11.5: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/11.5.E1 11.5.E1] || [[Item:Q3968|<math>\StruveH{\nu}@{z} = \frac{2(\tfrac{1}{2}z)^{\nu}}{\sqrt{\pi}\EulerGamma@{\nu+\tfrac{1}{2}}}\int_{0}^{1}(1-t^{2})^{\nu-\frac{1}{2}}\sin@{zt}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\StruveH{\nu}@{z} = \frac{2(\tfrac{1}{2}z)^{\nu}}{\sqrt{\pi}\EulerGamma@{\nu+\tfrac{1}{2}}}\int_{0}^{1}(1-t^{2})^{\nu-\frac{1}{2}}\sin@{zt}\diff{t}</syntaxhighlight> || <math>\realpart@@{\nu} > -\tfrac{1}{2}, \realpart@@{(\nu+\tfrac{1}{2})} > 0, \realpart@@{(n+\nu+\tfrac{3}{2})} > 0</math> || <syntaxhighlight lang=mathematica>StruveH(nu, z) = (2*((1)/(2)*z)^(nu))/(sqrt(Pi)*GAMMA(nu +(1)/(2)))*int((1 - (t)^(2))^(nu -(1)/(2))* sin(z*t), t = 0..1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>StruveH[\[Nu], z] == Divide[2*(Divide[1,2]*z)^\[Nu],Sqrt[Pi]*Gamma[\[Nu]+Divide[1,2]]]*Integrate[(1 - (t)^(2))^(\[Nu]-Divide[1,2])* Sin[z*t], {t, 0, 1}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 35]
| [https://dlmf.nist.gov/11.5.E1 11.5.E1] || <math qid="Q3968">\StruveH{\nu}@{z} = \frac{2(\tfrac{1}{2}z)^{\nu}}{\sqrt{\pi}\EulerGamma@{\nu+\tfrac{1}{2}}}\int_{0}^{1}(1-t^{2})^{\nu-\frac{1}{2}}\sin@{zt}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\StruveH{\nu}@{z} = \frac{2(\tfrac{1}{2}z)^{\nu}}{\sqrt{\pi}\EulerGamma@{\nu+\tfrac{1}{2}}}\int_{0}^{1}(1-t^{2})^{\nu-\frac{1}{2}}\sin@{zt}\diff{t}</syntaxhighlight> || <math>\realpart@@{\nu} > -\tfrac{1}{2}, \realpart@@{(\nu+\tfrac{1}{2})} > 0, \realpart@@{(n+\nu+\tfrac{3}{2})} > 0</math> || <syntaxhighlight lang=mathematica>StruveH(nu, z) = (2*((1)/(2)*z)^(nu))/(sqrt(Pi)*GAMMA(nu +(1)/(2)))*int((1 - (t)^(2))^(nu -(1)/(2))* sin(z*t), t = 0..1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>StruveH[\[Nu], z] == Divide[2*(Divide[1,2]*z)^\[Nu],Sqrt[Pi]*Gamma[\[Nu]+Divide[1,2]]]*Integrate[(1 - (t)^(2))^(\[Nu]-Divide[1,2])* Sin[z*t], {t, 0, 1}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 35]
|-  
|-  
| [https://dlmf.nist.gov/11.5.E1 11.5.E1] || [[Item:Q3968|<math>\frac{2(\tfrac{1}{2}z)^{\nu}}{\sqrt{\pi}\EulerGamma@{\nu+\tfrac{1}{2}}}\int_{0}^{1}(1-t^{2})^{\nu-\frac{1}{2}}\sin@{zt}\diff{t} = \frac{2(\tfrac{1}{2}z)^{\nu}}{\sqrt{\pi}\EulerGamma@{\nu+\tfrac{1}{2}}}\int_{0}^{\pi/2}\sin@{z\cos@@{\theta}}(\sin@@{\theta})^{2\nu}\diff{\theta}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{2(\tfrac{1}{2}z)^{\nu}}{\sqrt{\pi}\EulerGamma@{\nu+\tfrac{1}{2}}}\int_{0}^{1}(1-t^{2})^{\nu-\frac{1}{2}}\sin@{zt}\diff{t} = \frac{2(\tfrac{1}{2}z)^{\nu}}{\sqrt{\pi}\EulerGamma@{\nu+\tfrac{1}{2}}}\int_{0}^{\pi/2}\sin@{z\cos@@{\theta}}(\sin@@{\theta})^{2\nu}\diff{\theta}</syntaxhighlight> || <math>\realpart@@{\nu} > -\tfrac{1}{2}, \realpart@@{(\nu+\tfrac{1}{2})} > 0, \realpart@@{(n+\nu+\tfrac{3}{2})} > 0</math> || <syntaxhighlight lang=mathematica>(2*((1)/(2)*z)^(nu))/(sqrt(Pi)*GAMMA(nu +(1)/(2)))*int((1 - (t)^(2))^(nu -(1)/(2))* sin(z*t), t = 0..1) = (2*((1)/(2)*z)^(nu))/(sqrt(Pi)*GAMMA(nu +(1)/(2)))*int(sin(z*cos(theta))*(sin(theta))^(2*nu), theta = 0..Pi/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[2*(Divide[1,2]*z)^\[Nu],Sqrt[Pi]*Gamma[\[Nu]+Divide[1,2]]]*Integrate[(1 - (t)^(2))^(\[Nu]-Divide[1,2])* Sin[z*t], {t, 0, 1}, GenerateConditions->None] == Divide[2*(Divide[1,2]*z)^\[Nu],Sqrt[Pi]*Gamma[\[Nu]+Divide[1,2]]]*Integrate[Sin[z*Cos[\[Theta]]]*(Sin[\[Theta]])^(2*\[Nu]), {\[Theta], 0, Pi/2}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 35]
| [https://dlmf.nist.gov/11.5.E1 11.5.E1] || <math qid="Q3968">\frac{2(\tfrac{1}{2}z)^{\nu}}{\sqrt{\pi}\EulerGamma@{\nu+\tfrac{1}{2}}}\int_{0}^{1}(1-t^{2})^{\nu-\frac{1}{2}}\sin@{zt}\diff{t} = \frac{2(\tfrac{1}{2}z)^{\nu}}{\sqrt{\pi}\EulerGamma@{\nu+\tfrac{1}{2}}}\int_{0}^{\pi/2}\sin@{z\cos@@{\theta}}(\sin@@{\theta})^{2\nu}\diff{\theta}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{2(\tfrac{1}{2}z)^{\nu}}{\sqrt{\pi}\EulerGamma@{\nu+\tfrac{1}{2}}}\int_{0}^{1}(1-t^{2})^{\nu-\frac{1}{2}}\sin@{zt}\diff{t} = \frac{2(\tfrac{1}{2}z)^{\nu}}{\sqrt{\pi}\EulerGamma@{\nu+\tfrac{1}{2}}}\int_{0}^{\pi/2}\sin@{z\cos@@{\theta}}(\sin@@{\theta})^{2\nu}\diff{\theta}</syntaxhighlight> || <math>\realpart@@{\nu} > -\tfrac{1}{2}, \realpart@@{(\nu+\tfrac{1}{2})} > 0, \realpart@@{(n+\nu+\tfrac{3}{2})} > 0</math> || <syntaxhighlight lang=mathematica>(2*((1)/(2)*z)^(nu))/(sqrt(Pi)*GAMMA(nu +(1)/(2)))*int((1 - (t)^(2))^(nu -(1)/(2))* sin(z*t), t = 0..1) = (2*((1)/(2)*z)^(nu))/(sqrt(Pi)*GAMMA(nu +(1)/(2)))*int(sin(z*cos(theta))*(sin(theta))^(2*nu), theta = 0..Pi/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[2*(Divide[1,2]*z)^\[Nu],Sqrt[Pi]*Gamma[\[Nu]+Divide[1,2]]]*Integrate[(1 - (t)^(2))^(\[Nu]-Divide[1,2])* Sin[z*t], {t, 0, 1}, GenerateConditions->None] == Divide[2*(Divide[1,2]*z)^\[Nu],Sqrt[Pi]*Gamma[\[Nu]+Divide[1,2]]]*Integrate[Sin[z*Cos[\[Theta]]]*(Sin[\[Theta]])^(2*\[Nu]), {\[Theta], 0, Pi/2}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 35]
