1[a, a + 1, - z] == Exp[- z]*Hypergeometric1F1[1, a + 1, z]
Successful Successful Skip - symbolical successful subtest
Failed [7 / 42]
Result: Indeterminate
Test Values: {Rule[a, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Indeterminate
Test Values: {Rule[a, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
13.6.E5 e - z M ( 1 , a + 1 , z ) = a z - a γ ( a , z ) superscript 𝑒 𝑧 Kummer-confluent-hypergeometric-M 1 𝑎 1 𝑧 𝑎 superscript 𝑧 𝑎 incomplete-gamma 𝑎 𝑧 {\displaystyle{\displaystyle e^{-z}M\left(1,a+1,z\right)=az^{-a}\gamma\left(a,% z\right)}}
e^{-z}\KummerconfhyperM@{1}{a+1}{z} = az^{-a}\incgamma@{a}{z}
a > 0 𝑎 0 {\displaystyle{\displaystyle\Re a>0}}
exp(- z)*KummerM(1, a + 1, z) = a*(z)^(- a)* GAMMA(a)-GAMMA(a, z)
Exp[- z]*Hypergeometric1F1[1, a + 1, z] == a*(z)^(- a)* Gamma[a, 0, z]
Failure Successful
Failed [21 / 21]
Result: .1786149082+.5798847761*I
Test Values: {a = 3/2, z = 1/2*3^(1/2)+1/2*I}

Result: 4.103691021-1.156198608*I
Test Values: {a = 3/2, z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Successful [Tested: 21]
13.6.E6 U ( a , a , z ) = z 1 - a U ( 1 , 2 - a , z ) Kummer-confluent-hypergeometric-U 𝑎 𝑎 𝑧 superscript 𝑧 1 𝑎 Kummer-confluent-hypergeometric-U 1 2 𝑎 𝑧 {\displaystyle{\displaystyle U\left(a,a,z\right)=z^{1-a}U\left(1,2-a,z\right)}}
\KummerconfhyperU@{a}{a}{z} = z^{1-a}\KummerconfhyperU@{1}{2-a}{z}

KummerU(a, a, z) = (z)^(1 - a)* KummerU(1, 2 - a, z)
HypergeometricU[a, a, z] == (z)^(1 - a)* HypergeometricU[1, 2 - a, z]
Successful Successful - Successful [Tested: 42]
13.6.E6 z 1 - a U ( 1 , 2 - a , z ) = z 1 - a e z E a ( z ) superscript 𝑧 1 𝑎 Kummer-confluent-hypergeometric-U 1 2 𝑎 𝑧 superscript 𝑧 1 𝑎 superscript 𝑒 𝑧 exponential-integral-En 𝑎 𝑧 {\displaystyle{\displaystyle z^{1-a}U\left(1,2-a,z\right)=z^{1-a}e^{z}E_{a}% \left(z\right)}}
z^{1-a}\KummerconfhyperU@{1}{2-a}{z} = z^{1-a}e^{z}\genexpintE{a}@{z}

(z)^(1 - a)* KummerU(1, 2 - a, z) = (z)^(1 - a)* exp(z)*Ei(a, z)
(z)^(1 - a)* HypergeometricU[1, 2 - a, z] == (z)^(1 - a)* Exp[z]*ExpIntegralE[a, z]
Successful Successful - Successful [Tested: 42]
13.6.E6 z 1 - a e z E a ( z ) = e z Γ ( 1 - a , z ) superscript 𝑧 1 𝑎 superscript 𝑒 𝑧 exponential-integral-En 𝑎 𝑧 superscript 𝑒 𝑧 incomplete-Gamma 1 𝑎 𝑧 {\displaystyle{\displaystyle z^{1-a}e^{z}E_{a}\left(z\right)=e^{z}\Gamma\left(% 1-a,z\right)}}
z^{1-a}e^{z}\genexpintE{a}@{z} = e^{z}\incGamma@{1-a}{z}

