4.21: Difference between revisions
Jump to navigation
Jump to search
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
||
Line 14: | Line 14: | ||
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.21.E1 4.21.E1] | | | [https://dlmf.nist.gov/4.21.E1 4.21.E1] || <math qid="Q1703">\sin@@{u}+\cos@@{u} = \sqrt{2}\sin@{u+\tfrac{1}{4}\pi}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@@{u}+\cos@@{u} = \sqrt{2}\sin@{u+\tfrac{1}{4}\pi}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(u)+ cos(u) = sqrt(2)*sin(u +(1)/(4)*Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[u]+ Cos[u] == Sqrt[2]*Sin[u +Divide[1,4]*Pi]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 10] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.21.E1 4.21.E1] | | | [https://dlmf.nist.gov/4.21.E1 4.21.E1] || <math qid="Q1703">\sin@@{u}-\cos@@{u} = \sqrt{2}\sin@{u-\tfrac{1}{4}\pi}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@@{u}-\cos@@{u} = \sqrt{2}\sin@{u-\tfrac{1}{4}\pi}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(u)- cos(u) = sqrt(2)*sin(u -(1)/(4)*Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[u]- Cos[u] == Sqrt[2]*Sin[u -Divide[1,4]*Pi]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 10] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.21.E1 4.21.E1] | | | [https://dlmf.nist.gov/4.21.E1 4.21.E1] || <math qid="Q1703">\sqrt{2}\sin@{u+\tfrac{1}{4}\pi} = +\sqrt{2}\cos@{u-\tfrac{1}{4}\pi}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sqrt{2}\sin@{u+\tfrac{1}{4}\pi} = +\sqrt{2}\cos@{u-\tfrac{1}{4}\pi}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sqrt(2)*sin(u +(1)/(4)*Pi) = +sqrt(2)*cos(u -(1)/(4)*Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[2]*Sin[u +Divide[1,4]*Pi] == +Sqrt[2]*Cos[u -Divide[1,4]*Pi]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 10] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.21.E1 4.21.E1] | | | [https://dlmf.nist.gov/4.21.E1 4.21.E1] || <math qid="Q1703">\sqrt{2}\sin@{u-\tfrac{1}{4}\pi} = -\sqrt{2}\cos@{u+\tfrac{1}{4}\pi}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sqrt{2}\sin@{u-\tfrac{1}{4}\pi} = -\sqrt{2}\cos@{u+\tfrac{1}{4}\pi}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sqrt(2)*sin(u -(1)/(4)*Pi) = -sqrt(2)*cos(u +(1)/(4)*Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[2]*Sin[u -Divide[1,4]*Pi] == -Sqrt[2]*Cos[u +Divide[1,4]*Pi]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 10] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.21.E2 4.21.E2] | | | [https://dlmf.nist.gov/4.21.E2 4.21.E2] || <math qid="Q1704">\sin@{u+ v} = \sin@@{u}\cos@@{v}+\cos@@{u}\sin@@{v}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@{u+ v} = \sin@@{u}\cos@@{v}+\cos@@{u}\sin@@{v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(u + v) = sin(u)*cos(v)+ cos(u)*sin(v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[u + v] == Sin[u]*Cos[v]+ Cos[u]*Sin[v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.21.E2 4.21.E2] | | | [https://dlmf.nist.gov/4.21.E2 4.21.E2] || <math qid="Q1704">\sin@{u- v} = \sin@@{u}\cos@@{v}-\cos@@{u}\sin@@{v}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@{u- v} = \sin@@{u}\cos@@{v}-\cos@@{u}\sin@@{v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(u - v) = sin(u)*cos(v)- cos(u)*sin(v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[u - v] == Sin[u]*Cos[v]- Cos[u]*Sin[v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.21.E3 4.21.E3] | | | [https://dlmf.nist.gov/4.21.E3 4.21.E3] || <math qid="Q1705">\cos@{u+ v} = \cos@@{u}\cos@@{v}-\sin@@{u}\sin@@{v}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@{u+ v} = \cos@@{u}\cos@@{v}-\sin@@{u}\sin@@{v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(u + v) = cos(u)*cos(v)- sin(u)*sin(v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[u + v] == Cos[u]*Cos[v]- Sin[u]*Sin[v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.21.E3 4.21.E3] | | | [https://dlmf.nist.gov/4.21.E3 4.21.E3] || <math qid="Q1705">\cos@{u- v} = \cos@@{u}\cos@@{v}+\sin@@{u}\sin@@{v}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@{u- v} = \cos@@{u}\cos@@{v}+\sin@@{u}\sin@@{v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(u - v) = cos(u)*cos(v)+ sin(u)*sin(v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[u - v] == Cos[u]*Cos[v]+ Sin[u]*Sin[v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.21.E4 4.21.E4] | | | [https://dlmf.nist.gov/4.21.E4 4.21.E4] || <math qid="Q1706">\tan@{u+ v} = \frac{\tan@@{u}+\tan@@{v}}{1-\tan@@{u}\tan@@{v}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tan@{u+ v} = \frac{\tan@@{u}+\tan@@{v}}{1-\tan@@{u}\tan@@{v}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tan(u + v) = (tan(u)+ tan(v))/(1 - tan(u)*tan(v))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tan[u + v] == Divide[Tan[u]+ Tan[v],1 - Tan[u]*Tan[v]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.21.E4 4.21.E4] | | | [https://dlmf.nist.gov/4.21.E4 4.21.E4] || <math qid="Q1706">\tan@{u- v} = \frac{\tan@@{u}-\tan@@{v}}{1+\tan@@{u}\tan@@{v}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tan@{u- v} = \frac{\tan@@{u}-\tan@@{v}}{1+\tan@@{u}\tan@@{v}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tan(u - v) = (tan(u)- tan(v))/(1 + tan(u)*tan(v))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tan[u - v] == Divide[Tan[u]- Tan[v],1 + Tan[u]*Tan[v]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.21.E5 4.21.E5] | | | [https://dlmf.nist.gov/4.21.E5 4.21.E5] || <math qid="Q1707">\cot@{u+ v} = \frac{+\cot@@{u}\cot@@{v}-1}{\cot@@{u}+\cot@@{v}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cot@{u+ v} = \frac{+\cot@@{u}\cot@@{v}-1}{\cot@@{u}+\cot@@{v}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cot(u + v) = (+ cot(u)*cot(v)- 1)/(cot(u)+ cot(v))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cot[u + v] == Divide[+ Cot[u]*Cot[v]- 1,Cot[u]+ Cot[v]]</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [10 / 100]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.9674787081851645*^15, 2.0439439417914815*^15] | Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.9674787081851645*^15, 2.0439439417914815*^15] | ||
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.21.E5 4.21.E5] | | | [https://dlmf.nist.gov/4.21.E5 4.21.E5] || <math qid="Q1707">\cot@{u- v} = \frac{-\cot@@{u}\cot@@{v}-1}{\cot@@{u}-\cot@@{v}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cot@{u- v} = \frac{-\cot@@{u}\cot@@{v}-1}{\cot@@{u}-\cot@@{v}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cot(u - v) = (- cot(u)*cot(v)- 1)/(cot(u)- cot(v))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cot[u - v] == Divide[- Cot[u]*Cot[v]- 1,Cot[u]- Cot[v]]</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [10 / 100]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.21.E6 4.21.E6] | | | [https://dlmf.nist.gov/4.21.E6 4.21.E6] || <math qid="Q1708">\sin@@{u}+\sin@@{v} = 2\sin@{\frac{u+v}{2}}\cos@{\frac{u-v}{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@@{u}+\sin@@{v} = 2\sin@{\frac{u+v}{2}}\cos@{\frac{u-v}{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(u)+ sin(v) = 2*sin((u + v)/(2))*cos((u - v)/(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[u]+ Sin[v] == 2*Sin[Divide[u + v,2]]*Cos[Divide[u - v,2]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.21.E7 4.21.E7] | | | [https://dlmf.nist.gov/4.21.E7 4.21.E7] || <math qid="Q1709">\sin@@{u}-\sin@@{v} = 2\cos@{\frac{u+v}{2}}\sin@{\frac{u-v}{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@@{u}-\sin@@{v} = 