4.31: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/4.31.E1 4.31.E1] || [[Item:Q1851|<math>\lim_{z\to 0}\frac{\sinh@@{z}}{z} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\lim_{z\to 0}\frac{\sinh@@{z}}{z} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>limit((sinh(z))/(z), z = 0) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Limit[Divide[Sinh[z],z], z -> 0, GenerateConditions->None] == 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
| [https://dlmf.nist.gov/4.31.E1 4.31.E1] || <math qid="Q1851">\lim_{z\to 0}\frac{\sinh@@{z}}{z} = 1</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\lim_{z\to 0}\frac{\sinh@@{z}}{z} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>limit((sinh(z))/(z), z = 0) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Limit[Divide[Sinh[z],z], z -> 0, GenerateConditions->None] == 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-  
|-  
| [https://dlmf.nist.gov/4.31.E2 4.31.E2] || [[Item:Q1852|<math>\lim_{z\to 0}\frac{\tanh@@{z}}{z} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\lim_{z\to 0}\frac{\tanh@@{z}}{z} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>limit((tanh(z))/(z), z = 0) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Limit[Divide[Tanh[z],z], z -> 0, GenerateConditions->None] == 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
| [https://dlmf.nist.gov/4.31.E2 4.31.E2] || <math qid="Q1852">\lim_{z\to 0}\frac{\tanh@@{z}}{z} = 1</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\lim_{z\to 0}\frac{\tanh@@{z}}{z} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>limit((tanh(z))/(z), z = 0) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Limit[Divide[Tanh[z],z], z -> 0, GenerateConditions->None] == 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-  
|-  
| [https://dlmf.nist.gov/4.31.E3 4.31.E3] || [[Item:Q1853|<math>\lim_{z\to 0}\frac{\cosh@@{z}-1}{z^{2}} = \frac{1}{2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\lim_{z\to 0}\frac{\cosh@@{z}-1}{z^{2}} = \frac{1}{2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>limit((cosh(z)- 1)/((z)^(2)), z = 0) = (1)/(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Limit[Divide[Cosh[z]- 1,(z)^(2)], z -> 0, GenerateConditions->None] == Divide[1,2]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
| [https://dlmf.nist.gov/4.31.E3 4.31.E3] || <math qid="Q1853">\lim_{z\to 0}\frac{\cosh@@{z}-1}{z^{2}} = \frac{1}{2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\lim_{z\to 0}\frac{\cosh@@{z}-1}{z^{2}} = \frac{1}{2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>limit((cosh(z)- 1)/((z)^(2)), z = 0) = (1)/(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Limit[Divide[Cosh[z]- 1,(z)^(2)], z -> 0, GenerateConditions->None] == Divide[1,2]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|}
|}
</div>
</div>

Latest revision as of 11:09, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
4.31.E1 lim z 0 sinh z z = 1 subscript 𝑧 0 𝑧 𝑧 1 {\displaystyle{\displaystyle\lim_{z\to 0}\frac{\sinh z}{z}=1}}
\lim_{z\to 0}\frac{\sinh@@{z}}{z} = 1

limit((sinh(z))/(z), z = 0) = 1
Limit[Divide[Sinh[z],z], z -> 0, GenerateConditions->None] == 1
Successful Successful - Successful [Tested: 1]
4.31.E2 lim z 0 tanh z z = 1 subscript 𝑧 0 𝑧 𝑧 1 {\displaystyle{\displaystyle\lim_{z\to 0}\frac{\tanh z}{z}=1}}
\lim_{z\to 0}\frac{\tanh@@{z}}{z} = 1

limit((tanh(z))/(z), z = 0) = 1
Limit[Divide[Tanh[z],z], z -> 0, GenerateConditions->None] == 1
Successful Successful - Successful [Tested: 1]
4.31.E3 lim z 0 cosh z - 1 z 2 = 1 2 subscript 𝑧 0 𝑧 1 superscript 𝑧 2 1 2 {\displaystyle{\displaystyle\lim_{z\to 0}\frac{\cosh z-1}{z^{2}}=\frac{1}{2}}}
\lim_{z\to 0}\frac{\cosh@@{z}-1}{z^{2}} = \frac{1}{2}

limit((cosh(z)- 1)/((z)^(2)), z = 0) = (1)/(2)
Limit[Divide[Cosh[z]- 1,(z)^(2)], z -> 0, GenerateConditions->None] == Divide[1,2]
Successful Successful - Successful [Tested: 1]