8.7: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/8.7.E1 8.7.E1] || [[Item:Q2527|<math>\scincgamma@{a}{z} = e^{-z}\sum_{k=0}^{\infty}\frac{z^{k}}{\EulerGamma@{a+k+1}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\scincgamma@{a}{z} = e^{-z}\sum_{k=0}^{\infty}\frac{z^{k}}{\EulerGamma@{a+k+1}}</syntaxhighlight> || <math>\realpart@@{(a+k+1)} > 0, \realpart@@{a} > 0</math> || <syntaxhighlight lang=mathematica>(z)^(-(a))*(GAMMA(a)-GAMMA(a, z))/GAMMA(a) = exp(- z)*sum(((z)^(k))/(GAMMA(a + k + 1)), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || Successful || Missing Macro Error || - || -
| [https://dlmf.nist.gov/8.7.E1 8.7.E1] || <math qid="Q2527">\scincgamma@{a}{z} = e^{-z}\sum_{k=0}^{\infty}\frac{z^{k}}{\EulerGamma@{a+k+1}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\scincgamma@{a}{z} = e^{-z}\sum_{k=0}^{\infty}\frac{z^{k}}{\EulerGamma@{a+k+1}}</syntaxhighlight> || <math>\realpart@@{(a+k+1)} > 0, \realpart@@{a} > 0</math> || <syntaxhighlight lang=mathematica>(z)^(-(a))*(GAMMA(a)-GAMMA(a, z))/GAMMA(a) = exp(- z)*sum(((z)^(k))/(GAMMA(a + k + 1)), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || Successful || Missing Macro Error || - || -
|-  
|-  
| [https://dlmf.nist.gov/8.7.E1 8.7.E1] || [[Item:Q2527|<math>e^{-z}\sum_{k=0}^{\infty}\frac{z^{k}}{\EulerGamma@{a+k+1}} = \frac{1}{\EulerGamma@{a}}\sum_{k=0}^{\infty}\frac{(-z)^{k}}{k!(a+k)}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{-z}\sum_{k=0}^{\infty}\frac{z^{k}}{\EulerGamma@{a+k+1}} = \frac{1}{\EulerGamma@{a}}\sum_{k=0}^{\infty}\frac{(-z)^{k}}{k!(a+k)}</syntaxhighlight> || <math>\realpart@@{(a+k+1)} > 0, \realpart@@{a} > 0</math> || <syntaxhighlight lang=mathematica>exp(- z)*sum(((z)^(k))/(GAMMA(a + k + 1)), k = 0..infinity) = (1)/(GAMMA(a))*sum(((- z)^(k))/(factorial(k)*(a + k)), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[- z]*Sum[Divide[(z)^(k),Gamma[a + k + 1]], {k, 0, Infinity}, GenerateConditions->None] == Divide[1,Gamma[a]]*Sum[Divide[(- z)^(k),(k)!*(a + k)], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 21]
| [https://dlmf.nist.gov/8.7.E1 8.7.E1] || <math qid="Q2527">e^{-z}\sum_{k=0}^{\infty}\frac{z^{k}}{\EulerGamma@{a+k+1}} = \frac{1}{\EulerGamma@{a}}\sum_{k=0}^{\infty}\frac{(-z)^{k}}{k!(a+k)}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{-z}\sum_{k=0}^{\infty}\frac{z^{k}}{\EulerGamma@{a+k+1}} = \frac{1}{\EulerGamma@{a}}\sum_{k=0}^{\infty}\frac{(-z)^{k}}{k!(a+k)}</syntaxhighlight> || <math>\realpart@@{(a+k+1)} > 0, \realpart@@{a} > 0</math> || <syntaxhighlight lang=mathematica>exp(- z)*sum(((z)^(k))/(GAMMA(a + k + 1)), k = 0..infinity) = (1)/(GAMMA(a))*sum(((- z)^(k))/(factorial(k)*(a + k)), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[- z]*Sum[Divide[(z)^(k),Gamma[a + k + 1]], {k, 0, Infinity}, GenerateConditions->None] == Divide[1,Gamma[a]]*Sum[Divide[(- z)^(k),(k)!*(a + k)], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 21]