|-  
|-  
| [https://dlmf.nist.gov/11.5.E2 11.5.E2] || [[Item:Q3969|<math>\StruveK{\nu}@{z} = \frac{2(\tfrac{1}{2}z)^{\nu}}{\sqrt{\pi}\EulerGamma@{\nu+\tfrac{1}{2}}}\int_{0}^{\infty}e^{-zt}(1+t^{2})^{\nu-\frac{1}{2}}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\StruveK{\nu}@{z} = \frac{2(\tfrac{1}{2}z)^{\nu}}{\sqrt{\pi}\EulerGamma@{\nu+\tfrac{1}{2}}}\int_{0}^{\infty}e^{-zt}(1+t^{2})^{\nu-\frac{1}{2}}\diff{t}</syntaxhighlight> || <math>\realpart@@{z} > 0, \realpart@@{(\nu+\tfrac{1}{2})} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0, \realpart@@{(n+\nu+\tfrac{3}{2})} > 0</math> || <syntaxhighlight lang=mathematica>StruveH(nu, z) - BesselY(nu, z) = (2*((1)/(2)*z)^(nu))/(sqrt(Pi)*GAMMA(nu +(1)/(2)))*int(exp(- z*t)*(1 + (t)^(2))^(nu -(1)/(2)), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>StruveH[\[Nu], z] - BesselY[\[Nu], z] == Divide[2*(Divide[1,2]*z)^\[Nu],Sqrt[Pi]*Gamma[\[Nu]+Divide[1,2]]]*Integrate[Exp[- z*t]*(1 + (t)^(2))^(\[Nu]-Divide[1,2]), {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [15 / 25]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.9495382353861556, -0.46093572348323536]
| [https://dlmf.nist.gov/11.5.E2 11.5.E2] || <math qid="Q3969">\StruveK{\nu}@{z} = \frac{2(\tfrac{1}{2}z)^{\nu}}{\sqrt{\pi}\EulerGamma@{\nu+\tfrac{1}{2}}}\int_{0}^{\infty}e^{-zt}(1+t^{2})^{\nu-\frac{1}{2}}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\StruveK{\nu}@{z} = \frac{2(\tfrac{1}{2}z)^{\nu}}{\sqrt{\pi}\EulerGamma@{\nu+\tfrac{1}{2}}}\int_{0}^{\infty}e^{-zt}(1+t^{2})^{\nu-\frac{1}{2}}\diff{t}</syntaxhighlight> || <math>\realpart@@{z} > 0, \realpart@@{(\nu+\tfrac{1}{2})} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0, \realpart@@{(n+\nu+\tfrac{3}{2})} > 0</math> || <syntaxhighlight lang=mathematica>StruveH(nu, z) - BesselY(nu, z) = (2*((1)/(2)*z)^(nu))/(sqrt(Pi)*GAMMA(nu +(1)/(2)))*int(exp(- z*t)*(1 + (t)^(2))^(nu -(1)/(2)), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>StruveH[\[Nu], z] - BesselY[\[Nu], z] == Divide[2*(Divide[1,2]*z)^\[Nu],Sqrt[Pi]*Gamma[\[Nu]+Divide[1,2]]]*Integrate[Exp[- z*t]*(1 + (t)^(2))^(\[Nu]-Divide[1,2]), {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [15 / 25]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.9495382353861556, -0.46093572348323536]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.7706973036767981, -0.20650772012904173]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.7706973036767981, -0.20650772012904173]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/11.5.E3 11.5.E3] || [[Item:Q3970|<math>\StruveK{0}@{z} = \frac{2}{\pi}\int_{0}^{\infty}e^{-z\sinh@@{t}}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\StruveK{0}@{z} = \frac{2}{\pi}\int_{0}^{\infty}e^{-z\sinh@@{t}}\diff{t}</syntaxhighlight> || <math>\realpart@@{z} > 0, \realpart@@{(0+k+1)} > 0, \realpart@@{((-0)+k+1)} > 0, \realpart@@{(n+0+\tfrac{3}{2})} > 0</math> || <syntaxhighlight lang=mathematica>StruveH(0, z) - BesselY(0, z) = (2)/(Pi)*int(exp(- z*sinh(t)), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>StruveH[0, z] - BesselY[0, z] == Divide[2,Pi]*Integrate[Exp[- z*Sinh[t]], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Aborted || - || Skipped - Because timed out
