4.4: Difference between revisions
Jump to navigation
Jump to search
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
{{DISPLAYTITLE:Elementary Functions - 4.4 Special Values and Limits}} | |||
<div style="width: 100%; height: 75vh; overflow: auto;"> | <div style="width: 100%; height: 75vh; overflow: auto;"> | ||
{| class="wikitable sortable" style="margin: 0;" | {| class="wikitable sortable" style="margin: 0;" | ||
Line 12: | Line 14: | ||
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.4.E1 4.4.E1] | | | [https://dlmf.nist.gov/4.4.E1 4.4.E1] || <math qid="Q1535">\ln@@{1} = 0</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@@{1} = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln(1) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[1] == 0</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.4.E2 4.4.E2] | | | [https://dlmf.nist.gov/4.4.E2 4.4.E2] || <math qid="Q1536">\ln@{-1+\iunit 0} = +\pi\iunit</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@{-1+\iunit 0} = +\pi\iunit</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln(- 1 + I*0) = + Pi*I</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[- 1 + I*0] == + Pi*I</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || Successful [Tested: 1] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.4.E2 4.4.E2] | | | [https://dlmf.nist.gov/4.4.E2 4.4.E2] || <math qid="Q1536">\ln@{-1-\iunit 0} = -\pi\iunit</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@{-1-\iunit 0} = -\pi\iunit</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln(- 1 - I*0) = - Pi*I</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[- 1 - I*0] == - Pi*I</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 1]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 6.283185308*I | ||
Test Values: {}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 1]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.0, 6.283185307179586] | Test Values: {}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 1]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.0, 6.283185307179586] | ||
Test Values: {}</syntaxhighlight><br></div></div> | Test Values: {}</syntaxhighlight><br></div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.4.E3 4.4.E3] | | | [https://dlmf.nist.gov/4.4.E3 4.4.E3] || <math qid="Q1537">\ln@{+\iunit} = +\tfrac{1}{2}\pi\iunit</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@{+\iunit} = +\tfrac{1}{2}\pi\iunit</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln(+ I) = +(1)/(2)*Pi*I</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[+ I] == +Divide[1,2]*Pi*I</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.4.E3 4.4.E3] | | | [https://dlmf.nist.gov/4.4.E3 4.4.E3] || <math qid="Q1537">\ln@{-\iunit} = -\tfrac{1}{2}\pi\iunit</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@{-\iunit} = -\tfrac{1}{2}\pi\iunit</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln(- I) = -(1)/(2)*Pi*I</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[- I] == -Divide[1,2]*Pi*I</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | ||
|- style="background: #dfe6e9;" | |- style="background: #dfe6e9;" | ||
| [https://dlmf.nist.gov/4.4.E4 4.4.E4] | | | [https://dlmf.nist.gov/4.4.E4 4.4.E4] || <math qid="Q1538">e^{0} = 1</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>e^{0} = 1</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">exp(0) = 1</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Exp[0] == 1</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.4.E5 4.4.E5] | | | [https://dlmf.nist.gov/4.4.E5 4.4.E5] || <math qid="Q1539">e^{+\pi\iunit} = -1</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{+\pi\iunit} = -1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(+ Pi*I) = - 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[+ Pi*I] == - 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.4.E5 4.4.E5] | | | [https://dlmf.nist.gov/4.4.E5 4.4.E5] || <math qid="Q1539">e^{-\pi\iunit} = -1</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{-\pi\iunit} = -1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(- Pi*I) = - 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[- Pi*I] == - 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.4.E6 4.4.E6] | | | [https://dlmf.nist.gov/4.4.E6 4.4.E6] || <math qid="Q1540">e^{+\pi\iunit/2} = +\iunit</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{+\pi\iunit/2} = +\iunit</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(+ Pi*I/2) = + I</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[+ Pi*I/2] == + I</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.4.E6 4.4.E6] | | | [https://dlmf.nist.gov/4.4.E6 4.4.E6] || <math qid="Q1540">e^{-\pi\iunit/2} = -\iunit</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{-\pi\iunit/2} = -\iunit</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(- Pi*I/2) = - I</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[- Pi*I/2] == - I</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.4.E7 4.4.E7] | | | [https://dlmf.nist.gov/4.4.E7 4.4.E7] || <math qid="Q1541">e^{2\pi k\iunit} = 1</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{2\pi k\iunit} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(2*Pi*k*I) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[2*Pi*k*I] == 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.4.E8 4.4.E8] | | | [https://dlmf.nist.gov/4.4.E8 4.4.E8] || <math qid="Q1542">e^{+\pi\iunit/3} = \frac{1}{2}+\iunit\frac{\sqrt{3}}{2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{+\pi\iunit/3} = \frac{1}{2}+\iunit\frac{\sqrt{3}}{2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(+ Pi*I/3) = (1)/(2)+ I*(sqrt(3))/(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[+ Pi*I/3] == Divide[1,2]+ I*Divide[Sqrt[3],2]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.4.E8 4.4.E8] | | | [https://dlmf.nist.gov/4.4.E8 4.4.E8] || <math qid="Q1542">e^{-\pi\iunit/3} = \frac{1}{2}-\iunit\frac{\sqrt{3}}{2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{-\pi\iunit/3} = \frac{1}{2}-\iunit\frac{\sqrt{3}}{2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(- Pi*I/3) = (1)/(2)- I*(sqrt(3))/(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[- Pi*I/3] == Divide[1,2]- I*Divide[Sqrt[3],2]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.4.E9 4.4.E9] | | | [https://dlmf.nist.gov/4.4.E9 4.4.E9] || <math qid="Q1543">e^{+ 2\pi\iunit/3} = -\frac{1}{2}+\iunit\frac{\sqrt{3}}{2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{+ 2\pi\iunit/3} = -\frac{1}{2}+\iunit\frac{\sqrt{3}}{2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(+ 2*Pi*I/3) = -(1)/(2)+ I*(sqrt(3))/(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[+ 2*Pi*I/3] == -Divide[1,2]+ I*Divide[Sqrt[3],2]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.4.E9 4.4.E9] | | | [https://dlmf.nist.gov/4.4.E9 4.4.E9] || <math qid="Q1543">e^{- 2\pi\iunit/3} = -\frac{1}{2}-\iunit\frac{\sqrt{3}}{2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{- 2\pi\iunit/3} = -\frac{1}{2}-\iunit\frac{\sqrt{3}}{2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(- 2*Pi*I/3) = -(1)/(2)- I*(sqrt(3))/(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[- 2*Pi*I/3] == -Divide[1,2]- I*Divide[Sqrt[3],2]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.4.E10 4.4.E10] | | | [https://dlmf.nist.gov/4.4.E10 4.4.E10] || <math qid="Q1544">e^{+\pi\iunit/4} = \frac{1}{\sqrt{2}}+\iunit\frac{1}{\sqrt{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{+\pi\iunit/4} = \frac{1}{\sqrt{2}}+\iunit\frac{1}{\sqrt{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(+ Pi*I/4) = (1)/(sqrt(2))+ I*(1)/(sqrt(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[+ Pi*I/4] == Divide[1,Sqrt[2]]+ I*Divide[1,Sqrt[2]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.4.E10 4.4.E10] | | | [https://dlmf.nist.gov/4.4.E10 4.4.E10] || <math qid="Q1544">e^{-\pi\iunit/4} = \frac{1}{\sqrt{2}}-\iunit\frac{1}{\sqrt{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{-\pi\iunit/4} = \frac{1}{\sqrt{2}}-\iunit\frac{1}{\sqrt{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(- Pi*I/4) = (1)/(sqrt(2))- I*(1)/(sqrt(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[- Pi*I/4] == Divide[1,Sqrt[2]]- I*Divide[1,Sqrt[2]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.4.E11 4.4.E11] | | | [https://dlmf.nist.gov/4.4.E11 4.4.E11] || <math qid="Q1545">e^{+ 3\pi\iunit/4} = -\frac{1}{\sqrt{2}}+\iunit\frac{1}{\sqrt{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{+ 3\pi\iunit/4} = -\frac{1}{\sqrt{2}}+\iunit\frac{1}{\sqrt{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(+ 3*Pi*I/4) = -(1)/(sqrt(2))+ I*(1)/(sqrt(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[+ 3*Pi*I/4] == -Divide[1,Sqrt[2]]+ I*Divide[1,Sqrt[2]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.4.E11 4.4.E11] | | | [https://dlmf.nist.gov/4.4.E11 4.4.E11] || <math qid="Q1545">e^{- 3\pi\iunit/4} = -\frac{1}{\sqrt{2}}-\iunit\frac{1}{\sqrt{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{- 3\pi\iunit/4} = -\frac{1}{\sqrt{2}}-\iunit\frac{1}{\sqrt{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(- 3*Pi*I/4) = -(1)/(sqrt(2))- I*(1)/(sqrt(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[- 3*Pi*I/4] == -Divide[1,Sqrt[2]]- I*Divide[1,Sqrt[2]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.4.E12 4.4.E12] | | | [https://dlmf.nist.gov/4.4.E12 4.4.E12] || <math qid="Q1546">\iunit^{+\iunit} = e^{-\pi/2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\iunit^{+\iunit} = e^{-\pi/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(I)^(+ I) = exp(- Pi/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(I)^(+ I) == Exp[- Pi/2]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.4.E12 4.4.E12] | | | [https://dlmf.nist.gov/4.4.E12 4.4.E12] || <math qid="Q1546">\iunit^{-\iunit} = e^{+\pi/2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\iunit^{-\iunit} = e^{+\pi/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(I)^(- I) = exp(+ Pi/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(I)^(- I) == Exp[+ Pi/2]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.4.E13 4.4.E13] | | | [https://dlmf.nist.gov/4.4.E13 4.4.E13] || <math qid="Q1547">\lim_{x\to\infty}x^{-a}\ln@@{x} = 0</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\lim_{x\to\infty}x^{-a}\ln@@{x} = 0</syntaxhighlight> || <math>\realpart@@{a} > 0</math> || <syntaxhighlight lang=mathematica>limit((x)^(- a)* ln(x), x = infinity) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>Limit[(x)^(- a)* Log[x], x -> Infinity, GenerateConditions->None] == 0</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 3] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.4.E14 4.4.E14] | | | [https://dlmf.nist.gov/4.4.E14 4.4.E14] || <math qid="Q1548">\lim_{x\to 0}x^{a}\ln@@{x} = 0</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\lim_{x\to 0}x^{a}\ln@@{x} = 0</syntaxhighlight> || <math>\realpart@@{a} > 0</math> || <syntaxhighlight lang=mathematica>limit((x)^(a)* ln(x), x = 0) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>Limit[(x)^(a)* Log[x], x -> 0, GenerateConditions->None] == 0</syntaxhighlight> || Failure || Successful || Successful [Tested: 3] || Successful [Tested: 3] | ||
|- style="background: #dfe6e9;" | |- style="background: #dfe6e9;" | ||