|-  
|-  
| [https://dlmf.nist.gov/8.7.E2 8.7.E2] || [[Item:Q2528|<math>\incgamma@{a}{x+y}-\incgamma@{a}{x} = \incGamma@{a}{x}-\incGamma@{a}{x+y}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\incgamma@{a}{x+y}-\incgamma@{a}{x} = \incGamma@{a}{x}-\incGamma@{a}{x+y}</syntaxhighlight> || <math>|y| < |x|, \realpart@@{a} > 0</math> || <syntaxhighlight lang=mathematica>GAMMA(a)-GAMMA(a, x + y)- GAMMA(a)-GAMMA(a, x) = GAMMA(a, x)- GAMMA(a, x + y)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Gamma[a, 0, x + y]- Gamma[a, 0, x] == Gamma[a, x]- Gamma[a, x + y]</syntaxhighlight> || Failure || Successful || <div class="toccolours mw-collapsible mw-collapsed">Failed [18 / 18]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.6941375518
| [https://dlmf.nist.gov/8.7.E2 8.7.E2] || <math qid="Q2528">\incgamma@{a}{x+y}-\incgamma@{a}{x} = \incGamma@{a}{x}-\incGamma@{a}{x+y}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\incgamma@{a}{x+y}-\incgamma@{a}{x} = \incGamma@{a}{x}-\incGamma@{a}{x+y}</syntaxhighlight> || <math>|y| < |x|, \realpart@@{a} > 0</math> || <syntaxhighlight lang=mathematica>GAMMA(a)-GAMMA(a, x + y)- GAMMA(a)-GAMMA(a, x) = GAMMA(a, x)- GAMMA(a, x + y)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Gamma[a, 0, x + y]- Gamma[a, 0, x] == Gamma[a, x]- Gamma[a, x + y]</syntaxhighlight> || Failure || Successful || <div class="toccolours mw-collapsible mw-collapsed">Failed [18 / 18]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.6941375518
Test Values: {a = 1.5, x = 1.5, y = -.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.6941375518
Test Values: {a = 1.5, x = 1.5, y = -.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.6941375518
Test Values: {a = 1.5, x = 1.5, y = .5}</syntaxhighlight><br>... skip entries to safe data</div></div> || Successful [Tested: 18]
Test Values: {a = 1.5, x = 1.5, y = .5}</syntaxhighlight><br>... skip entries to safe data</div></div> || Successful [Tested: 18]
|-  
|-  
| [https://dlmf.nist.gov/8.7.E2 8.7.E2] || [[Item:Q2528|<math>\incGamma@{a}{x}-\incGamma@{a}{x+y} = e^{-x}x^{a-1}\sum_{n=0}^{\infty}\frac{\Pochhammersym{1-a}{n}}{(-x)^{n}}(1-e^{-y}e_{n}(y))</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\incGamma@{a}{x}-\incGamma@{a}{x+y} = e^{-x}x^{a-1}\sum_{n=0}^{\infty}\frac{\Pochhammersym{1-a}{n}}{(-x)^{n}}(1-e^{-y}e_{n}(y))</syntaxhighlight> || <math>|y| < |x|, \realpart@@{a} > 0</math> || <syntaxhighlight lang=mathematica>GAMMA(a, x)- GAMMA(a, x + y) = exp(- x)*(x)^(a - 1)* sum((pochhammer(1 - a, n))/((- x)^(n))*(1 - exp(- y)*exp(1)[n]*(y)), n = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Gamma[a, x]- Gamma[a, x + y] == Exp[- x]*(x)^(a - 1)* Sum[Divide[Pochhammer[1 - a, n],(- x)^(n)]*(1 - Exp[- y]*Subscript[E, n]*(y)), {n, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Error || Failure || Skip - symbolical successful subtest || Skipped - Because timed out
