13.4: Difference between revisions
Jump to navigation
Jump to search
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
||
Line 14: | Line 14: | ||
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ||
|- | |- | ||
| [https://dlmf.nist.gov/13.4.E1 13.4.E1] | | | [https://dlmf.nist.gov/13.4.E1 13.4.E1] || <math qid="Q4364">\OlverconfhyperM@{a}{b}{z} = \frac{1}{\EulerGamma@{a}\EulerGamma@{b-a}}\int_{0}^{1}e^{zt}t^{a-1}(1-t)^{b-a-1}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\OlverconfhyperM@{a}{b}{z} = \frac{1}{\EulerGamma@{a}\EulerGamma@{b-a}}\int_{0}^{1}e^{zt}t^{a-1}(1-t)^{b-a-1}\diff{t}</syntaxhighlight> || <math>\realpart@@{b} > \realpart@@{a}, \realpart@@{a} > 0, \realpart@@{(b-a)} > 0, \realpart@@{(b+s)} > 0</math> || <syntaxhighlight lang=mathematica>KummerM(a, b, z)/GAMMA(b) = (1)/(GAMMA(a)*GAMMA(b - a))*int(exp(z*t)*(t)^(a - 1)*(1 - t)^(b - a - 1), t = 0..1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric1F1Regularized[a, b, z] == Divide[1,Gamma[a]*Gamma[b - a]]*Integrate[Exp[z*t]*(t)^(a - 1)*(1 - t)^(b - a - 1), {t, 0, 1}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 21] | ||
|- | |- | ||
| [https://dlmf.nist.gov/13.4.E2 13.4.E2] | | | [https://dlmf.nist.gov/13.4.E2 13.4.E2] || <math qid="Q4365">\OlverconfhyperM@{a}{b}{z} = \frac{1}{\EulerGamma@{b-c}}\int_{0}^{1}\OlverconfhyperM@{a}{c}{zt}t^{c-1}(1-t)^{b-c-1}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\OlverconfhyperM@{a}{b}{z} = \frac{1}{\EulerGamma@{b-c}}\int_{0}^{1}\OlverconfhyperM@{a}{c}{zt}t^{c-1}(1-t)^{b-c-1}\diff{t}</syntaxhighlight> || <math>\realpart@@{b} > \realpart@@{c}, \realpart@@{c} > 0, \realpart@@{(b-c)} > 0, \realpart@@{(b+s)} > 0, \realpart@@{(c+s)} > 0</math> || <syntaxhighlight lang=mathematica>KummerM(a, b, z)/GAMMA(b) = (1)/(GAMMA(b - c))*int(KummerM(a, c, z*t)/GAMMA(c)*(t)^(c - 1)*(1 - t)^(b - c - 1), t = 0..1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric1F1Regularized[a, b, z] == Divide[1,Gamma[b - c]]*Integrate[Hypergeometric1F1Regularized[a, c, z*t]*(t)^(c - 1)*(1 - t)^(b - c - 1), {t, 0, 1}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 126] | ||
|- | |- | ||
| [https://dlmf.nist.gov/13.4.E3 13.4.E3] | | | [https://dlmf.nist.gov/13.4.E3 13.4.E3] || <math qid="Q4366">\OlverconfhyperM@{a}{b}{-z} = \frac{z^{\frac{1}{2}-\frac{1}{2}b}}{\EulerGamma@{a}}\int_{0}^{\infty}e^{-t}t^{a-\frac{1}{2}b-\frac{1}{2}}\BesselJ{b-1}@{2\sqrt{zt}}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\OlverconfhyperM@{a}{b}{-z} = \frac{z^{\frac{1}{2}-\frac{1}{2}b}}{\EulerGamma@{a}}\int_{0}^{\infty}e^{-t}t^{a-\frac{1}{2}b-\frac{1}{2}}\BesselJ{b-1}@{2\sqrt{zt}}\diff{t}</syntaxhighlight> || <math>\realpart@@{a} > 0, \realpart@@{((b-1)+k+1)} > 0, \realpart@@{(b+s)} > 0</math> || <syntaxhighlight lang=mathematica>KummerM(a, b, - z)/GAMMA(b) = ((z)^((1)/(2)-(1)/(2)*b))/(GAMMA(a))*int(exp(- t)*(t)^(a -(1)/(2)*b -(1)/(2))* BesselJ(b - 1, 2*sqrt(z*t)), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric1F1Regularized[a, b, - z] == Divide[(z)^(Divide[1,2]-Divide[1,2]*b),Gamma[a]]*Integrate[Exp[- t]*(t)^(a -Divide[1,2]*b -Divide[1,2])* BesselJ[b - 1, 2*Sqrt[z*t]], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Error || Skipped - Because timed out | ||
|- | |- | ||
| [https://dlmf.nist.gov/13.4.E4 13.4.E4] | | | [https://dlmf.nist.gov/13.4.E4 13.4.E4] || <math qid="Q4367">\KummerconfhyperU@{a}{b}{z} = \frac{1}{\EulerGamma@{a}}\int_{0}^{\infty}e^{-zt}t^{a-1}(1+t)^{b-a-1}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\KummerconfhyperU@{a}{b}{z} = \frac{1}{\EulerGamma@{a}}\int_{0}^{\infty}e^{-zt}t^{a-1}(1+t)^{b-a-1}\diff{t}</syntaxhighlight> || <math>\realpart@@{a} > 0, |\phase{z}| < \frac{1}{2}\pi</math> || <syntaxhighlight lang=mathematica>KummerU(a, b, z) = (1)/(GAMMA(a))*int(exp(- z*t)*(t)^(a - 1)*(1 + t)^(b - a - 1), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>HypergeometricU[a, b, z] == Divide[1,Gamma[a]]*Integrate[Exp[- z*t]*(t)^(a - 1)*(1 + t)^(b - a - 1), {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 90] | ||