| [https://dlmf.nist.gov/4.4.E15 4.4.E15] | | | [https://dlmf.nist.gov/4.4.E15 4.4.E15] || <math qid="Q1549">\lim_{x\to\infty}x^{a}e^{-x} = 0</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\lim_{x\to\infty}x^{a}e^{-x} = 0</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">limit((x)^(a)* exp(- x), x = infinity) = 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Limit[(x)^(a)* Exp[- x], x -> Infinity, GenerateConditions->None] == 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | ||
|- style="background: #dfe6e9;" | |- style="background: #dfe6e9;" | ||
| [https://dlmf.nist.gov/4.4.E16 4.4.E16] | | | [https://dlmf.nist.gov/4.4.E16 4.4.E16] || <math qid="Q1550">\lim_{z\to\infty}z^{a}e^{-z} = 0</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\lim_{z\to\infty}z^{a}e^{-z} = 0</syntaxhighlight> || <math>|\phase@@{z}| \leq \tfrac{1}{2}\pi-\delta, \tfrac{1}{2}\pi-\delta < \tfrac{1}{2}\pi</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">limit((z)^(a)* exp(- z), z = infinity) = 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Limit[(z)^(a)* Exp[- z], z -> Infinity, GenerateConditions->None] == 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | ||
|- style="background: #dfe6e9;" | |- style="background: #dfe6e9;" | ||
| [https://dlmf.nist.gov/4.4.E17 4.4.E17] | | | [https://dlmf.nist.gov/4.4.E17 4.4.E17] || <math qid="Q1551">\lim_{n\to\infty}\left(1+\frac{z}{n}\right)^{n} = e^{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\lim_{n\to\infty}\left(1+\frac{z}{n}\right)^{n} = e^{z}</syntaxhighlight> || <math>z = </math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">limit((1 +(z)/(n))^(n), n = infinity) = exp(z)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Limit[(1 +Divide[z,n])^(n), n -> Infinity, GenerateConditions->None] == Exp[z]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | ||
|- style="background: #dfe6e9;" | |- style="background: #dfe6e9;" | ||
| [https://dlmf.nist.gov/4.4.E18 4.4.E18] | | | [https://dlmf.nist.gov/4.4.E18 4.4.E18] || <math qid="Q1552">\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^{n} = e</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^{n} = e</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">limit((1 +(1)/(n))^(n), n = infinity) = exp(1)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Limit[(1 +Divide[1,n])^(n), n -> Infinity, GenerateConditions->None] == E</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.4.E19 4.4.E19] | | | [https://dlmf.nist.gov/4.4.E19 4.4.E19] || <math qid="Q1553">\lim_{n\to\infty}\left(\left(\sum^{n}_{k=1}\frac{1}{k}\right)-\ln@@{n}\right) = \EulerConstant</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\lim_{n\to\infty}\left(\left(\sum^{n}_{k=1}\frac{1}{k}\right)-\ln@@{n}\right) = \EulerConstant</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>limit((sum((1)/(k), k = 1..n))- ln(n), n = infinity) = gamma</syntaxhighlight> || <syntaxhighlight lang=mathematica>Limit[(Sum[Divide[1,k], {k, 1, n}, GenerateConditions->None])- Log[n], n -> Infinity, GenerateConditions->None] == EulerGamma</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.4.E19 4.4.E19] | | | [https://dlmf.nist.gov/4.4.E19 4.4.E19] || <math qid="Q1553">\EulerConstant = 0.57721\ 56649\ 01532\ 86060\dots</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\EulerConstant = 0.57721\ 56649\ 01532\ 86060\dots</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>gamma = 0.57721566490153286060</syntaxhighlight> || <syntaxhighlight lang=mathematica>EulerGamma == 0.57721566490153286060</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | ||
|} | |} | ||
</div> | </div> |
Latest revision as of 11:04, 28 June 2021
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
4.4.E1 | \ln@@{1} = 0 |
|
ln(1) = 0
|
Log[1] == 0
|
Successful | Successful | - | Successful [Tested: 1] |
4.4.E2 | \ln@{-1+\iunit 0} = +\pi\iunit |
|
ln(- 1 + I*0) = + Pi*I
|
