6.5: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/6.5.E1 6.5.E1] || [[Item:Q2241|<math>\expintE@{-x+ i0} = -\expintEi@{x}- i\pi</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\expintE@{-x+ i0} = -\expintEi@{x}- i\pi</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ExpIntegralE[1, - x + I*0] == - ExpIntegralEi[x]- I*Pi</syntaxhighlight> || Missing Macro Error || Failure || - || Successful [Tested: 3]
| [https://dlmf.nist.gov/6.5.E1 6.5.E1] || <math qid="Q2241">\expintE@{-x+ i0} = -\expintEi@{x}- i\pi</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\expintE@{-x+ i0} = -\expintEi@{x}- i\pi</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ExpIntegralE[1, - x + I*0] == - ExpIntegralEi[x]- I*Pi</syntaxhighlight> || Missing Macro Error || Failure || - || Successful [Tested: 3]
|-  
|-  
| [https://dlmf.nist.gov/6.5.E1 6.5.E1] || [[Item:Q2241|<math>\expintE@{-x- i0} = -\expintEi@{x}+ i\pi</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\expintE@{-x- i0} = -\expintEi@{x}+ i\pi</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ExpIntegralE[1, - x - I*0] == - ExpIntegralEi[x]+ I*Pi</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.0, -6.283185307179586]
| [https://dlmf.nist.gov/6.5.E1 6.5.E1] || <math qid="Q2241">\expintE@{-x- i0} = -\expintEi@{x}+ i\pi</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\expintE@{-x- i0} = -\expintEi@{x}+ i\pi</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ExpIntegralE[1, - x - I*0] == - ExpIntegralEi[x]+ I*Pi</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.0, -6.283185307179586]
Test Values: {Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.0, -6.283185307179586]
Test Values: {Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.0, -6.283185307179586]
Test Values: {Rule[x, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[x, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/6.5.E2 6.5.E2] || [[Item:Q2242|<math>\expintEi@{x} = -\tfrac{1}{2}(\expintE@{-x+i0}+\expintE@{-x-i0})</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\expintEi@{x} = -\tfrac{1}{2}(\expintE@{-x+i0}+\expintE@{-x-i0})</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ExpIntegralEi[x] == -Divide[1,2]*(ExpIntegralE[1, - x + I*0]+ ExpIntegralE[1, - x - I*0])</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.0, -3.141592653589793]
| [https://dlmf.nist.gov/6.5.E2 6.5.E2] || <math qid="Q2242">\expintEi@{x} = -\tfrac{1}{2}(\expintE@{-x+i0}+\expintE@{-x-i0})</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\expintEi@{x} = -\tfrac{1}{2}(\expintE@{-x+i0}+\expintE@{-x-i0})</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ExpIntegralEi[x] == -Divide[1,2]*(ExpIntegralE[1, - x + I*0]+ ExpIntegralE[1, - x - I*0])</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.0, -3.141592653589793]
Test Values: {Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.0, -3.141592653589793]
Test Values: {Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.0, -3.141592653589793]
Test Values: {Rule[x, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[x, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/6.5.E3 6.5.E3] || [[Item:Q2243|<math>\tfrac{1}{2}(\expintEi@{x}+\expintE@{x}) = \sinhint@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tfrac{1}{2}(\expintEi@{x}+\expintE@{x}) = \sinhint@{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,2]*(ExpIntegralEi[x]+ ExpIntegralE[1, x]) == SinhIntegral[x]</syntaxhighlight> || Missing Macro Error || Failure || - || Successful [Tested: 3]
| [https://dlmf.nist.gov/6.5.E3 6.5.E3] || <math qid="Q2243">\tfrac{1}{2}(\expintEi@{x}+\expintE@{x}) = \sinhint@{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tfrac{1}{2}(\expintEi@{x}+\expintE@{x}) = \sinhint@{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,2]*(ExpIntegralEi[x]+ ExpIntegralE[1, x]) == SinhIntegral[x]</syntaxhighlight> || Missing Macro Error || Failure || - || Successful [Tested: 3]
|-  
|-  
| [https://dlmf.nist.gov/6.5.E3 6.5.E3] || [[Item:Q2243|<math>\sinhint@{x} = -i\sinint@{ix}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sinhint@{x} = -i\sinint@{ix}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Shi(x) = - I*Si(I*x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>SinhIntegral[x] == - I*SinIntegral[I*x]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 3]
| [https://dlmf.nist.gov/6.5.E3 6.5.E3] || <math qid="Q2243">\sinhint@{x} = -i\sinint@{ix}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sinhint@{x} = -i\sinint@{ix}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Shi(x) = - I*Si(I*x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>SinhIntegral[x] == - I*SinIntegral[I*x]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 3]
|-  
|-  