| [https://dlmf.nist.gov/11.5.E3 11.5.E3] || <math qid="Q3970">\StruveK{0}@{z} = \frac{2}{\pi}\int_{0}^{\infty}e^{-z\sinh@@{t}}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\StruveK{0}@{z} = \frac{2}{\pi}\int_{0}^{\infty}e^{-z\sinh@@{t}}\diff{t}</syntaxhighlight> || <math>\realpart@@{z} > 0, \realpart@@{(0+k+1)} > 0, \realpart@@{((-0)+k+1)} > 0, \realpart@@{(n+0+\tfrac{3}{2})} > 0</math> || <syntaxhighlight lang=mathematica>StruveH(0, z) - BesselY(0, z) = (2)/(Pi)*int(exp(- z*sinh(t)), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>StruveH[0, z] - BesselY[0, z] == Divide[2,Pi]*Integrate[Exp[- z*Sinh[t]], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Aborted || - || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/11.5.E4 11.5.E4] || [[Item:Q3971|<math>\modStruveM{\nu}@{z} = -\frac{2(\tfrac{1}{2}z)^{\nu}}{\sqrt{\pi}\EulerGamma@{\nu+\tfrac{1}{2}}}\int_{0}^{1}e^{-zt}(1-t^{2})^{\nu-\frac{1}{2}}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modStruveM{\nu}@{z} = -\frac{2(\tfrac{1}{2}z)^{\nu}}{\sqrt{\pi}\EulerGamma@{\nu+\tfrac{1}{2}}}\int_{0}^{1}e^{-zt}(1-t^{2})^{\nu-\frac{1}{2}}\diff{t}</syntaxhighlight> || <math>\realpart@@{\nu} > -\tfrac{1}{2}, \realpart@@{(\nu+\tfrac{1}{2})} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{(n+\nu+\tfrac{3}{2})} > 0</math> || <syntaxhighlight lang=mathematica>StruveL(nu, z) - BesselI(nu, z) = -(2*((1)/(2)*z)^(nu))/(sqrt(Pi)*GAMMA(nu +(1)/(2)))*int(exp(- z*t)*(1 - (t)^(2))^(nu -(1)/(2)), t = 0..1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>StruveL[\[Nu], z] - BesselI[\[Nu], z] == -Divide[2*(Divide[1,2]*z)^\[Nu],Sqrt[Pi]*Gamma[\[Nu]+Divide[1,2]]]*Integrate[Exp[- z*t]*(1 - (t)^(2))^(\[Nu]-Divide[1,2]), {t, 0, 1}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 35]
| [https://dlmf.nist.gov/11.5.E4 11.5.E4] || <math qid="Q3971">\modStruveM{\nu}@{z} = -\frac{2(\tfrac{1}{2}z)^{\nu}}{\sqrt{\pi}\EulerGamma@{\nu+\tfrac{1}{2}}}\int_{0}^{1}e^{-zt}(1-t^{2})^{\nu-\frac{1}{2}}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modStruveM{\nu}@{z} = -\frac{2(\tfrac{1}{2}z)^{\nu}}{\sqrt{\pi}\EulerGamma@{\nu+\tfrac{1}{2}}}\int_{0}^{1}e^{-zt}(1-t^{2})^{\nu-\frac{1}{2}}\diff{t}</syntaxhighlight> || <math>\realpart@@{\nu} > -\tfrac{1}{2}, \realpart@@{(\nu+\tfrac{1}{2})} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{(n+\nu+\tfrac{3}{2})} > 0</math> || <syntaxhighlight lang=mathematica>StruveL(nu, z) - BesselI(nu, z) = -(2*((1)/(2)*z)^(nu))/(sqrt(Pi)*GAMMA(nu +(1)/(2)))*int(exp(- z*t)*(1 - (t)^(2))^(nu -(1)/(2)), t = 0..1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>StruveL[\[Nu], z] - BesselI[\[Nu], z] == -Divide[2*(Divide[1,2]*z)^\[Nu],Sqrt[Pi]*Gamma[\[Nu]+Divide[1,2]]]*Integrate[Exp[- z*t]*(1 - (t)^(2))^(\[Nu]-Divide[1,2]), {t, 0, 1}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 35]
|-  
|-  
| [https://dlmf.nist.gov/11.5.E5 11.5.E5] || [[Item:Q3972|<math>\modStruveM{0}@{z} = -\frac{2}{\pi}\int_{0}^{\pi/2}e^{-z\cos@@{\theta}}\diff{\theta}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modStruveM{0}@{z} = -\frac{2}{\pi}\int_{0}^{\pi/2}e^{-z\cos@@{\theta}}\diff{\theta}</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0, \realpart@@{(n+0+\tfrac{3}{2})} > 0</math> || <syntaxhighlight lang=mathematica>StruveL(0, z) - BesselI(0, z) = -(2)/(Pi)*int(exp(- z*cos(theta)), theta = 0..Pi/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>StruveL[0, z] - BesselI[0, z] == -Divide[2,Pi]*Integrate[Exp[- z*Cos[\[Theta]]], {\[Theta], 0, Pi/2}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
| [https://dlmf.nist.gov/11.5.E5 11.5.E5] || <math qid="Q3972">\modStruveM{0}@{z} = -\frac{2}{\pi}\int_{0}^{\pi/2}e^{-z\cos@@{\theta}}\diff{\theta}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modStruveM{0}@{z} = -\frac{2}{\pi}\int_{0}^{\pi/2}e^{-z\cos@@{\theta}}\diff{\theta}</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0, \realpart@@{(n+0+\tfrac{3}{2})} > 0</math> || <syntaxhighlight lang=mathematica>StruveL(0, z) - BesselI(0, z) = -(2)/(Pi)*int(exp(- z*cos(theta)), theta = 0..Pi/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>StruveL[0, z] - BesselI[0, z] == -Divide[2,Pi]*Integrate[Exp[- z*Cos[\[Theta]]], {\[Theta], 0, Pi/2}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/11.5.E6 11.5.E6] || [[Item:Q3973|<math>\modStruveL{\nu}@{z} = \frac{2(\tfrac{1}{2}z)^{\nu}}{\sqrt{\pi}\EulerGamma@{\nu+\tfrac{1}{2}}}\int_{0}^{\pi/2}\sinh@{z\cos@@{\theta}}(\sin@@{\theta})^{2\nu}\diff{\theta}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modStruveL{\nu}@{z} = \frac{2(\tfrac{1}{2}z)^{\nu}}{\sqrt{\pi}\EulerGamma@{\nu+\tfrac{1}{2}}}\int_{0}^{\pi/2}\sinh@{z\cos@@{\theta}}(\sin@@{\theta})^{2\nu}\diff{\theta}</syntaxhighlight> || <math>\realpart@@{\nu} > -\tfrac{1}{2}, \realpart@@{(\nu+\tfrac{1}{2})} > 0, \realpart@@{(n+\nu+\tfrac{3}{2})} > 0</math> || <syntaxhighlight lang=mathematica>StruveL(nu, z) = (2*((1)/(2)*z)^(nu))/(sqrt(Pi)*GAMMA(nu +(1)/(2)))*int(sinh(z*cos(theta))*(sin(theta))^(2*nu), theta = 0..Pi/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>StruveL[\[Nu], z] == Divide[2*(Divide[1,2]*z)^\[Nu],Sqrt[Pi]*Gamma[\[Nu]+Divide[1,2]]]*Integrate[Sinh[z*Cos[\[Theta]]]*(Sin[\[Theta]])^(2*\[Nu]), {\[Theta], 0, Pi/2}, GenerateConditions->None]</syntaxhighlight> || Successful || Aborted || - || Skipped - Because timed out