(z)^(1 - a)* exp(z)*Ei(a, z) = exp(z)*GAMMA(1 - a, z)
(z)^(1 - a)* Exp[z]*ExpIntegralE[a, z] == Exp[z]*Gamma[1 - a, z]
Successful Successful - Successful [Tested: 42]
13.6.E7 M ( 1 2 , 3 2 , - z 2 ) = π 2 z erf ( z ) Kummer-confluent-hypergeometric-M 1 2 3 2 superscript 𝑧 2 𝜋 2 𝑧 error-function 𝑧 {\displaystyle{\displaystyle M\left(\tfrac{1}{2},\tfrac{3}{2},-z^{2}\right)=% \frac{\sqrt{\pi}}{2z}\operatorname{erf}\left(z\right)}}
\KummerconfhyperM@{\tfrac{1}{2}}{\tfrac{3}{2}}{-z^{2}} = \frac{\sqrt{\pi}}{2z}\erf@{z}

KummerM((1)/(2), (3)/(2), - (z)^(2)) = (sqrt(Pi))/(2*z)*erf(z)
Hypergeometric1F1[Divide[1,2], Divide[3,2], - (z)^(2)] == Divide[Sqrt[Pi],2*z]*Erf[z]
Successful Successful - Successful [Tested: 7]
13.6.E8 U ( 1 2 , 1 2 , z 2 ) = π e z 2 erfc ( z ) Kummer-confluent-hypergeometric-U 1 2 1 2 superscript 𝑧 2 𝜋 superscript 𝑒 superscript 𝑧 2 complementary-error-function 𝑧 {\displaystyle{\displaystyle U\left(\tfrac{1}{2},\tfrac{1}{2},z^{2}\right)=% \sqrt{\pi}e^{z^{2}}\operatorname{erfc}\left(z\right)}}
\KummerconfhyperU@{\tfrac{1}{2}}{\tfrac{1}{2}}{z^{2}} = \sqrt{\pi}e^{z^{2}}\erfc@{z}

KummerU((1)/(2), (1)/(2), (z)^(2)) = sqrt(Pi)*exp((z)^(2))*erfc(z)
HypergeometricU[Divide[1,2], Divide[1,2], (z)^(2)] == Sqrt[Pi]*Exp[(z)^(2)]*Erfc[z]
Failure Failure
Failed [2 / 7]
Result: .418096912e-1+2.795226389*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}

Result: -2.288685714-4.974950146*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}

Failed [2 / 7]
Result: Complex[0.041809690497868646, 2.7952263885381483]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

Result: Complex[-2.28868571442365, -4.974950145988551]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

13.6.E9 M ( ν + 1 2 , 2 ν + 1 , 2 z ) = Γ ( 1 + ν ) e z ( z / 2 ) - ν I ν ( z ) Kummer-confluent-hypergeometric-M 𝜈 1 2 2 𝜈 1 2 𝑧 Euler-Gamma 1 𝜈 superscript 𝑒 𝑧 superscript 𝑧 2 𝜈 modified-Bessel-first-kind 𝜈 𝑧 {\displaystyle{\displaystyle M\left(\nu+\tfrac{1}{2},2\nu+1,2z\right)=\Gamma% \left(1+\nu\right)e^{z}\left(\ifrac{z}{2}\right)^{-\nu}I_{\nu}\left(z\right)}}
\KummerconfhyperM@{\nu+\tfrac{1}{2}}{2\nu+1}{2z} = \EulerGamma@{1+\nu}e^{z}\left(\ifrac{z}{2}\right)^{-\nu}\modBesselI{\nu}@{z}
( 1 + ν ) > 0 , ( ν + k + 1 ) > 0 formulae-sequence 1 𝜈 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re(1+\nu)>0,\Re(\nu+k+1)>0}}
KummerM(nu +(1)/(2), 2*nu + 1, 2*z) = GAMMA(1 + nu)*exp(z)*((z)/(2))^(- nu)* BesselI(nu, z)
Hypergeometric1F1[\[Nu]+Divide[1,2], 2*\[Nu]+ 1, 2*z] == Gamma[1 + \[Nu]]*Exp[z]*(Divide[z,2])^(- \[Nu])* BesselI[\[Nu], z]
Successful Successful -
Failed [7 / 56]
Result: Complex[-1.026957443693084, -2.3780953180269115]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -0.5]}