2\cos@{\frac{u+v}{2}}\sin@{\frac{u-v}{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(u)- sin(v) = 2*cos((u + v)/(2))*sin((u - v)/(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[u]- Sin[v] == 2*Cos[Divide[u + v,2]]*Sin[Divide[u - v,2]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.21.E8 4.21.E8] | | | [https://dlmf.nist.gov/4.21.E8 4.21.E8] || <math qid="Q1710">\cos@@{u}+\cos@@{v} = 2\cos@{\frac{u+v}{2}}\cos@{\frac{u-v}{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@@{u}+\cos@@{v} = 2\cos@{\frac{u+v}{2}}\cos@{\frac{u-v}{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(u)+ cos(v) = 2*cos((u + v)/(2))*cos((u - v)/(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[u]+ Cos[v] == 2*Cos[Divide[u + v,2]]*Cos[Divide[u - v,2]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.21.E9 4.21.E9] | | | [https://dlmf.nist.gov/4.21.E9 4.21.E9] || <math qid="Q1711">\cos@@{u}-\cos@@{v} = -2\sin@{\frac{u+v}{2}}\sin@{\frac{u-v}{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@@{u}-\cos@@{v} = -2\sin@{\frac{u+v}{2}}\sin@{\frac{u-v}{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(u)- cos(v) = - 2*sin((u + v)/(2))*sin((u - v)/(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[u]- Cos[v] == - 2*Sin[Divide[u + v,2]]*Sin[Divide[u - v,2]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.21.E10 4.21.E10] | | | [https://dlmf.nist.gov/4.21.E10 4.21.E10] || <math qid="Q1712">\tan@@{u}+\tan@@{v} = \frac{\sin@{u+ v}}{\cos@@{u}\cos@@{v}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tan@@{u}+\tan@@{v} = \frac{\sin@{u+ v}}{\cos@@{u}\cos@@{v}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tan(u)+ tan(v) = (sin(u + v))/(cos(u)*cos(v))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tan[u]+ Tan[v] == Divide[Sin[u + v],Cos[u]*Cos[v]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.21.E10 4.21.E10] | | | [https://dlmf.nist.gov/4.21.E10 4.21.E10] || <math qid="Q1712">\tan@@{u}-\tan@@{v} = \frac{\sin@{u- v}}{\cos@@{u}\cos@@{v}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tan@@{u}-\tan@@{v} = \frac{\sin@{u- v}}{\cos@@{u}\cos@@{v}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tan(u)- tan(v) = (sin(u - v))/(cos(u)*cos(v))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tan[u]- Tan[v] == Divide[Sin[u - v],Cos[u]*Cos[v]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.21.E11 4.21.E11] | | | [https://dlmf.nist.gov/4.21.E11 4.21.E11] || <math qid="Q1713">\cot@@{u}+\cot@@{v} = \frac{\sin@{v+ u}}{\sin@@{u}\sin@@{v}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cot@@{u}+\cot@@{v} = \frac{\sin@{v+ u}}{\sin@@{u}\sin@@{v}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cot(u)+ cot(v) = (sin(v + u))/(sin(u)*sin(v))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cot[u]+ Cot[v] == Divide[Sin[v + u],Sin[u]*Sin[v]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.21.E11 4.21.E11] | | | [https://dlmf.nist.gov/4.21.E11 4.21.E11] || <math qid="Q1713">\cot@@{u}-\cot@@{v} = \frac{\sin@{v- u}}{\sin@@{u}\sin@@{v}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cot@@{u}-\cot@@{v} = \frac{\sin@{v- u}}{\sin@@{u}\sin@@{v}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cot(u)- cot(v) = (sin(v - u))/(sin(u)*sin(v))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cot[u]- Cot[v] == Divide[Sin[v - u],Sin[u]*Sin[v]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.21.E12 4.21.E12] | | | [https://dlmf.nist.gov/4.21.E12 4.21.E12] || <math qid="Q1714">\sin^{2}@@{z}+\cos^{2}@@{z} = 1</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin^{2}@@{z}+\cos^{2}@@{z} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(sin(z))^(2)+ (cos(z))^(2) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Sin[z])^(2)+ (Cos[z])^(2) == 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.21.E13 4.21.E13] | | | [https://dlmf.nist.gov/4.21.E13 4.21.E13] || <math qid="Q1715">\sec^{2}@@{z} = 1+\tan^{2}@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sec^{2}@@{z} = 1+\tan^{2}@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(sec(z))^(2) = 1 + (tan(z))^(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Sec[z])^(2) == 1 + (Tan[z])^(2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.21.E14 4.21.E14] | | | [https://dlmf.nist.gov/4.21.E14 4.21.E14] || <math qid="Q1716">\csc^{2}@@{z} = 1+\cot^{2}@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\csc^{2}@@{z} = 1+\cot^{2}@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(csc(z))^(2) = 1 + (cot(z))^(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Csc[z])^(2) == 1 + (Cot[z])^(2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.21.E15 4.21.E15] | | | [https://dlmf.nist.gov/4.21.E15 4.21.E15] || <math qid="Q1717">2\sin@@{u}\sin@@{v} = \cos@{u-v}-\cos@{u+v}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>2\sin@@{u}\sin@@{v} = \cos@{u-v}-\cos@{u+v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>2*sin(u)*sin(v) = cos(u - v)- cos(u + v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>2*Sin[u]*Sin[v] == Cos[u - v]- Cos[u + v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.21.E16 4.21.E16] | | | [https://dlmf.nist.gov/4.21.E16 4.21.E16] || <math qid="Q1718">2\cos@@{u}\cos@@{v} = \cos@{u-v}+\cos@{u+v}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>2\cos@@{u}\cos@@{v} = \cos@{u-v}+\cos@{u+v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>2*cos(u)*cos(v) = cos(u - v)+ cos(u + v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>2*Cos[u]*Cos[v] == Cos[u - v]+ Cos[u + v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.21.E17 4.21.E17] | | | [https://dlmf.nist.gov/4.21.E17 4.21.E17] || <math qid="Q1719">2\sin@@{u}\cos@@{v} = \sin@{u-v}+\sin@{u+v}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>2\sin@@{u}\cos@@{v} = \sin@{u-v}+\sin@{u+v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>2*sin(u)*cos(v) = sin(u - v)+ sin(u + v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>2*Sin[u]*Cos[v] == Sin[u - v]+ Sin[u + v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.21.E18 4.21.E18] | | | [https://dlmf.nist.gov/4.21.E18 4.21.E18] || <math qid="Q1720">\sin^{2}@@{u}-\sin^{2}@@{v} = \sin@{u+v}\sin@{u-v}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin^{2}@@{u}-\sin^{2}@@{v} = \sin@{u+v}\sin@{u-v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(sin(u))^(2)- (sin(v))^(2) = sin(u + v)*sin(u - v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Sin[u])^(2)- (Sin[v])^(2) == Sin[u + v]*Sin[u - v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.21.E19 4.21.E19] | | | [https://dlmf.nist.gov/4.21.E19 4.21.E19] || <math qid="Q1721">\cos^{2}@@{u}-\cos^{2}@@{v} = -\sin@{u+v}\sin@{u-v}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos^{2}@@{u}-\cos^{2}@@{v} = -\sin@{u+v}\sin@{u-v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(cos(u))^(2)- (cos(v))^(2) = - sin(u + v)*sin(u - v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Cos[u])^(2)- (Cos[v])^(2) == - Sin[u + v]*Sin[u - v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.21.E20 4.21.E20] | | | [https://dlmf.nist.gov/4.21.E20 4.21.E20] || <math qid="Q1722">\cos^{2}@@{u}-\sin^{2}@@{v} = \cos@{u+v}\cos@{u-v}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos^{2}@@{u}-\sin^{2}@@{v} = \cos@{u+v}\cos@{u-v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(cos(u))^(2)- (sin(v))^(2) = cos(u + v)*cos(u - v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Cos[u])^(2)- (Sin[v])^(2) == Cos[u + v]*Cos[u - v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.21.E21 4.21.E21] | | | [https://dlmf.nist.gov/4.21.E21 4.21.E21] || <math qid="Q1723">\sin@@{\frac{z}{2}} = +\left(\frac{1-\cos@@{z}}{2}\right)^{1/2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@@{\frac{z}{2}} = +\left(\frac{1-\cos@@{z}}{2}\right)^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin((z)/(2)) = +((1 - cos(z))/(2))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[Divide[z,2]] == +(Divide[1 - Cos[z],2])^(1/2)</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.5419255224+.8655716642*I | ||
