10.5: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/10.5.E1 10.5.E1] || [[Item:Q3024|<math>\Wronskian@{\BesselJ{\nu}@{z},\BesselJ{-\nu}@{z}} = \BesselJ{\nu+1}@{z}\BesselJ{-\nu}@{z}+\BesselJ{\nu}@{z}\BesselJ{-\nu-1}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Wronskian@{\BesselJ{\nu}@{z},\BesselJ{-\nu}@{z}} = \BesselJ{\nu+1}@{z}\BesselJ{-\nu}@{z}+\BesselJ{\nu}@{z}\BesselJ{-\nu-1}@{z}</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0, \realpart@@{((\nu+1)+k+1)} > 0, \realpart@@{((-\nu-1)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>(BesselJ(nu, z))*diff(BesselJ(- nu, z), z)-diff(BesselJ(nu, z), z)*(BesselJ(- nu, z)) = BesselJ(nu + 1, z)*BesselJ(- nu, z)+ BesselJ(nu, z)*BesselJ(- nu - 1, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Wronskian[{BesselJ[\[Nu], z], BesselJ[- \[Nu], z]}, z] == BesselJ[\[Nu]+ 1, z]*BesselJ[- \[Nu], z]+ BesselJ[\[Nu], z]*BesselJ[- \[Nu]- 1, z]</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || Successful [Tested: 70]
| [https://dlmf.nist.gov/10.5.E1 10.5.E1] || <math qid="Q3024">\Wronskian@{\BesselJ{\nu}@{z},\BesselJ{-\nu}@{z}} = \BesselJ{\nu+1}@{z}\BesselJ{-\nu}@{z}+\BesselJ{\nu}@{z}\BesselJ{-\nu-1}@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Wronskian@{\BesselJ{\nu}@{z},\BesselJ{-\nu}@{z}} = \BesselJ{\nu+1}@{z}\BesselJ{-\nu}@{z}+\BesselJ{\nu}@{z}\BesselJ{-\nu-1}@{z}</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0, \realpart@@{((\nu+1)+k+1)} > 0, \realpart@@{((-\nu-1)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>(BesselJ(nu, z))*diff(BesselJ(- nu, z), z)-diff(BesselJ(nu, z), z)*(BesselJ(- nu, z)) = BesselJ(nu + 1, z)*BesselJ(- nu, z)+ BesselJ(nu, z)*BesselJ(- nu - 1, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Wronskian[{BesselJ[\[Nu], z], BesselJ[- \[Nu], z]}, z] == BesselJ[\[Nu]+ 1, z]*BesselJ[- \[Nu], z]+ BesselJ[\[Nu], z]*BesselJ[- \[Nu]- 1, z]</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || Successful [Tested: 70]
|-  
|-  
| [https://dlmf.nist.gov/10.5.E1 10.5.E1] || [[Item:Q3024|<math>\BesselJ{\nu+1}@{z}\BesselJ{-\nu}@{z}+\BesselJ{\nu}@{z}\BesselJ{-\nu-1}@{z} = -2\sin@{\nu\pi}/(\pi z)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BesselJ{\nu+1}@{z}\BesselJ{-\nu}@{z}+\BesselJ{\nu}@{z}\BesselJ{-\nu-1}@{z} = -2\sin@{\nu\pi}/(\pi z)</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0, \realpart@@{((\nu+1)+k+1)} > 0, \realpart@@{((-\nu-1)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselJ(nu + 1, z)*BesselJ(- nu, z)+ BesselJ(nu, z)*BesselJ(- nu - 1, z) = - 2*sin(nu*Pi)/(Pi*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselJ[\[Nu]+ 1, z]*BesselJ[- \[Nu], z]+ BesselJ[\[Nu], z]*BesselJ[- \[Nu]- 1, z] == - 2*Sin[\[Nu]*Pi]/(Pi*z)</syntaxhighlight> || Failure || Successful || Successful [Tested: 70] || Successful [Tested: 70]
| [https://dlmf.nist.gov/10.5.E1 10.5.E1] || <math qid="Q3024">\BesselJ{\nu+1}@{z}\BesselJ{-\nu}@{z}+\BesselJ{\nu}@{z}\BesselJ{-\nu-1}@{z} = -2\sin@{\nu\pi}/(\pi z)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BesselJ{\nu+1}@{z}\BesselJ{-\nu}@{z}+\BesselJ{\nu}@{z}\BesselJ{-\nu-1}@{z} = -2\sin@{\nu\pi}/(\pi z)</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0, \realpart@@{((\nu+1)+k+1)} > 0, \realpart@@{((-\nu-1)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselJ(nu + 1, z)*BesselJ(- nu, z)+ BesselJ(nu, z)*BesselJ(- nu - 1, z) = - 2*sin(nu*Pi)/(Pi*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselJ[\[Nu]+ 1, z]*BesselJ[- \[Nu], z]+ BesselJ[\[Nu], z]*BesselJ[- \[Nu]- 1, z] == - 2*Sin[\[Nu]*Pi]/(Pi*z)</syntaxhighlight> || Failure || Successful || Successful [Tested: 70] || Successful [Tested: 70]
