10.54: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/10.54.E1 10.54.E1] || [[Item:Q3759|<math>\sphBesselJ{n}@{z} = \frac{z^{n}}{2^{n+1}n!}\int_{0}^{\pi}\cos@{z\cos@@{\theta}}(\sin@@{\theta})^{2n+1}\diff{\theta}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sphBesselJ{n}@{z} = \frac{z^{n}}{2^{n+1}n!}\int_{0}^{\pi}\cos@{z\cos@@{\theta}}(\sin@@{\theta})^{2n+1}\diff{\theta}</syntaxhighlight> || <math>\realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-n-\frac{1}{2}))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>SphericalBesselJ[n, z] == Divide[(z)^(n),(2)^(n + 1)* (n)!]*Integrate[Cos[z*Cos[\[Theta]]]*(Sin[\[Theta]])^(2*n + 1), {\[Theta], 0, Pi}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Successful || - || Successful [Tested: 21]
| [https://dlmf.nist.gov/10.54.E1 10.54.E1] || <math qid="Q3759">\sphBesselJ{n}@{z} = \frac{z^{n}}{2^{n+1}n!}\int_{0}^{\pi}\cos@{z\cos@@{\theta}}(\sin@@{\theta})^{2n+1}\diff{\theta}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sphBesselJ{n}@{z} = \frac{z^{n}}{2^{n+1}n!}\int_{0}^{\pi}\cos@{z\cos@@{\theta}}(\sin@@{\theta})^{2n+1}\diff{\theta}</syntaxhighlight> || <math>\realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-n-\frac{1}{2}))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>SphericalBesselJ[n, z] == Divide[(z)^(n),(2)^(n + 1)* (n)!]*Integrate[Cos[z*Cos[\[Theta]]]*(Sin[\[Theta]])^(2*n + 1), {\[Theta], 0, Pi}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Successful || - || Successful [Tested: 21]
|-  
|-  
| [https://dlmf.nist.gov/10.54.E2 10.54.E2] || [[Item:Q3760|<math>\sphBesselJ{n}@{z} = \frac{(-i)^{n}}{2}\int_{0}^{\pi}e^{iz\cos@@{\theta}}\assLegendreP[]{n}@{\cos@@{\theta}}\sin@@{\theta}\diff{\theta}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sphBesselJ{n}@{z} = \frac{(-i)^{n}}{2}\int_{0}^{\pi}e^{iz\cos@@{\theta}}\assLegendreP[]{n}@{\cos@@{\theta}}\sin@@{\theta}\diff{\theta}</syntaxhighlight> || <math>\realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-n-\frac{1}{2}))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>SphericalBesselJ[n, z] == Divide[(- I)^(n),2]*Integrate[Exp[I*z*Cos[\[Theta]]]*LegendreP[n, 0, 3, Cos[\[Theta]]]*Sin[\[Theta]], {\[Theta], 0, Pi}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Aborted || - || Successful [Tested: 21]