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.8655770340-.4585952894*I | Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.8655770340-.4585952894*I | ||
Test Values: {z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.541925522457336, 0.8655716640572733] | Test Values: {z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.541925522457336, 0.8655716640572733] | ||
Line 82: | Line 82: | ||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br></div></div> | Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br></div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.21.E21 4.21.E21] | | | [https://dlmf.nist.gov/4.21.E21 4.21.E21] || <math qid="Q1723">\sin@@{\frac{z}{2}} = -\left(\frac{1-\cos@@{z}}{2}\right)^{1/2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@@{\frac{z}{2}} = -\left(\frac{1-\cos@@{z}}{2}\right)^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin((z)/(2)) = -((1 - cos(z))/(2))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[Divide[z,2]] == -(Divide[1 - Cos[z],2])^(1/2)</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [5 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .8655770340+.4585952894*I | ||
Test Values: {z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .5419255224-.8655716642*I | Test Values: {z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .5419255224-.8655716642*I | ||
Test Values: {z = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.363277520 | Test Values: {z = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.363277520 | ||
Line 90: | Line 90: | ||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.21.E22 4.21.E22] | | | [https://dlmf.nist.gov/4.21.E22 4.21.E22] || <math qid="Q1724">\cos@@{\frac{z}{2}} = +\left(\frac{1+\cos@@{z}}{2}\right)^{1/2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@@{\frac{z}{2}} = +\left(\frac{1+\cos@@{z}}{2}\right)^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos((z)/(2)) = +((1 + cos(z))/(2))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[Divide[z,2]] == +(Divide[1 + Cos[z],2])^(1/2)</syntaxhighlight> || Failure || Failure || Successful [Tested: 7] || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.21.E22 4.21.E22] | | | [https://dlmf.nist.gov/4.21.E22 4.21.E22] || <math qid="Q1724">\cos@@{\frac{z}{2}} = -\left(\frac{1+\cos@@{z}}{2}\right)^{1/2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@@{\frac{z}{2}} = -\left(\frac{1+\cos@@{z}}{2}\right)^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos((z)/(2)) = -((1 + cos(z))/(2))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[Divide[z,2]] == -(Divide[1 + Cos[z],2])^(1/2)</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.872439139-.2119959694*I | ||
Test Values: {z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.122352334+.2210167318*I | Test Values: {z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.122352334+.2210167318*I | ||
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.122352334+.2210167318*I | Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.122352334+.2210167318*I | ||
Line 100: | Line 100: | ||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.21.E23 4.21.E23] | | | [https://dlmf.nist.gov/4.21.E23 4.21.E23] || <math qid="Q1725">\tan@@{\frac{z}{2}} = +\left(\frac{1-\cos@@{z}}{1+\cos@@{z}}\right)^{1/2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tan@@{\frac{z}{2}} = +\left(\frac{1-\cos@@{z}}{1+\cos@@{z}}\right)^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tan((z)/(2)) = +((1 - cos(z))/(1 + cos(z)))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tan[Divide[z,2]] == +(Divide[1 - Cos[z],1 + Cos[z]])^(1/2)</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.4211742148+.8595320616*I | ||
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.8580864930-.5869891489*I | Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.8580864930-.5869891489*I | ||
Test Values: {z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.4211742148849969, 0.8595320613685856] | Test Values: {z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.4211742148849969, 0.8595320613685856] | ||
Line 106: | Line 106: | ||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br></div></div> | Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br></div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.21.E23 4.21.E23] | | | [https://dlmf.nist.gov/4.21.E23 4.21.E23] || <math qid="Q1725">\tan@@{\frac{z}{2}} = -\left(\frac{1-\cos@@{z}}{1+\cos@@{z}}\right)^{1/2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tan@@{\frac{z}{2}} = -\left(\frac{1-\cos@@{z}}{1+\cos@@{z}}\right)^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tan((z)/(2)) = -((1 - cos(z))/(1 + cos(z)))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tan[Divide[z,2]] == -(Divide[1 - Cos[z],1 + Cos[z]])^(1/2)</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [5 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .8580864930+.5869891489*I | ||
Test Values: {z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .4211742148-.8595320616*I | Test Values: {z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .4211742148-.8595320616*I | ||
Test Values: {z = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.863192920 | Test Values: {z = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.863192920 | ||
Line 114: | Line 114: | ||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.21.E23 4.21.E23] | | | [https://dlmf.nist.gov/4.21.E23 4.21.E23] || <math qid="Q1725">+\left(\frac{1-\cos@@{z}}{1+\cos@@{z}}\right)^{1/2} = \frac{1-\cos@@{z}}{\sin@@{z}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>+\left(\frac{1-\cos@@{z}}{1+\cos@@{z}}\right)^{1/2} = \frac{1-\cos@@{z}}{\sin@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>+((1 - cos(z))/(1 + cos(z)))^(1/2) = (1 - cos(z))/(sin(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>+(Divide[1 - Cos[z],1 + Cos[z]])^(1/2) == Divide[1 - Cos[z],Sin[z]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .4211742148-.8595320615*I | ||
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .8580864930+.5869891489*I | Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .8580864930+.5869891489*I | ||
Test Values: {z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.42117421488499684, -0.8595320613685857] | Test Values: {z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.42117421488499684, -0.8595320613685857] | ||
Line 120: | Line 120: | ||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br></div></div> | Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br></div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.21.E23 4.21.E23] | | | [https://dlmf.nist.gov/4.21.E23 4.21.E23] || <math qid="Q1725">-\left(\frac{1-\cos@@{z}}{1+\cos@@{z}}\right)^{1/2} = \frac{1-\cos@@{z}}{\sin@@{z}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>-\left(\frac{1-\cos@@{z}}{1+\cos@@{z}}\right)^{1/2} = \frac{1-\cos@@{z}}{\sin@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>-((1 - cos(z))/(1 + cos(z)))^(1/2) = (1 - cos(z))/(sin(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>-(Divide[1 - Cos[z],1 + Cos[z]])^(1/2) == Divide[1 - Cos[z],Sin[z]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [5 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.8580864930-.5869891489*I | ||