|- | |- | ||
| [https://dlmf.nist.gov/13.4.E5 13.4.E5] | | | [https://dlmf.nist.gov/13.4.E5 13.4.E5] || <math qid="Q4368">\KummerconfhyperU@{a}{b}{z} = \frac{z^{1-a}}{\EulerGamma@{a}\EulerGamma@{1+a-b}}\int_{0}^{\infty}\frac{\KummerconfhyperU@{b-a}{b}{t}e^{-t}t^{a-1}}{t+z}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\KummerconfhyperU@{a}{b}{z} = \frac{z^{1-a}}{\EulerGamma@{a}\EulerGamma@{1+a-b}}\int_{0}^{\infty}\frac{\KummerconfhyperU@{b-a}{b}{t}e^{-t}t^{a-1}}{t+z}\diff{t}</syntaxhighlight> || <math>|\phase{z}| < \pi, \realpart@@{a} > \max\left(\realpart@@{b-1}, \realpart@@{a} > 0, \realpart@@{(1+a-b)} > 0</math> || <syntaxhighlight lang=mathematica>KummerU(a, b, z) = ((z)^(1 - a))/(GAMMA(a)*GAMMA(1 + a - b))*int((KummerU(b - a, b, t)*exp(- t)*(t)^(a - 1))/(t + z), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>HypergeometricU[a, b, z] == Divide[(z)^(1 - a),Gamma[a]*Gamma[1 + a - b]]*Integrate[Divide[HypergeometricU[b - a, b, t]*Exp[- t]*(t)^(a - 1),t + z], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out | ||
|- | |- | ||
| [https://dlmf.nist.gov/13.4.E6 13.4.E6] | | | [https://dlmf.nist.gov/13.4.E6 13.4.E6] || <math qid="Q4369">\KummerconfhyperU@{a}{b}{z} = \frac{(-1)^{n}z^{1-b-n}}{\EulerGamma@{1+a-b}}\int_{0}^{\infty}\frac{\OlverconfhyperM@{b-a}{b}{t}e^{-t}t^{b+n-1}}{t+z}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\KummerconfhyperU@{a}{b}{z} = \frac{(-1)^{n}z^{1-b-n}}{\EulerGamma@{1+a-b}}\int_{0}^{\infty}\frac{\OlverconfhyperM@{b-a}{b}{t}e^{-t}t^{b+n-1}}{t+z}\diff{t}</syntaxhighlight> || <math>\abs{\phase@@{z}} < \pi, -\realpart@@{b} < n, n < 1+\realpart@{a-b}, \realpart@@{(1+a-b)} > 0, \realpart@@{(b+s)} > 0</math> || <syntaxhighlight lang=mathematica>KummerU(a, b, z) = ((- 1)^(n)* (z)^(1 - b - n))/(GAMMA(1 + a - b))*int((KummerM(b - a, b, t)/GAMMA(b)*exp(- t)*(t)^(b + n - 1))/(t + z), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>HypergeometricU[a, b, z] == Divide[(- 1)^(n)* (z)^(1 - b - n),Gamma[1 + a - b]]*Integrate[Divide[Hypergeometric1F1Regularized[b - a, b, t]*Exp[- t]*(t)^(b + n - 1),t + z], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out | ||
|- | |- | ||
| [https://dlmf.nist.gov/13.4.E7 13.4.E7] | | | [https://dlmf.nist.gov/13.4.E7 13.4.E7] || <math qid="Q4370">\KummerconfhyperU@{a}{b}{z} = \frac{2z^{\frac{1}{2}-\frac{1}{2}b}}{\EulerGamma@{a}\EulerGamma@{a-b+1}}\*\int_{0}^{\infty}e^{-t}t^{a-\frac{1}{2}b-\frac{1}{2}}\modBesselK{b-1}@{2\sqrt{zt}}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\KummerconfhyperU@{a}{b}{z} = \frac{2z^{\frac{1}{2}-\frac{1}{2}b}}{\EulerGamma@{a}\EulerGamma@{a-b+1}}\*\int_{0}^{\infty}e^{-t}t^{a-\frac{1}{2}b-\frac{1}{2}}\modBesselK{b-1}@{2\sqrt{zt}}\diff{t}</syntaxhighlight> || <math>\realpart@@{a} > \max\left(\realpart@@{b-1}, \realpart@@{a} > 0, \realpart@@{(a-b+1)} > 0</math> || <syntaxhighlight lang=mathematica>KummerU(a, b, z) = (2*(z)^((1)/(2)-(1)/(2)*b))/(GAMMA(a)*GAMMA(a - b + 1))* int(exp(- t)*(t)^(a -(1)/(2)*b -(1)/(2))* BesselK(b - 1, 2*sqrt(z*t)), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>HypergeometricU[a, b, z] == Divide[2*(z)^(Divide[1,2]-Divide[1,2]*b),Gamma[a]*Gamma[a - b + 1]]* Integrate[Exp[- t]*(t)^(a -Divide[1,2]*b -Divide[1,2])* BesselK[b - 1, 2*Sqrt[z*t]], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Aborted || - || Skipped - Because timed out | ||
|- | |- | ||