| [https://dlmf.nist.gov/11.5.E6 11.5.E6] || <math qid="Q3973">\modStruveL{\nu}@{z} = \frac{2(\tfrac{1}{2}z)^{\nu}}{\sqrt{\pi}\EulerGamma@{\nu+\tfrac{1}{2}}}\int_{0}^{\pi/2}\sinh@{z\cos@@{\theta}}(\sin@@{\theta})^{2\nu}\diff{\theta}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modStruveL{\nu}@{z} = \frac{2(\tfrac{1}{2}z)^{\nu}}{\sqrt{\pi}\EulerGamma@{\nu+\tfrac{1}{2}}}\int_{0}^{\pi/2}\sinh@{z\cos@@{\theta}}(\sin@@{\theta})^{2\nu}\diff{\theta}</syntaxhighlight> || <math>\realpart@@{\nu} > -\tfrac{1}{2}, \realpart@@{(\nu+\tfrac{1}{2})} > 0, \realpart@@{(n+\nu+\tfrac{3}{2})} > 0</math> || <syntaxhighlight lang=mathematica>StruveL(nu, z) = (2*((1)/(2)*z)^(nu))/(sqrt(Pi)*GAMMA(nu +(1)/(2)))*int(sinh(z*cos(theta))*(sin(theta))^(2*nu), theta = 0..Pi/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>StruveL[\[Nu], z] == Divide[2*(Divide[1,2]*z)^\[Nu],Sqrt[Pi]*Gamma[\[Nu]+Divide[1,2]]]*Integrate[Sinh[z*Cos[\[Theta]]]*(Sin[\[Theta]])^(2*\[Nu]), {\[Theta], 0, Pi/2}, GenerateConditions->None]</syntaxhighlight> || Successful || Aborted || - || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/11.5.E7 11.5.E7] || [[Item:Q3974|<math>\modBesselI{-\nu}@{x}-\modStruveL{\nu}@{x} = \frac{2(\tfrac{1}{2}x)^{\nu}}{\sqrt{\pi}\EulerGamma@{\nu+\tfrac{1}{2}}}\int_{0}^{\infty}(1+t^{2})^{\nu-\frac{1}{2}}\sin@{xt}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{-\nu}@{x}-\modStruveL{\nu}@{x} = \frac{2(\tfrac{1}{2}x)^{\nu}}{\sqrt{\pi}\EulerGamma@{\nu+\tfrac{1}{2}}}\int_{0}^{\infty}(1+t^{2})^{\nu-\frac{1}{2}}\sin@{xt}\diff{t}</syntaxhighlight> || <math>x > 0, \realpart@@{(\nu+\tfrac{1}{2})} > 0, \realpart@@{((-\nu)+k+1)} > 0, \realpart@@{(n+\nu+\tfrac{3}{2})} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(- nu, x)- StruveL(nu, x) = (2*((1)/(2)*x)^(nu))/(sqrt(Pi)*GAMMA(nu +(1)/(2)))*int((1 + (t)^(2))^(nu -(1)/(2))* sin(x*t), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[- \[Nu], x]- StruveL[\[Nu], x] == Divide[2*(Divide[1,2]*x)^\[Nu],Sqrt[Pi]*Gamma[\[Nu]+Divide[1,2]]]*Integrate[(1 + (t)^(2))^(\[Nu]-Divide[1,2])* Sin[x*t], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.291209379
| [https://dlmf.nist.gov/11.5.E7 11.5.E7] || <math qid="Q3974">\modBesselI{-\nu}@{x}-\modStruveL{\nu}@{x} = \frac{2(\tfrac{1}{2}x)^{\nu}}{\sqrt{\pi}\EulerGamma@{\nu+\tfrac{1}{2}}}\int_{0}^{\infty}(1+t^{2})^{\nu-\frac{1}{2}}\sin@{xt}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{-\nu}@{x}-\modStruveL{\nu}@{x} = \frac{2(\tfrac{1}{2}x)^{\nu}}{\sqrt{\pi}\EulerGamma@{\nu+\tfrac{1}{2}}}\int_{0}^{\infty}(1+t^{2})^{\nu-\frac{1}{2}}\sin@{xt}\diff{t}</syntaxhighlight> || <math>x > 0, \realpart@@{(\nu+\tfrac{1}{2})} > 0, \realpart@@{((-\nu)+k+1)} > 0, \realpart@@{(n+\nu+\tfrac{3}{2})} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(- nu, x)- StruveL(nu, x) = (2*((1)/(2)*x)^(nu))/(sqrt(Pi)*GAMMA(nu +(1)/(2)))*int((1 + (t)^(2))^(nu -(1)/(2))* sin(x*t), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[- \[Nu], x]- StruveL[\[Nu], x] == Divide[2*(Divide[1,2]*x)^\[Nu],Sqrt[Pi]*Gamma[\[Nu]+Divide[1,2]]]*Integrate[(1 + (t)^(2))^(\[Nu]-Divide[1,2])* Sin[x*t], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.291209379
Test Values: {x = 3/2, nu = 0}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.709400861
Test Values: {x = 3/2, nu = 0}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.709400861
Test Values: {x = 1/2, nu = 0}</syntaxhighlight><br>... skip entries to safe data</div></div> || Skipped - Because timed out