Test Values: {z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.4211742148+.8595320615*I | Test Values: {z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.4211742148+.8595320615*I | ||
Test Values: {z = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.863192920 | Test Values: {z = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.863192920 | ||
Line 128: | Line 128: | ||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.21.E23 4.21.E23] | | | [https://dlmf.nist.gov/4.21.E23 4.21.E23] || <math qid="Q1725">\frac{1-\cos@@{z}}{\sin@@{z}} = \frac{\sin@@{z}}{1+\cos@@{z}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1-\cos@@{z}}{\sin@@{z}} = \frac{\sin@@{z}}{1+\cos@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(1 - cos(z))/(sin(z)) = (sin(z))/(1 + cos(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1 - Cos[z],Sin[z]] == Divide[Sin[z],1 + Cos[z]]</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.21.E24 4.21.E24] | | | [https://dlmf.nist.gov/4.21.E24 4.21.E24] || <math qid="Q1726">\sin@{-z} = -\sin@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@{-z} = -\sin@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(- z) = - sin(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[- z] == - Sin[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.21.E25 4.21.E25] | | | [https://dlmf.nist.gov/4.21.E25 4.21.E25] || <math qid="Q1727">\cos@{-z} = \cos@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@{-z} = \cos@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(- z) = cos(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[- z] == Cos[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.21.E26 4.21.E26] | | | [https://dlmf.nist.gov/4.21.E26 4.21.E26] || <math qid="Q1728">\tan@{-z} = -\tan@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tan@{-z} = -\tan@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tan(- z) = - tan(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tan[- z] == - Tan[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.21.E27 4.21.E27] | | | [https://dlmf.nist.gov/4.21.E27 4.21.E27] || <math qid="Q1729">\sin@{2z} = 2\sin@@{z}\cos@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@{2z} = 2\sin@@{z}\cos@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(2*z) = 2*sin(z)*cos(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[2*z] == 2*Sin[z]*Cos[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.21.E27 4.21.E27] | | | [https://dlmf.nist.gov/4.21.E27 4.21.E27] || <math qid="Q1729">2\sin@@{z}\cos@@{z} = \frac{2\tan@@{z}}{1+\tan^{2}@@{z}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>2\sin@@{z}\cos@@{z} = \frac{2\tan@@{z}}{1+\tan^{2}@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>2*sin(z)*cos(z) = (2*tan(z))/(1 + (tan(z))^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>2*Sin[z]*Cos[z] == Divide[2*Tan[z],1 + (Tan[z])^(2)]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.21.E28 4.21.E28] | | | [https://dlmf.nist.gov/4.21.E28 4.21.E28] || <math qid="Q1730">\cos@{2z} = 2\cos^{2}@@{z}-1</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@{2z} = 2\cos^{2}@@{z}-1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(2*z) = 2*(cos(z))^(2)- 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[2*z] == 2*(Cos[z])^(2)- 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.21.E28 4.21.E28] | | | [https://dlmf.nist.gov/4.21.E28 4.21.E28] || <math qid="Q1730">2\cos^{2}@@{z}-1 = 1-2\sin^{2}@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>2\cos^{2}@@{z}-1 = 1-2\sin^{2}@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>2*(cos(z))^(2)- 1 = 1 - 2*(sin(z))^(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>2*(Cos[z])^(2)- 1 == 1 - 2*(Sin[z])^(2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.21.E28 4.21.E28] | | | [https://dlmf.nist.gov/4.21.E28 4.21.E28] || <math qid="Q1730">1-2\sin^{2}@@{z} = \cos^{2}@@{z}-\sin^{2}@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>1-2\sin^{2}@@{z} = \cos^{2}@@{z}-\sin^{2}@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>1 - 2*(sin(z))^(2) = (cos(z))^(2)- (sin(z))^(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>1 - 2*(Sin[z])^(2) == (Cos[z])^(2)- (Sin[z])^(2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.21.E28 4.21.E28] | | | [https://dlmf.nist.gov/4.21.E28 4.21.E28] || <math qid="Q1730">\cos^{2}@@{z}-\sin^{2}@@{z} = \frac{1-\tan^{2}@@{z}}{1+\tan^{2}@@{z}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos^{2}@@{z}-\sin^{2}@@{z} = \frac{1-\tan^{2}@@{z}}{1+\tan^{2}@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(cos(z))^(2)- (sin(z))^(2) = (1 - (tan(z))^(2))/(1 + (tan(z))^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Cos[z])^(2)- (Sin[z])^(2) == Divide[1 - (Tan[z])^(2),1 + (Tan[z])^(2)]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.21.E29 4.21.E29] | | | [https://dlmf.nist.gov/4.21.E29 4.21.E29] || <math qid="Q1731">\tan@{2z} = \frac{2\tan@@{z}}{1-\tan^{2}@@{z}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tan@{2z} = \frac{2\tan@@{z}}{1-\tan^{2}@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tan(2*z) = (2*tan(z))/(1 - (tan(z))^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tan[2*z] == Divide[2*Tan[z],1 - (Tan[z])^(2)]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.21.E29 4.21.E29] | | | [https://dlmf.nist.gov/4.21.E29 4.21.E29] || <math qid="Q1731">\frac{2\tan@@{z}}{1-\tan^{2}@@{z}} = \frac{2\cot@@{z}}{\cot^{2}@@{z}-1}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{2\tan@@{z}}{1-\tan^{2}@@{z}} = \frac{2\cot@@{z}}{\cot^{2}@@{z}-1}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(2*tan(z))/(1 - (tan(z))^(2)) = (2*cot(z))/((cot(z))^(2)- 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[2*Tan[z],1 - (Tan[z])^(2)] == Divide[2*Cot[z],(Cot[z])^(2)- 1]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.21.E29 4.21.E29] | | | [https://dlmf.nist.gov/4.21.E29 4.21.E29] || <math qid="Q1731">\frac{2\cot@@{z}}{\cot^{2}@@{z}-1} = \frac{2}{\cot@@{z}-\tan@@{z}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{2\cot@@{z}}{\cot^{2}@@{z}-1} = \frac{2}{\cot@@{z}-\tan@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(2*cot(z))/((cot(z))^(2)- 1) = (2)/(cot(z)- tan(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[2*Cot[z],(Cot[z])^(2)- 1] == Divide[2,Cot[z]- Tan[z]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.21.E30 4.21.E30] | | | [https://dlmf.nist.gov/4.21.E30 4.21.E30] || <math qid="Q1732">\sin@{3z} = 3\sin@@{z}-4\sin^{3}@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@{3z} = 3\sin@@{z}-4\sin^{3}@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(3*z) = 3*sin(z)- 4*(sin(z))^(3)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[3*z] == 3*Sin[z]- 4*(Sin[z])^(3)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.21.E31 4.21.E31] | | | [https://dlmf.nist.gov/4.21.E31 4.21.E31] || <math qid="Q1733">\cos@{3z} = -3\cos@@{z}+4\cos^{3}@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@{3z} = -3\cos@@{z}+4\cos^{3}@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(3*z) = - 3*cos(z)+ 4*(cos(z))^(3)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[3*z] == - 3*Cos[z]+ 