| [https://dlmf.nist.gov/13.4.E8 13.4.E8] | | | [https://dlmf.nist.gov/13.4.E8 13.4.E8] || <math qid="Q4371">\KummerconfhyperU@{a}{b}{z} = z^{c-a}\*\int_{0}^{\infty}e^{-zt}t^{c-1}\genhyperOlverF{2}{1}@{a,a-b+1}{c}{-t}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\KummerconfhyperU@{a}{b}{z} = z^{c-a}\*\int_{0}^{\infty}e^{-zt}t^{c-1}\genhyperOlverF{2}{1}@{a,a-b+1}{c}{-t}\diff{t}</syntaxhighlight> || <math>|\phase{z}| < \frac{1}{2}\pi</math> || <syntaxhighlight lang=mathematica>KummerU(a, b, z) = (z)^(c - a)* int(exp(- z*t)*(t)^(c - 1)* hypergeom([a , a - b + 1], [c], - t), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>HypergeometricU[a, b, z] == (z)^(c - a)* Integrate[Exp[- z*t]*(t)^(c - 1)* HypergeometricPFQRegularized[{a , a - b + 1}, {c}, - t], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || <div class="toccolours mw-collapsible mw-collapsed">Failed [294 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Float(undefined)+Float(undefined)*I | ||
Test Values: {a = -3/2, b = -3/2, c = -3/2, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Float(undefined)+Float(undefined)*I | Test Values: {a = -3/2, b = -3/2, c = -3/2, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Float(undefined)+Float(undefined)*I | ||
Test Values: {a = -3/2, b = -3/2, c = -3/2, z = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || Skipped - Because timed out | Test Values: {a = -3/2, b = -3/2, c = -3/2, z = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || Skipped - Because timed out | ||
|- | |- | ||
| [https://dlmf.nist.gov/13.4.E9 13.4.E9] | | | [https://dlmf.nist.gov/13.4.E9 13.4.E9] || <math qid="Q4372">\OlverconfhyperM@{a}{b}{z} = \frac{\EulerGamma@{1+a-b}}{2\pi\iunit\EulerGamma@{a}}\int_{0}^{(1+)}e^{zt}t^{a-1}{(t-1)^{b-a-1}}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\OlverconfhyperM@{a}{b}{z} = \frac{\EulerGamma@{1+a-b}}{2\pi\iunit\EulerGamma@{a}}\int_{0}^{(1+)}e^{zt}t^{a-1}{(t-1)^{b-a-1}}\diff{t}</syntaxhighlight> || <math>\realpart@@{a} > 0, \realpart@@{(1+a-b)} > 0, \realpart@@{(b+s)} > 0</math> || <syntaxhighlight lang=mathematica>KummerM(a, b, z)/GAMMA(b) = (GAMMA(1 + a - b))/(2*Pi*I*GAMMA(a))*int(exp(z*t)*(t)^(a - 1)*(t - 1)^(b - a - 1), t = 0..(1 +))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric1F1Regularized[a, b, z] == Divide[Gamma[1 + a - b],2*Pi*I*Gamma[a]]*Integrate[Exp[z*t]*(t)^(a - 1)*(t - 1)^(b - a - 1), {t, 0, (1 +)}, GenerateConditions->None]</syntaxhighlight> || Error || Failure || - || Error | ||
|- | |- | ||
| [https://dlmf.nist.gov/13.4.E10 13.4.E10] | | | [https://dlmf.nist.gov/13.4.E10 13.4.E10] || <math qid="Q4373">\OlverconfhyperM@{a}{b}{z} = e^{-a\pi\iunit}\frac{\EulerGamma@{1-a}}{2\pi\iunit\EulerGamma@{b-a}}\int_{1}^{(0+)}e^{zt}t^{a-1}{(1-t)^{b-a-1}}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\OlverconfhyperM@{a}{b}{z} = e^{-a\pi\iunit}\frac{\EulerGamma@{1-a}}{2\pi\iunit\EulerGamma@{b-a}}\int_{1}^{(0+)}e^{zt}t^{a-1}{(1-t)^{b-a-1}}\diff{t}</syntaxhighlight> || <math>\realpart@{b-a} > 0, \realpart@@{(1-a)} > 0, \realpart@@{(b-a)} > 0, \realpart@@{(b+s)} > 0</math> || <syntaxhighlight lang=mathematica>KummerM(a, b, z)/GAMMA(b) = exp(- a*Pi*I)*(GAMMA(1 - a))/(2*Pi*I*GAMMA(b - a))*int(exp(z*t)*(t)^(a - 1)*(1 - t)^(b - a - 1), t = 1..(0 +))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric1F1Regularized[a, b, z] == Exp[- a*Pi*I]*Divide[Gamma[1 - a],2*Pi*I*Gamma[b - a]]*Integrate[Exp[z*t]*(t)^(a - 1)*(1 - t)^(b - a - 1), {t, 1, (0 +)}, GenerateConditions->None]</syntaxhighlight> || Error || Failure || - || Error | ||
|- | |- | ||