Test Values: {x = 1/2, nu = 0}</syntaxhighlight><br>... skip entries to safe data</div></div> || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/11.5.E8 11.5.E8] || [[Item:Q3975|<math>(\tfrac{1}{2}x)^{-\nu-1}\StruveH{\nu}@{x} = -\frac{1}{2\pi i}\int_{-i\infty}^{i\infty}\frac{\pi\csc@{\pi s}}{\EulerGamma@{\tfrac{3}{2}+s}\EulerGamma@{\tfrac{3}{2}+\nu+s}}(\tfrac{1}{4}x^{2})^{s}\diff{s}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>(\tfrac{1}{2}x)^{-\nu-1}\StruveH{\nu}@{x} = -\frac{1}{2\pi i}\int_{-i\infty}^{i\infty}\frac{\pi\csc@{\pi s}}{\EulerGamma@{\tfrac{3}{2}+s}\EulerGamma@{\tfrac{3}{2}+\nu+s}}(\tfrac{1}{4}x^{2})^{s}\diff{s}</syntaxhighlight> || <math>x > 0, \realpart@@{\nu} > -1, \realpart@@{(\tfrac{3}{2}+s)} > 0, \realpart@@{(\tfrac{3}{2}+\nu+s)} > 0, \realpart@@{(n+\nu+\tfrac{3}{2})} > 0</math> || <syntaxhighlight lang=mathematica>((1)/(2)*x)^(- nu - 1)* StruveH(nu, x) = -(1)/(2*Pi*I)*int((Pi*csc(Pi*s))/(GAMMA((3)/(2)+ s)*GAMMA((3)/(2)+ nu + s))*((1)/(4)*(x)^(2))^(s), s = - I*infinity..I*infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Divide[1,2]*x)^(- \[Nu]- 1)* StruveH[\[Nu], x] == -Divide[1,2*Pi*I]*Integrate[Divide[Pi*Csc[Pi*s],Gamma[Divide[3,2]+ s]*Gamma[Divide[3,2]+ \[Nu]+ s]]*(Divide[1,4]*(x)^(2))^(s), {s, - I*Infinity, I*Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out
| [https://dlmf.nist.gov/11.5.E8 11.5.E8] || <math qid="Q3975">(\tfrac{1}{2}x)^{-\nu-1}\StruveH{\nu}@{x} = -\frac{1}{2\pi i}\int_{-i\infty}^{i\infty}\frac{\pi\csc@{\pi s}}{\EulerGamma@{\tfrac{3}{2}+s}\EulerGamma@{\tfrac{3}{2}+\nu+s}}(\tfrac{1}{4}x^{2})^{s}\diff{s}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>(\tfrac{1}{2}x)^{-\nu-1}\StruveH{\nu}@{x} = -\frac{1}{2\pi i}\int_{-i\infty}^{i\infty}\frac{\pi\csc@{\pi s}}{\EulerGamma@{\tfrac{3}{2}+s}\EulerGamma@{\tfrac{3}{2}+\nu+s}}(\tfrac{1}{4}x^{2})^{s}\diff{s}</syntaxhighlight> || <math>x > 0, \realpart@@{\nu} > -1, \realpart@@{(\tfrac{3}{2}+s)} > 0, \realpart@@{(\tfrac{3}{2}+\nu+s)} > 0, \realpart@@{(n+\nu+\tfrac{3}{2})} > 0</math> || <syntaxhighlight lang=mathematica>((1)/(2)*x)^(- nu - 1)* StruveH(nu, x) = -(1)/(2*Pi*I)*int((Pi*csc(Pi*s))/(GAMMA((3)/(2)+ s)*GAMMA((3)/(2)+ nu + s))*((1)/(4)*(x)^(2))^(s), s = - I*infinity..I*infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Divide[1,2]*x)^(- \[Nu]- 1)* StruveH[\[Nu], x] == -Divide[1,2*Pi*I]*Integrate[Divide[Pi*Csc[Pi*s],Gamma[Divide[3,2]+ s]*Gamma[Divide[3,2]+ \[Nu]+ s]]*(Divide[1,4]*(x)^(2))^(s), {s, - I*Infinity, I*Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/11.5.E9 11.5.E9] || [[Item:Q3976|<math>(\tfrac{1}{2}z)^{-\nu-1}\modStruveL{\nu}@{z} = \frac{1}{2\pi i}\int_{\infty}^{(0+)}\frac{\pi\csc@{\pi s}}{\EulerGamma@{\tfrac{3}{2}+s}\EulerGamma@{\tfrac{3}{2}+\nu+s}}(-\tfrac{1}{4}z^{2})^{s}\diff{s}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>(\tfrac{1}{2}z)^{-\nu-1}\modStruveL{\nu}@{z} = \frac{1}{2\pi i}\int_{\infty}^{(0+)}\frac{\pi\csc@{\pi s}}{\EulerGamma@{\tfrac{3}{2}+s}\EulerGamma@{\tfrac{3}{2}+\nu+s}}(-\tfrac{1}{4}z^{2})^{s}\diff{s}</syntaxhighlight> || <math>\realpart@@{(\tfrac{3}{2}+s)} > 0, \realpart@@{(\tfrac{3}{2}+\nu+s)} > 0, \realpart@@{(n+\nu+\tfrac{3}{2})} > 0</math> || <syntaxhighlight lang=mathematica>((1)/(2)*z)^(- nu - 1)* StruveL(nu, z) = (1)/(2*Pi*I)*int((Pi*csc(Pi*s))/(GAMMA((3)/(2)+ s)*GAMMA((3)/(2)+ nu + s))*(-(1)/(4)*(z)^(2))^(s), s = infinity..(0 +))</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Divide[1,2]*z)^(- \[Nu]- 1)* StruveL[\[Nu], z] == Divide[1,2*Pi*I]*Integrate[Divide[Pi*Csc[Pi*s],Gamma[Divide[3,2]+ s]*Gamma[Divide[3,2]+ \[Nu]+ s]]*(-Divide[1,4]*(z)^(2))^(s), {s, Infinity, (0 +)}, GenerateConditions->None]</syntaxhighlight> || Error || Failure || - || Error
| [https://dlmf.nist.gov/11.5.E9 11.5.E9] || <math qid="Q3976">(\tfrac{1}{2}z)^{-\nu-1}\modStruveL{\nu}@{z} = \frac{1}{2\pi i}\int_{\infty}^{(0+)}\frac{\pi\csc@{\pi s}}{\EulerGamma@{\tfrac{3}{2}+s}\EulerGamma@{\tfrac{3}{2}+\nu+s}}(-\tfrac{1}{4}z^{2})^{s}\diff{s}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>(\tfrac{1}{2}z)^{-\nu-1}\modStruveL{\nu}@{z} = \frac{1}{2\pi i}\int_{\infty}^{(0+)}\frac{\pi\csc@{\pi s}}{\EulerGamma@{\tfrac{3}{2}+s}\EulerGamma@{\tfrac{3}{2}+\nu+s}}(-\tfrac{1}{4}z^{2})^{s}\diff{s}</syntaxhighlight> || <math>\realpart@@{(\tfrac{3}{2}+s)} > 0, \realpart@@{(\tfrac{3}{2}+\nu+s)} > 0, \realpart@@{(n+\nu+\tfrac{3}{2})} > 0</math> || <syntaxhighlight lang=mathematica>((1)/(2)*z)^(- nu - 1)* StruveL(nu, z) = (1)/(2*Pi*I)*int((Pi*csc(Pi*s))/(GAMMA((3)/(2)+ s)*GAMMA((3)/(2)+ nu + s))*(-(1)/(4)*(z)^(2))^(s), s = infinity..(0 +))</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Divide[1,2]*z)^(- \[Nu]- 1)* StruveL[\[Nu], z] == Divide[1,2*Pi*I]*Integrate[Divide[Pi*Csc[Pi*s],Gamma[Divide[3,2]+ s]*Gamma[Divide[3,2]+ \[Nu]+ s]]*(-Divide[1,4]*(z)^(2))^(s), {s, Infinity, (0 +)}, GenerateConditions->None]</syntaxhighlight> || Error || Failure || - || Error