Result: Complex[0.5295327248436391, -0.1815534052901876]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[ν, -0.5]}

... skip entries to safe data
13.6.E10 U ( ν + 1 2 , 2 ν + 1 , 2 z ) = 1 π e z ( 2 z ) - ν K ν ( z ) Kummer-confluent-hypergeometric-U 𝜈 1 2 2 𝜈 1 2 𝑧 1 𝜋 superscript 𝑒 𝑧 superscript 2 𝑧 𝜈 modified-Bessel-second-kind 𝜈 𝑧 {\displaystyle{\displaystyle U\left(\nu+\tfrac{1}{2},2\nu+1,2z\right)=\frac{1}% {\sqrt{\pi}}e^{z}\left(2z\right)^{-\nu}K_{\nu}\left(z\right)}}
\KummerconfhyperU@{\nu+\tfrac{1}{2}}{2\nu+1}{2z} = \frac{1}{\sqrt{\pi}}e^{z}\left(2z\right)^{-\nu}\modBesselK{\nu}@{z}

KummerU(nu +(1)/(2), 2*nu + 1, 2*z) = (1)/(sqrt(Pi))*exp(z)*(2*z)^(- nu)* BesselK(nu, z)
HypergeometricU[\[Nu]+Divide[1,2], 2*\[Nu]+ 1, 2*z] == Divide[1,Sqrt[Pi]]*Exp[z]*(2*z)^(- \[Nu])* BesselK[\[Nu], z]
Successful Successful - Successful [Tested: 70]
13.6.E11 U ( 5 6 , 5 3 , 4 3 z 3 / 2 ) = π 3 5 / 6 exp ( 2 3 z 3 / 2 ) 2 2 / 3 z Ai ( z ) Kummer-confluent-hypergeometric-U 5 6 5 3 4 3 superscript 𝑧 3 2 𝜋 superscript 3 5 6 2 3 superscript 𝑧 3 2 superscript 2 2 3 𝑧 Airy-Ai 𝑧 {\displaystyle{\displaystyle U\left(\tfrac{5}{6},\tfrac{5}{3},\tfrac{4}{3}z^{3% /2}\right)=\sqrt{\pi}\frac{3^{5/6}\exp\left(\tfrac{2}{3}z^{3/2}\right)}{2^{2/3% }z}\mathrm{Ai}\left(z\right)}}
\KummerconfhyperU@{\tfrac{5}{6}}{\tfrac{5}{3}}{\tfrac{4}{3}z^{3/2}} = \sqrt{\pi}\frac{3^{5/6}\exp@{\tfrac{2}{3}z^{3/2}}}{2^{2/3}z}\AiryAi@{z}

KummerU((5)/(6), (5)/(3), (4)/(3)*(z)^(3/2)) = sqrt(Pi)*((3)^(5/6)* exp((2)/(3)*(z)^(3/2)))/((2)^(2/3)* z)*AiryAi(z)
HypergeometricU[Divide[5,6], Divide[5,3], Divide[4,3]*(z)^(3/2)] == Sqrt[Pi]*Divide[(3)^(5/6)* Exp[Divide[2,3]*(z)^(3/2)],(2)^(2/3)* z]*AiryAi[z]
Failure Failure
Failed [1 / 7]
Result: .7957982359-.7292249892*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}

Failed [1 / 7]
Result: Complex[0.7957982355202466, -0.7292249896477329]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

