10.27: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/10.27.E1 10.27.E1] || [[Item:Q3491|<math>\modBesselI{-n}@{z} = \modBesselI{n}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{-n}@{z} = \modBesselI{n}@{z}</syntaxhighlight> || <math>\realpart@@{((-n)+k+1)} > 0, \realpart@@{(n+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(- n, z) = BesselI(n, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[- n, z] == BesselI[n, z]</syntaxhighlight> || Failure || Failure || Successful [Tested: 21] || Successful [Tested: 21]
| [https://dlmf.nist.gov/10.27.E1 10.27.E1] || <math qid="Q3491">\modBesselI{-n}@{z} = \modBesselI{n}@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{-n}@{z} = \modBesselI{n}@{z}</syntaxhighlight> || <math>\realpart@@{((-n)+k+1)} > 0, \realpart@@{(n+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(- n, z) = BesselI(n, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[- n, z] == BesselI[n, z]</syntaxhighlight> || Failure || Failure || Successful [Tested: 21] || Successful [Tested: 21]
|-  
|-  
| [https://dlmf.nist.gov/10.27.E2 10.27.E2] || [[Item:Q3492|<math>\modBesselI{-\nu}@{z} = \modBesselI{\nu}@{z}+(2/\pi)\sin@{\nu\pi}\modBesselK{\nu}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{-\nu}@{z} = \modBesselI{\nu}@{z}+(2/\pi)\sin@{\nu\pi}\modBesselK{\nu}@{z}</syntaxhighlight> || <math>\realpart@@{((-\nu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(- nu, z) = BesselI(nu, z)+(2/Pi)*sin(nu*Pi)*BesselK(nu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[- \[Nu], z] == BesselI[\[Nu], z]+(2/Pi)*Sin[\[Nu]*Pi]*BesselK[\[Nu], z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 70]
| [https://dlmf.nist.gov/10.27.E2 10.27.E2] || <math qid="Q3492">\modBesselI{-\nu}@{z} = \modBesselI{\nu}@{z}+(2/\pi)\sin@{\nu\pi}\modBesselK{\nu}@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{-\nu}@{z} = \modBesselI{\nu}@{z}+(2/\pi)\sin@{\nu\pi}\modBesselK{\nu}@{z}</syntaxhighlight> || <math>\realpart@@{((-\nu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(- nu, z) = BesselI(nu, z)+(2/Pi)*sin(nu*Pi)*BesselK(nu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[- \[Nu], z] == BesselI[\[Nu], z]+(2/Pi)*Sin[\[Nu]*Pi]*BesselK[\[Nu], z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 70]
|-  
|-  
| [https://dlmf.nist.gov/10.27.E3 10.27.E3] || [[Item:Q3493|<math>\modBesselK{-\nu}@{z} = \modBesselK{\nu}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselK{-\nu}@{z} = \modBesselK{\nu}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>BesselK(- nu, z) = BesselK(nu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselK[- \[Nu], z] == BesselK[\[Nu], z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 70]
| [https://dlmf.nist.gov/10.27.E3 10.27.E3] || <math qid="Q3493">\modBesselK{-\nu}@{z} = \modBesselK{\nu}@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselK{-\nu}@{z} = \modBesselK{\nu}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>BesselK(- nu, z) = BesselK(nu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselK[- \[Nu], z] == BesselK[\[Nu], z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 70]
|-  
|-  
| [https://dlmf.nist.gov/10.27.E4 10.27.E4] || [[Item:Q3494|<math>\modBesselK{\nu}@{z} = \tfrac{1}{2}\pi\frac{\modBesselI{-\nu}@{z}-\modBesselI{\nu}@{z}}{\sin@{\nu\pi}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselK{\nu}@{z} = \tfrac{1}{2}\pi\frac{\modBesselI{-\nu}@{z}-\modBesselI{\nu}@{z}}{\sin@{\nu\pi}}</syntaxhighlight> || <math>\realpart@@{((-\nu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselK(nu, z) = (1)/(2)*Pi*(BesselI(- nu, z)- BesselI(nu, z))/(sin(nu*Pi))</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselK[\[Nu], z] == Divide[1,2]*Pi*Divide[BesselI[- \[Nu], z]- BesselI[\[Nu], z],Sin[\[Nu]*Pi]]</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [14 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