|-  
|-  
| [https://dlmf.nist.gov/10.5.E2 10.5.E2] || [[Item:Q3025|<math>\Wronskian@{\BesselJ{\nu}@{z},\BesselY{\nu}@{z}} = \BesselJ{\nu+1}@{z}\BesselY{\nu}@{z}-\BesselJ{\nu}@{z}\BesselY{\nu+1}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Wronskian@{\BesselJ{\nu}@{z},\BesselY{\nu}@{z}} = \BesselJ{\nu+1}@{z}\BesselY{\nu}@{z}-\BesselJ{\nu}@{z}\BesselY{\nu+1}@{z}</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0, \realpart@@{((\nu+1)+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0, \realpart@@{((-(\nu+1))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>(BesselJ(nu, z))*diff(BesselY(nu, z), z)-diff(BesselJ(nu, z), z)*(BesselY(nu, z)) = BesselJ(nu + 1, z)*BesselY(nu, z)- BesselJ(nu, z)*BesselY(nu + 1, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Wronskian[{BesselJ[\[Nu], z], BesselY[\[Nu], z]}, z] == BesselJ[\[Nu]+ 1, z]*BesselY[\[Nu], z]- BesselJ[\[Nu], z]*BesselY[\[Nu]+ 1, z]</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || Successful [Tested: 70]
| [https://dlmf.nist.gov/10.5.E2 10.5.E2] || <math qid="Q3025">\Wronskian@{\BesselJ{\nu}@{z},\BesselY{\nu}@{z}} = \BesselJ{\nu+1}@{z}\BesselY{\nu}@{z}-\BesselJ{\nu}@{z}\BesselY{\nu+1}@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Wronskian@{\BesselJ{\nu}@{z},\BesselY{\nu}@{z}} = \BesselJ{\nu+1}@{z}\BesselY{\nu}@{z}-\BesselJ{\nu}@{z}\BesselY{\nu+1}@{z}</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0, \realpart@@{((\nu+1)+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0, \realpart@@{((-(\nu+1))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>(BesselJ(nu, z))*diff(BesselY(nu, z), z)-diff(BesselJ(nu, z), z)*(BesselY(nu, z)) = BesselJ(nu + 1, z)*BesselY(nu, z)- BesselJ(nu, z)*BesselY(nu + 1, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Wronskian[{BesselJ[\[Nu], z], BesselY[\[Nu], z]}, z] == BesselJ[\[Nu]+ 1, z]*BesselY[\[Nu], z]- BesselJ[\[Nu], z]*BesselY[\[Nu]+ 1, z]</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || Successful [Tested: 70]
|-  
|-  
| [https://dlmf.nist.gov/10.5.E2 10.5.E2] || [[Item:Q3025|<math>\BesselJ{\nu+1}@{z}\BesselY{\nu}@{z}-\BesselJ{\nu}@{z}\BesselY{\nu+1}@{z} = 2/(\pi z)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BesselJ{\nu+1}@{z}\BesselY{\nu}@{z}-\BesselJ{\nu}@{z}\BesselY{\nu+1}@{z} = 2/(\pi z)</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0, \realpart@@{((\nu+1)+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0, \realpart@@{((-(\nu+1))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselJ(nu + 1, z)*BesselY(nu, z)- BesselJ(nu, z)*BesselY(nu + 1, z) = 2/(Pi*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselJ[\[Nu]+ 1, z]*BesselY[\[Nu], z]- BesselJ[\[Nu], z]*BesselY[\[Nu]+ 1, z] == 2/(Pi*z)</syntaxhighlight> || Failure || Successful || Successful [Tested: 70] || Successful [Tested: 70]
| [https://dlmf.nist.gov/10.5.E2 10.5.E2] || <math qid="Q3025">\BesselJ{\nu+1}@{z}\BesselY{\nu}@{z}-\BesselJ{\nu}@{z}\BesselY{\nu+1}@{z} = 2/(\pi z)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BesselJ{\nu+1}@{z}\BesselY{\nu}@{z}-\BesselJ{\nu}@{z}\BesselY{\nu+1}@{z} = 2/(\pi z)</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0, \realpart@@{((\nu+1)+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0, \realpart@@{((-(\nu+1))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselJ(nu + 1, z)*BesselY(nu, z)- BesselJ(nu, z)*BesselY(nu + 1, z) = 2/(Pi*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselJ[\[Nu]+ 1, z]*BesselY[\[Nu], z]- BesselJ[\[Nu], z]*BesselY[\[Nu]+ 1, z] == 2/(Pi*z)</syntaxhighlight> || Failure || Successful || Successful [Tested: 70] || Successful [Tested: 70]