13.6.E12 U ( 1 2 a + 1 4 , 1 2 , 1 2 z 2 ) = 2 1 2 a + 1 4 e 1 4 z 2 U ( a , z ) Kummer-confluent-hypergeometric-U 1 2 𝑎 1 4 1 2 1 2 superscript 𝑧 2 superscript 2 1 2 𝑎 1 4 superscript 𝑒 1 4 superscript 𝑧 2 parabolic-U 𝑎 𝑧 {\displaystyle{\displaystyle U\left(\tfrac{1}{2}a+\tfrac{1}{4},\tfrac{1}{2},% \tfrac{1}{2}z^{2}\right)=2^{\frac{1}{2}a+\frac{1}{4}}e^{\frac{1}{4}z^{2}}U% \left(a,z\right)}}
\KummerconfhyperU@{\tfrac{1}{2}a+\tfrac{1}{4}}{\tfrac{1}{2}}{\tfrac{1}{2}z^{2}} = 2^{\frac{1}{2}a+\frac{1}{4}}e^{\frac{1}{4}z^{2}}\paraU@{a}{z}

KummerU((1)/(2)*a +(1)/(4), (1)/(2), (1)/(2)*(z)^(2)) = (2)^((1)/(2)*a +(1)/(4))* exp((1)/(4)*(z)^(2))*CylinderU(a, z)
HypergeometricU[Divide[1,2]*a +Divide[1,4], Divide[1,2], Divide[1,2]*(z)^(2)] == (2)^(Divide[1,2]*a +Divide[1,4])* Exp[Divide[1,4]*(z)^(2)]*ParabolicCylinderD[- 1/2 -(a), z]
Failure Failure
Failed [10 / 42]
Result: .7071067808-1.224744871*I
Test Values: {a = -3/2, z = -1/2+1/2*I*3^(1/2)}

Result: 1.224744871+.7071067810*I
Test Values: {a = -3/2, z = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [10 / 42]
Result: Complex[0.7071067811865475, -1.224744871391589]
Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

Result: Complex[1.224744871391589, 0.7071067811865475]
Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

... skip entries to safe data
13.6.E13 U ( 1 2 a + 3 4 , 3 2 , 1 2 z 2 ) = 2 1 2 a + 3 4 e 1 4 z 2 z U ( a , z ) Kummer-confluent-hypergeometric-U 1 2 𝑎 3 4 3 2 1 2 superscript 𝑧 2 superscript 2 1 2 𝑎 3 4 superscript 𝑒 1 4 superscript 𝑧 2 𝑧 parabolic-U 𝑎 𝑧 {\displaystyle{\displaystyle U\left(\tfrac{1}{2}a+\tfrac{3}{4},\tfrac{3}{2},% \tfrac{1}{2}z^{2}\right)=2^{\frac{1}{2}a+\frac{3}{4}}\frac{e^{\frac{1}{4}z^{2}% }}{z}U\left(a,z\right)}}
\KummerconfhyperU@{\tfrac{1}{2}a+\tfrac{3}{4}}{\tfrac{3}{2}}{\tfrac{1}{2}z^{2}} = 2^{\frac{1}{2}a+\frac{3}{4}}\frac{e^{\frac{1}{4}z^{2}}}{z}\paraU@{a}{z}

KummerU((1)/(2)*a +(3)/(4), (3)/(2), (1)/(2)*(z)^(2)) = (2)^((1)/(2)*a +(3)/(4))*(exp((1)/(4)*(z)^(2)))/(z)*CylinderU(a, z)
HypergeometricU[Divide[1,2]*a +Divide[3,4], Divide[3,2], Divide[1,2]*(z)^(2)] == (2)^(Divide[1,2]*a +Divide[3,4])*Divide[Exp[Divide[1,4]*(z)^(2)],z]*ParabolicCylinderD[- 1/2 -(a), z]
Failure Failure
Failed [10 / 42]
Result: 3.981039608+.280376847*I
Test Values: {a = 3/2, z = -1/2+1/2*I*3^(1/2)}

Result: 9.425210776+2.041008108*I
Test Values: {a = 3/2, z = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [10 / 42]
Result: Complex[3.9810396073031904, 0.2803768494018799]
Test Values: {Rule[a, 1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