| [https://dlmf.nist.gov/10.54.E2 10.54.E2] || <math qid="Q3760">\sphBesselJ{n}@{z} = \frac{(-i)^{n}}{2}\int_{0}^{\pi}e^{iz\cos@@{\theta}}\assLegendreP[]{n}@{\cos@@{\theta}}\sin@@{\theta}\diff{\theta}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sphBesselJ{n}@{z} = \frac{(-i)^{n}}{2}\int_{0}^{\pi}e^{iz\cos@@{\theta}}\assLegendreP[]{n}@{\cos@@{\theta}}\sin@@{\theta}\diff{\theta}</syntaxhighlight> || <math>\realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-n-\frac{1}{2}))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>SphericalBesselJ[n, z] == Divide[(- I)^(n),2]*Integrate[Exp[I*z*Cos[\[Theta]]]*LegendreP[n, 0, 3, Cos[\[Theta]]]*Sin[\[Theta]], {\[Theta], 0, Pi}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Aborted || - || Successful [Tested: 21]
|-  
|-  
| [https://dlmf.nist.gov/10.54.E3 10.54.E3] || [[Item:Q3761|<math>\modsphBesselK{n}@{z} = \frac{\pi}{2}\int_{1}^{\infty}e^{-zt}\assLegendreP[]{n}@{t}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modsphBesselK{n}@{z} = \frac{\pi}{2}\int_{1}^{\infty}e^{-zt}\assLegendreP[]{n}@{t}\diff{t}</syntaxhighlight> || <math>|\phase@@{z}| < \tfrac{1}{2}\pi.</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[1/2 Pi /z] BesselK[n + 1/2, z] == Divide[Pi,2]*Integrate[Exp[- z*t]*LegendreP[n, 0, 3, t], {t, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Aborted || - || Skipped - Because timed out
| [https://dlmf.nist.gov/10.54.E3 10.54.E3] || <math qid="Q3761">\modsphBesselK{n}@{z} = \frac{\pi}{2}\int_{1}^{\infty}e^{-zt}\assLegendreP[]{n}@{t}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modsphBesselK{n}@{z} = \frac{\pi}{2}\int_{1}^{\infty}e^{-zt}\assLegendreP[]{n}@{t}\diff{t}</syntaxhighlight> || <math>|\phase@@{z}| < \tfrac{1}{2}\pi.</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[1/2 Pi /z] BesselK[n + 1/2, z] == Divide[Pi,2]*Integrate[Exp[- z*t]*LegendreP[n, 0, 3, t], {t, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Aborted || - || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/10.54.E4 10.54.E4] || [[Item:Q3762|<math>\sphBesselJ{n}@{z} = \frac{(-i)^{n+1}}{2\pi}\int_{i\infty}^{(-1+,1+)}e^{izt}\assLegendreQ[]{n}@{t}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sphBesselJ{n}@{z} = \frac{(-i)^{n+1}}{2\pi}\int_{i\infty}^{(-1+,1+)}e^{izt}\assLegendreQ[]{n}@{t}\diff{t}</syntaxhighlight> || <math>|\phase@@{z}| < \tfrac{1}{2}\pi., \realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-n-\frac{1}{2}))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>SphericalBesselJ[n, z] == Divide[(- I)^(n + 1),2*Pi]*Integrate[Exp[I*z*t]*LegendreQ[n, 0, 3, t], {t, I*Infinity, (- 1 + , 1 +)}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || Error