| [https://dlmf.nist.gov/10.27.E4 10.27.E4] || <math qid="Q3494">\modBesselK{\nu}@{z} = \tfrac{1}{2}\pi\frac{\modBesselI{-\nu}@{z}-\modBesselI{\nu}@{z}}{\sin@{\nu\pi}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselK{\nu}@{z} = \tfrac{1}{2}\pi\frac{\modBesselI{-\nu}@{z}-\modBesselI{\nu}@{z}}{\sin@{\nu\pi}}</syntaxhighlight> || <math>\realpart@@{((-\nu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselK(nu, z) = (1)/(2)*Pi*(BesselI(- nu, z)- BesselI(nu, z))/(sin(nu*Pi))</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselK[\[Nu], z] == Divide[1,2]*Pi*Divide[BesselI[- \[Nu], z]- BesselI[\[Nu], z],Sin[\[Nu]*Pi]]</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [14 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/10.27.E6 10.27.E6] || [[Item:Q3496|<math>\modBesselI{\nu}@{z} = e^{-\nu\pi i/2}\BesselJ{\nu}@{ze^{+\pi i/2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{\nu}@{z} = e^{-\nu\pi i/2}\BesselJ{\nu}@{ze^{+\pi i/2}}</syntaxhighlight> || <math>-\pi \leq +\phase@@{z}, -\pi \leq -\phase@@{z}, +\phase@@{z} \leq \tfrac{1}{2}\pi, -\phase@@{z} \leq \tfrac{1}{2}\pi, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(nu, z) = exp(- nu*Pi*I/2)*BesselJ(nu, z*exp(+ Pi*I/2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[\[Nu], z] == Exp[- \[Nu]*Pi*I/2]*BesselJ[\[Nu], z*Exp[+ Pi*I/2]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 50] || Successful [Tested: 50]
| [https://dlmf.nist.gov/10.27.E6 10.27.E6] || <math qid="Q3496">\modBesselI{\nu}@{z} = e^{-\nu\pi i/2}\BesselJ{\nu}@{ze^{+\pi i/2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{\nu}@{z} = e^{-\nu\pi i/2}\BesselJ{\nu}@{ze^{+\pi i/2}}</syntaxhighlight> || <math>-\pi \leq +\phase@@{z}, -\pi \leq -\phase@@{z}, +\phase@@{z} \leq \tfrac{1}{2}\pi, -\phase@@{z} \leq \tfrac{1}{2}\pi, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(nu, z) = exp(- nu*Pi*I/2)*BesselJ(nu, z*exp(+ Pi*I/2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[\[Nu], z] == Exp[- \[Nu]*Pi*I/2]*BesselJ[\[Nu], z*Exp[+ Pi*I/2]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 50] || Successful [Tested: 50]
|-  
|-  
| [https://dlmf.nist.gov/10.27.E6 10.27.E6] || [[Item:Q3496|<math>\modBesselI{\nu}@{z} = e^{+\nu\pi i/2}\BesselJ{\nu}@{ze^{-\pi i/2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{\nu}@{z} = e^{+\nu\pi i/2}\BesselJ{\nu}@{ze^{-\pi i/2}}</syntaxhighlight> || <math>-\pi \leq +\phase@@{z}, -\pi \leq -\phase@@{z}, +\phase@@{z} \leq \tfrac{1}{2}\pi, -\phase@@{z} \leq \tfrac{1}{2}\pi, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(nu, z) = exp(+ nu*Pi*I/2)*BesselJ(nu, z*exp(- Pi*I/2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[\[Nu], z] == Exp[+ \[Nu]*Pi*I/2]*BesselJ[\[Nu], z*Exp[- Pi*I/2]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 50] || Successful [Tested: 50]
| [https://dlmf.nist.gov/10.27.E6 10.27.E6] || <math qid="Q3496">\modBesselI{\nu}@{z} = e^{+\nu\pi i/2}\BesselJ{\nu}@{ze^{-\pi i/2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{\nu}@{z} = e^{+\nu\pi i/2}\BesselJ{\nu}@{ze^{-\pi i/2}}</syntaxhighlight> || <math>-\pi \leq +\phase@@{z}, -\pi \leq -\phase@@{z}, +\phase@@{z} \leq \tfrac{1}{2}\pi, -\phase@@{z} \leq \tfrac{1}{2}\pi, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(nu, z) = exp(+ nu*Pi*I/2)*BesselJ(nu, z*exp(- Pi*I/2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[\[Nu], z] == Exp[+ \[Nu]*Pi*I/2]*BesselJ[\[Nu], z*Exp[- Pi*I/2]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 50] || Successful [Tested: 50]
|-  
|-  