Result: Complex[9.42521077642933, 2.0410081046172346]
Test Values: {Rule[a, 1.5], Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

... skip entries to safe data
13.6.E14 M ( 1 2 a + 1 4 , 1 2 , 1 2 z 2 ) = 2 1 2 a - 3 4 Γ ( 1 2 a + 3 4 ) e 1 4 z 2 π ( U ( a , z ) + U ( a , - z ) ) Kummer-confluent-hypergeometric-M 1 2 𝑎 1 4 1 2 1 2 superscript 𝑧 2 superscript 2 1 2 𝑎 3 4 Euler-Gamma 1 2 𝑎 3 4 superscript 𝑒 1 4 superscript 𝑧 2 𝜋 parabolic-U 𝑎 𝑧 parabolic-U 𝑎 𝑧 {\displaystyle{\displaystyle M\left(\tfrac{1}{2}a+\tfrac{1}{4},\tfrac{1}{2},% \tfrac{1}{2}z^{2}\right)=\frac{2^{\frac{1}{2}a-\frac{3}{4}}\Gamma\left(\tfrac{% 1}{2}a+\tfrac{3}{4}\right)e^{\frac{1}{4}z^{2}}}{\sqrt{\pi}}\*\left(U\left(a,z% \right)+U\left(a,-z\right)\right)}}
\KummerconfhyperM@{\tfrac{1}{2}a+\tfrac{1}{4}}{\tfrac{1}{2}}{\tfrac{1}{2}z^{2}} = \frac{2^{\frac{1}{2}a-\frac{3}{4}}\EulerGamma@{\tfrac{1}{2}a+\tfrac{3}{4}}e^{\frac{1}{4}z^{2}}}{\sqrt{\pi}}\*\left(\paraU@{a}{z}+\paraU@{a}{-z}\right)
( 1 2 a + 3 4 ) > 0 1 2 𝑎 3 4 0 {\displaystyle{\displaystyle\Re(\tfrac{1}{2}a+\tfrac{3}{4})>0}}
KummerM((1)/(2)*a +(1)/(4), (1)/(2), (1)/(2)*(z)^(2)) = ((2)^((1)/(2)*a -(3)/(4))* GAMMA((1)/(2)*a +(3)/(4))*exp((1)/(4)*(z)^(2)))/(sqrt(Pi))*(CylinderU(a, z)+ CylinderU(a, - z))
Hypergeometric1F1[Divide[1,2]*a +Divide[1,4], Divide[1,2], Divide[1,2]*(z)^(2)] == Divide[(2)^(Divide[1,2]*a -Divide[3,4])* Gamma[Divide[1,2]*a +Divide[3,4]]*Exp[Divide[1,4]*(z)^(2)],Sqrt[Pi]]*(ParabolicCylinderD[- 1/2 -(a), z]+ ParabolicCylinderD[- 1/2 -(a), - z])
Successful Successful - Successful [Tested: 28]