|-  
|-  
| [https://dlmf.nist.gov/10.5.E3 10.5.E3] || [[Item:Q3026|<math>\Wronskian@{\BesselJ{\nu}@{z},\HankelH{1}{\nu}@{z}} = \BesselJ{\nu+1}@{z}\HankelH{1}{\nu}@{z}-\BesselJ{\nu}@{z}\HankelH{1}{\nu+1}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Wronskian@{\BesselJ{\nu}@{z},\HankelH{1}{\nu}@{z}} = \BesselJ{\nu+1}@{z}\HankelH{1}{\nu}@{z}-\BesselJ{\nu}@{z}\HankelH{1}{\nu+1}@{z}</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0, \realpart@@{((\nu+1)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>(BesselJ(nu, z))*diff(HankelH1(nu, z), z)-diff(BesselJ(nu, z), z)*(HankelH1(nu, z)) = BesselJ(nu + 1, z)*HankelH1(nu, z)- BesselJ(nu, z)*HankelH1(nu + 1, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Wronskian[{BesselJ[\[Nu], z], HankelH1[\[Nu], z]}, z] == BesselJ[\[Nu]+ 1, z]*HankelH1[\[Nu], z]- BesselJ[\[Nu], z]*HankelH1[\[Nu]+ 1, z]</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || Successful [Tested: 70]
| [https://dlmf.nist.gov/10.5.E3 10.5.E3] || <math qid="Q3026">\Wronskian@{\BesselJ{\nu}@{z},\HankelH{1}{\nu}@{z}} = \BesselJ{\nu+1}@{z}\HankelH{1}{\nu}@{z}-\BesselJ{\nu}@{z}\HankelH{1}{\nu+1}@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Wronskian@{\BesselJ{\nu}@{z},\HankelH{1}{\nu}@{z}} = \BesselJ{\nu+1}@{z}\HankelH{1}{\nu}@{z}-\BesselJ{\nu}@{z}\HankelH{1}{\nu+1}@{z}</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0, \realpart@@{((\nu+1)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>(BesselJ(nu, z))*diff(HankelH1(nu, z), z)-diff(BesselJ(nu, z), z)*(HankelH1(nu, z)) = BesselJ(nu + 1, z)*HankelH1(nu, z)- BesselJ(nu, z)*HankelH1(nu + 1, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Wronskian[{BesselJ[\[Nu], z], HankelH1[\[Nu], z]}, z] == BesselJ[\[Nu]+ 1, z]*HankelH1[\[Nu], z]- BesselJ[\[Nu], z]*HankelH1[\[Nu]+ 1, z]</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || Successful [Tested: 70]
|-  
|-  
| [https://dlmf.nist.gov/10.5.E3 10.5.E3] || [[Item:Q3026|<math>\BesselJ{\nu+1}@{z}\HankelH{1}{\nu}@{z}-\BesselJ{\nu}@{z}\HankelH{1}{\nu+1}@{z} = 2i/(\pi z)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BesselJ{\nu+1}@{z}\HankelH{1}{\nu}@{z}-\BesselJ{\nu}@{z}\HankelH{1}{\nu+1}@{z} = 2i/(\pi z)</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0, \realpart@@{((\nu+1)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselJ(nu + 1, z)*HankelH1(nu, z)- BesselJ(nu, z)*HankelH1(nu + 1, z) = 2*I/(Pi*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselJ[\[Nu]+ 1, z]*HankelH1[\[Nu], z]- BesselJ[\[Nu], z]*HankelH1[\[Nu]+ 1, z] == 2*I/(Pi*z)</syntaxhighlight> || Failure || Successful || Successful [Tested: 70] || Successful [Tested: 70]
| [https://dlmf.nist.gov/10.5.E3 10.5.E3] || <math qid="Q3026">\BesselJ{\nu+1}@{z}\HankelH{1}{\nu}@{z}-\BesselJ{\nu}@{z}\HankelH{1}{\nu+1}@{z} = 2i/(\pi z)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BesselJ{\nu+1}@{z}\HankelH{1}{\nu}@{z}-\BesselJ{\nu}@{z}\HankelH{1}{\nu+1}@{z} = 2i/(\pi z)</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0, \realpart@@{((\nu+1)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselJ(nu + 1, z)*HankelH1(nu, z)- BesselJ(nu, z)*HankelH1(nu + 1, z) = 2*I/(Pi*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselJ[\[Nu]+ 1, z]*HankelH1[\[Nu], z]- BesselJ[\[Nu], z]*HankelH1[\[Nu]+ 1, z] == 2*I/(Pi*z)</syntaxhighlight> || Failure || Successful || Successful [Tested: 70] || Successful [Tested: 70]