|}
|}
</div>
</div>

Latest revision as of 11:29, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
11.5.E1 𝐇 ν ( z ) = 2 ( 1 2 z ) ν π Γ ( ν + 1 2 ) 0 1 ( 1 - t 2 ) ν - 1 2 sin ( z t ) d t Struve-H 𝜈 𝑧 2 superscript 1 2 𝑧 𝜈 𝜋 Euler-Gamma 𝜈 1 2 superscript subscript 0 1 superscript 1 superscript 𝑡 2 𝜈 1 2 𝑧 𝑡 𝑡 {\displaystyle{\displaystyle\mathbf{H}_{\nu}\left(z\right)=\frac{2(\tfrac{1}{2% }z)^{\nu}}{\sqrt{\pi}\Gamma\left(\nu+\tfrac{1}{2}\right)}\int_{0}^{1}(1-t^{2})% ^{\nu-\frac{1}{2}}\sin\left(zt\right)\mathrm{d}t}}
\StruveH{\nu}@{z} = \frac{2(\tfrac{1}{2}z)^{\nu}}{\sqrt{\pi}\EulerGamma@{\nu+\tfrac{1}{2}}}\int_{0}^{1}(1-t^{2})^{\nu-\frac{1}{2}}\sin@{zt}\diff{t}
ν > - 1 2 , ( ν + 1 2 ) > 0 , ( n + ν + 3 2 ) > 0 formulae-sequence 𝜈 1 2 formulae-sequence 𝜈 1 2 0 𝑛 𝜈 3 2 0 {\displaystyle{\displaystyle\Re\nu>-\tfrac{1}{2},\Re(\nu+\tfrac{1}{2})>0,\Re(n% +\nu+\tfrac{3}{2})>0}}
StruveH(nu, z) = (2*((1)/(2)*z)^(nu))/(sqrt(Pi)*GAMMA(nu +(1)/(2)))*int((1 - (t)^(2))^(nu -(1)/(2))* sin(z*t), t = 0..1)
StruveH[\[Nu], z] == Divide[2*(Divide[1,2]*z)^\[Nu],Sqrt[Pi]*Gamma[\[Nu]+Divide[1,2]]]*Integrate[(1 - (t)^(2))^(\[Nu]-Divide[1,2])* Sin[z*t], {t, 0, 1}, GenerateConditions->None]
Successful Successful - Successful [Tested: 35]
11.5.E1 2 ( 1 2 z ) ν π Γ ( ν + 1 2 ) 0 1 ( 1 - t 2 ) ν - 1 2 sin ( z t ) d t = 2 ( 1 2 z ) ν π Γ ( ν + 1 2 ) 0 π / 2 sin ( z cos θ ) ( sin θ ) 2 ν d θ 2 superscript 1 2 𝑧 𝜈 𝜋 Euler-Gamma 𝜈 1 2 superscript subscript 0 1 superscript 1 superscript 𝑡 2 𝜈 1 2 𝑧 𝑡 𝑡 2 superscript 1 2 𝑧 𝜈 𝜋 Euler-Gamma 𝜈 1 2 superscript subscript 0 𝜋 2 𝑧 𝜃 superscript 𝜃 2 𝜈 𝜃 {\displaystyle{\displaystyle\frac{2(\tfrac{1}{2}z)^{\nu}}{\sqrt{\pi}\Gamma% \left(\nu+\tfrac{1}{2}\right)}\int_{0}^{1}(1-t^{2})^{\nu-\frac{1}{2}}\sin\left% (zt\right)\mathrm{d}t=\frac{2(\tfrac{1}{2}z)^{\nu}}{\sqrt{\pi}\Gamma\left(\nu+% \tfrac{1}{2}\right)}\int_{0}^{\pi/2}\sin\left(z\cos\theta\right)(\sin\theta)^{% 2\nu}\mathrm{d}\theta}}
\frac{2(\tfrac{1}{2}z)^{\nu}}{\sqrt{\pi}\EulerGamma@{\nu+\tfrac{1}{2}}}\int_{0}^{1}(1-t^{2})^{\nu-\frac{1}{2}}\sin@{zt}\diff{t} = \frac{2(\tfrac{1}{2}z)^{\nu}}{\sqrt{\pi}\EulerGamma@{\nu+\tfrac{1}{2}}}\int_{0}^{\pi/2}\sin@{z\cos@@{\theta}}(\sin@@{\theta})^{2\nu}\diff{\theta}
ν > - 1 2 , ( ν + 1 2 ) > 0 , ( n + ν + 3 2 ) > 0 formulae-sequence 𝜈 1 2 formulae-sequence 𝜈 1 2 0 𝑛 𝜈 3 2 0 {\displaystyle{\displaystyle\Re\nu>-\tfrac{1}{2},\Re(\nu+\tfrac{1}{2})>0,\Re(n% +\nu+\tfrac{3}{2})>0}}
(2*((1)/(2)*z)^(nu))/(sqrt(Pi)*GAMMA(nu +(1)/(2)))*int((1 - (t)^(2))^(nu -(1)/(2))* sin(z*t), t = 0..1) = (2*((1)/(2)*z)^(nu))/(sqrt(Pi)*GAMMA(nu +(1)/(2)))*int(sin(z*cos(theta))*(sin(theta))^(2*nu), theta = 0..Pi/2)
Divide[2*(Divide[1,2]*z)^\[Nu],Sqrt[Pi]*Gamma[\[Nu]+Divide[1,2]]]*Integrate[(1 - (t)^(2))^(\[Nu]-Divide[1,2])* Sin[z*t], {t, 0, 1}, GenerateConditions->None] == Divide[2*(Divide[1,2]*z)^\[Nu],Sqrt[Pi]*Gamma[\[Nu]+Divide[1,2]]]*Integrate[Sin[z*Cos[\[Theta]]]*(Sin[\[Theta]])^(2*\[Nu]), {\[Theta], 0, Pi/2}, GenerateConditions->None]
Successful Successful - Successful [Tested: 35]
11.5.E2 𝐊 ν ( z ) = 2 ( 1 2 z ) ν π Γ ( ν + 1 2 ) 0 e - z t ( 1 + t 2 ) ν - 1 2 d t associated-Struve-K 𝜈 𝑧 2 superscript 1 2 𝑧 𝜈 𝜋 Euler-Gamma 𝜈 1 2 superscript subscript 0 superscript 𝑒 𝑧 𝑡 superscript 1 superscript 𝑡 2 𝜈 1 2 𝑡 {\displaystyle{\displaystyle\mathbf{K}_{\nu}\left(z\right)=\frac{2(\tfrac{1}{2% }z)^{\nu}}{\sqrt{\pi}\Gamma\left(\nu+\tfrac{1}{2}\right)}\int_{0}^{\infty}e^{-% zt}(1+t^{2})^{\nu-\frac{1}{2}}\mathrm{d}t}}
\StruveK{\nu}@{z} = \frac{2(\tfrac{1}{2}z)^{\nu}}{\sqrt{\pi}\EulerGamma@{\nu+\tfrac{1}{2}}}\int_{0}^{\infty}e^{-zt}(1+t^{2})^{\nu-\frac{1}{2}}\diff{t}
z > 0 , ( ν + 1 2 ) > 0 , ( ν + k + 1 ) > 0 , ( ( - ν ) + k + 1 ) > 0 , ( n + ν + 3 2 ) > 0 formulae-sequence 𝑧 0 formulae-sequence 𝜈 1 2 0 formulae-sequence 𝜈 𝑘 1 0 formulae-sequence 𝜈 𝑘 1 0 𝑛 𝜈 3 2 0 {\displaystyle{\displaystyle\Re z>0,\Re(\nu+\tfrac{1}{2})>0,\Re(\nu+k+1)>0,\Re% ((-\nu)+k+1)>0,\Re(n+\nu+\tfrac{3}{2})>0}}
StruveH(nu, z) - BesselY(nu, z) = (2*((1)/(2)*z)^(nu))/(sqrt(Pi)*GAMMA(nu +(1)/(2)))*int(exp(- z*t)*(1 + (t)^(2))^(nu -(1)/(2)), t = 0..infinity)
StruveH[\[Nu], z] - BesselY[\[Nu], z] == Divide[2*(Divide[1,2]*z)^\[Nu],Sqrt[Pi]*Gamma[\[Nu]+Divide[1,2]]]*Integrate[Exp[- z*t]*(1 + (t)^(2))^(\[Nu]-Divide[1,2]), {t, 0, Infinity}, GenerateConditions->None]