| [https://dlmf.nist.gov/13.4.E11 13.4.E11] | | | [https://dlmf.nist.gov/13.4.E11 13.4.E11] || <math qid="Q4374">\OlverconfhyperM@{a}{b}{z} = e^{-b\pi\iunit}\EulerGamma@{1-a}\EulerGamma@{1+a-b}\*\frac{1}{4\pi^{2}}\int_{\alpha}^{(0+,1+,0-,1-)}e^{zt}t^{a-1}{(1-t)^{b-a-1}}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\OlverconfhyperM@{a}{b}{z} = e^{-b\pi\iunit}\EulerGamma@{1-a}\EulerGamma@{1+a-b}\*\frac{1}{4\pi^{2}}\int_{\alpha}^{(0+,1+,0-,1-)}e^{zt}t^{a-1}{(1-t)^{b-a-1}}\diff{t}</syntaxhighlight> || <math>\realpart@@{(1-a)} > 0, \realpart@@{(1+a-b)} > 0, \realpart@@{(b+s)} > 0</math> || <syntaxhighlight lang=mathematica>KummerM(a, b, z)/GAMMA(b) = exp(- b*Pi*I)*GAMMA(1 - a)*GAMMA(1 + a - b)*(1)/(4*(Pi)^(2))*int(exp(z*t)*(t)^(a - 1)*(1 - t)^(b - a - 1), t = alpha..(0 + , 1 + , 0 - , 1 -))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric1F1Regularized[a, b, z] == Exp[- b*Pi*I]*Gamma[1 - a]*Gamma[1 + a - b]*Divide[1,4*(Pi)^(2)]*Integrate[Exp[z*t]*(t)^(a - 1)*(1 - t)^(b - a - 1), {t, \[Alpha], (0 + , 1 + , 0 - , 1 -)}, GenerateConditions->None]</syntaxhighlight> || Error || Failure || - || Error | ||
|- | |- | ||
| [https://dlmf.nist.gov/13.4.E12 13.4.E12] | | | [https://dlmf.nist.gov/13.4.E12 13.4.E12] || <math qid="Q4375">\OlverconfhyperM@{a}{c}{z} = \frac{\EulerGamma@{b}}{2\pi\iunit}z^{1-b}\int_{-\infty}^{(0+,1+)}e^{zt}t^{-b}\genhyperOlverF{2}{1}@{a,b}{c}{\ifrac{1}{t}}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\OlverconfhyperM@{a}{c}{z} = \frac{\EulerGamma@{b}}{2\pi\iunit}z^{1-b}\int_{-\infty}^{(0+,1+)}e^{zt}t^{-b}\genhyperOlverF{2}{1}@{a,b}{c}{\ifrac{1}{t}}\diff{t}</syntaxhighlight> || <math>\abs{\phase@@{z}} < \frac{1}{2}\pi, \realpart@@{b} > 0, \realpart@@{(c+s)} > 0</math> || <syntaxhighlight lang=mathematica>KummerM(a, c, z)/GAMMA(c) = (GAMMA(b))/(2*Pi*I)*(z)^(1 - b)* int(exp(z*t)*(t)^(- b)* hypergeom([a , b], [c], (1)/(t)), t = - infinity..(0 + , 1 +))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric1F1Regularized[a, c, z] == Divide[Gamma[b],2*Pi*I]*(z)^(1 - b)* Integrate[Exp[z*t]*(t)^(- b)* HypergeometricPFQRegularized[{a , b}, {c}, Divide[1,t]], {t, - Infinity, (0 + , 1 +)}, GenerateConditions->None]</syntaxhighlight> || Error || Failure || - || Error | ||
|- | |- | ||
| [https://dlmf.nist.gov/13.4.E13 13.4.E13] | | | [https://dlmf.nist.gov/13.4.E13 13.4.E13] || <math qid="Q4376">\OlverconfhyperM@{a}{b}{z} = \frac{z^{1-b}}{2\pi\iunit}\int_{-\infty}^{(0+,1+)}e^{zt}t^{-b}\!\left(1-\frac{1}{t}\right)^{-a}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\OlverconfhyperM@{a}{b}{z} = \frac{z^{1-b}}{2\pi\iunit}\int_{-\infty}^{(0+,1+)}e^{zt}t^{-b}\!\left(1-\frac{1}{t}\right)^{-a}\diff{t}</syntaxhighlight> || <math>|\phase{z}| < \frac{1}{2}\pi, \realpart@@{(b+s)} > 0</math> || <syntaxhighlight lang=mathematica>KummerM(a, b, z)/GAMMA(b) = ((z)^(1 - b))/(2*Pi*I)*int(exp(z*t)*(t)^(- b)*(1 -(1)/(t))^(- a), t = - infinity..(0 + , 1 +))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric1F1Regularized[a, b, z] == Divide[(z)^(1 - b),2*Pi*I]*Integrate[Exp[z*t]*(t)^(- b)*(1 -Divide[1,t])^(- a), {t, - Infinity, (0 + , 1 +)}, GenerateConditions->None]</syntaxhighlight> || Error || Failure || - || Error | ||
|- | |- | ||
| [https://dlmf.nist.gov/13.4.E14 13.4.E14] | | | [https://dlmf.nist.gov/13.4.E14 13.4.E14] || <math qid="Q4377">\KummerconfhyperU@{a}{b}{z} = e^{-a\pi\iunit}\frac{\EulerGamma@{1-a}}{2\pi\iunit}\int_{\infty}^{(0+)}e^{-zt}t^{a-1}{(1+t)^{b-a-1}}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\KummerconfhyperU@{a}{b}{z} = e^{-a\pi\iunit}\frac{\EulerGamma@{1-a}}{2\pi\iunit}\int_{\infty}^{(0+)}e^{-zt}t^{a-1}{(1+t)^{b-a-1}}\diff{t}</syntaxhighlight> || <math>\abs{\phase@@{z}} < \frac{1}{2}\pi, \realpart@@{(1-a)} > 0</math> || <syntaxhighlight lang=mathematica>KummerU(a, b, z) = exp(- a*Pi*I)*(GAMMA(1 - a))/(2*Pi*I)*int(exp(- z*t)*(t)^(a - 1)*(1 + t)^(b - a - 1), t = infinity..(0 +))</syntaxhighlight> || <syntaxhighlight lang=mathematica>HypergeometricU[a, b, z] == Exp[- a*Pi*I]*Divide[Gamma[1 - a],2*Pi*I]*Integrate[Exp[- z*t]*(t)^(a - 1)*(1 + t)^(b - a - 1), {t, Infinity, (0 +)}, GenerateConditions->None]</syntaxhighlight> || Error || Failure || - || Error | ||