|-  
|-  
| [https://dlmf.nist.gov/10.5.E4 10.5.E4] || [[Item:Q3027|<math>\Wronskian@{\BesselJ{\nu}@{z},\HankelH{2}{\nu}@{z}} = \BesselJ{\nu+1}@{z}\HankelH{2}{\nu}@{z}-\BesselJ{\nu}@{z}\HankelH{2}{\nu+1}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Wronskian@{\BesselJ{\nu}@{z},\HankelH{2}{\nu}@{z}} = \BesselJ{\nu+1}@{z}\HankelH{2}{\nu}@{z}-\BesselJ{\nu}@{z}\HankelH{2}{\nu+1}@{z}</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0, \realpart@@{((\nu+1)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>(BesselJ(nu, z))*diff(HankelH2(nu, z), z)-diff(BesselJ(nu, z), z)*(HankelH2(nu, z)) = BesselJ(nu + 1, z)*HankelH2(nu, z)- BesselJ(nu, z)*HankelH2(nu + 1, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Wronskian[{BesselJ[\[Nu], z], HankelH2[\[Nu], z]}, z] == BesselJ[\[Nu]+ 1, z]*HankelH2[\[Nu], z]- BesselJ[\[Nu], z]*HankelH2[\[Nu]+ 1, z]</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || Successful [Tested: 70]
| [https://dlmf.nist.gov/10.5.E4 10.5.E4] || <math qid="Q3027">\Wronskian@{\BesselJ{\nu}@{z},\HankelH{2}{\nu}@{z}} = \BesselJ{\nu+1}@{z}\HankelH{2}{\nu}@{z}-\BesselJ{\nu}@{z}\HankelH{2}{\nu+1}@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Wronskian@{\BesselJ{\nu}@{z},\HankelH{2}{\nu}@{z}} = \BesselJ{\nu+1}@{z}\HankelH{2}{\nu}@{z}-\BesselJ{\nu}@{z}\HankelH{2}{\nu+1}@{z}</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0, \realpart@@{((\nu+1)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>(BesselJ(nu, z))*diff(HankelH2(nu, z), z)-diff(BesselJ(nu, z), z)*(HankelH2(nu, z)) = BesselJ(nu + 1, z)*HankelH2(nu, z)- BesselJ(nu, z)*HankelH2(nu + 1, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Wronskian[{BesselJ[\[Nu], z], HankelH2[\[Nu], z]}, z] == BesselJ[\[Nu]+ 1, z]*HankelH2[\[Nu], z]- BesselJ[\[Nu], z]*HankelH2[\[Nu]+ 1, z]</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || Successful [Tested: 70]
|-  
|-  
| [https://dlmf.nist.gov/10.5.E4 10.5.E4] || [[Item:Q3027|<math>\BesselJ{\nu+1}@{z}\HankelH{2}{\nu}@{z}-\BesselJ{\nu}@{z}\HankelH{2}{\nu+1}@{z} = -2i/(\pi z)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BesselJ{\nu+1}@{z}\HankelH{2}{\nu}@{z}-\BesselJ{\nu}@{z}\HankelH{2}{\nu+1}@{z} = -2i/(\pi z)</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0, \realpart@@{((\nu+1)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselJ(nu + 1, z)*HankelH2(nu, z)- BesselJ(nu, z)*HankelH2(nu + 1, z) = - 2*I/(Pi*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselJ[\[Nu]+ 1, z]*HankelH2[\[Nu], z]- BesselJ[\[Nu], z]*HankelH2[\[Nu]+ 1, z] == - 2*I/(Pi*z)</syntaxhighlight> || Failure || Successful || Successful [Tested: 70] || Successful [Tested: 70]
| [https://dlmf.nist.gov/10.5.E4 10.5.E4] || <math qid="Q3027">\BesselJ{\nu+1}@{z}\HankelH{2}{\nu}@{z}-\BesselJ{\nu}@{z}\HankelH{2}{\nu+1}@{z} = -2i/(\pi z)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BesselJ{\nu+1}@{z}\HankelH{2}{\nu}@{z}-\BesselJ{\nu}@{z}\HankelH{2}{\nu+1}@{z} = -2i/(\pi z)</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0, \realpart@@{((\nu+1)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselJ(nu + 1, z)*HankelH2(nu, z)- BesselJ(nu, z)*HankelH2(nu + 1, z) = - 2*I/(Pi*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselJ[\[Nu]+ 1, z]*HankelH2[\[Nu], z]- BesselJ[\[Nu], z]*HankelH2[\[Nu]+ 1, z] == - 2*I/(Pi*z)</syntaxhighlight> || Failure || Successful || Successful [Tested: 70] || Successful [Tested: 70]