13.6.E15 M ( 1 2 a + 3 4 , 3 2 , 1 2 z 2 ) = 2 1 2 a - 5 4 Γ ( 1 2 a + 1 4 ) e 1 4 z 2 z π ( U ( a , - z ) - U ( a , z ) ) Kummer-confluent-hypergeometric-M 1 2 𝑎 3 4 3 2 1 2 superscript 𝑧 2 superscript 2 1 2 𝑎 5 4 Euler-Gamma 1 2 𝑎 1 4 superscript 𝑒 1 4 superscript 𝑧 2 𝑧 𝜋 parabolic-U 𝑎 𝑧 parabolic-U 𝑎 𝑧 {\displaystyle{\displaystyle M\left(\tfrac{1}{2}a+\tfrac{3}{4},\tfrac{3}{2},% \tfrac{1}{2}z^{2}\right)=\frac{2^{\frac{1}{2}a-\frac{5}{4}}\Gamma\left(\tfrac{% 1}{2}a+\tfrac{1}{4}\right)e^{\frac{1}{4}z^{2}}}{z\sqrt{\pi}}\*\left(U\left(a,-% z\right)-U\left(a,z\right)\right)}}
\KummerconfhyperM@{\tfrac{1}{2}a+\tfrac{3}{4}}{\tfrac{3}{2}}{\tfrac{1}{2}z^{2}} = \frac{2^{\frac{1}{2}a-\frac{5}{4}}\EulerGamma@{\tfrac{1}{2}a+\tfrac{1}{4}}e^{\frac{1}{4}z^{2}}}{z\sqrt{\pi}}\*\left(\paraU@{a}{-z}-\paraU@{a}{z}\right)
( 1 2 a + 1 4 ) > 0 1 2 𝑎 1 4 0 {\displaystyle{\displaystyle\Re(\tfrac{1}{2}a+\tfrac{1}{4})>0}}
KummerM((1)/(2)*a +(3)/(4), (3)/(2), (1)/(2)*(z)^(2)) = ((2)^((1)/(2)*a -(5)/(4))* GAMMA((1)/(2)*a +(1)/(4))*exp((1)/(4)*(z)^(2)))/(z*sqrt(Pi))*(CylinderU(a, - z)- CylinderU(a, z))
Hypergeometric1F1[Divide[1,2]*a +Divide[3,4], Divide[3,2], Divide[1,2]*(z)^(2)] == Divide[(2)^(Divide[1,2]*a -Divide[5,4])* Gamma[Divide[1,2]*a +Divide[1,4]]*Exp[Divide[1,4]*(z)^(2)],z*Sqrt[Pi]]*(ParabolicCylinderD[- 1/2 -(a), - z]- ParabolicCylinderD[- 1/2 -(a), z])
Successful Successful - Successful [Tested: 21]
13.6.E16 M ( - n , 1 2 , z 2 ) = ( - 1 ) n n ! ( 2 n ) ! H 2 n ( z ) Kummer-confluent-hypergeometric-M 𝑛 1 2 superscript 𝑧 2 superscript 1 𝑛 𝑛 2 𝑛 Hermite-polynomial-H 2 𝑛 𝑧 {\displaystyle{\displaystyle M\left(-n,\tfrac{1}{2},z^{2}\right)=(-1)^{n}\frac% {n!}{(2n)!}H_{2n}\left(z\right)}}
\KummerconfhyperM@{-n}{\tfrac{1}{2}}{z^{2}} = (-1)^{n}\frac{n!}{(2n)!}\HermitepolyH{2n}@{z}