|- | |- | ||
| [https://dlmf.nist.gov/13.4.E15 13.4.E15] | | | [https://dlmf.nist.gov/13.4.E15 13.4.E15] || <math qid="Q4378">\frac{\KummerconfhyperU@{a}{b}{z}}{\EulerGamma@{c}\EulerGamma@{c-b+1}} = \frac{z^{1-c}}{2\pi\iunit}\int_{-\infty}^{(0+)}e^{zt}t^{-c}\genhyperOlverF{2}{1}@{a,c}{a+c-b+1}{1-\frac{1}{t}}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{\KummerconfhyperU@{a}{b}{z}}{\EulerGamma@{c}\EulerGamma@{c-b+1}} = \frac{z^{1-c}}{2\pi\iunit}\int_{-\infty}^{(0+)}e^{zt}t^{-c}\genhyperOlverF{2}{1}@{a,c}{a+c-b+1}{1-\frac{1}{t}}\diff{t}</syntaxhighlight> || <math>\abs{\phase@@{z}} < \frac{1}{2}\pi, \realpart@@{c} > 0, \realpart@@{(c-b+1)} > 0</math> || <syntaxhighlight lang=mathematica>(KummerU(a, b, z))/(GAMMA(c)*GAMMA(c - b + 1)) = ((z)^(1 - c))/(2*Pi*I)*int(exp(z*t)*(t)^(- c)* hypergeom([a , c], [a + c - b + 1], 1 -(1)/(t)), t = - infinity..(0 +))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[HypergeometricU[a, b, z],Gamma[c]*Gamma[c - b + 1]] == Divide[(z)^(1 - c),2*Pi*I]*Integrate[Exp[z*t]*(t)^(- c)* HypergeometricPFQRegularized[{a , c}, {a + c - b + 1}, 1 -Divide[1,t]], {t, - Infinity, (0 +)}, GenerateConditions->None]</syntaxhighlight> || Error || Failure || - || Error | ||
|- | |- | ||
| [https://dlmf.nist.gov/13.4.E16 13.4.E16] | | | [https://dlmf.nist.gov/13.4.E16 13.4.E16] || <math qid="Q4379">\OlverconfhyperM@{a}{b}{-z} = \frac{1}{2\pi\iunit\EulerGamma@{a}}\int_{-\iunit\infty}^{\iunit\infty}\frac{\EulerGamma@{a+t}\EulerGamma@{-t}}{\EulerGamma@{b+t}}z^{t}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\OlverconfhyperM@{a}{b}{-z} = \frac{1}{2\pi\iunit\EulerGamma@{a}}\int_{-\iunit\infty}^{\iunit\infty}\frac{\EulerGamma@{a+t}\EulerGamma@{-t}}{\EulerGamma@{b+t}}z^{t}\diff{t}</syntaxhighlight> || <math>|\phase{z}| < \tfrac{1}{2}\pi, \realpart@@{a} > 0, \realpart@@{(a+t)} > 0, \realpart@@{(-t)} > 0, \realpart@@{(b+t)} > 0, \realpart@@{(b+s)} > 0</math> || <syntaxhighlight lang=mathematica>KummerM(a, b, - z)/GAMMA(b) = (1)/(2*Pi*I*GAMMA(a))*int((GAMMA(a + t)*GAMMA(- t))/(GAMMA(b + t))*(z)^(t), t = - I*infinity..I*infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric1F1Regularized[a, b, - z] == Divide[1,2*Pi*I*Gamma[a]]*Integrate[Divide[Gamma[a + t]*Gamma[- t],Gamma[b + t]]*(z)^(t), {t, - I*Infinity, I*Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out | ||
|- | |- | ||
| [https://dlmf.nist.gov/13.4.E17 13.4.E17] | | | [https://dlmf.nist.gov/13.4.E17 13.4.E17] || <math qid="Q4380">\KummerconfhyperU@{a}{b}{z} = \frac{z^{-a}}{2\pi\iunit}\int_{-\iunit\infty}^{\iunit\infty}\frac{\EulerGamma@{a+t}\EulerGamma@{1+a-b+t}\EulerGamma@{-t}}{\EulerGamma@{a}\EulerGamma@{1+a-b}}z^{-t}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\KummerconfhyperU@{a}{b}{z} = \frac{z^{-a}}{2\pi\iunit}\int_{-\iunit\infty}^{\iunit\infty}\frac{\EulerGamma@{a+t}\EulerGamma@{1+a-b+t}\EulerGamma@{-t}}{\EulerGamma@{a}\EulerGamma@{1+a-b}}z^{-t}\diff{t}</syntaxhighlight> || <math>|\phase{z}| < \tfrac{3}{2}\pi, \realpart@@{(a+t)} > 0, \realpart@@{(1+a-b+t)} > 0, \realpart@@{(-t)} > 0, \realpart@@{a} > 0, \realpart@@{(1+a-b)} > 0</math> || <syntaxhighlight lang=mathematica>KummerU(a, b, z) = ((z)^(- a))/(2*Pi*I)*int((GAMMA(a + t)*GAMMA(1 + a - b + t)*GAMMA(- t))/(GAMMA(a)*GAMMA(1 + a - b))*(z)^(- t), t = - I*infinity..I*infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>HypergeometricU[a, b, z] == Divide[(z)^(- a),2*Pi*I]*Integrate[Divide[Gamma[a + t]*Gamma[1 + a - b + t]*Gamma[- t],Gamma[a]*Gamma[1 + a - b]]*(z)^(- t), {t, - I*Infinity, I*Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out | ||
|- | |- | ||