4*(Cos[z])^(3)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.21.E32 4.21.E32] | | | [https://dlmf.nist.gov/4.21.E32 4.21.E32] || <math qid="Q1734">\sin@{4z} = 8\cos^{3}@@{z}\sin@@{z}-4\cos@@{z}\sin@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@{4z} = 8\cos^{3}@@{z}\sin@@{z}-4\cos@@{z}\sin@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(4*z) = 8*(cos(z))^(3)* sin(z)- 4*cos(z)*sin(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[4*z] == 8*(Cos[z])^(3)* Sin[z]- 4*Cos[z]*Sin[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.21.E33 4.21.E33] | | | [https://dlmf.nist.gov/4.21.E33 4.21.E33] || <math qid="Q1735">\cos@{4z} = 8\cos^{4}@@{z}-8\cos^{2}@@{z}+1</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@{4z} = 8\cos^{4}@@{z}-8\cos^{2}@@{z}+1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(4*z) = 8*(cos(z))^(4)- 8*(cos(z))^(2)+ 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[4*z] == 8*(Cos[z])^(4)- 8*(Cos[z])^(2)+ 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.21.E34 4.21.E34] | | | [https://dlmf.nist.gov/4.21.E34 4.21.E34] || <math qid="Q1736">\cos@{nz}+i\sin@{nz} = (\cos@@{z}+i\sin@@{z})^{n}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@{nz}+i\sin@{nz} = (\cos@@{z}+i\sin@@{z})^{n}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(n*z)+ I*sin(n*z) = (cos(z)+ I*sin(z))^(n)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[n*z]+ I*Sin[n*z] == (Cos[z]+ I*Sin[z])^(n)</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 21] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.21.E35 4.21.E35] | | | [https://dlmf.nist.gov/4.21.E35 4.21.E35] || <math qid="Q1737">\sin@{nz} = 2^{n-1}\prod_{k=0}^{n-1}\sin@{z+\frac{k\pi}{n}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@{nz} = 2^{n-1}\prod_{k=0}^{n-1}\sin@{z+\frac{k\pi}{n}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(n*z) = (2)^(n - 1)* product(sin(z +(k*Pi)/(n)), k = 0..n - 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[n*z] == (2)^(n - 1)* Product[Sin[z +Divide[k*Pi,n]], {k, 0, n - 1}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || Successful [Tested: 21] || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.21#Ex1 4.21#Ex1] | | | [https://dlmf.nist.gov/4.21#Ex1 4.21#Ex1] || <math qid="Q1738">\sin@@{z} = \frac{2t}{1+t^{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@@{z} = \frac{2t}{1+t^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(z) = (2*t)/(1 + (t)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[z] == Divide[2*t,1 + (t)^(2)]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [42 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.782057258+.3375964631*I | ||
Test Values: {t = -1.5, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .2523455641+.8586367171*I | Test Values: {t = -1.5, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .2523455641+.8586367171*I | ||
Test Values: {t = -1.5, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.593808282-.8586367171*I | Test Values: {t = -1.5, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.593808282-.8586367171*I | ||
Line 174: | Line 174: | ||
Test Values: {Rule[t, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[t, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.21#Ex2 4.21#Ex2] | | | [https://dlmf.nist.gov/4.21#Ex2 4.21#Ex2] || <math qid="Q1739">\cos@@{z} = \frac{1-t^{2}}{1+t^{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@@{z} = \frac{1-t^{2}}{1+t^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(z) = (1 - (t)^(2))/(1 + (t)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[z] == Divide[1 - (t)^(2),1 + (t)^(2)]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [42 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.115158404-.3969495503*I | ||
Test Values: {t = -1.5, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.612380902+.4690753764*I | Test Values: {t = -1.5, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.612380902+.4690753764*I | ||
Test Values: {t = -1.5, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.612380902+.4690753764*I | Test Values: {t = -1.5, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.612380902+.4690753764*I | ||
Line 182: | Line 182: | ||
Test Values: {Rule[t, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[t, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.21.E37 4.21.E37] | | | [https://dlmf.nist.gov/4.21.E37 4.21.E37] || <math qid="Q1741">\sin@@{z} = \sin@@{x}\cosh@@{y}+\iunit\cos@@{x}\sinh@@{y}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@@{z} = \sin@@{x}\cosh@@{y}+\iunit\cos@@{x}\sinh@@{y}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(x + y*I) = sin(x)*cosh(y)+ I*cos(x)*sinh(y)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[x + y*I] == Sin[x]*Cosh[y]+ I*Cos[x]*Sinh[y]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 18] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.21.E38 4.21.E38] | | | [https://dlmf.nist.gov/4.21.E38 4.21.E38] || <math qid="Q1742">\cos@@{z} = \cos@@{x}\cosh@@{y}-\iunit\sin@@{x}\sinh@@{y}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@@{z} = \cos@@{x}\cosh@@{y}-\iunit\sin@@{x}\sinh@@{y}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(x + y*I) = cos(x)*cosh(y)- I*sin(x)*sinh(y)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[x + y*I] == Cos[x]*Cosh[y]- I*Sin[x]*Sinh[y]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 18] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.21.E39 4.21.E39] | | | [https://dlmf.nist.gov/4.21.E39 4.21.E39] || <math qid="Q1743">\tan@@{z} = \frac{\sin@{2x}+\iunit\sinh@{2y}}{\cos@{2x}+\cosh@{2y}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tan@@{z} = \frac{\sin@{2x}+\iunit\sinh@{2y}}{\cos@{2x}+\cosh@{2y}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tan(x + y*I) = (sin(2*x)+ I*sinh(2*y))/(cos(2*x)+ cosh(2*y))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tan[x + y*I] == Divide[Sin[2*x]+ I*Sinh[2*y],Cos[2*x]+ Cosh[2*y]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 18] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.21.E40 4.21.E40] | | | [https://dlmf.nist.gov/4.21.E40 4.21.E40] || <math qid="Q1744">\cot@@{z} = \frac{\sin@{2x}-\iunit\sinh@{2y}}{\cosh@{2y}-\cos@{2x}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cot@@{z} = \frac{\sin@{2x}-\iunit\sinh@{2y}}{\cosh@{2y}-\cos@{2x}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cot(x + y*I) = (sin(2*x)- I*sinh(2*y))/(cosh(2*y)- cos(2*x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cot[x + y*I] == Divide[Sin[2*x]- I*Sinh[2*y],Cosh[2*y]- Cos[2*x]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 18] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.21.E41 4.21.E41] | | | [https://dlmf.nist.gov/4.21.E41 4.21.E41] || <math qid="Q1745">|\sin@@{z}| = (\sin^{2}@@{x}+\sinh^{2}@@{y})^{1/2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\sin@@{z}| = (\sin^{2}@@{x}+\sinh^{2}@@{y})^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs(sin(x + y*I)) = ((sin(x))^(2)+ (sinh(y))^(2))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Sin[x + y*I]] == ((Sin[x])^(2)+ (Sinh[y])^(2))^(1/2)</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 18] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.21.E41 4.21.E41] | | | [https://dlmf.nist.gov/4.21.E41 4.21.E41] || <math qid="Q1745">(\sin^{2}@@{x}+\sinh^{2}@@{y})^{1/2} = \left(\tfrac{1}{2}\left(\cosh@{2y}-\cos@{2x}\right)\right)^{1/2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>(\sin^{2}@@{x}+\sinh^{2}@@{y})^{1/2} = \left(\tfrac{1}{2}\left(\cosh@{2y}-\cos@{2x}\right)\right)^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>((sin(x))^(2)+ (sinh(y))^(2))^(1/2) = ((1)/(2)*(cosh(2*y)- cos(2*x)))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>((Sin[x])^(2)+ (Sinh[y])^(2))^(1/2) == (Divide[1,2]*(Cosh[2*y]- Cos[2*x]))^(1/2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 18] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.21.E42 4.21.E42] | | | [https://dlmf.nist.gov/4.21.E42 4.21.E42] || <math qid="Q1746">|\cos@@{z}| = (\cos^{2}@@{x}+\sinh^{2}@@{y})^{1/2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\cos@@{z}| = (\cos^{2}@@{x}+\sinh^{2}@@{y})^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs(cos(x + y*I)) = ((cos(x))^(2)+ (sinh(y))^(2))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Cos[x + y*I]] == ((Cos[x])^(2)+ (Sinh[y])^(2))^(1/2)</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 18] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.21.E42 4.21.E42] | | | [https://dlmf.nist.gov/4.21.E42 4.21.E42] || <math qid="Q1746">(\cos^{2}@@{x}+\sinh^{2}@@{y})^{1/2} = \left(\tfrac{1}{2}(\cosh@{2y}+\cos@{2x})\right)^{1/2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>(\cos^{2}@@{x}+\sinh^{2}@@{y})^{1/2} = \left(\tfrac{1}{2}(\cosh@{2y}+\cos@{2x})\right)^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>((cos(x))^(2)+ (sinh(y))^(2))^(1/2) = ((1)/(2)*(cosh(2*y)+ cos(2*x)))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>((Cos[x])^(2)+ (Sinh[y])^(2))^(1/2) == (Divide[1,2]*(Cosh[2*y]+ Cos[2*x]))^(1/2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 18] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.21.E43 4.21.E43] | | | [https://dlmf.nist.gov/4.21.E43 4.21.E43] || <math qid="Q1747">|\tan@@{z}| = \left(\frac{\cosh@{2y}-\cos@{2x}}{\cosh@{2y}+\cos@{2x}}\right)^{1/2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\tan@@{z}| = \left(\frac{\cosh@{2y}-\cos@{2x}}{\cosh@{2y}+\cos@{2x}}\right)^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs(tan(x + y*I)) = ((cosh(2*y)- cos(2*x))/(cosh(2*y)+ cos(2*x)))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Tan[x + y*I]] == (Divide[Cosh[2*y]- Cos[2*x],Cosh[2*y]+ Cos[2*x]])^(1/2)</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 18] | ||
|} | |} | ||
</div> | </div> |
Latest revision as of 11:06, 28 June 2021
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
4.21.E1 | \sin@@{u}+\cos@@{u} = \sqrt{2}\sin@{u+\tfrac{1}{4}\pi} |
|
sin(u)+ cos(u) = sqrt(2)*sin(u +(1)/(4)*Pi)
|
Sin[u]+ Cos[u] == Sqrt[2]*Sin[u +Divide[1,4]*Pi]
|
Successful | Successful | - | Successful [Tested: 10] |
4.21.E1 | \sin@@{u}-\cos@@{u} = \sqrt{2}\sin@{u-\tfrac{1}{4}\pi} |
|
sin(u)- cos(u) = sqrt(2)*sin(u -(1)/(4)*Pi)
|
Sin[u]- Cos[u] == Sqrt[2]*Sin[u -Divide[1,4]*Pi]
|
Successful | Successful | - | Successful [Tested: 10] |
4.21.E1 | \sqrt{2}\sin@{u+\tfrac{1}{4}\pi} = +\sqrt{2}\cos@{u-\tfrac{1}{4}\pi} |
|
sqrt(2)*sin(u +(1)/(4)*Pi) = +sqrt(2)*cos(u -(1)/(4)*Pi)
|
Sqrt[2]*Sin[u +Divide[1,4]*Pi] == +Sqrt[2]*Cos[u -Divide[1,4]*Pi]
|
Successful | Successful | - | Successful [Tested: 10] |
4.21.E1 | \sqrt{2}\sin@{u-\tfrac{1}{4}\pi} = -\sqrt{2}\cos@{u+\tfrac{1}{4}\pi} |
|
sqrt(2)*sin(u -(1)/(4)*Pi) = -sqrt(2)*cos(u +(1)/(4)*Pi)
|
Sqrt[2]*Sin[u -Divide[1,4]*Pi] == -Sqrt[2]*Cos[u +Divide[1,4]*Pi]
|
Successful | Successful | - | Successful [Tested: 10] |
4.21.E2 | \sin@{u+ v} = \sin@@{u}\cos@@{v}+\cos@@{u}\sin@@{v} |
|
sin(u + v) = sin(u)*cos(v)+ cos(u)*sin(v)
|
Sin[u + v] == Sin[u]*Cos[v]+ Cos[u]*Sin[v]
|
Successful | Successful | - | Successful [Tested: 100] |
4.21.E2 | \sin@{u- v} = \sin@@{u}\cos@@{v}-\cos@@{u}\sin@@{v} |
|
sin(u - v) = sin(u)*cos(v)- cos(u)*sin(v)
|
Sin[u - v] == Sin[u]*Cos[v]- Cos[u]*Sin[v]
|
Successful | Successful | - | Successful [Tested: 100] |
4.21.E3 | \cos@{u+ v} = \cos@@{u}\cos@@{v}-\sin@@{u}\sin@@{v} |
|
cos(u + v) = cos(u)*cos(v)- sin(u)*sin(v)
|
Cos[u + v] == Cos[u]*Cos[v]- Sin[u]*Sin[v]
|
Successful | Successful | - | Successful [Tested: 100] |
4.21.E3 | \cos@{u- v} = \cos@@{u}\cos@@{v}+\sin@@{u}\sin@@{v} |
|
cos(u - v) = cos(u)*cos(v)+ sin(u)*sin(v)
|
Cos[u - v] == Cos[u]*Cos[v]+ Sin[u]*Sin[v]
|
Successful | Successful | - | Successful [Tested: 100] |
4.21.E4 | \tan@{u+ v} = \frac{\tan@@{u}+\tan@@{v}}{1-\tan@@{u}\tan@@{v}} |
|
tan(u + v) = (tan(u)+ tan(v))/(1 - tan(u)*tan(v))
|
Tan[u + v] == Divide[Tan[u]+ Tan[v],1 - Tan[u]*Tan[v]]
|
Successful | Successful | - | Successful [Tested: 100] |
4.21.E4 | \tan@{u- v} = \frac{\tan@@{u}-\tan@@{v}}{1+\tan@@{u}\tan@@{v}} |
|
tan(u - v) = (tan(u)- tan(v))/(1 + tan(u)*tan(v))
|
Tan[u - v] == Divide[Tan[u]- Tan[v],1 + Tan[u]*Tan[v]]
|
Successful | Successful | - | Successful [Tested: 100] |
4.21.E5 | \cot@{u+ v} = \frac{+\cot@@{u}\cot@@{v}-1}{\cot@@{u}+\cot@@{v}} |
|
cot(u + v) = (+ cot(u)*cot(v)- 1)/(cot(u)+ cot(v))
|
Cot[u + v] == Divide[+ Cot[u]*Cot[v]- 1,Cot[u]+ Cot[v]]
|
Successful | Successful | - | Failed [10 / 100]
Result: Indeterminate
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}
Result: Complex[1.9674787081851645*^15, 2.0439439417914815*^15]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}
... skip entries to safe data |
4.21.E5 | \cot@{u- v} = \frac{-\cot@@{u}\cot@@{v}-1}{\cot@@{u}-\cot@@{v}} |
|
cot(u - v) = (- cot(u)*cot(v)- 1)/(cot(u)- cot(v))
|
Cot[u - v] == Divide[- Cot[u]*Cot[v]- 1,Cot[u]- Cot[v]]
|
Successful | Successful | - | Failed [10 / 100]
Result: Indeterminate
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Indeterminate
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
4.21.E6 | \sin@@{u}+\sin@@{v} = 2\sin@{\frac{u+v}{2}}\cos@{\frac{u-v}{2}} |
|
sin(u)+ sin(v) = 2*sin((u + v)/(2))*cos((u - v)/(2))
|
Sin[u]+ Sin[v] == 2*Sin[Divide[u + v,2]]*Cos[Divide[u - v,2]]
|
Successful | Successful | - | Successful [Tested: 100] |
4.21.E7 | \sin@@{u}-\sin@@{v} = 2\cos@{\frac{u+v}{2}}\sin@{\frac{u-v}{2}} |
|
sin(u)- sin(v) = 2*cos((u + v)/(2))*sin((u - v)/(2))
|
Sin[u]- Sin[v] == 2*Cos[Divide[u + v,2]]*Sin[Divide[u - v,2]]
|
Successful | Successful | - | Successful [Tested: 100] |
4.21.E8 | \cos@@{u}+\cos@@{v} = 2\cos@{\frac{u+v}{2}}\cos@{\frac{u-v}{2}} |
|
cos(u)+ cos(v) = 2*cos((u + v)/(2))*cos((u - v)/(2))
|
Cos[u]+ Cos[v] == 2*Cos[Divide[u + v,2]]*Cos[Divide[u - v,2]]
|
Successful | Successful | - | Successful [Tested: 100] |
4.21.E9 | \cos@@{u}-\cos@@{v} = -2\sin@{\frac{u+v}{2}}\sin@{\frac{u-v}{2}} |
|
cos(u)- cos(v) = - 2*sin((u + v)/(2))*sin((u - v)/(2))
|
Cos[u]- Cos[v] == - 2*Sin[Divide[u + v,2]]*Sin[Divide[u - v,2]]
|
Successful | Successful | - | Successful [Tested: 100] |
4.21.E10 | \tan@@{u}+\tan@@{v} = \frac{\sin@{u+ v}}{\cos@@{u}\cos@@{v}} |
|
tan(u)+ tan(v) = (sin(u + v))/(cos(u)*cos(v))
|
Tan[u]+ Tan[v] == Divide[Sin[u + v],Cos[u]*Cos[v]]
|
Successful | Successful | - | Successful [Tested: 100] |
4.21.E10 | \tan@@{u}-\tan@@{v} = \frac{\sin@{u- v}}{\cos@@{u}\cos@@{v}} |
|
tan(u)- tan(v) = (sin(u - v))/(cos(u)*cos(v))
|
Tan[u]- Tan[v] == Divide[Sin[u - v],Cos[u]*Cos[v]]
|
Successful | Successful | - | Successful [Tested: 100] |
4.21.E11 | \cot@@{u}+\cot@@{v} = \frac{\sin@{v+ u}}{\sin@@{u}\sin@@{v}} |
|
cot(u)+ cot(v) = (sin(v + u))/(sin(u)*sin(v))
|
Cot[u]+ Cot[v] == Divide[Sin[v + u],Sin[u]*Sin[v]]
|
Successful | Successful | - | Successful [Tested: 100] |
4.21.E11 | \cot@@{u}-\cot@@{v} = \frac{\sin@{v- u}}{\sin@@{u}\sin@@{v}} |
|
cot(u)- cot(v) = (sin(v - u))/(sin(u)*sin(v))
|
Cot[u]- Cot[v] == Divide[Sin[v - u],Sin[u]*Sin[v]]
|
Successful | Successful | - | Successful [Tested: 100] |