KummerM(- n, (1)/(2), (z)^(2)) = (- 1)^(n)*(factorial(n))/(factorial(2*n))*HermiteH(2*n, z)
Hypergeometric1F1[- n, Divide[1,2], (z)^(2)] == (- 1)^(n)*Divide[(n)!,(2*n)!]*HermiteH[2*n, z]
Failure Failure Successful [Tested: 21] Successful [Tested: 21]
13.6.E17 M ( - n , 3 2 , z 2 ) = ( - 1 ) n n ! ( 2 n + 1 ) ! 2 z H 2 n + 1 ( z ) Kummer-confluent-hypergeometric-M 𝑛 3 2 superscript 𝑧 2 superscript 1 𝑛 𝑛 2 𝑛 1 2 𝑧 Hermite-polynomial-H 2 𝑛 1 𝑧 {\displaystyle{\displaystyle M\left(-n,\tfrac{3}{2},z^{2}\right)=(-1)^{n}\frac% {n!}{(2n+1)!2z}H_{2n+1}\left(z\right)}}
\KummerconfhyperM@{-n}{\tfrac{3}{2}}{z^{2}} = (-1)^{n}\frac{n!}{(2n+1)!2z}\HermitepolyH{2n+1}@{z}

KummerM(- n, (3)/(2), (z)^(2)) = (- 1)^(n)*(factorial(n))/(factorial(2*n + 1)*2*z)*HermiteH(2*n + 1, z)
Hypergeometric1F1[- n, Divide[3,2], (z)^(2)] == (- 1)^(n)*Divide[(n)!,(2*n + 1)!*2*z]*HermiteH[2*n + 1, z]
Failure Failure Successful [Tested: 21] Successful [Tested: 21]
13.6.E18 U ( 1 2 - 1 2 n , 3 2 , z 2 ) = 2 - n z - 1 H n ( z ) Kummer-confluent-hypergeometric-U 1 2 1 2 𝑛 3 2 superscript 𝑧 2 superscript 2 𝑛 superscript 𝑧 1 Hermite-polynomial-H 𝑛 𝑧 {\displaystyle{\displaystyle U\left(\tfrac{1}{2}-\tfrac{1}{2}n,\tfrac{3}{2},z^% {2}\right)=2^{-n}z^{-1}H_{n}\left(z\right)}}
\KummerconfhyperU@{\tfrac{1}{2}-\tfrac{1}{2}n}{\tfrac{3}{2}}{z^{2}} = 2^{-n}z^{-1}\HermitepolyH{n}@{z}

KummerU((1)/(2)-(1)/(2)*n, (3)/(2), (z)^(2)) = (2)^(- n)* (z)^(- 1)* HermiteH(n, z)
HypergeometricU[Divide[1,2]-Divide[1,2]*n, Divide[3,2], (z)^(2)] == (2)^(- n)* (z)^(- 1)* HermiteH[n, z]
Failure Failure
Failed [2 / 21]
Result: .5000000003-2.598076212*I
Test Values: {z = -1/2+1/2*I*3^(1/2), n = 2}

Result: .8660254044+1.500000000*I
Test Values: {z = -1/2*3^(1/2)-1/2*I, n = 2}

Failed [2 / 21]
Result: Complex[0.5000000000000006, -2.5980762113533156]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

Result: Complex[0.8660254037844388, 1.5]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

13.6.E19 U ( - n , α + 1 , z ) = ( - 1 ) n ( α + 1 ) n M ( - n , α + 1 , z ) Kummer-confluent-hypergeometric-U 𝑛 𝛼 1 𝑧 superscript 1 𝑛 Pochhammer 𝛼 1 𝑛 Kummer-confluent-hypergeometric-M 𝑛 𝛼 1 𝑧 {\displaystyle{\displaystyle U\left(-n,\alpha+1,z\right)=(-1)^{n}{\left(\alpha% +1\right)_{n}}M\left(-n,\alpha+1,z\right)}}
\KummerconfhyperU@{-n}{\alpha+1}{z} = (-1)^{n}\Pochhammersym{\alpha+1}{n}\KummerconfhyperM@{-n}{\alpha+1}{z}

KummerU(- n, alpha + 1, z) = (- 1)^(n)* pochhammer(alpha + 1, n)*KummerM(- n, alpha + 1, z)
HypergeometricU[- n, \[Alpha]+ 1, z] == (- 1)^(n)* Pochhammer[\[Alpha]+ 1, n]*Hypergeometric1F1[- n, \[Alpha]+ 1, z]
Failure Failure Successful [Tested: 63] Successful [Tested: 63]
13.6.E19 ( - 1 ) n ( α + 1 ) n M ( - n , α + 1 , z ) = ( - 1 ) n n ! L n ( α ) ( z ) superscript 1 𝑛 Pochhammer 𝛼 1 𝑛 Kummer-confluent-hypergeometric-M 𝑛 𝛼 1 𝑧 superscript 1 𝑛 𝑛 Laguerre-polynomial-L 𝛼 𝑛 𝑧 {\displaystyle{\displaystyle(-1)^{n}{\left(\alpha+1\right)_{n}}M\left(-n,% \alpha+1,z\right)=(-1)^{n}n!L^{(\alpha)}_{n}\left(z\right)}}
(-1)^{n}\Pochhammersym{\alpha+1}{n}\KummerconfhyperM@{-n}{\alpha+1}{z} = (-1)^{n}n!\LaguerrepolyL[\alpha]{n}@{z}