| [https://dlmf.nist.gov/13.4.E18 13.4.E18] | | | [https://dlmf.nist.gov/13.4.E18 13.4.E18] || <math qid="Q4381">\KummerconfhyperU@{a}{b}{z} = \frac{z^{1-b}e^{z}}{2\pi\iunit}\int_{-\iunit\infty}^{\iunit\infty}\frac{\EulerGamma@{b-1+t}\EulerGamma@{t}}{\EulerGamma@{a+t}}z^{-t}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\KummerconfhyperU@{a}{b}{z} = \frac{z^{1-b}e^{z}}{2\pi\iunit}\int_{-\iunit\infty}^{\iunit\infty}\frac{\EulerGamma@{b-1+t}\EulerGamma@{t}}{\EulerGamma@{a+t}}z^{-t}\diff{t}</syntaxhighlight> || <math>|\phase{z}| < \tfrac{1}{2}\pi, \realpart@@{(b-1+t)} > 0, \realpart@@{t} > 0, \realpart@@{(a+t)} > 0</math> || <syntaxhighlight lang=mathematica>KummerU(a, b, z) = ((z)^(1 - b)* exp(z))/(2*Pi*I)*int((GAMMA(b - 1 + t)*GAMMA(t))/(GAMMA(a + t))*(z)^(- t), t = - I*infinity..I*infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>HypergeometricU[a, b, z] == Divide[(z)^(1 - b)* Exp[z],2*Pi*I]*Integrate[Divide[Gamma[b - 1 + t]*Gamma[t],Gamma[a + t]]*(z)^(- t), {t, - I*Infinity, I*Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out | ||
|} | |} | ||
</div> | </div> |
Latest revision as of 11:32, 28 June 2021
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
13.4.E1 | \OlverconfhyperM@{a}{b}{z} = \frac{1}{\EulerGamma@{a}\EulerGamma@{b-a}}\int_{0}^{1}e^{zt}t^{a-1}(1-t)^{b-a-1}\diff{t} |
KummerM(a, b, z)/GAMMA(b) = (1)/(GAMMA(a)*GAMMA(b - a))*int(exp(z*t)*(t)^(a - 1)*(1 - t)^(b - a - 1), t = 0..1)
|
Hypergeometric1F1Regularized[a, b, z] == Divide[1,Gamma[a]*Gamma[b - a]]*Integrate[Exp[z*t]*(t)^(a - 1)*(1 - t)^(b - a - 1), {t, 0, 1}, GenerateConditions->None]
|
Successful | Successful | - | Successful [Tested: 21] | |
13.4.E2 | \OlverconfhyperM@{a}{b}{z} = \frac{1}{\EulerGamma@{b-c}}\int_{0}^{1}\OlverconfhyperM@{a}{c}{zt}t^{c-1}(1-t)^{b-c-1}\diff{t} |
KummerM(a, b, z)/GAMMA(b) = (1)/(GAMMA(b - c))*int(KummerM(a, c, z*t)/GAMMA(c)*(t)^(c - 1)*(1 - t)^(b - c - 1), t = 0..1)
|
Hypergeometric1F1Regularized[a, b, z] == Divide[1,Gamma[b - c]]*Integrate[Hypergeometric1F1Regularized[a, c, z*t]*(t)^(c - 1)*(1 - t)^(b - c - 1), {t, 0, 1}, GenerateConditions->None]
|
Successful | Successful | - | Successful [Tested: 126] | |
13.4.E3 | \OlverconfhyperM@{a}{b}{-z} = \frac{z^{\frac{1}{2}-\frac{1}{2}b}}{\EulerGamma@{a}}\int_{0}^{\infty}e^{-t}t^{a-\frac{1}{2}b-\frac{1}{2}}\BesselJ{b-1}@{2\sqrt{zt}}\diff{t} |
KummerM(a, b, - z)/GAMMA(b) = ((z)^((1)/(2)-(1)/(2)*b))/(GAMMA(a))*int(exp(- t)*(t)^(a -(1)/(2)*b -(1)/(2))* BesselJ(b - 1, 2*sqrt(z*t)), t = 0..infinity)
|
Hypergeometric1F1Regularized[a, b, - z] == Divide[(z)^(Divide[1,2]-Divide[1,2]*b),Gamma[a]]*Integrate[Exp[- t]*(t)^(a -Divide[1,2]*b -Divide[1,2])* BesselJ[b - 1, 2*Sqrt[z*t]], {t, 0, Infinity}, GenerateConditions->None]
|
Failure | Aborted | Error | Skipped - Because timed out | |
13.4.E4 | \KummerconfhyperU@{a}{b}{z} = \frac{1}{\EulerGamma@{a}}\int_{0}^{\infty}e^{-zt}t^{a-1}(1+t)^{b-a-1}\diff{t} |
KummerU(a, b, z) = (1)/(GAMMA(a))*int(exp(- z*t)*(t)^(a - 1)*(1 + t)^(b - a - 1), t = 0..infinity)
|
HypergeometricU[a, b, z] == Divide[1,Gamma[a]]*Integrate[Exp[- z*t]*(t)^(a - 1)*(1 + t)^(b - a - 1), {t, 0, Infinity}, GenerateConditions->None]
|
Successful | Successful | - | Successful [Tested: 90] | |
13.4.E5 | \KummerconfhyperU@{a}{b}{z} = \frac{z^{1-a}}{\EulerGamma@{a}\EulerGamma@{1+a-b}}\int_{0}^{\infty}\frac{\KummerconfhyperU@{b-a}{b}{t}e^{-t}t^{a-1}}{t+z}\diff{t} |
KummerU(a, b, z) = ((z)^(1 - a))/(GAMMA(a)*GAMMA(1 + a - b))*int((KummerU(b - a, b, t)*exp(- t)*(t)^(a - 1))/(t + z), t = 0..infinity)
|
HypergeometricU[a, b, z] == Divide[(z)^(1 - a),Gamma[a]*Gamma[1 + a - b]]*Integrate[Divide[HypergeometricU[b - a, b, t]*Exp[- t]*(t)^(a - 1),t + z], {t, 0, Infinity}, GenerateConditions->None]
|
Failure | Aborted | Skipped - Because timed out | Skipped - Because timed out | |
13.4.E6 | \KummerconfhyperU@{a}{b}{z} = \frac{(-1)^{n}z^{1-b-n}}{\EulerGamma@{1+a-b}}\int_{0}^{\infty}\frac{\OlverconfhyperM@{b-a}{b}{t}e^{-t}t^{b+n-1}}{t+z}\diff{t} |