Successful Successful -
Failed [15 / 25]
Result: Complex[0.9495382353861556, -0.46093572348323536]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 1.5]}

Result: Complex[0.7706973036767981, -0.20650772012904173]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 0.5]}

... skip entries to safe data
11.5.E3 𝐊 0 ( z ) = 2 π 0 e - z sinh t d t associated-Struve-K 0 𝑧 2 𝜋 superscript subscript 0 superscript 𝑒 𝑧 𝑡 𝑡 {\displaystyle{\displaystyle\mathbf{K}_{0}\left(z\right)=\frac{2}{\pi}\int_{0}% ^{\infty}e^{-z\sinh t}\mathrm{d}t}}
\StruveK{0}@{z} = \frac{2}{\pi}\int_{0}^{\infty}e^{-z\sinh@@{t}}\diff{t}
z > 0 , ( 0 + k + 1 ) > 0 , ( ( - 0 ) + k + 1 ) > 0 , ( n + 0 + 3 2 ) > 0 formulae-sequence 𝑧 0 formulae-sequence 0 𝑘 1 0 formulae-sequence 0 𝑘 1 0 𝑛 0 3 2 0 {\displaystyle{\displaystyle\Re z>0,\Re(0+k+1)>0,\Re((-0)+k+1)>0,\Re(n+0+% \tfrac{3}{2})>0}}
StruveH(0, z) - BesselY(0, z) = (2)/(Pi)*int(exp(- z*sinh(t)), t = 0..infinity)
StruveH[0, z] - BesselY[0, z] == Divide[2,Pi]*Integrate[Exp[- z*Sinh[t]], {t, 0, Infinity}, GenerateConditions->None]
Successful Aborted - Skipped - Because timed out
11.5.E4 𝐌 ν ( z ) = - 2 ( 1 2 z ) ν π Γ ( ν + 1 2 ) 0 1 e - z t ( 1 - t 2 ) ν - 1 2 d t associated-Struve-M 𝜈 𝑧 2 superscript 1 2 𝑧 𝜈 𝜋 Euler-Gamma 𝜈 1 2 superscript subscript 0 1 superscript 𝑒 𝑧 𝑡 superscript 1 superscript 𝑡 2 𝜈 1 2 𝑡 {\displaystyle{\displaystyle\mathbf{M}_{\nu}\left(z\right)=-\frac{2(\tfrac{1}{% 2}z)^{\nu}}{\sqrt{\pi}\Gamma\left(\nu+\tfrac{1}{2}\right)}\int_{0}^{1}e^{-zt}(% 1-t^{2})^{\nu-\frac{1}{2}}\mathrm{d}t}}
\modStruveM{\nu}@{z} = -\frac{2(\tfrac{1}{2}z)^{\nu}}{\sqrt{\pi}\EulerGamma@{\nu+\tfrac{1}{2}}}\int_{0}^{1}e^{-zt}(1-t^{2})^{\nu-\frac{1}{2}}\diff{t}
ν > - 1 2 , ( ν + 1 2 ) > 0 , ( ν + k + 1 ) > 0 , ( n + ν + 3 2 ) > 0 formulae-sequence 𝜈 1 2 formulae-sequence 𝜈 1 2 0 formulae-sequence 𝜈 𝑘 1 0 𝑛 𝜈 3 2 0 {\displaystyle{\displaystyle\Re\nu>-\tfrac{1}{2},\Re(\nu+\tfrac{1}{2})>0,\Re(% \nu+k+1)>0,\Re(n+\nu+\tfrac{3}{2})>0}}
StruveL(nu, z) - BesselI(nu, z) = -(2*((1)/(2)*z)^(nu))/(sqrt(Pi)*GAMMA(nu +(1)/(2)))*int(exp(- z*t)*(1 - (t)^(2))^(nu -(1)/(2)), t = 0..1)
StruveL[\[Nu], z] - BesselI[\[Nu], z] == -Divide[2*(Divide[1,2]*z)^\[Nu],Sqrt[Pi]*Gamma[\[Nu]+Divide[1,2]]]*Integrate[Exp[- z*t]*(1 - (t)^(2))^(\[Nu]-Divide[1,2]), {t, 0, 1}, GenerateConditions->None]
Successful Successful - Successful [Tested: 35]
11.5.E5 𝐌 0 ( z ) = - 2 π 0 π / 2 e - z cos θ d θ associated-Struve-M 0 𝑧 2 𝜋 superscript subscript 0 𝜋 2 superscript 𝑒 𝑧 𝜃 𝜃 {\displaystyle{\displaystyle\mathbf{M}_{0}\left(z\right)=-\frac{2}{\pi}\int_{0% }^{\pi/2}e^{-z\cos\theta}\mathrm{d}\theta}}
\modStruveM{0}@{z} = -\frac{2}{\pi}\int_{0}^{\pi/2}e^{-z\cos@@{\theta}}\diff{\theta}
( 0 + k + 1 ) > 0 , ( n + 0 + 3 2 ) > 0 formulae-sequence 0 𝑘 1 0 𝑛 0 3 2 0 {\displaystyle{\displaystyle\Re(0+k+1)>0,\Re(n+0+\tfrac{3}{2})>0}}
StruveL(0, z) - BesselI(0, z) = -(2)/(Pi)*int(exp(- z*cos(theta)), theta = 0..Pi/2)
StruveL[0, z] - BesselI[0, z] == -Divide[2,Pi]*Integrate[Exp[- z*Cos[\[Theta]]], {\[Theta], 0, Pi/2}, GenerateConditions->None]
Successful Successful - Successful [Tested: 7]
11.5.E6 𝐋 ν ( z ) = 2 ( 1 2 z ) ν π Γ ( ν + 1 2 ) 0 π / 2 sinh ( z cos θ ) ( sin θ ) 2 ν d θ modified-Struve-L 𝜈 𝑧 2 superscript 1 2 𝑧 𝜈 𝜋 Euler-Gamma 𝜈 1 2 superscript subscript 0 𝜋 2 𝑧 𝜃 superscript 𝜃 2 𝜈 𝜃 {\displaystyle{\displaystyle\mathbf{L}_{\nu}\left(z\right)=\frac{2(\tfrac{1}{2% }z)^{\nu}}{\sqrt{\pi}\Gamma\left(\nu+\tfrac{1}{2}\right)}\int_{0}^{\pi/2}\sinh% \left(z\cos\theta\right)(\sin\theta)^{2\nu}\mathrm{d}\theta}}
\modStruveL{\nu}@{z} = \frac{2(\tfrac{1}{2}z)^{\nu}}{\sqrt{\pi}\EulerGamma@{\nu+\tfrac{1}{2}}}\int_{0}^{\pi/2}\sinh@{z\cos@@{\theta}}(\sin@@{\theta})^{2\nu}\diff{\theta}
ν > - 1 2 , ( ν + 1 2 ) > 0 , ( n + ν + 3 2 ) > 0 formulae-sequence 𝜈 1 2 formulae-sequence 𝜈 1 2 0 𝑛 𝜈 3 2 0 {\displaystyle{\displaystyle\Re\nu>-\tfrac{1}{2},\Re(\nu+\tfrac{1}{2})>0,\Re(n% +\nu+\tfrac{3}{2})>0}}
StruveL(nu, z) = (2*((1)/(2)*z)^(nu))/(sqrt(Pi)*GAMMA(nu +(1)/(2)))*int(sinh(z*cos(theta))*(sin(theta))^(2*nu), theta = 0..Pi/2)
StruveL[\[Nu], z] == Divide[2*(Divide[1,2]*z)^\[Nu],Sqrt[Pi]*Gamma[\[Nu]+Divide[1,2]]]*Integrate[Sinh[z*Cos[\[Theta]]]*(Sin[\[Theta]])^(2*\[Nu]), {\[Theta], 0, Pi/2}, GenerateConditions->None]
Successful Aborted - Skipped - Because timed out