| [https://dlmf.nist.gov/10.54.E4 10.54.E4] || <math qid="Q3762">\sphBesselJ{n}@{z} = \frac{(-i)^{n+1}}{2\pi}\int_{i\infty}^{(-1+,1+)}e^{izt}\assLegendreQ[]{n}@{t}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sphBesselJ{n}@{z} = \frac{(-i)^{n+1}}{2\pi}\int_{i\infty}^{(-1+,1+)}e^{izt}\assLegendreQ[]{n}@{t}\diff{t}</syntaxhighlight> || <math>|\phase@@{z}| < \tfrac{1}{2}\pi., \realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-n-\frac{1}{2}))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>SphericalBesselJ[n, z] == Divide[(- I)^(n + 1),2*Pi]*Integrate[Exp[I*z*t]*LegendreQ[n, 0, 3, t], {t, I*Infinity, (- 1 + , 1 +)}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || Error
|-  
|-  
| [https://dlmf.nist.gov/10.54#Ex1 10.54#Ex1] || [[Item:Q3763|<math>\sphHankelh{1}{n}@{z} = \frac{(-i)^{n+1}}{\pi}\int_{i\infty}^{(1+)}e^{izt}\assLegendreQ[]{n}@{t}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sphHankelh{1}{n}@{z} = \frac{(-i)^{n+1}}{\pi}\int_{i\infty}^{(1+)}e^{izt}\assLegendreQ[]{n}@{t}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>SphericalHankelH1[n, z] == Divide[(- I)^(n + 1),Pi]*Integrate[Exp[I*z*t]*LegendreQ[n, 0, 3, t], {t, I*Infinity, (1 +)}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || Error
| [https://dlmf.nist.gov/10.54#Ex1 10.54#Ex1] || <math qid="Q3763">\sphHankelh{1}{n}@{z} = \frac{(-i)^{n+1}}{\pi}\int_{i\infty}^{(1+)}e^{izt}\assLegendreQ[]{n}@{t}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sphHankelh{1}{n}@{z} = \frac{(-i)^{n+1}}{\pi}\int_{i\infty}^{(1+)}e^{izt}\assLegendreQ[]{n}@{t}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>SphericalHankelH1[n, z] == Divide[(- I)^(n + 1),Pi]*Integrate[Exp[I*z*t]*LegendreQ[n, 0, 3, t], {t, I*Infinity, (1 +)}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || Error
|-  
|-  
| [https://dlmf.nist.gov/10.54#Ex2 10.54#Ex2] || [[Item:Q3764|<math>\sphHankelh{2}{n}@{z} = \frac{(-i)^{n+1}}{\pi}\int_{i\infty}^{(-1+)}e^{izt}\assLegendreQ[]{n}@{t}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sphHankelh{2}{n}@{z} = \frac{(-i)^{n+1}}{\pi}\int_{i\infty}^{(-1+)}e^{izt}\assLegendreQ[]{n}@{t}\diff{t}</syntaxhighlight> || <math>|\phase@@{z}| < \tfrac{1}{2}\pi.</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>SphericalHankelH2[n, z] == Divide[(- I)^(n + 1),Pi]*Integrate[Exp[I*z*t]*LegendreQ[n, 0, 3, t], {t, I*Infinity, (- 1 +)}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || Error
| [https://dlmf.nist.gov/10.54#Ex2 10.54#Ex2] || <math qid="Q3764">\sphHankelh{2}{n}@{z} = \frac{(-i)^{n+1}}{\pi}\int_{i\infty}^{(-1+)}e^{izt}\assLegendreQ[]{n}@{t}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sphHankelh{2}{n}@{z} = \frac{(-i)^{n+1}}{\pi}\int_{i\infty}^{(-1+)}e^{izt}\assLegendreQ[]{n}@{t}\diff{t}</syntaxhighlight> || <math>|\phase@@{z}| < \tfrac{1}{2}\pi.</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>SphericalHankelH2[n, z] == Divide[(- I)^(n + 1),Pi]*Integrate[Exp[I*z*t]*LegendreQ[n, 0, 3, t], {t, I*Infinity, (- 1 +)}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || Error