| [https://dlmf.nist.gov/6.5.E4 6.5.E4] || [[Item:Q2244|<math>\tfrac{1}{2}(\expintEi@{x}-\expintE@{x}) = \coshint@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tfrac{1}{2}(\expintEi@{x}-\expintE@{x}) = \coshint@{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,2]*(ExpIntegralEi[x]- ExpIntegralE[1, x]) == CoshIntegral[x]</syntaxhighlight> || Missing Macro Error || Failure || Skip - symbolical successful subtest || Successful [Tested: 3]
| [https://dlmf.nist.gov/6.5.E4 6.5.E4] || <math qid="Q2244">\tfrac{1}{2}(\expintEi@{x}-\expintE@{x}) = \coshint@{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tfrac{1}{2}(\expintEi@{x}-\expintE@{x}) = \coshint@{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,2]*(ExpIntegralEi[x]- ExpIntegralE[1, x]) == CoshIntegral[x]</syntaxhighlight> || Missing Macro Error || Failure || Skip - symbolical successful subtest || Successful [Tested: 3]
|-  
|-  
| [https://dlmf.nist.gov/6.5.E4 6.5.E4] || [[Item:Q2244|<math>\coshint@{x} = \cosint@{ix}-\tfrac{1}{2}\pi i</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\coshint@{x} = \cosint@{ix}-\tfrac{1}{2}\pi i</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Chi(x) = Ci(I*x)-(1)/(2)*Pi*I</syntaxhighlight> || <syntaxhighlight lang=mathematica>CoshIntegral[x] == CosIntegral[I*x]-Divide[1,2]*Pi*I</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
| [https://dlmf.nist.gov/6.5.E4 6.5.E4] || <math qid="Q2244">\coshint@{x} = \cosint@{ix}-\tfrac{1}{2}\pi i</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\coshint@{x} = \cosint@{ix}-\tfrac{1}{2}\pi i</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Chi(x) = Ci(I*x)-(1)/(2)*Pi*I</syntaxhighlight> || <syntaxhighlight lang=mathematica>CoshIntegral[x] == CosIntegral[I*x]-Divide[1,2]*Pi*I</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
|-  
|-  
| [https://dlmf.nist.gov/6.5.E5 6.5.E5] || [[Item:Q2245|<math>\sinint@{z} = \tfrac{1}{2}i(\expintE@{-iz}-\expintE@{iz})+\tfrac{1}{2}\pi</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sinint@{z} = \tfrac{1}{2}i(\expintE@{-iz}-\expintE@{iz})+\tfrac{1}{2}\pi</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Si(z) = (1)/(2)*I*(Ei(- I*z)- Ei(I*z))+(1)/(2)*Pi</syntaxhighlight> || <syntaxhighlight lang=mathematica>SinIntegral[z] == Divide[1,2]*I*(ExpIntegralE[1, - I*z]- ExpIntegralE[1, I*z])+Divide[1,2]*Pi</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [5 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -3.141592653+0.*I
| [https://dlmf.nist.gov/6.5.E5 6.5.E5] || <math qid="Q2245">\sinint@{z} = \tfrac{1}{2}i(\expintE@{-iz}-\expintE@{iz})+\tfrac{1}{2}\pi</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sinint@{z} = \tfrac{1}{2}i(\expintE@{-iz}-\expintE@{iz})+\tfrac{1}{2}\pi</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Si(z) = (1)/(2)*I*(Ei(- I*z)- Ei(I*z))+(1)/(2)*Pi</syntaxhighlight> || <syntaxhighlight lang=mathematica>SinIntegral[z] == Divide[1,2]*I*(ExpIntegralE[1, - I*z]- ExpIntegralE[1, I*z])+Divide[1,2]*Pi</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [5 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -3.141592653+0.*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -3.141592654-.1e-9*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -3.141592654-.1e-9*I
Test Values: {z = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-3.141592653589793, 0.0]
Test Values: {z = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-3.141592653589793, 0.0]
Line 38: Line 38:
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br></div></div>
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br></div></div>
|-  
|-  
| [https://dlmf.nist.gov/6.5.E6 6.5.E6] || [[Item:Q2246|<math>\cosint@{z} = -\tfrac{1}{2}(\expintE@{iz}+\expintE@{-iz})</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cosint@{z} = -\tfrac{1}{2}(\expintE@{iz}+\expintE@{-iz})</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Ci(z) = -(1)/(2)*(Ei(I*z)+ Ei(- I*z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>CosIntegral[z] == -Divide[1,2]*(ExpIntegralE[1, I*z]+ ExpIntegralE[1, - I*z])</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .8944744988+.632221722*I
| [https://dlmf.nist.gov/6.5.E6 6.5.E6] || <math qid="Q2246">\cosint@{z} = -\tfrac{1}{2}(\expintE@{iz}+\expintE@{-iz})</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cosint@{z} = -\tfrac{1}{2}(\expintE@{iz}+\expintE@{-iz})</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Ci(z) = -(1)/(2)*(Ei(I*z)+ Ei(- I*z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>CosIntegral[z] == -Divide[1,2]*(ExpIntegralE[1, I*z]+ ExpIntegralE[1, - I*z])</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .8944744988+.632221722*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.393548628+1.498247032*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.393548628+1.498247032*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.0, 3.141592653589793]
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.0, 3.141592653589793]