| [https://dlmf.nist.gov/10.27.E7 10.27.E7] || [[Item:Q3497|<math>\modBesselI{\nu}@{z} = \tfrac{1}{2}e^{-\nu\pi i/2}\left(\HankelH{1}{\nu}@{ze^{+\pi i/2}}+\HankelH{2}{\nu}@{ze^{+\pi i/2}}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{\nu}@{z} = \tfrac{1}{2}e^{-\nu\pi i/2}\left(\HankelH{1}{\nu}@{ze^{+\pi i/2}}+\HankelH{2}{\nu}@{ze^{+\pi i/2}}\right)</syntaxhighlight> || <math>-\pi \leq +\phase@@{z}, -\pi \leq -\phase@@{z}, +\phase@@{z} \leq \tfrac{1}{2}\pi, -\phase@@{z} \leq \tfrac{1}{2}\pi, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(nu, z) = (1)/(2)*exp(- nu*Pi*I/2)*(HankelH1(nu, z*exp(+ Pi*I/2))+ HankelH2(nu, z*exp(+ Pi*I/2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[\[Nu], z] == Divide[1,2]*Exp[- \[Nu]*Pi*I/2]*(HankelH1[\[Nu], z*Exp[+ Pi*I/2]]+ HankelH2[\[Nu], z*Exp[+ Pi*I/2]])</syntaxhighlight> || Failure || Failure || Successful [Tested: 50] || Successful [Tested: 50]
| [https://dlmf.nist.gov/10.27.E7 10.27.E7] || <math qid="Q3497">\modBesselI{\nu}@{z} = \tfrac{1}{2}e^{-\nu\pi i/2}\left(\HankelH{1}{\nu}@{ze^{+\pi i/2}}+\HankelH{2}{\nu}@{ze^{+\pi i/2}}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{\nu}@{z} = \tfrac{1}{2}e^{-\nu\pi i/2}\left(\HankelH{1}{\nu}@{ze^{+\pi i/2}}+\HankelH{2}{\nu}@{ze^{+\pi i/2}}\right)</syntaxhighlight> || <math>-\pi \leq +\phase@@{z}, -\pi \leq -\phase@@{z}, +\phase@@{z} \leq \tfrac{1}{2}\pi, -\phase@@{z} \leq \tfrac{1}{2}\pi, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(nu, z) = (1)/(2)*exp(- nu*Pi*I/2)*(HankelH1(nu, z*exp(+ Pi*I/2))+ HankelH2(nu, z*exp(+ Pi*I/2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[\[Nu], z] == Divide[1,2]*Exp[- \[Nu]*Pi*I/2]*(HankelH1[\[Nu], z*Exp[+ Pi*I/2]]+ HankelH2[\[Nu], z*Exp[+ Pi*I/2]])</syntaxhighlight> || Failure || Failure || Successful [Tested: 50] || Successful [Tested: 50]
|-  
|-  
| [https://dlmf.nist.gov/10.27.E7 10.27.E7] || [[Item:Q3497|<math>\modBesselI{\nu}@{z} = \tfrac{1}{2}e^{+\nu\pi i/2}\left(\HankelH{1}{\nu}@{ze^{-\pi i/2}}+\HankelH{2}{\nu}@{ze^{-\pi i/2}}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{\nu}@{z} = \tfrac{1}{2}e^{+\nu\pi i/2}\left(\HankelH{1}{\nu}@{ze^{-\pi i/2}}+\HankelH{2}{\nu}@{ze^{-\pi i/2}}\right)</syntaxhighlight> || <math>-\pi \leq +\phase@@{z}, -\pi \leq -\phase@@{z}, +\phase@@{z} \leq \tfrac{1}{2}\pi, -\phase@@{z} \leq \tfrac{1}{2}\pi, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(nu, z) = (1)/(2)*exp(+ nu*Pi*I/2)*(HankelH1(nu, z*exp(- Pi*I/2))+ HankelH2(nu, z*exp(- Pi*I/2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[\[Nu], z] == Divide[1,2]*Exp[+ \[Nu]*Pi*I/2]*(HankelH1[\[Nu], z*Exp[- Pi*I/2]]+ HankelH2[\[Nu], z*Exp[- Pi*I/2]])</syntaxhighlight> || Failure || Failure || Successful [Tested: 50] || Successful [Tested: 50]
| [https://dlmf.nist.gov/10.27.E7 10.27.E7] || <math qid="Q3497">\modBesselI{\nu}@{z} = \tfrac{1}{2}e^{+\nu\pi i/2}\left(\HankelH{1}{\nu}@{ze^{-\pi i/2}}+\HankelH{2}{\nu}@{ze^{-\pi i/2}}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modBesselI{\nu}@{z} = \tfrac{1}{2}e^{+\nu\pi i/2}\left(\HankelH{1}{\nu}@{ze^{-\pi i/2}}+\HankelH{2}{\nu}@{ze^{-\pi i/2}}\right)</syntaxhighlight> || <math>-\pi \leq +\phase@@{z}, -\pi \leq -\phase@@{z}, +\phase@@{z} \leq \tfrac{1}{2}\pi, -\phase@@{z} \leq \tfrac{1}{2}\pi, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselI(nu, z) = (1)/(2)*exp(+ nu*Pi*I/2)*(HankelH1(nu, z*exp(- Pi*I/2))+ HankelH2(nu, z*exp(- Pi*I/2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselI[\[Nu], z] == Divide[1,2]*Exp[+ \[Nu]*Pi*I/2]*(HankelH1[\[Nu], z*Exp[- Pi*I/2]]+ HankelH2[\[Nu], z*Exp[- Pi*I/2]])</syntaxhighlight> || Failure || Failure || Successful [Tested: 50] || Successful [Tested: 50]
|-  
|-  