(- 1)^(n)* pochhammer(alpha + 1, n)*KummerM(- n, alpha + 1, z) = (- 1)^(n)* factorial(n)*LaguerreL(n, alpha, z)
(- 1)^(n)* Pochhammer[\[Alpha]+ 1, n]*Hypergeometric1F1[- n, \[Alpha]+ 1, z] == (- 1)^(n)* (n)!*LaguerreL[n, \[Alpha], z]
Missing Macro Error Successful Skip - symbolical successful subtest Successful [Tested: 63]
13.6.E20 U ( - n , z - n + 1 , a ) = ( - z ) n M ( - n , z - n + 1 , a ) Kummer-confluent-hypergeometric-U 𝑛 𝑧 𝑛 1 𝑎 Pochhammer 𝑧 𝑛 Kummer-confluent-hypergeometric-M 𝑛 𝑧 𝑛 1 𝑎 {\displaystyle{\displaystyle U\left(-n,z-n+1,a\right)={\left(-z\right)_{n}}M% \left(-n,z-n+1,a\right)}}
\KummerconfhyperU@{-n}{z-n+1}{a} = \Pochhammersym{-z}{n}\KummerconfhyperM@{-n}{z-n+1}{a}

KummerU(- n, z - n + 1, a) = pochhammer(- z, n)*KummerM(- n, z - n + 1, a)
HypergeometricU[- n, z - n + 1, a] == Pochhammer[- z, n]*Hypergeometric1F1[- n, z - n + 1, a]
Failure Failure Error
Failed [6 / 126]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[n, 3], Rule[z, 2]}

Result: Indeterminate
Test Values: {Rule[a, 1.5], Rule[n, 3], Rule[z, 2]}

... skip entries to safe data
13.6.E20 ( - z ) n M ( - n , z - n + 1 , a ) = a n C n ( z ; a ) Pochhammer 𝑧 𝑛 Kummer-confluent-hypergeometric-M 𝑛 𝑧 𝑛 1 𝑎 superscript 𝑎 𝑛 Charlier-polynomial-C 𝑛 𝑧 𝑎 {\displaystyle{\displaystyle{\left(-z\right)_{n}}M\left(-n,z-n+1,a\right)=a^{n% }C_{n}\left(z;a\right)}}
\Pochhammersym{-z}{n}\KummerconfhyperM@{-n}{z-n+1}{a} = a^{n}\CharlierpolyC{n}@{z}{a}

Error
Pochhammer[- z, n]*Hypergeometric1F1[- n, z - n + 1, a] == (a)^(n)* HypergeometricPFQ[{-(n), -(z)}, {}, -Divide[1,a]]
Missing Macro Error Missing Macro Error Skip - symbolical successful subtest Skip - symbolical successful subtest
13.6.E21 U ( a , b , z ) = z - a F 0 2 ( a , a - b + 1 ; - ; - z - 1 ) Kummer-confluent-hypergeometric-U 𝑎 𝑏 𝑧 superscript 𝑧 𝑎 Gauss-hypergeometric-pFq 2 0 𝑎 𝑎 𝑏 1 superscript 𝑧 1 {\displaystyle{\displaystyle U\left(a,b,z\right)=z^{-a}{{}_{2}F_{0}}\left(a,a-% b+1;-;-z^{-1}\right)}}
\KummerconfhyperU@{a}{b}{z} = z^{-a}\genhyperF{2}{0}@{a,a-b+1}{-}{-z^{-1}}

KummerU(a, b, z) = (z)^(- a)* hypergeom([a , a - b + 1], [-], - (z)^(- 1))
HypergeometricU[a, b, z] == (z)^(- a)* HypergeometricPFQ[{a , a - b + 1}, {-}, - (z)^(- 1)]
Error Failure - Error