| [https://dlmf.nist.gov/8.7.E2 8.7.E2] || <math qid="Q2528">\incGamma@{a}{x}-\incGamma@{a}{x+y} = e^{-x}x^{a-1}\sum_{n=0}^{\infty}\frac{\Pochhammersym{1-a}{n}}{(-x)^{n}}(1-e^{-y}e_{n}(y))</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\incGamma@{a}{x}-\incGamma@{a}{x+y} = e^{-x}x^{a-1}\sum_{n=0}^{\infty}\frac{\Pochhammersym{1-a}{n}}{(-x)^{n}}(1-e^{-y}e_{n}(y))</syntaxhighlight> || <math>|y| < |x|, \realpart@@{a} > 0</math> || <syntaxhighlight lang=mathematica>GAMMA(a, x)- GAMMA(a, x + y) = exp(- x)*(x)^(a - 1)* sum((pochhammer(1 - a, n))/((- x)^(n))*(1 - exp(- y)*exp(1)[n]*(y)), n = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Gamma[a, x]- Gamma[a, x + y] == Exp[- x]*(x)^(a - 1)* Sum[Divide[Pochhammer[1 - a, n],(- x)^(n)]*(1 - Exp[- y]*Subscript[E, n]*(y)), {n, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Error || Failure || Skip - symbolical successful subtest || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/8.7.E3 8.7.E3] || [[Item:Q2529|<math>\incGamma@{a}{z} = \EulerGamma@{a}-\sum_{k=0}^{\infty}\frac{(-1)^{k}z^{a+k}}{k!(a+k)}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\incGamma@{a}{z} = \EulerGamma@{a}-\sum_{k=0}^{\infty}\frac{(-1)^{k}z^{a+k}}{k!(a+k)}</syntaxhighlight> || <math>\realpart@@{a} > 0</math> || <syntaxhighlight lang=mathematica>GAMMA(a, z) = GAMMA(a)- sum(((- 1)^(k)* (z)^(a + k))/(factorial(k)*(a + k)), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Gamma[a, z] == Gamma[a]- Sum[Divide[(- 1)^(k)* (z)^(a + k),(k)!*(a + k)], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
| [https://dlmf.nist.gov/8.7.E3 8.7.E3] || <math qid="Q2529">\incGamma@{a}{z} = \EulerGamma@{a}-\sum_{k=0}^{\infty}\frac{(-1)^{k}z^{a+k}}{k!(a+k)}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\incGamma@{a}{z} = \EulerGamma@{a}-\sum_{k=0}^{\infty}\frac{(-1)^{k}z^{a+k}}{k!(a+k)}</syntaxhighlight> || <math>\realpart@@{a} > 0</math> || <syntaxhighlight lang=mathematica>GAMMA(a, z) = GAMMA(a)- sum(((- 1)^(k)* (z)^(a + k))/(factorial(k)*(a + k)), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Gamma[a, z] == Gamma[a]- Sum[Divide[(- 1)^(k)* (z)^(a + k),(k)!*(a + k)], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/8.7.E3 8.7.E3] || [[Item:Q2529|<math>\EulerGamma@{a}-\sum_{k=0}^{\infty}\frac{(-1)^{k}z^{a+k}}{k!