| [https://dlmf.nist.gov/10.27.E9 10.27.E9] || [[Item:Q3499|<math>\pi i\BesselJ{\nu}@{z} = e^{-\nu\pi i/2}\modBesselK{\nu}@{ze^{-\pi i/2}}-e^{\nu\pi i/2}\modBesselK{\nu}@{ze^{\pi i/2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\pi i\BesselJ{\nu}@{z} = e^{-\nu\pi i/2}\modBesselK{\nu}@{ze^{-\pi i/2}}-e^{\nu\pi i/2}\modBesselK{\nu}@{ze^{\pi i/2}}</syntaxhighlight> || <math>|\phase@@{z}| \leq \tfrac{1}{2}\pi, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Pi*I*BesselJ(nu, z) = exp(- nu*Pi*I/2)*BesselK(nu, z*exp(- Pi*I/2))- exp(nu*Pi*I/2)*BesselK(nu, z*exp(Pi*I/2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Pi*I*BesselJ[\[Nu], z] == Exp[- \[Nu]*Pi*I/2]*BesselK[\[Nu], z*Exp[- Pi*I/2]]- Exp[\[Nu]*Pi*I/2]*BesselK[\[Nu], z*Exp[Pi*I/2]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 50] || Successful [Tested: 50]
| [https://dlmf.nist.gov/10.27.E9 10.27.E9] || <math qid="Q3499">\pi i\BesselJ{\nu}@{z} = e^{-\nu\pi i/2}\modBesselK{\nu}@{ze^{-\pi i/2}}-e^{\nu\pi i/2}\modBesselK{\nu}@{ze^{\pi i/2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\pi i\BesselJ{\nu}@{z} = e^{-\nu\pi i/2}\modBesselK{\nu}@{ze^{-\pi i/2}}-e^{\nu\pi i/2}\modBesselK{\nu}@{ze^{\pi i/2}}</syntaxhighlight> || <math>|\phase@@{z}| \leq \tfrac{1}{2}\pi, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>Pi*I*BesselJ(nu, z) = exp(- nu*Pi*I/2)*BesselK(nu, z*exp(- Pi*I/2))- exp(nu*Pi*I/2)*BesselK(nu, z*exp(Pi*I/2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Pi*I*BesselJ[\[Nu], z] == Exp[- \[Nu]*Pi*I/2]*BesselK[\[Nu], z*Exp[- Pi*I/2]]- Exp[\[Nu]*Pi*I/2]*BesselK[\[Nu], z*Exp[Pi*I/2]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 50] || Successful [Tested: 50]
|-  
|-  
| [https://dlmf.nist.gov/10.27.E10 10.27.E10] || [[Item:Q3500|<math>-\pi\BesselY{\nu}@{z} = e^{-\nu\pi i/2}\modBesselK{\nu}@{ze^{-\pi i/2}}+e^{\nu\pi i/2}\modBesselK{\nu}@{ze^{\pi i/2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>-\pi\BesselY{\nu}@{z} = e^{-\nu\pi i/2}\modBesselK{\nu}@{ze^{-\pi i/2}}+e^{\nu\pi i/2}\modBesselK{\nu}@{ze^{\pi i/2}}</syntaxhighlight> || <math>|\phase@@{z}| \leq \tfrac{1}{2}\pi, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>- Pi*BesselY(nu, z) = exp(- nu*Pi*I/2)*BesselK(nu, z*exp(- Pi*I/2))+ exp(nu*Pi*I/2)*BesselK(nu, z*exp(Pi*I/2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>- Pi*BesselY[\[Nu], z] == Exp[- \[Nu]*Pi*I/2]*BesselK[\[Nu], z*Exp[- Pi*I/2]]+ Exp[\[Nu]*Pi*I/2]*BesselK[\[Nu], z*Exp[Pi*I/2]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 50] || Successful [Tested: 50]
| [https://dlmf.nist.gov/10.27.E10 10.27.E10] || <math qid="Q3500">-\pi\BesselY{\nu}@{z} = e^{-\nu\pi i/2}\modBesselK{\nu}@{ze^{-\pi i/2}}+e^{\nu\pi i/2}\modBesselK{\nu}@{ze^{\pi i/2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>-\pi\BesselY{\nu}@{z} = e^{-\nu\pi i/2}\modBesselK{\nu}@{ze^{-\pi i/2}}+e^{\nu\pi i/2}\modBesselK{\nu}@{ze^{\pi i/2}}</syntaxhighlight> || <math>|\phase@@{z}| \leq \tfrac{1}{2}\pi, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>- Pi*BesselY(nu, z) = exp(- nu*Pi*I/2)*BesselK(nu, z*exp(- Pi*I/2))+ exp(nu*Pi*I/2)*BesselK(nu, z*exp(Pi*I/2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>- Pi*BesselY[\[Nu], z] == Exp[- \[Nu]*Pi*I/2]*BesselK[\[Nu], z*Exp[- Pi*I/2]]+ Exp[\[Nu]*Pi*I/2]*BesselK[\[Nu], z*Exp[Pi*I/2]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 50] || Successful [Tested: 50]
|-  
|-  
| [https://dlmf.nist.gov/10.27.E11 10.27.E11] || [[Item:Q3501|<math>\BesselY{\nu}@{z} = e^{+(\nu+1)\pi i/2}\modBesselI{\nu}@{ze^{-\pi i/2}}-(2/\pi)e^{-\nu\pi i/2}\modBesselK{\nu}@{ze^{-\pi i/2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BesselY{\nu}@{z} = e^{+(\nu+1)\pi i/2}\modBesselI{\nu}@{ze^{-\pi i/2}}-(2/\pi)e^{-\nu\pi i/2}\modBesselK{\nu}@{ze^{-\pi i/2}}</syntaxhighlight> || <math>-\tfrac{1}{2}\pi \leq +\phase@@{z}, -\tfrac{1}{2}\pi \leq -\phase@@{z}, +\phase@@{z} \leq \pi, -\phase@@{z} \leq \pi, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselY(nu, z) = exp(+(nu + 1)*Pi*I/2)*BesselI(nu, z*exp(- Pi*I/2))-(2/Pi)*exp(- nu*Pi*I/2)*BesselK(nu, z*exp(- Pi*I/2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselY[\[Nu], z] == Exp[+(\[Nu]+ 1)*Pi*I/2]*BesselI[\[Nu], z*Exp[- Pi*I/2]]-(2/Pi)*Exp[- \[Nu]*Pi*I/2]*BesselK[\[Nu], z*Exp[- Pi*I/2]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 50] || Successful [Tested: 50]