KummerU(a, b, z) = ((- 1)^(n)* (z)^(1 - b - n))/(GAMMA(1 + a - b))*int((KummerM(b - a, b, t)/GAMMA(b)*exp(- t)*(t)^(b + n - 1))/(t + z), t = 0..infinity)
|
HypergeometricU[a, b, z] == Divide[(- 1)^(n)* (z)^(1 - b - n),Gamma[1 + a - b]]*Integrate[Divide[Hypergeometric1F1Regularized[b - a, b, t]*Exp[- t]*(t)^(b + n - 1),t + z], {t, 0, Infinity}, GenerateConditions->None]
|
Failure | Aborted | Skipped - Because timed out | Skipped - Because timed out | |
13.4.E7 | \KummerconfhyperU@{a}{b}{z} = \frac{2z^{\frac{1}{2}-\frac{1}{2}b}}{\EulerGamma@{a}\EulerGamma@{a-b+1}}\*\int_{0}^{\infty}e^{-t}t^{a-\frac{1}{2}b-\frac{1}{2}}\modBesselK{b-1}@{2\sqrt{zt}}\diff{t} |
KummerU(a, b, z) = (2*(z)^((1)/(2)-(1)/(2)*b))/(GAMMA(a)*GAMMA(a - b + 1))* int(exp(- t)*(t)^(a -(1)/(2)*b -(1)/(2))* BesselK(b - 1, 2*sqrt(z*t)), t = 0..infinity)
|
HypergeometricU[a, b, z] == Divide[2*(z)^(Divide[1,2]-Divide[1,2]*b),Gamma[a]*Gamma[a - b + 1]]* Integrate[Exp[- t]*(t)^(a -Divide[1,2]*b -Divide[1,2])* BesselK[b - 1, 2*Sqrt[z*t]], {t, 0, Infinity}, GenerateConditions->None]
|
Successful | Aborted | - | Skipped - Because timed out | |
13.4.E8 | \KummerconfhyperU@{a}{b}{z} = z^{c-a}\*\int_{0}^{\infty}e^{-zt}t^{c-1}\genhyperOlverF{2}{1}@{a,a-b+1}{c}{-t}\diff{t} |
KummerU(a, b, z) = (z)^(c - a)* int(exp(- z*t)*(t)^(c - 1)* hypergeom([a , a - b + 1], [c], - t), t = 0..infinity)
|
HypergeometricU[a, b, z] == (z)^(c - a)* Integrate[Exp[- z*t]*(t)^(c - 1)* HypergeometricPFQRegularized[{a , a - b + 1}, {c}, - t], {t, 0, Infinity}, GenerateConditions->None]
|
Failure | Aborted | Failed [294 / 300] Result: Float(undefined)+Float(undefined)*I
Test Values: {a = -3/2, b = -3/2, c = -3/2, z = 1/2*3^(1/2)+1/2*I}
Result: Float(undefined)+Float(undefined)*I
Test Values: {a = -3/2, b = -3/2, c = -3/2, z = 1/2-1/2*I*3^(1/2)}
... skip entries to safe data |
Skipped - Because timed out | |
13.4.E9 | \OlverconfhyperM@{a}{b}{z} = \frac{\EulerGamma@{1+a-b}}{2\pi\iunit\EulerGamma@{a}}\int_{0}^{(1+)}e^{zt}t^{a-1}{(t-1)^{b-a-1}}\diff{t} |
KummerM(a, b, z)/GAMMA(b) = (GAMMA(1 + a - b))/(2*Pi*I*GAMMA(a))*int(exp(z*t)*(t)^(a - 1)*(t - 1)^(b - a - 1), t = 0..(1 +))
|
Hypergeometric1F1Regularized[a, b, z] == Divide[Gamma[1 + a - b],2*Pi*I*Gamma[a]]*Integrate[Exp[z*t]*(t)^(a - 1)*(t - 1)^(b - a - 1), {t, 0, (1 +)}, GenerateConditions->None]
|
Error | Failure | - | Error | |
13.4.E10 | \OlverconfhyperM@{a}{b}{z} = e^{-a\pi\iunit}\frac{\EulerGamma@{1-a}}{2\pi\iunit\EulerGamma@{b-a}}\int_{1}^{(0+)}e^{zt}t^{a-1}{(1-t)^{b-a-1}}\diff{t} |
KummerM(a, b, z)/GAMMA(b) = exp(- a*Pi*I)*(GAMMA(1 - a))/(2*Pi*I*GAMMA(b - a))*int(exp(z*t)*(t)^(a - 1)*(1 - t)^(b - a - 1), t = 1..(0 +))
|
Hypergeometric1F1Regularized[a, b, z] == Exp[- a*Pi*I]*Divide[Gamma[1 - a],2*Pi*I*Gamma[b - a]]*Integrate[Exp[z*t]*(t)^(a - 1)*(1 - t)^(b - a - 1), {t, 1, (0 +)}, GenerateConditions->None]
|
Error | Failure | - | Error | |
13.4.E11 | \OlverconfhyperM@{a}{b}{z} = e^{-b\pi\iunit}\EulerGamma@{1-a}\EulerGamma@{1+a-b}\*\frac{1}{4\pi^{2}}\int_{\alpha}^{(0+,1+,0-,1-)}e^{zt}t^{a-1}{(1-t)^{b-a-1}}\diff{t} |
KummerM(a, b, z)/GAMMA(b) = exp(- b*Pi*I)*GAMMA(1 - a)*GAMMA(1 + a - b)*(1)/(4*(Pi)^(2))*int(exp(z*t)*(t)^(a - 1)*(1 - t)^(b - a - 1), t = alpha..(0 + , 1 + , 0 - , 1 -))
|
Hypergeometric1F1Regularized[a, b, z] == Exp[- b*Pi*I]*Gamma[1 - a]*Gamma[1 + a - b]*Divide[1,4*(Pi)^(2)]*Integrate[Exp[z*t]*(t)^(a - 1)*(1 - t)^(b - a - 1), {t, \[Alpha], (0 + , 1 + , 0 - , 1 -)}, GenerateConditions->None]
|
Error | Failure | - | Error | |
13.4.E12 | \OlverconfhyperM@{a}{c}{z} = \frac{\EulerGamma@{b}}{2\pi\iunit}z^{1-b}\int_{-\infty}^{(0+,1+)}e^{zt}t^{-b}\genhyperOlverF{2}{1}@{a,b}{c}{\ifrac{1}{t}}\diff{t} |
KummerM(a, c, z)/GAMMA(c) = (GAMMA(b))/(2*Pi*I)*(z)^(1 - b)* int(exp(z*t)*(t)^(- b)* hypergeom([a , b], [c], (1)/(t)), t = - infinity..(0 + , 1 +))