Latest revision as of 11:14, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
6.5.E1 E 1 ( - x + i 0 ) = - Ei ( x ) - i π exponential-integral 𝑥 𝑖 0 exponential-integral-Ei 𝑥 𝑖 𝜋 {\displaystyle{\displaystyle E_{1}\left(-x+i0\right)=-\mathrm{Ei}\left(x\right% )-i\pi}}
\expintE@{-x+ i0} = -\expintEi@{x}- i\pi

Error
ExpIntegralE[1, - x + I*0] == - ExpIntegralEi[x]- I*Pi
Missing Macro Error Failure - Successful [Tested: 3]
6.5.E1 E 1 ( - x - i 0 ) = - Ei ( x ) + i π exponential-integral 𝑥 𝑖 0 exponential-integral-Ei 𝑥 𝑖 𝜋 {\displaystyle{\displaystyle E_{1}\left(-x-i0\right)=-\mathrm{Ei}\left(x\right% )+i\pi}}
\expintE@{-x- i0} = -\expintEi@{x}+ i\pi

Error
ExpIntegralE[1, - x - I*0] == - ExpIntegralEi[x]+ I*Pi
Missing Macro Error Failure -
Failed [3 / 3]
Result: Complex[0.0, -6.283185307179586]
Test Values: {Rule[x, 1.5]}

Result: Complex[0.0, -6.283185307179586]
Test Values: {Rule[x, 0.5]}

... skip entries to safe data
6.5.E2 Ei ( x ) = - 1 2 ( E 1 ( - x + i 0 ) + E 1 ( - x - i 0 ) ) exponential-integral-Ei 𝑥 1 2 exponential-integral 𝑥 𝑖 0 exponential-integral 𝑥 𝑖 0 {\displaystyle{\displaystyle\mathrm{Ei}\left(x\right)=-\tfrac{1}{2}(E_{1}\left% (-x+i0\right)+E_{1}\left(-x-i0\right))}}
\expintEi@{x} = -\tfrac{1}{2}(\expintE@{-x+i0}+\expintE@{-x-i0})

Error
ExpIntegralEi[x] == -Divide[1,2]*(ExpIntegralE[1, - x + I*0]+ ExpIntegralE[1, - x - I*0])
Missing Macro Error Failure -
Failed [3 / 3]
Result: Complex[0.0, -3.141592653589793]
Test Values: {Rule[x, 1.5]}

Result: Complex[0.0, -3.141592653589793]
Test Values: {Rule[x, 0.5]}

... skip entries to safe data
6.5.E3 1 2 ( Ei ( x ) + E 1 ( x ) ) = Shi ( x ) 1 2 exponential-integral-Ei 𝑥 exponential-integral 𝑥 hyperbolic-sine-integral 𝑥 {\displaystyle{\displaystyle\tfrac{1}{2}(\mathrm{Ei}\left(x\right)+E_{1}\left(% x\right))=\mathrm{Shi}\left(x\right)}}
\tfrac{1}{2}(\expintEi@{x}+\expintE@{x}) = \sinhint@{x}