| [https://dlmf.nist.gov/10.27.E11 10.27.E11] || <math qid="Q3501">\BesselY{\nu}@{z} = e^{+(\nu+1)\pi i/2}\modBesselI{\nu}@{ze^{-\pi i/2}}-(2/\pi)e^{-\nu\pi i/2}\modBesselK{\nu}@{ze^{-\pi i/2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BesselY{\nu}@{z} = e^{+(\nu+1)\pi i/2}\modBesselI{\nu}@{ze^{-\pi i/2}}-(2/\pi)e^{-\nu\pi i/2}\modBesselK{\nu}@{ze^{-\pi i/2}}</syntaxhighlight> || <math>-\tfrac{1}{2}\pi \leq +\phase@@{z}, -\tfrac{1}{2}\pi \leq -\phase@@{z}, +\phase@@{z} \leq \pi, -\phase@@{z} \leq \pi, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselY(nu, z) = exp(+(nu + 1)*Pi*I/2)*BesselI(nu, z*exp(- Pi*I/2))-(2/Pi)*exp(- nu*Pi*I/2)*BesselK(nu, z*exp(- Pi*I/2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselY[\[Nu], z] == Exp[+(\[Nu]+ 1)*Pi*I/2]*BesselI[\[Nu], z*Exp[- Pi*I/2]]-(2/Pi)*Exp[- \[Nu]*Pi*I/2]*BesselK[\[Nu], z*Exp[- Pi*I/2]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 50] || Successful [Tested: 50]
|-  
|-  
| [https://dlmf.nist.gov/10.27.E11 10.27.E11] || [[Item:Q3501|<math>\BesselY{\nu}@{z} = e^{-(\nu+1)\pi i/2}\modBesselI{\nu}@{ze^{+\pi i/2}}-(2/\pi)e^{+\nu\pi i/2}\modBesselK{\nu}@{ze^{+\pi i/2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BesselY{\nu}@{z} = e^{-(\nu+1)\pi i/2}\modBesselI{\nu}@{ze^{+\pi i/2}}-(2/\pi)e^{+\nu\pi i/2}\modBesselK{\nu}@{ze^{+\pi i/2}}</syntaxhighlight> || <math>-\tfrac{1}{2}\pi \leq +\phase@@{z}, -\tfrac{1}{2}\pi \leq -\phase@@{z}, +\phase@@{z} \leq \pi, -\phase@@{z} \leq \pi, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselY(nu, z) = exp(-(nu + 1)*Pi*I/2)*BesselI(nu, z*exp(+ Pi*I/2))-(2/Pi)*exp(+ nu*Pi*I/2)*BesselK(nu, z*exp(+ Pi*I/2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselY[\[Nu], z] == Exp[-(\[Nu]+ 1)*Pi*I/2]*BesselI[\[Nu], z*Exp[+ Pi*I/2]]-(2/Pi)*Exp[+ \[Nu]*Pi*I/2]*BesselK[\[Nu], z*Exp[+ Pi*I/2]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 50] || Successful [Tested: 50]
| [https://dlmf.nist.gov/10.27.E11 10.27.E11] || <math qid="Q3501">\BesselY{\nu}@{z} = e^{-(\nu+1)\pi i/2}\modBesselI{\nu}@{ze^{+\pi i/2}}-(2/\pi)e^{+\nu\pi i/2}\modBesselK{\nu}@{ze^{+\pi i/2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BesselY{\nu}@{z} = e^{-(\nu+1)\pi i/2}\modBesselI{\nu}@{ze^{+\pi i/2}}-(2/\pi)e^{+\nu\pi i/2}\modBesselK{\nu}@{ze^{+\pi i/2}}</syntaxhighlight> || <math>-\tfrac{1}{2}\pi \leq +\phase@@{z}, -\tfrac{1}{2}\pi \leq -\phase@@{z}, +\phase@@{z} \leq \pi, -\phase@@{z} \leq \pi, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselY(nu, z) = exp(-(nu + 1)*Pi*I/2)*BesselI(nu, z*exp(+ Pi*I/2))-(2/Pi)*exp(+ nu*Pi*I/2)*BesselK(nu, z*exp(+ Pi*I/2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselY[\[Nu], z] == Exp[-(\[Nu]+ 1)*Pi*I/2]*BesselI[\[Nu], z*Exp[+ Pi*I/2]]-(2/Pi)*Exp[+ \[Nu]*Pi*I/2]*BesselK[\[Nu], z*Exp[+ Pi*I/2]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 50] || Successful [Tested: 50]
|}
|}
</div>
</div>

Latest revision as of 11:24, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
10.27.E1 I - n ( z ) = I n ( z ) modified-Bessel-first-kind 𝑛 𝑧 modified-Bessel-first-kind 𝑛 𝑧 {\displaystyle{\displaystyle I_{-n}\left(z\right)=I_{n}\left(z\right)}}
\modBesselI{-n}@{z} = \modBesselI{n}@{z}
( ( - n ) + k + 1 ) > 0 , ( n + k + 1 ) > 0 formulae-sequence 𝑛 𝑘 1 0 𝑛 𝑘 1 0 {\displaystyle{\displaystyle\Re((-n)+k+1)>0,\Re(n+k+1)>0}}
BesselI(- n, z) = BesselI(n, z)