(a+k)} = \EulerGamma@{a}\left(1-z^{a}e^{-z}\sum_{k=0}^{\infty}\frac{z^{k}}{\EulerGamma@{a+k+1}}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\EulerGamma@{a}-\sum_{k=0}^{\infty}\frac{(-1)^{k}z^{a+k}}{k!(a+k)} = \EulerGamma@{a}\left(1-z^{a}e^{-z}\sum_{k=0}^{\infty}\frac{z^{k}}{\EulerGamma@{a+k+1}}\right)</syntaxhighlight> || <math>\realpart@@{a} > 0, \realpart@@{(a+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>GAMMA(a)- sum(((- 1)^(k)* (z)^(a + k))/(factorial(k)*(a + k)), k = 0..infinity) = GAMMA(a)*(1 - (z)^(a)* exp(- z)*sum(((z)^(k))/(GAMMA(a + k + 1)), k = 0..infinity))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Gamma[a]- Sum[Divide[(- 1)^(k)* (z)^(a + k),(k)!*(a + k)], {k, 0, Infinity}, GenerateConditions->None] == Gamma[a]*(1 - (z)^(a)* Exp[- z]*Sum[Divide[(z)^(k),Gamma[a + k + 1]], {k, 0, Infinity}, GenerateConditions->None])</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
| [https://dlmf.nist.gov/8.7.E3 8.7.E3] || <math qid="Q2529">\EulerGamma@{a}-\sum_{k=0}^{\infty}\frac{(-1)^{k}z^{a+k}}{k!(a+k)} = \EulerGamma@{a}\left(1-z^{a}e^{-z}\sum_{k=0}^{\infty}\frac{z^{k}}{\EulerGamma@{a+k+1}}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\EulerGamma@{a}-\sum_{k=0}^{\infty}\frac{(-1)^{k}z^{a+k}}{k!(a+k)} = \EulerGamma@{a}\left(1-z^{a}e^{-z}\sum_{k=0}^{\infty}\frac{z^{k}}{\EulerGamma@{a+k+1}}\right)</syntaxhighlight> || <math>\realpart@@{a} > 0, \realpart@@{(a+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>GAMMA(a)- sum(((- 1)^(k)* (z)^(a + k))/(factorial(k)*(a + k)), k = 0..infinity) = GAMMA(a)*(1 - (z)^(a)* exp(- z)*sum(((z)^(k))/(GAMMA(a + k + 1)), k = 0..infinity))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Gamma[a]- Sum[Divide[(- 1)^(k)* (z)^(a + k),(k)!*(a + k)], {k, 0, Infinity}, GenerateConditions->None] == Gamma[a]*(1 - (z)^(a)* Exp[- z]*Sum[Divide[(z)^(k),Gamma[a + k + 1]], {k, 0, Infinity}, GenerateConditions->None])</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/8.7.E6 8.7.E6] || [[Item:Q2532|<math>\incGamma@{a}{x} = x^{a}e^{-x}\sum_{n=0}^{\infty}\frac{\LaguerrepolyL[a]{n}@{x}}{n+1}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\incGamma@{a}{x} = x^{a}e^{-x}\sum_{n=0}^{\infty}\frac{\LaguerrepolyL[a]{n}@{x}}{n+1}</syntaxhighlight> || <math>x > 0</math> || <syntaxhighlight lang=mathematica>GAMMA(a, x) = (x)^(a)* exp(- x)*sum((LaguerreL(n, a, x))/(n + 1), n = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Gamma[a, x] == (x)^(a)* Exp[- x]*Sum[Divide[LaguerreL[n, a, x],n + 1], {n, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [18 / 18]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[0.03483445061608508, Times[-0.1214566752420326, NSum[Times[Power[Plus[1, n], -1], LaguerreL[n, -1.5, 1.5]]