|
Hypergeometric1F1Regularized[a, c, z] == Divide[Gamma[b],2*Pi*I]*(z)^(1 - b)* Integrate[Exp[z*t]*(t)^(- b)* HypergeometricPFQRegularized[{a , b}, {c}, Divide[1,t]], {t, - Infinity, (0 + , 1 +)}, GenerateConditions->None]
|
Error | Failure | - | Error | |
13.4.E13 | \OlverconfhyperM@{a}{b}{z} = \frac{z^{1-b}}{2\pi\iunit}\int_{-\infty}^{(0+,1+)}e^{zt}t^{-b}\!\left(1-\frac{1}{t}\right)^{-a}\diff{t} |
KummerM(a, b, z)/GAMMA(b) = ((z)^(1 - b))/(2*Pi*I)*int(exp(z*t)*(t)^(- b)*(1 -(1)/(t))^(- a), t = - infinity..(0 + , 1 +))
|
Hypergeometric1F1Regularized[a, b, z] == Divide[(z)^(1 - b),2*Pi*I]*Integrate[Exp[z*t]*(t)^(- b)*(1 -Divide[1,t])^(- a), {t, - Infinity, (0 + , 1 +)}, GenerateConditions->None]
|
Error | Failure | - | Error | |
13.4.E14 | \KummerconfhyperU@{a}{b}{z} = e^{-a\pi\iunit}\frac{\EulerGamma@{1-a}}{2\pi\iunit}\int_{\infty}^{(0+)}e^{-zt}t^{a-1}{(1+t)^{b-a-1}}\diff{t} |
KummerU(a, b, z) = exp(- a*Pi*I)*(GAMMA(1 - a))/(2*Pi*I)*int(exp(- z*t)*(t)^(a - 1)*(1 + t)^(b - a - 1), t = infinity..(0 +))
|
HypergeometricU[a, b, z] == Exp[- a*Pi*I]*Divide[Gamma[1 - a],2*Pi*I]*Integrate[Exp[- z*t]*(t)^(a - 1)*(1 + t)^(b - a - 1), {t, Infinity, (0 +)}, GenerateConditions->None]
|
Error | Failure | - | Error | |
13.4.E15 | \frac{\KummerconfhyperU@{a}{b}{z}}{\EulerGamma@{c}\EulerGamma@{c-b+1}} = \frac{z^{1-c}}{2\pi\iunit}\int_{-\infty}^{(0+)}e^{zt}t^{-c}\genhyperOlverF{2}{1}@{a,c}{a+c-b+1}{1-\frac{1}{t}}\diff{t} |
(KummerU(a, b, z))/(GAMMA(c)*GAMMA(c - b + 1)) = ((z)^(1 - c))/(2*Pi*I)*int(exp(z*t)*(t)^(- c)* hypergeom([a , c], [a + c - b + 1], 1 -(1)/(t)), t = - infinity..(0 +))
|
Divide[HypergeometricU[a, b, z],Gamma[c]*Gamma[c - b + 1]] == Divide[(z)^(1 - c),2*Pi*I]*Integrate[Exp[z*t]*(t)^(- c)* HypergeometricPFQRegularized[{a , c}, {a + c - b + 1}, 1 -Divide[1,t]], {t, - Infinity, (0 +)}, GenerateConditions->None]
|
Error | Failure | - | Error | |
13.4.E16 | \OlverconfhyperM@{a}{b}{-z} = \frac{1}{2\pi\iunit\EulerGamma@{a}}\int_{-\iunit\infty}^{\iunit\infty}\frac{\EulerGamma@{a+t}\EulerGamma@{-t}}{\EulerGamma@{b+t}}z^{t}\diff{t} |
KummerM(a, b, - z)/GAMMA(b) = (1)/(2*Pi*I*GAMMA(a))*int((GAMMA(a + t)*GAMMA(- t))/(GAMMA(b + t))*(z)^(t), t = - I*infinity..I*infinity)
|
Hypergeometric1F1Regularized[a, b, - z] == Divide[1,2*Pi*I*Gamma[a]]*Integrate[Divide[Gamma[a + t]*Gamma[- t],Gamma[b + t]]*(z)^(t), {t, - I*Infinity, I*Infinity}, GenerateConditions->None]
|
Failure | Aborted | Skipped - Because timed out | Skipped - Because timed out | |
13.4.E17 | \KummerconfhyperU@{a}{b}{z} = \frac{z^{-a}}{2\pi\iunit}\int_{-\iunit\infty}^{\iunit\infty}\frac{\EulerGamma@{a+t}\EulerGamma@{1+a-b+t}\EulerGamma@{-t}}{\EulerGamma@{a}\EulerGamma@{1+a-b}}z^{-t}\diff{t} |
KummerU(a, b, z) = ((z)^(- a))/(2*Pi*I)*int((GAMMA(a + t)*GAMMA(1 + a - b + t)*GAMMA(- t))/(GAMMA(a)*GAMMA(1 + a - b))*(z)^(- t), t = - I*infinity..I*infinity)
|
HypergeometricU[a, b, z] == Divide[(z)^(- a),2*Pi*I]*Integrate[Divide[Gamma[a + t]*Gamma[1 + a - b + t]*Gamma[- t],Gamma[a]*Gamma[1 + a - b]]*(z)^(- t), {t, - I*Infinity, I*Infinity}, GenerateConditions->None]
|
Failure | Aborted | Skipped - Because timed out | Skipped - Because timed out | |
13.4.E18 | \KummerconfhyperU@{a}{b}{z} = \frac{z^{1-b}e^{z}}{2\pi\iunit}\int_{-\iunit\infty}^{\iunit\infty}\frac{\EulerGamma@{b-1+t}\EulerGamma@{t}}{\EulerGamma@{a+t}}z^{-t}\diff{t} |
KummerU(a, b, z) = ((z)^(1 - b)* exp(z))/(2*Pi*I)*int((GAMMA(b - 1 + t)*GAMMA(t))/(GAMMA(a + t))*(z)^(- t), t = - I*infinity..I*infinity)
|
HypergeometricU[a, b, z] == Divide[(z)^(1 - b)* Exp[z],2*Pi*I]*Integrate[Divide[Gamma[b - 1 + t]*Gamma[t],Gamma[a + t]]*(z)^(- t), {t, - I*Infinity, I*Infinity}, GenerateConditions->None]
|
Failure | Aborted | Skipped - Because timed out | Skipped - Because timed out |