Error
Divide[1,2]*(ExpIntegralEi[x]+ ExpIntegralE[1, x]) == SinhIntegral[x]
Missing Macro Error Failure - Successful [Tested: 3]
6.5.E3 Shi ( x ) = - i Si ( i x ) hyperbolic-sine-integral 𝑥 𝑖 sine-integral 𝑖 𝑥 {\displaystyle{\displaystyle\mathrm{Shi}\left(x\right)=-i\mathrm{Si}\left(ix% \right)}}
\sinhint@{x} = -i\sinint@{ix}

Shi(x) = - I*Si(I*x)
SinhIntegral[x] == - I*SinIntegral[I*x]
Successful Successful - Successful [Tested: 3]
6.5.E4 1 2 ( Ei ( x ) - E 1 ( x ) ) = Chi ( x ) 1 2 exponential-integral-Ei 𝑥 exponential-integral 𝑥 hyperbolic-cosine-integral 𝑥 {\displaystyle{\displaystyle\tfrac{1}{2}(\mathrm{Ei}\left(x\right)-E_{1}\left(% x\right))=\mathrm{Chi}\left(x\right)}}
\tfrac{1}{2}(\expintEi@{x}-\expintE@{x}) = \coshint@{x}

Error
Divide[1,2]*(ExpIntegralEi[x]- ExpIntegralE[1, x]) == CoshIntegral[x]
Missing Macro Error Failure Skip - symbolical successful subtest Successful [Tested: 3]
6.5.E4 Chi ( x ) = Ci ( i x ) - 1 2 π i hyperbolic-cosine-integral 𝑥 cosine-integral 𝑖 𝑥 1 2 𝜋 𝑖 {\displaystyle{\displaystyle\mathrm{Chi}\left(x\right)=\mathrm{Ci}\left(ix% \right)-\tfrac{1}{2}\pi i}}
\coshint@{x} = \cosint@{ix}-\tfrac{1}{2}\pi i

Chi(x) = Ci(I*x)-(1)/(2)*Pi*I
CoshIntegral[x] == CosIntegral[I*x]-Divide[1,2]*Pi*I
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
6.5.E5 Si ( z ) = 1 2 i ( E 1 ( - i z ) - E 1 ( i z ) ) + 1 2 π sine-integral 𝑧 1 2 𝑖 exponential-integral 𝑖 𝑧 exponential-integral 𝑖 𝑧 1 2 𝜋 {\displaystyle{\displaystyle\mathrm{Si}\left(z\right)=\tfrac{1}{2}i(E_{1}\left% (-iz\right)-E_{1}\left(iz\right))+\tfrac{1}{2}\pi}}
\sinint@{z} = \tfrac{1}{2}i(\expintE@{-iz}-\expintE@{iz})+\tfrac{1}{2}\pi

Si(z) = (1)/(2)*I*(Ei(- I*z)- Ei(I*z))+(1)/(2)*Pi
SinIntegral[z] == Divide[1,2]*I*(ExpIntegralE[1, - I*z]- ExpIntegralE[1, I*z])+Divide[1,2]*Pi
Failure Failure
Failed [5 / 7]
Result: -3.141592653+0.*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}

Result: -3.141592654-.1e-9*I
Test Values: {z = 1/2-1/2*I*3^(1/2)}

... skip entries to safe data
Failed [2 / 7]
Result: Complex[-3.141592653589793, 0.0]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

Result: Complex[-3.141592653589793, 0.0]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

6.5.E6 Ci ( z ) = - 1 2 ( E 1 ( i z ) + E 1 ( - i z ) ) cosine-integral 𝑧 1 2 exponential-integral 𝑖 𝑧 exponential-integral 𝑖 𝑧 {\displaystyle{\displaystyle\mathrm{Ci}\left(z\right)=-\tfrac{1}{2}(E_{1}\left% (iz\right)+E_{1}\left(-iz\right))}}
\cosint@{z} = -\tfrac{1}{2}(\expintE@{iz}+\expintE@{-iz})

Ci(z) = -(1)/(2)*(Ei(I*z)+ Ei(- I*z))
CosIntegral[z] == -Divide[1,2]*(ExpIntegralE[1, I*z]+ ExpIntegralE[1, - I*z])
Failure Failure
Failed [7 / 7]
Result: .8944744988+.632221722*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}

Result: 1.393548628+1.498247032*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [2 / 7]
Result: Complex[0.0, 3.141592653589793]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

Result: Complex[0.0, -3.141592653589793]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}