| [https://dlmf.nist.gov/8.7.E6 8.7.E6] || <math qid="Q2532">\incGamma@{a}{x} = x^{a}e^{-x}\sum_{n=0}^{\infty}\frac{\LaguerrepolyL[a]{n}@{x}}{n+1}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\incGamma@{a}{x} = x^{a}e^{-x}\sum_{n=0}^{\infty}\frac{\LaguerrepolyL[a]{n}@{x}}{n+1}</syntaxhighlight> || <math>x > 0</math> || <syntaxhighlight lang=mathematica>GAMMA(a, x) = (x)^(a)* exp(- x)*sum((LaguerreL(n, a, x))/(n + 1), n = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Gamma[a, x] == (x)^(a)* Exp[- x]*Sum[Divide[LaguerreL[n, a, x],n + 1], {n, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [18 / 18]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[0.03483445061608508, Times[-0.1214566752420326, NSum[Times[Power[Plus[1, n], -1], LaguerreL[n, -1.5, 1.5]]
Test Values: {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[a, -1.5], Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[0.7498909754592095, Times[-1.7155277699214138, NSum[Times[Power[Plus[1, n], -1], LaguerreL[n, -1.5, 0.5]]
Test Values: {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[a, -1.5], Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[0.7498909754592095, Times[-1.7155277699214138, NSum[Times[Power[Plus[1, n], -1], LaguerreL[n, -1.5, 0.5]]
Test Values: {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[a, -1.5], Rule[x, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[a, -1.5], Rule[x, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|}
|}
</div>
</div>

Latest revision as of 11:17, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
8.7.E1 γ * ( a , z ) = e - z k = 0 z k Γ ( a + k + 1 ) incomplete-gamma-star 𝑎 𝑧 superscript 𝑒 𝑧 superscript subscript 𝑘 0 superscript 𝑧 𝑘 Euler-Gamma 𝑎 𝑘 1 {\displaystyle{\displaystyle\gamma^{*}\left(a,z\right)=e^{-z}\sum_{k=0}^{% \infty}\frac{z^{k}}{\Gamma\left(a+k+1\right)}}}
\scincgamma@{a}{z} = e^{-z}\sum_{k=0}^{\infty}\frac{z^{k}}{\EulerGamma@{a+k+1}}
( a + k + 1 ) > 0 , a > 0 formulae-sequence 𝑎 𝑘 1 0 𝑎 0 {\displaystyle{\displaystyle\Re(a+k+1)>0,\Re a>0}}
(z)^(-(a))*(GAMMA(a)-GAMMA(a, z))/GAMMA(a) = exp(- z)*sum(((z)^(k))/(GAMMA(a + k + 1)), k = 0..infinity)
Error
Successful Missing Macro Error - -
8.7.E1 e - z k = 0 z k Γ ( a + k + 1 ) = 1 Γ ( a ) k = 0 ( - z ) k k ! ( a + k ) superscript 𝑒 𝑧 superscript subscript 𝑘 0 superscript 𝑧 𝑘 Euler-Gamma 𝑎 𝑘 1 1 Euler-Gamma 𝑎 superscript subscript 𝑘 0 superscript 𝑧 𝑘 𝑘 𝑎 𝑘 {\displaystyle{\displaystyle e^{-z}\sum_{k=0}^{\infty}\frac{z^{k}}{\Gamma\left% (a+k+1\right)}=\frac{1}{\Gamma\left(a\right)}\sum_{k=0}^{\infty}\frac{(-z)^{k}% }{k!(a+k)}}}
e^{-z}\sum_{k=0}^{\infty}\frac{z^{k}}{\EulerGamma@{a+k+1}} = \frac{1}{\EulerGamma@{a}}\sum_{k=0}^{\infty}\frac{(-z)^{k}}{k!(a+k)}