|-  
|-  
| [https://dlmf.nist.gov/10.5.E5 10.5.E5] || [[Item:Q3028|<math>\Wronskian@{\HankelH{1}{\nu}@{z},\HankelH{2}{\nu}@{z}} = \HankelH{1}{\nu+1}@{z}\HankelH{2}{\nu}@{z}-\HankelH{1}{\nu}@{z}\HankelH{2}{\nu+1}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Wronskian@{\HankelH{1}{\nu}@{z},\HankelH{2}{\nu}@{z}} = \HankelH{1}{\nu+1}@{z}\HankelH{2}{\nu}@{z}-\HankelH{1}{\nu}@{z}\HankelH{2}{\nu+1}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(HankelH1(nu, z))*diff(HankelH2(nu, z), z)-diff(HankelH1(nu, z), z)*(HankelH2(nu, z)) = HankelH1(nu + 1, z)*HankelH2(nu, z)- HankelH1(nu, z)*HankelH2(nu + 1, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Wronskian[{HankelH1[\[Nu], z], HankelH2[\[Nu], z]}, z] == HankelH1[\[Nu]+ 1, z]*HankelH2[\[Nu], z]- HankelH1[\[Nu], z]*HankelH2[\[Nu]+ 1, z]</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || Successful [Tested: 70]
| [https://dlmf.nist.gov/10.5.E5 10.5.E5] || <math qid="Q3028">\Wronskian@{\HankelH{1}{\nu}@{z},\HankelH{2}{\nu}@{z}} = \HankelH{1}{\nu+1}@{z}\HankelH{2}{\nu}@{z}-\HankelH{1}{\nu}@{z}\HankelH{2}{\nu+1}@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Wronskian@{\HankelH{1}{\nu}@{z},\HankelH{2}{\nu}@{z}} = \HankelH{1}{\nu+1}@{z}\HankelH{2}{\nu}@{z}-\HankelH{1}{\nu}@{z}\HankelH{2}{\nu+1}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(HankelH1(nu, z))*diff(HankelH2(nu, z), z)-diff(HankelH1(nu, z), z)*(HankelH2(nu, z)) = HankelH1(nu + 1, z)*HankelH2(nu, z)- HankelH1(nu, z)*HankelH2(nu + 1, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Wronskian[{HankelH1[\[Nu], z], HankelH2[\[Nu], z]}, z] == HankelH1[\[Nu]+ 1, z]*HankelH2[\[Nu], z]- HankelH1[\[Nu], z]*HankelH2[\[Nu]+ 1, z]</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || Successful [Tested: 70]
|-  
|-  
| [https://dlmf.nist.gov/10.5.E5 10.5.E5] || [[Item:Q3028|<math>\HankelH{1}{\nu+1}@{z}\HankelH{2}{\nu}@{z}-\HankelH{1}{\nu}@{z}\HankelH{2}{\nu+1}@{z} = -4i/(\pi z)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\HankelH{1}{\nu+1}@{z}\HankelH{2}{\nu}@{z}-\HankelH{1}{\nu}@{z}\HankelH{2}{\nu+1}@{z} = -4i/(\pi z)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>HankelH1(nu + 1, z)*HankelH2(nu, z)- HankelH1(nu, z)*HankelH2(nu + 1, z) = - 4*I/(Pi*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>HankelH1[\[Nu]+ 1, z]*HankelH2[\[Nu], z]- HankelH1[\[Nu], z]*HankelH2[\[Nu]+ 1, z] == - 4*I/(Pi*z)</syntaxhighlight> || Failure || Successful || Successful [Tested: 70] || Successful [Tested: 70]
| [https://dlmf.nist.gov/10.5.E5 10.5.E5] || <math qid="Q3028">\HankelH{1}{\nu+1}@{z}\HankelH{2}{\nu}@{z}-\HankelH{1}{\nu}@{z}\HankelH{2}{\nu+1}@{z} = -4i/(\pi z)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\HankelH{1}{\nu+1}@{z}\HankelH{2}{\nu}@{z}-\HankelH{1}{\nu}@{z}\HankelH{2}{\nu+1}@{z} = -4i/(\pi z)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>HankelH1(nu + 1, z)*HankelH2(nu, z)- HankelH1(nu, z)*HankelH2(nu + 1, z) = - 4*I/(Pi*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>HankelH1[\[Nu]+ 1, z]*HankelH2[\[Nu], z]- HankelH1[\[Nu], z]*HankelH2[\[Nu]+ 1, z] == - 4*I/(Pi*z)</syntaxhighlight> || Failure || Successful || Successful [Tested: 70] || Successful [Tested: 70]