BesselI[- n, z] == BesselI[n, z]
Failure Failure Successful [Tested: 21] Successful [Tested: 21]
10.27.E2 I - ν ( z ) = I ν ( z ) + ( 2 / π ) sin ( ν π ) K ν ( z ) modified-Bessel-first-kind 𝜈 𝑧 modified-Bessel-first-kind 𝜈 𝑧 2 𝜋 𝜈 𝜋 modified-Bessel-second-kind 𝜈 𝑧 {\displaystyle{\displaystyle I_{-\nu}\left(z\right)=I_{\nu}\left(z\right)+(2/% \pi)\sin\left(\nu\pi\right)K_{\nu}\left(z\right)}}
\modBesselI{-\nu}@{z} = \modBesselI{\nu}@{z}+(2/\pi)\sin@{\nu\pi}\modBesselK{\nu}@{z}
( ( - ν ) + k + 1 ) > 0 , ( ν + k + 1 ) > 0 formulae-sequence 𝜈 𝑘 1 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re((-\nu)+k+1)>0,\Re(\nu+k+1)>0}}
BesselI(- nu, z) = BesselI(nu, z)+(2/Pi)*sin(nu*Pi)*BesselK(nu, z)
BesselI[- \[Nu], z] == BesselI[\[Nu], z]+(2/Pi)*Sin[\[Nu]*Pi]*BesselK[\[Nu], z]
Successful Successful - Successful [Tested: 70]
10.27.E3 K - ν ( z ) = K ν ( z ) modified-Bessel-second-kind 𝜈 𝑧 modified-Bessel-second-kind 𝜈 𝑧 {\displaystyle{\displaystyle K_{-\nu}\left(z\right)=K_{\nu}\left(z\right)}}
\modBesselK{-\nu}@{z} = \modBesselK{\nu}@{z}

BesselK(- nu, z) = BesselK(nu, z)
BesselK[- \[Nu], z] == BesselK[\[Nu], z]
Successful Successful - Successful [Tested: 70]
10.27.E4 K ν ( z ) = 1 2 π I - ν ( z ) - I ν ( z ) sin ( ν π ) modified-Bessel-second-kind 𝜈 𝑧 1 2 𝜋 modified-Bessel-first-kind 𝜈 𝑧 modified-Bessel-first-kind 𝜈 𝑧 𝜈 𝜋 {\displaystyle{\displaystyle K_{\nu}\left(z\right)=\tfrac{1}{2}\pi\frac{I_{-% \nu}\left(z\right)-I_{\nu}\left(z\right)}{\sin\left(\nu\pi\right)}}}
\modBesselK{\nu}@{z} = \tfrac{1}{2}\pi\frac{\modBesselI{-\nu}@{z}-\modBesselI{\nu}@{z}}{\sin@{\nu\pi}}
( ( - ν ) + k + 1 ) > 0 , ( ν + k + 1 ) > 0 formulae-sequence 𝜈 𝑘 1 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re((-\nu)+k+1)>0,\Re(\nu+k+1)>0}}
BesselK(nu, z) = (1)/(2)*Pi*(BesselI(- nu, z)- BesselI(nu, z))/(sin(nu*Pi))
BesselK[\[Nu], z] == Divide[1,2]*Pi*Divide[BesselI[- \[Nu], z]- BesselI[\[Nu], z],Sin[\[Nu]*Pi]]
Successful Successful -
Failed [14 / 70]
Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]}

Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]}

... skip entries to safe data
10.27.E6 I ν ( z ) = e - ν π i / 2 J ν ( z e + π i / 2 ) modified-Bessel-first-kind 𝜈 𝑧 superscript 𝑒 𝜈 𝜋 𝑖 2 Bessel-J 𝜈 𝑧 superscript 𝑒 𝜋 𝑖 2 {\displaystyle{\displaystyle I_{\nu}\left(z\right)=e^{-\nu\pi i/2}J_{\nu}\left% (ze^{+\pi i/2}\right)}}
\modBesselI{\nu}@{z} = e^{-\nu\pi i/2}\BesselJ{\nu}@{ze^{+\pi i/2}}
- π + ph z , - π - ph z , + ph z 1 2 π , - ph z 1 2 π , ( ν + k + 1 ) > 0 formulae-sequence 𝜋 phase 𝑧 formulae-sequence 𝜋 phase 𝑧 formulae-sequence phase 𝑧 1 2 𝜋 formulae-sequence phase 𝑧 1 2 𝜋 𝜈 𝑘 1 0 {\displaystyle{\displaystyle-\pi\leq+\operatorname{ph}z,-\pi\leq-\operatorname% {ph}z,+\operatorname{ph}z\leq\tfrac{1}{2}\pi,-\operatorname{ph}z\leq\tfrac{1}{% 2}\pi,\Re(\nu+k+1)>0}}
BesselI(nu, z) = exp(- nu*Pi*I/2)*BesselJ(nu, z*exp(+ Pi*I/2))
BesselI[\[Nu], z] == Exp[- \[Nu]*Pi*I/2]*BesselJ[\[Nu], z*Exp[+ Pi*I/2]]
Failure Failure Successful [Tested: 50] Successful [Tested: 50]
10.27.E6 I ν ( z ) = e + ν π i / 2 J ν ( z e - π i / 2 ) modified-Bessel-first-kind 𝜈 𝑧 superscript 𝑒 𝜈 𝜋 𝑖 2 Bessel-J 𝜈 𝑧 superscript 𝑒 𝜋 𝑖 2 {\displaystyle{\displaystyle I_{\nu}\left(z\right)=e^{+\nu\pi i/2}J_{\nu}\left% (ze^{-\pi i/2}\right)}}
\modBesselI{\nu}@{z} = e^{+\nu\pi i/2}\BesselJ{\nu}@{ze^{-\pi i/2}}
- π + ph z , - π - ph z , + ph z 1 2 π , - ph z 1 2 π , ( ν + k + 1 ) > 0 formulae-sequence 𝜋 phase 𝑧 formulae-sequence 𝜋 phase 𝑧 formulae-sequence phase 𝑧 1 2 𝜋 formulae-sequence phase 𝑧 1 2 𝜋 𝜈 𝑘 1 0 {\displaystyle{\displaystyle-\pi\leq+\operatorname{ph}z,-\pi\leq-\operatorname% {ph}z,+\operatorname{ph}z\leq\tfrac{1}{2}\pi,-\operatorname{ph}z\leq\tfrac{1}{% 2}\pi,\Re(\nu+k+1)>0}}
BesselI(nu, z) = exp(+ nu*Pi*I/2)*BesselJ(nu, z*exp(- Pi*I/2))