( a + k + 1 ) > 0 , a > 0 formulae-sequence 𝑎 𝑘 1 0 𝑎 0 {\displaystyle{\displaystyle\Re(a+k+1)>0,\Re a>0}}
exp(- z)*sum(((z)^(k))/(GAMMA(a + k + 1)), k = 0..infinity) = (1)/(GAMMA(a))*sum(((- z)^(k))/(factorial(k)*(a + k)), k = 0..infinity)
Exp[- z]*Sum[Divide[(z)^(k),Gamma[a + k + 1]], {k, 0, Infinity}, GenerateConditions->None] == Divide[1,Gamma[a]]*Sum[Divide[(- z)^(k),(k)!*(a + k)], {k, 0, Infinity}, GenerateConditions->None]
Successful Successful - Successful [Tested: 21]
8.7.E2 γ ( a , x + y ) - γ ( a , x ) = Γ ( a , x ) - Γ ( a , x + y ) incomplete-gamma 𝑎 𝑥 𝑦 incomplete-gamma 𝑎 𝑥 incomplete-Gamma 𝑎 𝑥 incomplete-Gamma 𝑎 𝑥 𝑦 {\displaystyle{\displaystyle\gamma\left(a,x+y\right)-\gamma\left(a,x\right)=% \Gamma\left(a,x\right)-\Gamma\left(a,x+y\right)}}
\incgamma@{a}{x+y}-\incgamma@{a}{x} = \incGamma@{a}{x}-\incGamma@{a}{x+y}
| y | < | x | , a > 0 formulae-sequence 𝑦 𝑥 𝑎 0 {\displaystyle{\displaystyle|y|<|x|,\Re a>0}}
GAMMA(a)-GAMMA(a, x + y)- GAMMA(a)-GAMMA(a, x) = GAMMA(a, x)- GAMMA(a, x + y)
Gamma[a, 0, x + y]- Gamma[a, 0, x] == Gamma[a, x]- Gamma[a, x + y]
Failure Successful
Failed [18 / 18]
Result: -.6941375518
Test Values: {a = 1.5, x = 1.5, y = -.5}

Result: -.6941375518
Test Values: {a = 1.5, x = 1.5, y = .5}

... skip entries to safe data
Successful [Tested: 18]
8.7.E2 Γ ( a , x ) - Γ ( a , x + y ) = e - x x a - 1 n = 0 ( 1 - a ) n ( - x ) n ( 1 - e - y e n ( y ) ) incomplete-Gamma 𝑎 𝑥 incomplete-Gamma 𝑎 𝑥 𝑦 superscript 𝑒 𝑥 superscript 𝑥 𝑎 1 superscript subscript 𝑛 0 Pochhammer 1 𝑎 𝑛 superscript 𝑥 𝑛 1 superscript 𝑒 𝑦 subscript 𝑒 𝑛 𝑦 {\displaystyle{\displaystyle\Gamma\left(a,x\right)-\Gamma\left(a,x+y\right)=e^% {-x}x^{a-1}\sum_{n=0}^{\infty}\frac{{\left(1-a\right)_{n}}}{(-x)^{n}}(1-e^{-y}% e_{n}(y))}}
\incGamma@{a}{x}-\incGamma@{a}{x+y} = e^{-x}x^{a-1}\sum_{n=0}^{\infty}\frac{\Pochhammersym{1-a}{n}}{(-x)^{n}}(1-e^{-y}e_{n}(y))
| y | < | x | , a > 0 formulae-sequence 𝑦 𝑥 𝑎 0 {\displaystyle{\displaystyle|y|<|x|,\Re a>0}}
GAMMA(a, x)- GAMMA(a, x + y) = exp(- x)*(x)^(a - 1)* sum((pochhammer(1 - a, n))/((- x)^(n))*(1 - exp(- y)*exp(1)[n]*(y)), n = 0..infinity)
Gamma[a, x]- Gamma[a, x + y] == Exp[- x]*(x)^(a - 1)* Sum[Divide[Pochhammer[1 - a, n],(- x)^(n)]*(1 - Exp[- y]*Subscript[E, n]*(y)), {n, 0, Infinity}, GenerateConditions->None]
Error Failure Skip - symbolical successful subtest Skipped - Because timed out
8.7.E3 Γ ( a , z ) = Γ ( a ) - k = 0 ( - 1 ) k z a + k k ! ( a + k ) incomplete-Gamma 𝑎 𝑧 Euler-Gamma 𝑎 superscript subscript 𝑘 0 superscript 1 𝑘 superscript 𝑧 𝑎 𝑘 𝑘 𝑎 𝑘 {\displaystyle{\displaystyle\Gamma\left(a,z\right)=\Gamma\left(a\right)-\sum_{% k=0}^{\infty}\frac{(-1)^{k}z^{a+k}}{k!(a+k)}}}