|}
|}
</div>
</div>

Latest revision as of 11:22, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
10.5.E1 𝒲 { J ν ( z ) , J - ν ( z ) } = J ν + 1 ( z ) J - ν ( z ) + J ν ( z ) J - ν - 1 ( z ) Wronskian Bessel-J 𝜈 𝑧 Bessel-J 𝜈 𝑧 Bessel-J 𝜈 1 𝑧 Bessel-J 𝜈 𝑧 Bessel-J 𝜈 𝑧 Bessel-J 𝜈 1 𝑧 {\displaystyle{\displaystyle\mathscr{W}\left\{J_{\nu}\left(z\right),J_{-\nu}% \left(z\right)\right\}=J_{\nu+1}\left(z\right)J_{-\nu}\left(z\right)+J_{\nu}% \left(z\right)J_{-\nu-1}\left(z\right)}}
\Wronskian@{\BesselJ{\nu}@{z},\BesselJ{-\nu}@{z}} = \BesselJ{\nu+1}@{z}\BesselJ{-\nu}@{z}+\BesselJ{\nu}@{z}\BesselJ{-\nu-1}@{z}
( ν + k + 1 ) > 0 , ( ( - ν ) + k + 1 ) > 0 , ( ( ν + 1 ) + k + 1 ) > 0 , ( ( - ν - 1 ) + k + 1 ) > 0 formulae-sequence 𝜈 𝑘 1 0 formulae-sequence 𝜈 𝑘 1 0 formulae-sequence 𝜈 1 𝑘 1 0 𝜈 1 𝑘 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0,\Re((-\nu)+k+1)>0,\Re((\nu+1)+k+1)>% 0,\Re((-\nu-1)+k+1)>0}}
(BesselJ(nu, z))*diff(BesselJ(- nu, z), z)-diff(BesselJ(nu, z), z)*(BesselJ(- nu, z)) = BesselJ(nu + 1, z)*BesselJ(- nu, z)+ BesselJ(nu, z)*BesselJ(- nu - 1, z)
Wronskian[{BesselJ[\[Nu], z], BesselJ[- \[Nu], z]}, z] == BesselJ[\[Nu]+ 1, z]*BesselJ[- \[Nu], z]+ BesselJ[\[Nu], z]*BesselJ[- \[Nu]- 1, z]
Successful Successful Skip - symbolical successful subtest Successful [Tested: 70]
10.5.E1 J ν + 1 ( z ) J - ν ( z ) + J ν ( z ) J - ν - 1 ( z ) = - 2 sin ( ν π ) / ( π z ) Bessel-J 𝜈 1 𝑧 Bessel-J 𝜈 𝑧 Bessel-J 𝜈 𝑧 Bessel-J 𝜈 1 𝑧 2 𝜈 𝜋 𝜋 𝑧 {\displaystyle{\displaystyle J_{\nu+1}\left(z\right)J_{-\nu}\left(z\right)+J_{% \nu}\left(z\right)J_{-\nu-1}\left(z\right)=-2\sin\left(\nu\pi\right)/(\pi z)}}
\BesselJ{\nu+1}@{z}\BesselJ{-\nu}@{z}+\BesselJ{\nu}@{z}\BesselJ{-\nu-1}@{z} = -2\sin@{\nu\pi}/(\pi z)
( ν + k + 1 ) > 0 , ( ( - ν ) + k + 1 ) > 0 , ( ( ν + 1 ) + k + 1 ) > 0 , ( ( - ν - 1 ) + k + 1 ) > 0 formulae-sequence 𝜈 𝑘 1 0 formulae-sequence 𝜈 𝑘 1 0 formulae-sequence 𝜈 1 𝑘 1 0 𝜈 1 𝑘 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0,\Re((-\nu)+k+1)>0,\Re((\nu+1)+k+1)>% 0,\Re((-\nu-1)+k+1)>0}}
BesselJ(nu + 1, z)*BesselJ(- nu, z)+ BesselJ(nu, z)*BesselJ(- nu - 1, z) = - 2*sin(nu*Pi)/(Pi*z)
BesselJ[\[Nu]+ 1, z]*BesselJ[- \[Nu], z]+ BesselJ[\[Nu], z]*BesselJ[- \[Nu]- 1, z] == - 2*Sin[\[Nu]*Pi]/(Pi*z)
Failure Successful Successful [Tested: 70] Successful [Tested: 70]
10.5.E2 𝒲 { J ν ( z ) , Y ν ( z ) } = J ν + 1 ( z ) Y ν ( z ) - J ν ( z ) Y ν + 1 ( z ) Wronskian Bessel-J 𝜈 𝑧 Bessel-Y-Weber 𝜈 𝑧 Bessel-J 𝜈 1 𝑧 Bessel-Y-Weber 𝜈 𝑧 Bessel-J 𝜈 𝑧 Bessel-Y-Weber 𝜈 1 𝑧 {\displaystyle{\displaystyle\mathscr{W}\left\{J_{\nu}\left(z\right),Y_{\nu}% \left(z\right)\right\}=J_{\nu+1}\left(z\right)Y_{\nu}\left(z\right)-J_{\nu}% \left(z\right)Y_{\nu+1}\left(z\right)}}
\Wronskian@{\BesselJ{\nu}@{z},\BesselY{\nu}@{z}} = \BesselJ{\nu+1}@{z}\BesselY{\nu}@{z}-\BesselJ{\nu}@{z}\BesselY{\nu+1}@{z}
( ν + k + 1 ) > 0 , ( ( ν + 1 ) + k + 1 ) > 0 , ( ( - ν ) + k + 1 ) > 0 , ( ( - ( ν + 1 ) ) + k + 1 ) > 0 formulae-sequence 𝜈 𝑘 1 0 formulae-sequence 𝜈 1 𝑘 1 0 formulae-sequence 𝜈 𝑘 1 0 𝜈 1 𝑘 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0,\Re((\nu+1)+k+1)>0,\Re((-\nu)+k+1)>% 0,\Re((-(\nu+1))+k+1)>0}}
(BesselJ(nu, z))*diff(BesselY(nu, z), z)-diff(BesselJ(nu, z), z)*(BesselY(nu, z)) = BesselJ(nu + 1, z)*BesselY(nu, z)- BesselJ(nu, z)*BesselY(nu + 1, z)
Wronskian[{BesselJ[\[Nu], z], BesselY[\[Nu], z]}, z] == BesselJ[\[Nu]+ 1, z]*BesselY[\[Nu], z]- BesselJ[\[Nu], z]*BesselY[\[Nu]+ 1, z]