4.21.E12 | \sin^{2}@@{z}+\cos^{2}@@{z} = 1 |
|
(sin(z))^(2)+ (cos(z))^(2) = 1
|
(Sin[z])^(2)+ (Cos[z])^(2) == 1
|
Successful | Successful | - | Successful [Tested: 7] |
4.21.E13 | \sec^{2}@@{z} = 1+\tan^{2}@@{z} |
|
(sec(z))^(2) = 1 + (tan(z))^(2)
|
(Sec[z])^(2) == 1 + (Tan[z])^(2)
|
Successful | Successful | - | Successful [Tested: 7] |
4.21.E14 | \csc^{2}@@{z} = 1+\cot^{2}@@{z} |
|
(csc(z))^(2) = 1 + (cot(z))^(2)
|
(Csc[z])^(2) == 1 + (Cot[z])^(2)
|
Successful | Successful | - | Successful [Tested: 7] |
4.21.E15 | 2\sin@@{u}\sin@@{v} = \cos@{u-v}-\cos@{u+v} |
|
2*sin(u)*sin(v) = cos(u - v)- cos(u + v)
|
2*Sin[u]*Sin[v] == Cos[u - v]- Cos[u + v]
|
Successful | Successful | - | Successful [Tested: 100] |
4.21.E16 | 2\cos@@{u}\cos@@{v} = \cos@{u-v}+\cos@{u+v} |
|
2*cos(u)*cos(v) = cos(u - v)+ cos(u + v)
|
2*Cos[u]*Cos[v] == Cos[u - v]+ Cos[u + v]
|
Successful | Successful | - | Successful [Tested: 100] |
4.21.E17 | 2\sin@@{u}\cos@@{v} = \sin@{u-v}+\sin@{u+v} |
|
2*sin(u)*cos(v) = sin(u - v)+ sin(u + v)
|
2*Sin[u]*Cos[v] == Sin[u - v]+ Sin[u + v]
|
Successful | Successful | - | Successful [Tested: 100] |
4.21.E18 | \sin^{2}@@{u}-\sin^{2}@@{v} = \sin@{u+v}\sin@{u-v} |
|
(sin(u))^(2)- (sin(v))^(2) = sin(u + v)*sin(u - v)
|
(Sin[u])^(2)- (Sin[v])^(2) == Sin[u + v]*Sin[u - v]
|
Successful | Successful | - | Successful [Tested: 100] |
4.21.E19 | \cos^{2}@@{u}-\cos^{2}@@{v} = -\sin@{u+v}\sin@{u-v} |
|
(cos(u))^(2)- (cos(v))^(2) = - sin(u + v)*sin(u - v)
|
(Cos[u])^(2)- (Cos[v])^(2) == - Sin[u + v]*Sin[u - v]
|
Successful | Successful | - | Successful [Tested: 100] |
4.21.E20 | \cos^{2}@@{u}-\sin^{2}@@{v} = \cos@{u+v}\cos@{u-v} |
|
(cos(u))^(2)- (sin(v))^(2) = cos(u + v)*cos(u - v)
|
(Cos[u])^(2)- (Sin[v])^(2) == Cos[u + v]*Cos[u - v]
|
Successful | Successful | - | Successful [Tested: 100] |
4.21.E21 | \sin@@{\frac{z}{2}} = +\left(\frac{1-\cos@@{z}}{2}\right)^{1/2} |
|
sin((z)/(2)) = +((1 - cos(z))/(2))^(1/2)
|
Sin[Divide[z,2]] == +(Divide[1 - Cos[z],2])^(1/2)
|
Failure | Failure | Failed [2 / 7] Result: -.5419255224+.8655716642*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}
Result: -.8655770340-.4585952894*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}
|
Failed [2 / 7]
Result: Complex[-0.541925522457336, 0.8655716640572733]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
Result: Complex[-0.8655770337160631, -0.4585952893468805]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}
|
4.21.E21 | \sin@@{\frac{z}{2}} = -\left(\frac{1-\cos@@{z}}{2}\right)^{1/2} |
|
sin((z)/(2)) = -((1 - cos(z))/(2))^(1/2)
|
Sin[Divide[z,2]] == -(Divide[1 - Cos[z],2])^(1/2) |
Failure | Failure | Failed [5 / 7] Result: .8655770340+.4585952894*I
Test Values: {z = 1/2*3^(1/2)+1/2*I} Result: .5419255224-.8655716642*I
Test Values: {z = 1/2-1/2*I*3^(1/2)} Result: 1.363277520
Test Values: {z = 1.5} Result: .4948079184
Test Values: {z = .5} ... skip entries to safe data |
Failed [5 / 7]
Result: Complex[0.8655770337160631, 0.4585952893468805]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[0.5419255224573365, -0.8655716640572731]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]} ... skip entries to safe data |
4.21.E22 | \cos@@{\frac{z}{2}} = +\left(\frac{1+\cos@@{z}}{2}\right)^{1/2} |
|
cos((z)/(2)) = +((1 + cos(z))/(2))^(1/2) |
Cos[Divide[z,2]] == +(Divide[1 + Cos[z],2])^(1/2) |
Failure | Failure | Successful [Tested: 7] | Successful [Tested: 7] |
4.21.E22 | \cos@@{\frac{z}{2}} = -\left(\frac{1+\cos@@{z}}{2}\right)^{1/2} |
|
cos((z)/(2)) = -((1 + cos(z))/(2))^(1/2) |
Cos[Divide[z,2]] == -(Divide[1 + Cos[z],2])^(1/2) |
Failure | Failure | Failed [7 / 7] Result: 1.872439139-.2119959694*I
Test Values: {z = 1/2*3^(1/2)+1/2*I} Result: 2.122352334+.2210167318*I
Test Values: {z = -1/2+1/2*I*3^(1/2)} Result: 2.122352334+.2210167318*I
Test Values: {z = 1/2-1/2*I*3^(1/2)} Result: 1.872439139-.2119959694*I
Test Values: {z = -1/2*3^(1/2)-1/2*I} ... skip entries to safe data |
Failed [7 / 7]
Result: Complex[1.872439138961815, -0.2119959693051084]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[2.1223523339444896, 0.22101673165487346]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |
4.21.E23 | \tan@@{\frac{z}{2}} = +\left(\frac{1-\cos@@{z}}{1+\cos@@{z}}\right)^{1/2} |
|
tan((z)/(2)) = +((1 - cos(z))/(1 + cos(z)))^(1/2) |
Tan[Divide[z,2]] == +(Divide[1 - Cos[z],1 + Cos[z]])^(1/2) |
Failure | Failure | Failed [2 / 7] Result: -.4211742148+.8595320616*I
Test Values: {z = -1/2+1/2*I*3^(1/2)} Result: -.8580864930-.5869891489*I
Test Values: {z = -1/2*3^(1/2)-1/2*I} |
Failed [2 / 7]
Result: Complex[-0.4211742148849969, 0.8595320613685856]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} Result: Complex[-0.858086492859854, -0.5869891488727426]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]} |
4.21.E23 | \tan@@{\frac{z}{2}} = -\left(\frac{1-\cos@@{z}}{1+\cos@@{z}}\right)^{1/2} |
|
tan((z)/(2)) = -((1 - cos(z))/(1 + cos(z)))^(1/2) |
Tan[Divide[z,2]] == -(Divide[1 - Cos[z],1 + Cos[z]])^(1/2) |
Failure | Failure | Failed [5 / 7] Result: .8580864930+.5869891489*I
Test Values: {z = 1/2*3^(1/2)+1/2*I} Result: .4211742148-.8595320616*I
Test Values: {z = 1/2-1/2*I*3^(1/2)} Result: 1.863192920
Test Values: {z = 1.5} Result: .5106838424
Test Values: {z = .5} ... skip entries to safe data |
Failed [5 / 7]
Result: Complex[0.858086492859854, 0.5869891488727426]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[0.4211742148849973, -0.8595320613685857]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]} ... skip entries to safe data |
4.21.E23 | +\left(\frac{1-\cos@@{z}}{1+\cos@@{z}}\right)^{1/2} = \frac{1-\cos@@{z}}{\sin@@{z}} |
|
+((1 - cos(z))/(1 + cos(z)))^(1/2) = (1 - cos(z))/(sin(z)) |
+(Divide[1 - Cos[z],1 + Cos[z]])^(1/2) == Divide[1 - Cos[z],Sin[z]] |
Failure | Failure | Failed [2 / 7] Result: .4211742148-.8595320615*I
Test Values: {z = -1/2+1/2*I*3^(1/2)} Result: .8580864930+.5869891489*I
Test Values: {z = -1/2*3^(1/2)-1/2*I} |
Failed [2 / 7]
Result: Complex[0.42117421488499684, -0.8595320613685857]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} Result: Complex[0.8580864928598539, 0.5869891488727426]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]} |
4.21.E23 | -\left(\frac{1-\cos@@{z}}{1+\cos@@{z}}\right)^{1/2} = \frac{1-\cos@@{z}}{\sin@@{z}} |
|
-((1 - cos(z))/(1 + cos(z)))^(1/2) = (1 - cos(z))/(sin(z)) |
-(Divide[1 - Cos[z],1 + Cos[z]])^(1/2) == Divide[1 - Cos[z],Sin[z]] |
Failure | Failure | Failed [5 / 7] Result: -.8580864930-.5869891489*I
Test Values: {z = 1/2*3^(1/2)+1/2*I} Result: -.4211742148+.8595320615*I
Test Values: {z = 1/2-1/2*I*3^(1/2)} Result: -1.863192920
Test Values: {z = 1.5} Result: -.5106838424
Test Values: {z = .5} ... skip entries to safe data |
Failed [5 / 7]
Result: Complex[-0.8580864928598539, -0.5869891488727426]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[-0.4211742148849972, 0.8595320613685855]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]} ... skip entries to safe data |
4.21.E23 | \frac{1-\cos@@{z}}{\sin@@{z}} = \frac{\sin@@{z}}{1+\cos@@{z}} |
|
(1 - cos(z))/(sin(z)) = (sin(z))/(1 + cos(z)) |
Divide[1 - Cos[z],Sin[z]] == Divide[Sin[z],1 + Cos[z]] |
Successful | Successful | Skip - symbolical successful subtest | Successful [Tested: 7] |
4.21.E24 | \sin@{-z} = -\sin@@{z} |
|
sin(- z) = - sin(z) |
Sin[- z] == - Sin[z] |
Successful | Successful | - | Successful [Tested: 7] |
4.21.E25 | \cos@{-z} = \cos@@{z} |
|
cos(- z) = cos(z) |
Cos[- z] == Cos[z] |
Successful | Successful | - | Successful [Tested: 7] |