|}
|}
</div>
</div>

Latest revision as of 11:27, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
10.54.E1 𝗃 n ( z ) = z n 2 n + 1 n ! 0 π cos ( z cos θ ) ( sin θ ) 2 n + 1 d θ spherical-Bessel-J 𝑛 𝑧 superscript 𝑧 𝑛 superscript 2 𝑛 1 𝑛 superscript subscript 0 𝜋 𝑧 𝜃 superscript 𝜃 2 𝑛 1 𝜃 {\displaystyle{\displaystyle\mathsf{j}_{n}\left(z\right)=\frac{z^{n}}{2^{n+1}n% !}\int_{0}^{\pi}\cos\left(z\cos\theta\right)(\sin\theta)^{2n+1}\mathrm{d}% \theta}}
\sphBesselJ{n}@{z} = \frac{z^{n}}{2^{n+1}n!}\int_{0}^{\pi}\cos@{z\cos@@{\theta}}(\sin@@{\theta})^{2n+1}\diff{\theta}
( ( n + 1 2 ) + k + 1 ) > 0 , ( ( - n - 1 2 ) + k + 1 ) > 0 , ( ( - ( - n - 1 2 ) ) + k + 1 ) > 0 formulae-sequence 𝑛 1 2 𝑘 1 0 formulae-sequence 𝑛 1 2 𝑘 1 0 𝑛 1 2 𝑘 1 0 {\displaystyle{\displaystyle\Re((n+\frac{1}{2})+k+1)>0,\Re((-n-\frac{1}{2})+k+% 1)>0,\Re((-(-n-\frac{1}{2}))+k+1)>0}}
Error
SphericalBesselJ[n, z] == Divide[(z)^(n),(2)^(n + 1)* (n)!]*Integrate[Cos[z*Cos[\[Theta]]]*(Sin[\[Theta]])^(2*n + 1), {\[Theta], 0, Pi}, GenerateConditions->None]
Missing Macro Error Successful - Successful [Tested: 21]
10.54.E2 𝗃 n ( z ) = ( - i ) n 2 0 π e i z cos θ P n ( cos θ ) sin θ d θ spherical-Bessel-J 𝑛 𝑧 superscript 𝑖 𝑛 2 superscript subscript 0 𝜋 superscript 𝑒 𝑖 𝑧 𝜃 shorthand-Legendre-P-first-kind 𝑛 𝜃 𝜃 𝜃 {\displaystyle{\displaystyle\mathsf{j}_{n}\left(z\right)=\frac{(-i)^{n}}{2}% \int_{0}^{\pi}e^{iz\cos\theta}P_{n}\left(\cos\theta\right)\sin\theta\mathrm{d}% \theta}}
\sphBesselJ{n}@{z} = \frac{(-i)^{n}}{2}\int_{0}^{\pi}e^{iz\cos@@{\theta}}\assLegendreP[]{n}@{\cos@@{\theta}}\sin@@{\theta}\diff{\theta}
( ( n + 1 2 ) + k + 1 ) > 0 , ( ( - n - 1 2 ) + k + 1 ) > 0 , ( ( - ( - n - 1 2 ) ) + k + 1 ) > 0 formulae-sequence 𝑛 1 2 𝑘 1 0 formulae-sequence 𝑛 1 2 𝑘 1 0 𝑛 1 2 𝑘 1 0 {\displaystyle{\displaystyle\Re((n+\frac{1}{2})+k+1)>0,\Re((-n-\frac{1}{2})+k+% 1)>0,\Re((-(-n-\frac{1}{2}))+k+1)>0}}
Error
SphericalBesselJ[n, z] == Divide[(- I)^(n),2]*Integrate[Exp[I*z*Cos[\[Theta]]]*LegendreP[n, 0, 3, Cos[\[Theta]]]*Sin[\[Theta]], {\[Theta], 0, Pi}, GenerateConditions->None]
Missing Macro Error Aborted - Successful [Tested: 21]
10.54.E3 𝗄 n ( z ) = π 2 1 e - z t P n ( t ) d t spherical-Bessel-K 𝑛 𝑧 𝜋 2 superscript subscript 1 superscript 𝑒 𝑧 𝑡 shorthand-Legendre-P-first-kind 𝑛 𝑡 𝑡 {\displaystyle{\displaystyle\mathsf{k}_{n}\left(z\right)=\frac{\pi}{2}\int_{1}% ^{\infty}e^{-zt}P_{n}\left(t\right)\mathrm{d}t}}
\modsphBesselK{n}@{z} = \frac{\pi}{2}\int_{1}^{\infty}e^{-zt}\assLegendreP[]{n}@{t}\diff{t}
| ph z | < 1 2 π . phase 𝑧 1 2 𝜋 {\displaystyle{\displaystyle|\operatorname{ph}z|<\tfrac{1}{2}\pi.}}
Error