Successful Successful Skip - symbolical successful subtest Successful [Tested: 70]
10.5.E2 J ν + 1 ( z ) Y ν ( z ) - J ν ( z ) Y ν + 1 ( z ) = 2 / ( π z ) Bessel-J 𝜈 1 𝑧 Bessel-Y-Weber 𝜈 𝑧 Bessel-J 𝜈 𝑧 Bessel-Y-Weber 𝜈 1 𝑧 2 𝜋 𝑧 {\displaystyle{\displaystyle J_{\nu+1}\left(z\right)Y_{\nu}\left(z\right)-J_{% \nu}\left(z\right)Y_{\nu+1}\left(z\right)=2/(\pi z)}}
\BesselJ{\nu+1}@{z}\BesselY{\nu}@{z}-\BesselJ{\nu}@{z}\BesselY{\nu+1}@{z} = 2/(\pi z)
( ν + k + 1 ) > 0 , ( ( ν + 1 ) + k + 1 ) > 0 , ( ( - ν ) + k + 1 ) > 0 , ( ( - ( ν + 1 ) ) + k + 1 ) > 0 formulae-sequence 𝜈 𝑘 1 0 formulae-sequence 𝜈 1 𝑘 1 0 formulae-sequence 𝜈 𝑘 1 0 𝜈 1 𝑘 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0,\Re((\nu+1)+k+1)>0,\Re((-\nu)+k+1)>% 0,\Re((-(\nu+1))+k+1)>0}}
BesselJ(nu + 1, z)*BesselY(nu, z)- BesselJ(nu, z)*BesselY(nu + 1, z) = 2/(Pi*z)
BesselJ[\[Nu]+ 1, z]*BesselY[\[Nu], z]- BesselJ[\[Nu], z]*BesselY[\[Nu]+ 1, z] == 2/(Pi*z)
Failure Successful Successful [Tested: 70] Successful [Tested: 70]
10.5.E3 𝒲 { J ν ( z ) , H ν ( 1 ) ( z ) } = J ν + 1 ( z ) H ν ( 1 ) ( z ) - J ν ( z ) H ν + 1 ( 1 ) ( z ) Wronskian Bessel-J 𝜈 𝑧 Hankel-H-1-Bessel-third-kind 𝜈 𝑧 Bessel-J 𝜈 1 𝑧 Hankel-H-1-Bessel-third-kind 𝜈 𝑧 Bessel-J 𝜈 𝑧 Hankel-H-1-Bessel-third-kind 𝜈 1 𝑧 {\displaystyle{\displaystyle\mathscr{W}\left\{J_{\nu}\left(z\right),{H^{(1)}_{% \nu}}\left(z\right)\right\}=J_{\nu+1}\left(z\right){H^{(1)}_{\nu}}\left(z% \right)-J_{\nu}\left(z\right){H^{(1)}_{\nu+1}}\left(z\right)}}
\Wronskian@{\BesselJ{\nu}@{z},\HankelH{1}{\nu}@{z}} = \BesselJ{\nu+1}@{z}\HankelH{1}{\nu}@{z}-\BesselJ{\nu}@{z}\HankelH{1}{\nu+1}@{z}
( ν + k + 1 ) > 0 , ( ( ν + 1 ) + k + 1 ) > 0 formulae-sequence 𝜈 𝑘 1 0 𝜈 1 𝑘 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0,\Re((\nu+1)+k+1)>0}}
(BesselJ(nu, z))*diff(HankelH1(nu, z), z)-diff(BesselJ(nu, z), z)*(HankelH1(nu, z)) = BesselJ(nu + 1, z)*HankelH1(nu, z)- BesselJ(nu, z)*HankelH1(nu + 1, z)
Wronskian[{BesselJ[\[Nu], z], HankelH1[\[Nu], z]}, z] == BesselJ[\[Nu]+ 1, z]*HankelH1[\[Nu], z]- BesselJ[\[Nu], z]*HankelH1[\[Nu]+ 1, z]
Successful Successful Skip - symbolical successful subtest Successful [Tested: 70]
10.5.E3 J ν + 1 ( z ) H ν ( 1 ) ( z ) - J ν ( z ) H ν + 1 ( 1 ) ( z ) = 2 i / ( π z ) Bessel-J 𝜈 1 𝑧 Hankel-H-1-Bessel-third-kind 𝜈 𝑧 Bessel-J 𝜈 𝑧 Hankel-H-1-Bessel-third-kind 𝜈 1 𝑧 2 𝑖 𝜋 𝑧 {\displaystyle{\displaystyle J_{\nu+1}\left(z\right){H^{(1)}_{\nu}}\left(z% \right)-J_{\nu}\left(z\right){H^{(1)}_{\nu+1}}\left(z\right)=2i/(\pi z)}}
\BesselJ{\nu+1}@{z}\HankelH{1}{\nu}@{z}-\BesselJ{\nu}@{z}\HankelH{1}{\nu+1}@{z} = 2i/(\pi z)
( ν + k + 1 ) > 0 , ( ( ν + 1 ) + k + 1 ) > 0 formulae-sequence 𝜈 𝑘 1 0 𝜈 1 𝑘 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0,\Re((\nu+1)+k+1)>0}}
BesselJ(nu + 1, z)*HankelH1(nu, z)- BesselJ(nu, z)*HankelH1(nu + 1, z) = 2*I/(Pi*z)
BesselJ[\[Nu]+ 1, z]*HankelH1[\[Nu], z]- BesselJ[\[Nu], z]*HankelH1[\[Nu]+ 1, z] == 2*I/(Pi*z)
Failure Successful Successful [Tested: 70] Successful [Tested: 70]
10.5.E4 𝒲 { J ν ( z ) , H ν ( 2 ) ( z ) } = J ν + 1 ( z ) H ν ( 2 ) ( z ) - J ν ( z ) H ν + 1 ( 2 ) ( z ) Wronskian Bessel-J 𝜈 𝑧 Hankel-H-2-Bessel-third-kind 𝜈 𝑧 Bessel-J 𝜈 1 𝑧 Hankel-H-2-Bessel-third-kind 𝜈 𝑧 Bessel-J 𝜈 𝑧 Hankel-H-2-Bessel-third-kind 𝜈 1 𝑧 {\displaystyle{\displaystyle\mathscr{W}\left\{J_{\nu}\left(z\right),{H^{(2)}_{% \nu}}\left(z\right)\right\}=J_{\nu+1}\left(z\right){H^{(2)}_{\nu}}\left(z% \right)-J_{\nu}\left(z\right){H^{(2)}_{\nu+1}}\left(z\right)}}