11.5.E7 I - ν ( x ) - 𝐋 ν ( x ) = 2 ( 1 2 x ) ν π Γ ( ν + 1 2 ) 0 ( 1 + t 2 ) ν - 1 2 sin ( x t ) d t modified-Bessel-first-kind 𝜈 𝑥 modified-Struve-L 𝜈 𝑥 2 superscript 1 2 𝑥 𝜈 𝜋 Euler-Gamma 𝜈 1 2 superscript subscript 0 superscript 1 superscript 𝑡 2 𝜈 1 2 𝑥 𝑡 𝑡 {\displaystyle{\displaystyle I_{-\nu}\left(x\right)-\mathbf{L}_{\nu}\left(x% \right)=\frac{2(\tfrac{1}{2}x)^{\nu}}{\sqrt{\pi}\Gamma\left(\nu+\tfrac{1}{2}% \right)}\int_{0}^{\infty}(1+t^{2})^{\nu-\frac{1}{2}}\sin\left(xt\right)\mathrm% {d}t}}
\modBesselI{-\nu}@{x}-\modStruveL{\nu}@{x} = \frac{2(\tfrac{1}{2}x)^{\nu}}{\sqrt{\pi}\EulerGamma@{\nu+\tfrac{1}{2}}}\int_{0}^{\infty}(1+t^{2})^{\nu-\frac{1}{2}}\sin@{xt}\diff{t}
x > 0 , ( ν + 1 2 ) > 0 , ( ( - ν ) + k + 1 ) > 0 , ( n + ν + 3 2 ) > 0 formulae-sequence 𝑥 0 formulae-sequence 𝜈 1 2 0 formulae-sequence 𝜈 𝑘 1 0 𝑛 𝜈 3 2 0 {\displaystyle{\displaystyle x>0,\Re(\nu+\tfrac{1}{2})>0,\Re((-\nu)+k+1)>0,\Re% (n+\nu+\tfrac{3}{2})>0}}
BesselI(- nu, x)- StruveL(nu, x) = (2*((1)/(2)*x)^(nu))/(sqrt(Pi)*GAMMA(nu +(1)/(2)))*int((1 + (t)^(2))^(nu -(1)/(2))* sin(x*t), t = 0..infinity)
BesselI[- \[Nu], x]- StruveL[\[Nu], x] == Divide[2*(Divide[1,2]*x)^\[Nu],Sqrt[Pi]*Gamma[\[Nu]+Divide[1,2]]]*Integrate[(1 + (t)^(2))^(\[Nu]-Divide[1,2])* Sin[x*t], {t, 0, Infinity}, GenerateConditions->None]
Failure Aborted
Failed [3 / 3]
Result: 1.291209379
Test Values: {x = 3/2, nu = 0}

Result: 2.709400861
Test Values: {x = 1/2, nu = 0}

... skip entries to safe data
Skipped - Because timed out
11.5.E8 ( 1 2 x ) - ν - 1 𝐇 ν ( x ) = - 1 2 π i - i i π csc ( π s ) Γ ( 3 2 + s ) Γ ( 3 2 + ν + s ) ( 1 4 x 2 ) s d s superscript 1 2 𝑥 𝜈 1 Struve-H 𝜈 𝑥 1 2 𝜋 𝑖 superscript subscript 𝑖 𝑖 𝜋 𝜋 𝑠 Euler-Gamma 3 2 𝑠 Euler-Gamma 3 2 𝜈 𝑠 superscript 1 4 superscript 𝑥 2 𝑠 𝑠 {\displaystyle{\displaystyle(\tfrac{1}{2}x)^{-\nu-1}\mathbf{H}_{\nu}\left(x% \right)=-\frac{1}{2\pi i}\int_{-i\infty}^{i\infty}\frac{\pi\csc\left(\pi s% \right)}{\Gamma\left(\tfrac{3}{2}+s\right)\Gamma\left(\tfrac{3}{2}+\nu+s\right% )}(\tfrac{1}{4}x^{2})^{s}\mathrm{d}s}}
(\tfrac{1}{2}x)^{-\nu-1}\StruveH{\nu}@{x} = -\frac{1}{2\pi i}\int_{-i\infty}^{i\infty}\frac{\pi\csc@{\pi s}}{\EulerGamma@{\tfrac{3}{2}+s}\EulerGamma@{\tfrac{3}{2}+\nu+s}}(\tfrac{1}{4}x^{2})^{s}\diff{s}
x > 0 , ν > - 1 , ( 3 2 + s ) > 0 , ( 3 2 + ν + s ) > 0 , ( n + ν + 3 2 ) > 0 formulae-sequence 𝑥 0 formulae-sequence 𝜈 1 formulae-sequence 3 2 𝑠 0 formulae-sequence 3 2 𝜈 𝑠 0 𝑛 𝜈 3 2 0 {\displaystyle{\displaystyle x>0,\Re\nu>-1,\Re(\tfrac{3}{2}+s)>0,\Re(\tfrac{3}% {2}+\nu+s)>0,\Re(n+\nu+\tfrac{3}{2})>0}}
((1)/(2)*x)^(- nu - 1)* StruveH(nu, x) = -(1)/(2*Pi*I)*int((Pi*csc(Pi*s))/(GAMMA((3)/(2)+ s)*GAMMA((3)/(2)+ nu + s))*((1)/(4)*(x)^(2))^(s), s = - I*infinity..I*infinity)
(Divide[1,2]*x)^(- \[Nu]- 1)* StruveH[\[Nu], x] == -Divide[1,2*Pi*I]*Integrate[Divide[Pi*Csc[Pi*s],Gamma[Divide[3,2]+ s]*Gamma[Divide[3,2]+ \[Nu]+ s]]*(Divide[1,4]*(x)^(2))^(s), {s, - I*Infinity, I*Infinity}, GenerateConditions->None]
Failure Aborted Skipped - Because timed out Skipped - Because timed out
11.5.E9 ( 1 2 z ) - ν - 1 𝐋 ν ( z ) = 1 2 π i ( 0 + ) π csc ( π s ) Γ ( 3 2 + s ) Γ ( 3 2 + ν + s ) ( - 1 4 z 2 ) s d s superscript 1 2 𝑧 𝜈 1 modified-Struve-L 𝜈 𝑧 1 2 𝜋 𝑖 superscript subscript limit-from 0 𝜋 𝜋 𝑠 Euler-Gamma 3 2 𝑠 Euler-Gamma 3 2 𝜈 𝑠 superscript 1 4 superscript 𝑧 2 𝑠 𝑠 {\displaystyle{\displaystyle(\tfrac{1}{2}z)^{-\nu-1}\mathbf{L}_{\nu}\left(z% \right)=\frac{1}{2\pi i}\int_{\infty}^{(0+)}\frac{\pi\csc\left(\pi s\right)}{% \Gamma\left(\tfrac{3}{2}+s\right)\Gamma\left(\tfrac{3}{2}+\nu+s\right)}(-% \tfrac{1}{4}z^{2})^{s}\mathrm{d}s}}
(\tfrac{1}{2}z)^{-\nu-1}\modStruveL{\nu}@{z} = \frac{1}{2\pi i}\int_{\infty}^{(0+)}\frac{\pi\csc@{\pi s}}{\EulerGamma@{\tfrac{3}{2}+s}\EulerGamma@{\tfrac{3}{2}+\nu+s}}(-\tfrac{1}{4}z^{2})^{s}\diff{s}
( 3 2 + s ) > 0 , ( 3 2 + ν + s ) > 0 , ( n + ν + 3 2 ) > 0 formulae-sequence 3 2 𝑠 0 formulae-sequence 3 2 𝜈 𝑠 0 𝑛 𝜈 3 2 0 {\displaystyle{\displaystyle\Re(\tfrac{3}{2}+s)>0,\Re(\tfrac{3}{2}+\nu+s)>0,% \Re(n+\nu+\tfrac{3}{2})>0}}
((1)/(2)*z)^(- nu - 1)* StruveL(nu, z) = (1)/(2*Pi*I)*int((Pi*csc(Pi*s))/(GAMMA((3)/(2)+ s)*GAMMA((3)/(2)+ nu + s))*(-(1)/(4)*(z)^(2))^(s), s = infinity..(0 +))
(Divide[1,2]*z)^(- \[Nu]- 1)* StruveL[\[Nu], z] == Divide[1,2*Pi*I]*Integrate[Divide[Pi*Csc[Pi*s],Gamma[Divide[3,2]+ s]*Gamma[Divide[3,2]+ \[Nu]+ s]]*(-Divide[1,4]*(z)^(2))^(s), {s, Infinity, (0 +)}, GenerateConditions->None]
Error Failure - Error