Sqrt[1/2 Pi /z] BesselK[n + 1/2, z] == Divide[Pi,2]*Integrate[Exp[- z*t]*LegendreP[n, 0, 3, t], {t, 1, Infinity}, GenerateConditions->None]
Missing Macro Error Aborted - Skipped - Because timed out
10.54.E4 𝗃 n ( z ) = ( - i ) n + 1 2 π i ( - 1 + , 1 + ) e i z t Q n ( t ) d t spherical-Bessel-J 𝑛 𝑧 superscript 𝑖 𝑛 1 2 𝜋 superscript subscript 𝑖 limit-from 1 limit-from 1 superscript 𝑒 𝑖 𝑧 𝑡 shorthand-Legendre-Q-second-kind 𝑛 𝑡 𝑡 {\displaystyle{\displaystyle\mathsf{j}_{n}\left(z\right)=\frac{(-i)^{n+1}}{2% \pi}\int_{i\infty}^{(-1+,1+)}e^{izt}Q_{n}\left(t\right)\mathrm{d}t}}
\sphBesselJ{n}@{z} = \frac{(-i)^{n+1}}{2\pi}\int_{i\infty}^{(-1+,1+)}e^{izt}\assLegendreQ[]{n}@{t}\diff{t}
| ph z | < 1 2 π . , ( ( n + 1 2 ) + k + 1 ) > 0 , ( ( - n - 1 2 ) + k + 1 ) > 0 , ( ( - ( - n - 1 2 ) ) + k + 1 ) > 0 fragments | phase 𝑧 | 1 2 π . , 𝑛 1 2 𝑘 1 0 , 𝑛 1 2 𝑘 1 0 , 𝑛 1 2 𝑘 1 0 {\displaystyle{\displaystyle|\operatorname{ph}z|<\tfrac{1}{2}\pi.,\Re((n+\frac% {1}{2})+k+1)>0,\Re((-n-\frac{1}{2})+k+1)>0,\Re((-(-n-\frac{1}{2}))+k+1)>0}}
Error
SphericalBesselJ[n, z] == Divide[(- I)^(n + 1),2*Pi]*Integrate[Exp[I*z*t]*LegendreQ[n, 0, 3, t], {t, I*Infinity, (- 1 + , 1 +)}, GenerateConditions->None]
Missing Macro Error Failure - Error
10.54#Ex1 𝗁 n ( 1 ) ( z ) = ( - i ) n + 1 π i ( 1 + ) e i z t Q n ( t ) d t spherical-Hankel-H-1-Bessel-third-kind 𝑛 𝑧 superscript 𝑖 𝑛 1 𝜋 superscript subscript 𝑖 limit-from 1 superscript 𝑒 𝑖 𝑧 𝑡 shorthand-Legendre-Q-second-kind 𝑛 𝑡 𝑡 {\displaystyle{\displaystyle{\mathsf{h}^{(1)}_{n}}\left(z\right)=\frac{(-i)^{n% +1}}{\pi}\int_{i\infty}^{(1+)}e^{izt}Q_{n}\left(t\right)\mathrm{d}t}}
\sphHankelh{1}{n}@{z} = \frac{(-i)^{n+1}}{\pi}\int_{i\infty}^{(1+)}e^{izt}\assLegendreQ[]{n}@{t}\diff{t}

Error
SphericalHankelH1[n, z] == Divide[(- I)^(n + 1),Pi]*Integrate[Exp[I*z*t]*LegendreQ[n, 0, 3, t], {t, I*Infinity, (1 +)}, GenerateConditions->None]
Missing Macro Error Failure - Error
10.54#Ex2 𝗁 n ( 2 ) ( z ) = ( - i ) n + 1 π i ( - 1 + ) e i z t Q n ( t ) d t spherical-Hankel-H-2-Bessel-third-kind 𝑛 𝑧 superscript 𝑖 𝑛 1 𝜋 superscript subscript 𝑖 limit-from 1 superscript 𝑒 𝑖 𝑧 𝑡 shorthand-Legendre-Q-second-kind 𝑛 𝑡 𝑡 {\displaystyle{\displaystyle{\mathsf{h}^{(2)}_{n}}\left(z\right)=\frac{(-i)^{n% +1}}{\pi}\int_{i\infty}^{(-1+)}e^{izt}Q_{n}\left(t\right)\mathrm{d}t}}
\sphHankelh{2}{n}@{z} = \frac{(-i)^{n+1}}{\pi}\int_{i\infty}^{(-1+)}e^{izt}\assLegendreQ[]{n}@{t}\diff{t}
| ph z | < 1 2 π . phase 𝑧 1 2 𝜋 {\displaystyle{\displaystyle|\operatorname{ph}z|<\tfrac{1}{2}\pi.}}
Error
SphericalHankelH2[n, z] == Divide[(- I)^(n + 1),Pi]*Integrate[Exp[I*z*t]*LegendreQ[n, 0, 3, t], {t, I*Infinity, (- 1 +)}, GenerateConditions->None]
Missing Macro Error Failure - Error