\Wronskian@{\BesselJ{\nu}@{z},\HankelH{2}{\nu}@{z}} = \BesselJ{\nu+1}@{z}\HankelH{2}{\nu}@{z}-\BesselJ{\nu}@{z}\HankelH{2}{\nu+1}@{z}
( ν + k + 1 ) > 0 , ( ( ν + 1 ) + k + 1 ) > 0 formulae-sequence 𝜈 𝑘 1 0 𝜈 1 𝑘 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0,\Re((\nu+1)+k+1)>0}}
(BesselJ(nu, z))*diff(HankelH2(nu, z), z)-diff(BesselJ(nu, z), z)*(HankelH2(nu, z)) = BesselJ(nu + 1, z)*HankelH2(nu, z)- BesselJ(nu, z)*HankelH2(nu + 1, z)
Wronskian[{BesselJ[\[Nu], z], HankelH2[\[Nu], z]}, z] == BesselJ[\[Nu]+ 1, z]*HankelH2[\[Nu], z]- BesselJ[\[Nu], z]*HankelH2[\[Nu]+ 1, z]
Successful Successful Skip - symbolical successful subtest Successful [Tested: 70]
10.5.E4 J ν + 1 ( z ) H ν ( 2 ) ( z ) - J ν ( z ) H ν + 1 ( 2 ) ( z ) = - 2 i / ( π z ) Bessel-J 𝜈 1 𝑧 Hankel-H-2-Bessel-third-kind 𝜈 𝑧 Bessel-J 𝜈 𝑧 Hankel-H-2-Bessel-third-kind 𝜈 1 𝑧 2 𝑖 𝜋 𝑧 {\displaystyle{\displaystyle J_{\nu+1}\left(z\right){H^{(2)}_{\nu}}\left(z% \right)-J_{\nu}\left(z\right){H^{(2)}_{\nu+1}}\left(z\right)=-2i/(\pi z)}}
\BesselJ{\nu+1}@{z}\HankelH{2}{\nu}@{z}-\BesselJ{\nu}@{z}\HankelH{2}{\nu+1}@{z} = -2i/(\pi z)
( ν + k + 1 ) > 0 , ( ( ν + 1 ) + k + 1 ) > 0 formulae-sequence 𝜈 𝑘 1 0 𝜈 1 𝑘 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0,\Re((\nu+1)+k+1)>0}}
BesselJ(nu + 1, z)*HankelH2(nu, z)- BesselJ(nu, z)*HankelH2(nu + 1, z) = - 2*I/(Pi*z)
BesselJ[\[Nu]+ 1, z]*HankelH2[\[Nu], z]- BesselJ[\[Nu], z]*HankelH2[\[Nu]+ 1, z] == - 2*I/(Pi*z)
Failure Successful Successful [Tested: 70] Successful [Tested: 70]
10.5.E5 𝒲 { H ν ( 1 ) ( z ) , H ν ( 2 ) ( z ) } = H ν + 1 ( 1 ) ( z ) H ν ( 2 ) ( z ) - H ν ( 1 ) ( z ) H ν + 1 ( 2 ) ( z ) Wronskian Hankel-H-1-Bessel-third-kind 𝜈 𝑧 Hankel-H-2-Bessel-third-kind 𝜈 𝑧 Hankel-H-1-Bessel-third-kind 𝜈 1 𝑧 Hankel-H-2-Bessel-third-kind 𝜈 𝑧 Hankel-H-1-Bessel-third-kind 𝜈 𝑧 Hankel-H-2-Bessel-third-kind 𝜈 1 𝑧 {\displaystyle{\displaystyle\mathscr{W}\left\{{H^{(1)}_{\nu}}\left(z\right),{H% ^{(2)}_{\nu}}\left(z\right)\right\}={H^{(1)}_{\nu+1}}\left(z\right){H^{(2)}_{% \nu}}\left(z\right)-{H^{(1)}_{\nu}}\left(z\right){H^{(2)}_{\nu+1}}\left(z% \right)}}
\Wronskian@{\HankelH{1}{\nu}@{z},\HankelH{2}{\nu}@{z}} = \HankelH{1}{\nu+1}@{z}\HankelH{2}{\nu}@{z}-\HankelH{1}{\nu}@{z}\HankelH{2}{\nu+1}@{z}

(HankelH1(nu, z))*diff(HankelH2(nu, z), z)-diff(HankelH1(nu, z), z)*(HankelH2(nu, z)) = HankelH1(nu + 1, z)*HankelH2(nu, z)- HankelH1(nu, z)*HankelH2(nu + 1, z)
Wronskian[{HankelH1[\[Nu], z], HankelH2[\[Nu], z]}, z] == HankelH1[\[Nu]+ 1, z]*HankelH2[\[Nu], z]- HankelH1[\[Nu], z]*HankelH2[\[Nu]+ 1, z]
Successful Successful Skip - symbolical successful subtest Successful [Tested: 70]
10.5.E5 H ν + 1 ( 1 ) ( z ) H ν ( 2 ) ( z ) - H ν ( 1 ) ( z ) H ν + 1 ( 2 ) ( z ) = - 4 i / ( π z ) Hankel-H-1-Bessel-third-kind 𝜈 1 𝑧 Hankel-H-2-Bessel-third-kind 𝜈 𝑧 Hankel-H-1-Bessel-third-kind 𝜈 𝑧 Hankel-H-2-Bessel-third-kind 𝜈 1 𝑧 4 𝑖 𝜋 𝑧 {\displaystyle{\displaystyle{H^{(1)}_{\nu+1}}\left(z\right){H^{(2)}_{\nu}}% \left(z\right)-{H^{(1)}_{\nu}}\left(z\right){H^{(2)}_{\nu+1}}\left(z\right)=-4% i/(\pi z)}}
\HankelH{1}{\nu+1}@{z}\HankelH{2}{\nu}@{z}-\HankelH{1}{\nu}@{z}\HankelH{2}{\nu+1}@{z} = -4i/(\pi z)

HankelH1(nu + 1, z)*HankelH2(nu, z)- HankelH1(nu, z)*HankelH2(nu + 1, z) = - 4*I/(Pi*z)
HankelH1[\[Nu]+ 1, z]*HankelH2[\[Nu], z]- HankelH1[\[Nu], z]*HankelH2[\[Nu]+ 1, z] == - 4*I/(Pi*z)
Failure Successful Successful [Tested: 70] Successful [Tested: 70]