BesselI[\[Nu], z] == Exp[+ \[Nu]*Pi*I/2]*BesselJ[\[Nu], z*Exp[- Pi*I/2]]
Failure Failure Successful [Tested: 50] Successful [Tested: 50]
10.27.E7 I ν ( z ) = 1 2 e - ν π i / 2 ( H ν ( 1 ) ( z e + π i / 2 ) + H ν ( 2 ) ( z e + π i / 2 ) ) modified-Bessel-first-kind 𝜈 𝑧 1 2 superscript 𝑒 𝜈 𝜋 𝑖 2 Hankel-H-1-Bessel-third-kind 𝜈 𝑧 superscript 𝑒 𝜋 𝑖 2 Hankel-H-2-Bessel-third-kind 𝜈 𝑧 superscript 𝑒 𝜋 𝑖 2 {\displaystyle{\displaystyle I_{\nu}\left(z\right)=\tfrac{1}{2}e^{-\nu\pi i/2}% \left({H^{(1)}_{\nu}}\left(ze^{+\pi i/2}\right)+{H^{(2)}_{\nu}}\left(ze^{+\pi i% /2}\right)\right)}}
\modBesselI{\nu}@{z} = \tfrac{1}{2}e^{-\nu\pi i/2}\left(\HankelH{1}{\nu}@{ze^{+\pi i/2}}+\HankelH{2}{\nu}@{ze^{+\pi i/2}}\right)
- π + ph z , - π - ph z , + ph z 1 2 π , - ph z 1 2 π , ( ν + k + 1 ) > 0 formulae-sequence 𝜋 phase 𝑧 formulae-sequence 𝜋 phase 𝑧 formulae-sequence phase 𝑧 1 2 𝜋 formulae-sequence phase 𝑧 1 2 𝜋 𝜈 𝑘 1 0 {\displaystyle{\displaystyle-\pi\leq+\operatorname{ph}z,-\pi\leq-\operatorname% {ph}z,+\operatorname{ph}z\leq\tfrac{1}{2}\pi,-\operatorname{ph}z\leq\tfrac{1}{% 2}\pi,\Re(\nu+k+1)>0}}
BesselI(nu, z) = (1)/(2)*exp(- nu*Pi*I/2)*(HankelH1(nu, z*exp(+ Pi*I/2))+ HankelH2(nu, z*exp(+ Pi*I/2)))
BesselI[\[Nu], z] == Divide[1,2]*Exp[- \[Nu]*Pi*I/2]*(HankelH1[\[Nu], z*Exp[+ Pi*I/2]]+ HankelH2[\[Nu], z*Exp[+ Pi*I/2]])
Failure Failure Successful [Tested: 50] Successful [Tested: 50]
10.27.E7 I ν ( z ) = 1 2 e + ν π i / 2 ( H ν ( 1 ) ( z e - π i / 2 ) + H ν ( 2 ) ( z e - π i / 2 ) ) modified-Bessel-first-kind 𝜈 𝑧 1 2 superscript 𝑒 𝜈 𝜋 𝑖 2 Hankel-H-1-Bessel-third-kind 𝜈 𝑧 superscript 𝑒 𝜋 𝑖 2 Hankel-H-2-Bessel-third-kind 𝜈 𝑧 superscript 𝑒 𝜋 𝑖 2 {\displaystyle{\displaystyle I_{\nu}\left(z\right)=\tfrac{1}{2}e^{+\nu\pi i/2}% \left({H^{(1)}_{\nu}}\left(ze^{-\pi i/2}\right)+{H^{(2)}_{\nu}}\left(ze^{-\pi i% /2}\right)\right)}}
\modBesselI{\nu}@{z} = \tfrac{1}{2}e^{+\nu\pi i/2}\left(\HankelH{1}{\nu}@{ze^{-\pi i/2}}+\HankelH{2}{\nu}@{ze^{-\pi i/2}}\right)
- π + ph z , - π - ph z , + ph z 1 2 π , - ph z 1 2 π , ( ν + k + 1 ) > 0 formulae-sequence 𝜋 phase 𝑧 formulae-sequence 𝜋 phase 𝑧 formulae-sequence phase 𝑧 1 2 𝜋 formulae-sequence phase 𝑧 1 2 𝜋 𝜈 𝑘 1 0 {\displaystyle{\displaystyle-\pi\leq+\operatorname{ph}z,-\pi\leq-\operatorname% {ph}z,+\operatorname{ph}z\leq\tfrac{1}{2}\pi,-\operatorname{ph}z\leq\tfrac{1}{% 2}\pi,\Re(\nu+k+1)>0}}
BesselI(nu, z) = (1)/(2)*exp(+ nu*Pi*I/2)*(HankelH1(nu, z*exp(- Pi*I/2))+ HankelH2(nu, z*exp(- Pi*I/2)))
BesselI[\[Nu], z] == Divide[1,2]*Exp[+ \[Nu]*Pi*I/2]*(HankelH1[\[Nu], z*Exp[- Pi*I/2]]+ HankelH2[\[Nu], z*Exp[- Pi*I/2]])
Failure Failure Successful [Tested: 50] Successful [Tested: 50]
10.27.E9 π i J ν ( z ) = e - ν π i / 2 K ν ( z e - π i / 2 ) - e ν π i / 2 K ν ( z e π i / 2 ) 𝜋 𝑖 Bessel-J 𝜈 𝑧 superscript 𝑒 𝜈 𝜋 𝑖 2 modified-Bessel-second-kind 𝜈 𝑧 superscript 𝑒 𝜋 𝑖 2 superscript 𝑒 𝜈 𝜋 𝑖 2 modified-Bessel-second-kind 𝜈 𝑧 superscript 𝑒 𝜋 𝑖 2 {\displaystyle{\displaystyle\pi iJ_{\nu}\left(z\right)=e^{-\nu\pi i/2}K_{\nu}% \left(ze^{-\pi i/2}\right)-e^{\nu\pi i/2}K_{\nu}\left(ze^{\pi i/2}\right)}}
\pi i\BesselJ{\nu}@{z} = e^{-\nu\pi i/2}\modBesselK{\nu}@{ze^{-\pi i/2}}-e^{\nu\pi i/2}\modBesselK{\nu}@{ze^{\pi i/2}}
| ph z | 1 2 π , ( ν + k + 1 ) > 0 formulae-sequence phase 𝑧 1 2 𝜋 𝜈 𝑘 1 0 {\displaystyle{\displaystyle|\operatorname{ph}z|\leq\tfrac{1}{2}\pi,\Re(\nu+k+% 1)>0}}
Pi*I*BesselJ(nu, z) = exp(- nu*Pi*I/2)*BesselK(nu, z*exp(- Pi*I/2))- exp(nu*Pi*I/2)*BesselK(nu, z*exp(Pi*I/2))
Pi*I*BesselJ[\[Nu], z] == Exp[- \[Nu]*Pi*I/2]*BesselK[\[Nu], z*Exp[- Pi*I/2]]- Exp[\[Nu]*Pi*I/2]*BesselK[\[Nu], z*Exp[Pi*I/2]]
Failure Failure Successful [Tested: 50] Successful [Tested: 50]