\incGamma@{a}{z} = \EulerGamma@{a}-\sum_{k=0}^{\infty}\frac{(-1)^{k}z^{a+k}}{k!(a+k)}
a > 0 𝑎 0 {\displaystyle{\displaystyle\Re a>0}}
GAMMA(a, z) = GAMMA(a)- sum(((- 1)^(k)* (z)^(a + k))/(factorial(k)*(a + k)), k = 0..infinity)
Gamma[a, z] == Gamma[a]- Sum[Divide[(- 1)^(k)* (z)^(a + k),(k)!*(a + k)], {k, 0, Infinity}, GenerateConditions->None]
Successful Successful - Successful [Tested: 7]
8.7.E3 Γ ( a ) - k = 0 ( - 1 ) k z a + k k ! ( a + k ) = Γ ( a ) ( 1 - z a e - z k = 0 z k Γ ( a + k + 1 ) ) Euler-Gamma 𝑎 superscript subscript 𝑘 0 superscript 1 𝑘 superscript 𝑧 𝑎 𝑘 𝑘 𝑎 𝑘 Euler-Gamma 𝑎 1 superscript 𝑧 𝑎 superscript 𝑒 𝑧 superscript subscript 𝑘 0 superscript 𝑧 𝑘 Euler-Gamma 𝑎 𝑘 1 {\displaystyle{\displaystyle\Gamma\left(a\right)-\sum_{k=0}^{\infty}\frac{(-1)% ^{k}z^{a+k}}{k!(a+k)}=\Gamma\left(a\right)\left(1-z^{a}e^{-z}\sum_{k=0}^{% \infty}\frac{z^{k}}{\Gamma\left(a+k+1\right)}\right)}}
\EulerGamma@{a}-\sum_{k=0}^{\infty}\frac{(-1)^{k}z^{a+k}}{k!(a+k)} = \EulerGamma@{a}\left(1-z^{a}e^{-z}\sum_{k=0}^{\infty}\frac{z^{k}}{\EulerGamma@{a+k+1}}\right)
a > 0 , ( a + k + 1 ) > 0 formulae-sequence 𝑎 0 𝑎 𝑘 1 0 {\displaystyle{\displaystyle\Re a>0,\Re(a+k+1)>0}}
GAMMA(a)- sum(((- 1)^(k)* (z)^(a + k))/(factorial(k)*(a + k)), k = 0..infinity) = GAMMA(a)*(1 - (z)^(a)* exp(- z)*sum(((z)^(k))/(GAMMA(a + k + 1)), k = 0..infinity))
Gamma[a]- Sum[Divide[(- 1)^(k)* (z)^(a + k),(k)!*(a + k)], {k, 0, Infinity}, GenerateConditions->None] == Gamma[a]*(1 - (z)^(a)* Exp[- z]*Sum[Divide[(z)^(k),Gamma[a + k + 1]], {k, 0, Infinity}, GenerateConditions->None])
Successful Successful - Successful [Tested: 7]
8.7.E6 Γ ( a , x ) = x a e - x n = 0 L n ( a ) ( x ) n + 1 incomplete-Gamma 𝑎 𝑥 superscript 𝑥 𝑎 superscript 𝑒 𝑥 superscript subscript 𝑛 0 Laguerre-polynomial-L 𝑎 𝑛 𝑥 𝑛 1 {\displaystyle{\displaystyle\Gamma\left(a,x\right)=x^{a}e^{-x}\sum_{n=0}^{% \infty}\frac{L^{(a)}_{n}\left(x\right)}{n+1}}}
\incGamma@{a}{x} = x^{a}e^{-x}\sum_{n=0}^{\infty}\frac{\LaguerrepolyL[a]{n}@{x}}{n+1}
x > 0 𝑥 0 {\displaystyle{\displaystyle x>0}}
GAMMA(a, x) = (x)^(a)* exp(- x)*sum((LaguerreL(n, a, x))/(n + 1), n = 0..infinity)
Gamma[a, x] == (x)^(a)* Exp[- x]*Sum[Divide[LaguerreL[n, a, x],n + 1], {n, 0, Infinity}, GenerateConditions->None]
Missing Macro Error Failure -
Failed [18 / 18]
Result: Plus[0.03483445061608508, Times[-0.1214566752420326, NSum[Times[Power[Plus[1, n], -1], LaguerreL[n, -1.5, 1.5]]
Test Values: {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[a, -1.5], Rule[x, 1.5]}

Result: Plus[0.7498909754592095, Times[-1.7155277699214138, NSum[Times[Power[Plus[1, n], -1], LaguerreL[n, -1.5, 0.5]]
Test Values: {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[a, -1.5], Rule[x, 0.5]}

... skip entries to safe data