4.21.E26 | \tan@{-z} = -\tan@@{z} |
|
tan(- z) = - tan(z) |
Tan[- z] == - Tan[z] |
Successful | Successful | - | Successful [Tested: 7] |
4.21.E27 | \sin@{2z} = 2\sin@@{z}\cos@@{z} |
|
sin(2*z) = 2*sin(z)*cos(z) |
Sin[2*z] == 2*Sin[z]*Cos[z] |
Successful | Successful | - | Successful [Tested: 7] |
4.21.E27 | 2\sin@@{z}\cos@@{z} = \frac{2\tan@@{z}}{1+\tan^{2}@@{z}} |
|
2*sin(z)*cos(z) = (2*tan(z))/(1 + (tan(z))^(2)) |
2*Sin[z]*Cos[z] == Divide[2*Tan[z],1 + (Tan[z])^(2)] |
Successful | Successful | - | Successful [Tested: 7] |
4.21.E28 | \cos@{2z} = 2\cos^{2}@@{z}-1 |
|
cos(2*z) = 2*(cos(z))^(2)- 1 |
Cos[2*z] == 2*(Cos[z])^(2)- 1 |
Successful | Successful | - | Successful [Tested: 7] |
4.21.E28 | 2\cos^{2}@@{z}-1 = 1-2\sin^{2}@@{z} |
|
2*(cos(z))^(2)- 1 = 1 - 2*(sin(z))^(2) |
2*(Cos[z])^(2)- 1 == 1 - 2*(Sin[z])^(2) |
Successful | Successful | - | Successful [Tested: 7] |
4.21.E28 | 1-2\sin^{2}@@{z} = \cos^{2}@@{z}-\sin^{2}@@{z} |
|
1 - 2*(sin(z))^(2) = (cos(z))^(2)- (sin(z))^(2) |
1 - 2*(Sin[z])^(2) == (Cos[z])^(2)- (Sin[z])^(2) |
Successful | Successful | - | Successful [Tested: 7] |
4.21.E28 | \cos^{2}@@{z}-\sin^{2}@@{z} = \frac{1-\tan^{2}@@{z}}{1+\tan^{2}@@{z}} |
|
(cos(z))^(2)- (sin(z))^(2) = (1 - (tan(z))^(2))/(1 + (tan(z))^(2)) |
(Cos[z])^(2)- (Sin[z])^(2) == Divide[1 - (Tan[z])^(2),1 + (Tan[z])^(2)] |
Successful | Successful | - | Successful [Tested: 7] |
4.21.E29 | \tan@{2z} = \frac{2\tan@@{z}}{1-\tan^{2}@@{z}} |
|
tan(2*z) = (2*tan(z))/(1 - (tan(z))^(2)) |
Tan[2*z] == Divide[2*Tan[z],1 - (Tan[z])^(2)] |
Successful | Successful | - | Successful [Tested: 7] |
4.21.E29 | \frac{2\tan@@{z}}{1-\tan^{2}@@{z}} = \frac{2\cot@@{z}}{\cot^{2}@@{z}-1} |
|
(2*tan(z))/(1 - (tan(z))^(2)) = (2*cot(z))/((cot(z))^(2)- 1) |
Divide[2*Tan[z],1 - (Tan[z])^(2)] == Divide[2*Cot[z],(Cot[z])^(2)- 1] |
Successful | Successful | - | Successful [Tested: 7] |
4.21.E29 | \frac{2\cot@@{z}}{\cot^{2}@@{z}-1} = \frac{2}{\cot@@{z}-\tan@@{z}} |
|
(2*cot(z))/((cot(z))^(2)- 1) = (2)/(cot(z)- tan(z)) |
Divide[2*Cot[z],(Cot[z])^(2)- 1] == Divide[2,Cot[z]- Tan[z]] |
Successful | Successful | - | Successful [Tested: 7] |
4.21.E30 | \sin@{3z} = 3\sin@@{z}-4\sin^{3}@@{z} |
|
sin(3*z) = 3*sin(z)- 4*(sin(z))^(3) |
Sin[3*z] == 3*Sin[z]- 4*(Sin[z])^(3) |
Successful | Successful | - | Successful [Tested: 7] |
4.21.E31 | \cos@{3z} = -3\cos@@{z}+4\cos^{3}@@{z} |
|
cos(3*z) = - 3*cos(z)+ 4*(cos(z))^(3) |
Cos[3*z] == - 3*Cos[z]+ 4*(Cos[z])^(3) |
Successful | Successful | - | Successful [Tested: 7] |
4.21.E32 | \sin@{4z} = 8\cos^{3}@@{z}\sin@@{z}-4\cos@@{z}\sin@@{z} |
|
sin(4*z) = 8*(cos(z))^(3)* sin(z)- 4*cos(z)*sin(z) |
Sin[4*z] == 8*(Cos[z])^(3)* Sin[z]- 4*Cos[z]*Sin[z] |
Successful | Successful | - | Successful [Tested: 7] |
4.21.E33 | \cos@{4z} = 8\cos^{4}@@{z}-8\cos^{2}@@{z}+1 |
|
cos(4*z) = 8*(cos(z))^(4)- 8*(cos(z))^(2)+ 1 |
Cos[4*z] == 8*(Cos[z])^(4)- 8*(Cos[z])^(2)+ 1 |
Successful | Successful | - | Successful [Tested: 7] |
4.21.E34 | \cos@{nz}+i\sin@{nz} = (\cos@@{z}+i\sin@@{z})^{n} |
|
cos(n*z)+ I*sin(n*z) = (cos(z)+ I*sin(z))^(n) |
Cos[n*z]+ I*Sin[n*z] == (Cos[z]+ I*Sin[z])^(n) |
Successful | Failure | - | Successful [Tested: 21] |
4.21.E35 | \sin@{nz} = 2^{n-1}\prod_{k=0}^{n-1}\sin@{z+\frac{k\pi}{n}} |
|
sin(n*z) = (2)^(n - 1)* product(sin(z +(k*Pi)/(n)), k = 0..n - 1) |
Sin[n*z] == (2)^(n - 1)* Product[Sin[z +Divide[k*Pi,n]], {k, 0, n - 1}, GenerateConditions->None] |
Failure | Successful | Successful [Tested: 21] | Successful [Tested: 7] |
4.21#Ex1 | \sin@@{z} = \frac{2t}{1+t^{2}} |
|
sin(z) = (2*t)/(1 + (t)^(2)) |
Sin[z] == Divide[2*t,1 + (t)^(2)] |
Failure | Failure | Failed [42 / 42] Result: 1.782057258+.3375964631*I
Test Values: {t = -1.5, z = 1/2*3^(1/2)+1/2*I} Result: .2523455641+.8586367171*I
Test Values: {t = -1.5, z = -1/2+1/2*I*3^(1/2)} Result: 1.593808282-.8586367171*I
Test Values: {t = -1.5, z = 1/2-1/2*I*3^(1/2)} Result: .640965885e-1-.3375964631*I
Test Values: {t = -1.5, z = -1/2*3^(1/2)-1/2*I} ... skip entries to safe data |
Failed [42 / 42]
Result: Complex[1.782057257377061, 0.33759646322287]
Test Values: {Rule[t, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[0.25234556426971166, 0.8586367168171449]
Test Values: {Rule[t, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |
4.21#Ex2 | \cos@@{z} = \frac{1-t^{2}}{1+t^{2}} |
|
cos(z) = (1 - (t)^(2))/(1 + (t)^(2)) |
Cos[z] == Divide[1 - (t)^(2),1 + (t)^(2)] |
Failure | Failure | Failed [42 / 42] Result: 1.115158404-.3969495503*I
Test Values: {t = -1.5, z = 1/2*3^(1/2)+1/2*I} Result: 1.612380902+.4690753764*I
Test Values: {t = -1.5, z = -1/2+1/2*I*3^(1/2)} Result: 1.612380902+.4690753764*I
Test Values: {t = -1.5, z = 1/2-1/2*I*3^(1/2)} Result: 1.115158404-.3969495503*I
Test Values: {t = -1.5, z = -1/2*3^(1/2)-1/2*I} ... skip entries to safe data |
Failed [42 / 42]
Result: Complex[1.1151584036726099, -0.3969495502290325]
Test Values: {Rule[t, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[1.612380901479495, 0.46907537626850365]
Test Values: {Rule[t, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |
4.21.E37 | \sin@@{z} = \sin@@{x}\cosh@@{y}+\iunit\cos@@{x}\sinh@@{y} |
|
sin(x + y*I) = sin(x)*cosh(y)+ I*cos(x)*sinh(y) |
Sin[x + y*I] == Sin[x]*Cosh[y]+ I*Cos[x]*Sinh[y] |
Successful | Successful | - | Successful [Tested: 18] |
4.21.E38 | \cos@@{z} = \cos@@{x}\cosh@@{y}-\iunit\sin@@{x}\sinh@@{y} |
|
cos(x + y*I) = cos(x)*cosh(y)- I*sin(x)*sinh(y) |
Cos[x + y*I] == Cos[x]*Cosh[y]- I*Sin[x]*Sinh[y] |
Successful | Successful | - | Successful [Tested: 18] |
4.21.E39 | \tan@@{z} = \frac{\sin@{2x}+\iunit\sinh@{2y}}{\cos@{2x}+\cosh@{2y}} |
|
tan(x + y*I) = (sin(2*x)+ I*sinh(2*y))/(cos(2*x)+ cosh(2*y)) |
Tan[x + y*I] == Divide[Sin[2*x]+ I*Sinh[2*y],Cos[2*x]+ Cosh[2*y]] |
Successful | Successful | - | Successful [Tested: 18] |
4.21.E40 | \cot@@{z} = \frac{\sin@{2x}-\iunit\sinh@{2y}}{\cosh@{2y}-\cos@{2x}} |
|
cot(x + y*I) = (sin(2*x)- I*sinh(2*y))/(cosh(2*y)- cos(2*x)) |
Cot[x + y*I] == Divide[Sin[2*x]- I*Sinh[2*y],Cosh[2*y]- Cos[2*x]] |
Successful | Successful | - | Successful [Tested: 18] |
4.21.E41 | |\sin@@{z}| = (\sin^{2}@@{x}+\sinh^{2}@@{y})^{1/2} |
|
abs(sin(x + y*I)) = ((sin(x))^(2)+ (sinh(y))^(2))^(1/2) |
Abs[Sin[x + y*I]] == ((Sin[x])^(2)+ (Sinh[y])^(2))^(1/2) |
Successful | Failure | - | Successful [Tested: 18] |
4.21.E41 | (\sin^{2}@@{x}+\sinh^{2}@@{y})^{1/2} = \left(\tfrac{1}{2}\left(\cosh@{2y}-\cos@{2x}\right)\right)^{1/2} |
|
((sin(x))^(2)+ (sinh(y))^(2))^(1/2) = ((1)/(2)*(cosh(2*y)- cos(2*x)))^(1/2) |
((Sin[x])^(2)+ (Sinh[y])^(2))^(1/2) == (Divide[1,2]*(Cosh[2*y]- Cos[2*x]))^(1/2) |
Successful | Successful | - | Successful [Tested: 18] |
4.21.E42 | |\cos@@{z}| = (\cos^{2}@@{x}+\sinh^{2}@@{y})^{1/2} |
|
abs(cos(x + y*I)) = ((cos(x))^(2)+ (sinh(y))^(2))^(1/2) |
Abs[Cos[x + y*I]] == ((Cos[x])^(2)+ (Sinh[y])^(2))^(1/2) |
Successful | Failure | - | Successful [Tested: 18] |
4.21.E42 | (\cos^{2}@@{x}+\sinh^{2}@@{y})^{1/2} = \left(\tfrac{1}{2}(\cosh@{2y}+\cos@{2x})\right)^{1/2} |
|
((cos(x))^(2)+ (sinh(y))^(2))^(1/2) = ((1)/(2)*(cosh(2*y)+ cos(2*x)))^(1/2) |
((Cos[x])^(2)+ (Sinh[y])^(2))^(1/2) == (Divide[1,2]*(Cosh[2*y]+ Cos[2*x]))^(1/2) |
Successful | Successful | - | Successful [Tested: 18] |
4.21.E43 | |\tan@@{z}| = \left(\frac{\cosh@{2y}-\cos@{2x}}{\cosh@{2y}+\cos@{2x}}\right)^{1/2} |
|
abs(tan(x + y*I)) = ((cosh(2*y)- cos(2*x))/(cosh(2*y)+ cos(2*x)))^(1/2) |
Abs[Tan[x + y*I]] == (Divide[Cosh[2*y]- Cos[2*x],Cosh[2*y]+ Cos[2*x]])^(1/2) |
Successful | Failure | - | Successful [Tested: 18] |