10.27.E10 - π Y ν ( z ) = e - ν π i / 2 K ν ( z e - π i / 2 ) + e ν π i / 2 K ν ( z e π i / 2 ) 𝜋 Bessel-Y-Weber 𝜈 𝑧 superscript 𝑒 𝜈 𝜋 𝑖 2 modified-Bessel-second-kind 𝜈 𝑧 superscript 𝑒 𝜋 𝑖 2 superscript 𝑒 𝜈 𝜋 𝑖 2 modified-Bessel-second-kind 𝜈 𝑧 superscript 𝑒 𝜋 𝑖 2 {\displaystyle{\displaystyle-\pi Y_{\nu}\left(z\right)=e^{-\nu\pi i/2}K_{\nu}% \left(ze^{-\pi i/2}\right)+e^{\nu\pi i/2}K_{\nu}\left(ze^{\pi i/2}\right)}}
-\pi\BesselY{\nu}@{z} = e^{-\nu\pi i/2}\modBesselK{\nu}@{ze^{-\pi i/2}}+e^{\nu\pi i/2}\modBesselK{\nu}@{ze^{\pi i/2}}
| ph z | 1 2 π , ( ν + k + 1 ) > 0 , ( ( - ν ) + k + 1 ) > 0 formulae-sequence phase 𝑧 1 2 𝜋 formulae-sequence 𝜈 𝑘 1 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle|\operatorname{ph}z|\leq\tfrac{1}{2}\pi,\Re(\nu+k+% 1)>0,\Re((-\nu)+k+1)>0}}
- Pi*BesselY(nu, z) = exp(- nu*Pi*I/2)*BesselK(nu, z*exp(- Pi*I/2))+ exp(nu*Pi*I/2)*BesselK(nu, z*exp(Pi*I/2))
- Pi*BesselY[\[Nu], z] == Exp[- \[Nu]*Pi*I/2]*BesselK[\[Nu], z*Exp[- Pi*I/2]]+ Exp[\[Nu]*Pi*I/2]*BesselK[\[Nu], z*Exp[Pi*I/2]]
Failure Failure Successful [Tested: 50] Successful [Tested: 50]
10.27.E11 Y ν ( z ) = e + ( ν + 1 ) π i / 2 I ν ( z e - π i / 2 ) - ( 2 / π ) e - ν π i / 2 K ν ( z e - π i / 2 ) Bessel-Y-Weber 𝜈 𝑧 superscript 𝑒 𝜈 1 𝜋 𝑖 2 modified-Bessel-first-kind 𝜈 𝑧 superscript 𝑒 𝜋 𝑖 2 2 𝜋 superscript 𝑒 𝜈 𝜋 𝑖 2 modified-Bessel-second-kind 𝜈 𝑧 superscript 𝑒 𝜋 𝑖 2 {\displaystyle{\displaystyle Y_{\nu}\left(z\right)=e^{+(\nu+1)\pi i/2}I_{\nu}% \left(ze^{-\pi i/2}\right)-(2/\pi)e^{-\nu\pi i/2}K_{\nu}\left(ze^{-\pi i/2}% \right)}}
\BesselY{\nu}@{z} = e^{+(\nu+1)\pi i/2}\modBesselI{\nu}@{ze^{-\pi i/2}}-(2/\pi)e^{-\nu\pi i/2}\modBesselK{\nu}@{ze^{-\pi i/2}}
- 1 2 π + ph z , - 1 2 π - ph z , + ph z π , - ph z π , ( ν + k + 1 ) > 0 , ( ( - ν ) + k + 1 ) > 0 formulae-sequence 1 2 𝜋 phase 𝑧 formulae-sequence 1 2 𝜋 phase 𝑧 formulae-sequence phase 𝑧 𝜋 formulae-sequence phase 𝑧 𝜋 formulae-sequence 𝜈 𝑘 1 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle-\tfrac{1}{2}\pi\leq+\operatorname{ph}z,-\tfrac{1}% {2}\pi\leq-\operatorname{ph}z,+\operatorname{ph}z\leq\pi,-\operatorname{ph}z% \leq\pi,\Re(\nu+k+1)>0,\Re((-\nu)+k+1)>0}}
BesselY(nu, z) = exp(+(nu + 1)*Pi*I/2)*BesselI(nu, z*exp(- Pi*I/2))-(2/Pi)*exp(- nu*Pi*I/2)*BesselK(nu, z*exp(- Pi*I/2))
BesselY[\[Nu], z] == Exp[+(\[Nu]+ 1)*Pi*I/2]*BesselI[\[Nu], z*Exp[- Pi*I/2]]-(2/Pi)*Exp[- \[Nu]*Pi*I/2]*BesselK[\[Nu], z*Exp[- Pi*I/2]]
Failure Failure Successful [Tested: 50] Successful [Tested: 50]
10.27.E11 Y ν ( z ) = e - ( ν + 1 ) π i / 2 I ν ( z e + π i / 2 ) - ( 2 / π ) e + ν π i / 2 K ν ( z e + π i / 2 ) Bessel-Y-Weber 𝜈 𝑧 superscript 𝑒 𝜈 1 𝜋 𝑖 2 modified-Bessel-first-kind 𝜈 𝑧 superscript 𝑒 𝜋 𝑖 2 2 𝜋 superscript 𝑒 𝜈 𝜋 𝑖 2 modified-Bessel-second-kind 𝜈 𝑧 superscript 𝑒 𝜋 𝑖 2 {\displaystyle{\displaystyle Y_{\nu}\left(z\right)=e^{-(\nu+1)\pi i/2}I_{\nu}% \left(ze^{+\pi i/2}\right)-(2/\pi)e^{+\nu\pi i/2}K_{\nu}\left(ze^{+\pi i/2}% \right)}}
\BesselY{\nu}@{z} = e^{-(\nu+1)\pi i/2}\modBesselI{\nu}@{ze^{+\pi i/2}}-(2/\pi)e^{+\nu\pi i/2}\modBesselK{\nu}@{ze^{+\pi i/2}}
- 1 2 π + ph z , - 1 2 π - ph z , + ph z π , - ph z π , ( ν + k + 1 ) > 0 , ( ( - ν ) + k + 1 ) > 0 formulae-sequence 1 2 𝜋 phase 𝑧 formulae-sequence 1 2 𝜋 phase 𝑧 formulae-sequence phase 𝑧 𝜋 formulae-sequence phase 𝑧 𝜋 formulae-sequence 𝜈 𝑘 1 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle-\tfrac{1}{2}\pi\leq+\operatorname{ph}z,-\tfrac{1}% {2}\pi\leq-\operatorname{ph}z,+\operatorname{ph}z\leq\pi,-\operatorname{ph}z% \leq\pi,\Re(\nu+k+1)>0,\Re((-\nu)+k+1)>0}}
BesselY(nu, z) = exp(-(nu + 1)*Pi*I/2)*BesselI(nu, z*exp(+ Pi*I/2))-(2/Pi)*exp(+ nu*Pi*I/2)*BesselK(nu, z*exp(+ Pi*I/2))
BesselY[\[Nu], z] == Exp[-(\[Nu]+ 1)*Pi*I/2]*BesselI[\[Nu], z*Exp[+ Pi*I/2]]-(2/Pi)*Exp[+ \[Nu]*Pi*I/2]*BesselK[\[Nu], z*Exp[+ Pi*I/2]]
Failure Failure Successful [Tested: 50] Successful [Tested: 50]