Log[- 1 + I*0] == + Pi*I
|
Successful | Successful | Skip - symbolical successful subtest | Successful [Tested: 1] |
4.4.E2 | \ln@{-1-\iunit 0} = -\pi\iunit |
|
ln(- 1 - I*0) = - Pi*I
|
Log[- 1 - I*0] == - Pi*I
|
Failure | Failure | Failed [1 / 1] Result: 6.283185308*I
Test Values: {}
|
Failed [1 / 1]
Result: Complex[0.0, 6.283185307179586]
Test Values: {}
|
4.4.E3 | \ln@{+\iunit} = +\tfrac{1}{2}\pi\iunit |
|
ln(+ I) = +(1)/(2)*Pi*I
|
Log[+ I] == +Divide[1,2]*Pi*I
|
Successful | Successful | - | Successful [Tested: 1] |
4.4.E3 | \ln@{-\iunit} = -\tfrac{1}{2}\pi\iunit |
|
ln(- I) = -(1)/(2)*Pi*I
|
Log[- I] == -Divide[1,2]*Pi*I
|
Successful | Successful | - | Successful [Tested: 1] |
4.4.E4 | e^{0} = 1 |
|
exp(0) = 1 |
Exp[0] == 1 |
Skipped - no semantic math | Skipped - no semantic math | - | - |
4.4.E5 | e^{+\pi\iunit} = -1 |
|
exp(+ Pi*I) = - 1
|
Exp[+ Pi*I] == - 1
|
Successful | Successful | - | Successful [Tested: 1] |
4.4.E5 | e^{-\pi\iunit} = -1 |
|
exp(- Pi*I) = - 1
|
Exp[- Pi*I] == - 1
|
Successful | Successful | - | Successful [Tested: 1] |
4.4.E6 | e^{+\pi\iunit/2} = +\iunit |
|
exp(+ Pi*I/2) = + I
|
Exp[+ Pi*I/2] == + I
|
Successful | Successful | - | Successful [Tested: 1] |
4.4.E6 | e^{-\pi\iunit/2} = -\iunit |
|
exp(- Pi*I/2) = - I
|
Exp[- Pi*I/2] == - I
|
Successful | Successful | - | Successful [Tested: 1] |
4.4.E7 | e^{2\pi k\iunit} = 1 |
|
exp(2*Pi*k*I) = 1
|
Exp[2*Pi*k*I] == 1
|
Successful | Successful | - | Successful [Tested: 1] |
4.4.E8 | e^{+\pi\iunit/3} = \frac{1}{2}+\iunit\frac{\sqrt{3}}{2} |
|
exp(+ Pi*I/3) = (1)/(2)+ I*(sqrt(3))/(2)
|
Exp[+ Pi*I/3] == Divide[1,2]+ I*Divide[Sqrt[3],2]
|
Successful | Successful | - | Successful [Tested: 1] |
4.4.E8 | e^{-\pi\iunit/3} = \frac{1}{2}-\iunit\frac{\sqrt{3}}{2} |
|
exp(- Pi*I/3) = (1)/(2)- I*(sqrt(3))/(2)
|
Exp[- Pi*I/3] == Divide[1,2]- I*Divide[Sqrt[3],2]
|
Successful | Successful | - | Successful [Tested: 1] |
4.4.E9 | e^{+ 2\pi\iunit/3} = -\frac{1}{2}+\iunit\frac{\sqrt{3}}{2} |
|
exp(+ 2*Pi*I/3) = -(1)/(2)+ I*(sqrt(3))/(2)
|
Exp[+ 2*Pi*I/3] == -Divide[1,2]+ I*Divide[Sqrt[3],2]
|
Successful | Successful | - | Successful [Tested: 1] |
4.4.E9 | e^{- 2\pi\iunit/3} = -\frac{1}{2}-\iunit\frac{\sqrt{3}}{2} |
|
exp(- 2*Pi*I/3) = -(1)/(2)- I*(sqrt(3))/(2)
|
Exp[- 2*Pi*I/3] == -Divide[1,2]- I*Divide[Sqrt[3],2]
|
Successful | Successful | - | Successful [Tested: 1] |
4.4.E10 | e^{+\pi\iunit/4} = \frac{1}{\sqrt{2}}+\iunit\frac{1}{\sqrt{2}} |
|
exp(+ Pi*I/4) = (1)/(sqrt(2))+ I*(1)/(sqrt(2))
|
Exp[+ Pi*I/4] == Divide[1,Sqrt[2]]+ I*Divide[1,Sqrt[2]]
|
Successful | Successful | - | Successful [Tested: 1] |
4.4.E10 | e^{-\pi\iunit/4} = \frac{1}{\sqrt{2}}-\iunit\frac{1}{\sqrt{2}} |
|
exp(- Pi*I/4) = (1)/(sqrt(2))- I*(1)/(sqrt(2))
|
Exp[- Pi*I/4] == Divide[1,Sqrt[2]]- I*Divide[1,Sqrt[2]]
|
Successful | Successful | - | Successful [Tested: 1] |
4.4.E11 | e^{+ 3\pi\iunit/4} = -\frac{1}{\sqrt{2}}+\iunit\frac{1}{\sqrt{2}} |
|
exp(+ 3*Pi*I/4) = -(1)/(sqrt(2))+ I*(1)/(sqrt(2))
|
Exp[+ 3*Pi*I/4] == -Divide[1,Sqrt[2]]+ I*Divide[1,Sqrt[2]]
|
Successful | Successful | - | Successful [Tested: 1] |
4.4.E11 | e^{- 3\pi\iunit/4} = -\frac{1}{\sqrt{2}}-\iunit\frac{1}{\sqrt{2}} |
|
exp(- 3*Pi*I/4) = -(1)/(sqrt(2))- I*(1)/(sqrt(2))
|
Exp[- 3*Pi*I/4] == -Divide[1,Sqrt[2]]- I*Divide[1,Sqrt[2]]
|
Successful | Successful | - | Successful [Tested: 1] |
4.4.E12 | \iunit^{+\iunit} = e^{-\pi/2} |
|
(I)^(+ I) = exp(- Pi/2)
|
(I)^(+ I) == Exp[- Pi/2]
|
Successful | Successful | - | Successful [Tested: 1] |
4.4.E12 | \iunit^{-\iunit} = e^{+\pi/2} |
|
(I)^(- I) = exp(+ Pi/2)
|
(I)^(- I) == Exp[+ Pi/2]
|
Successful | Successful | - | Successful [Tested: 1] |
4.4.E13 | \lim_{x\to\infty}x^{-a}\ln@@{x} = 0 |
limit((x)^(- a)* ln(x), x = infinity) = 0
|
Limit[(x)^(- a)* Log[x], x -> Infinity, GenerateConditions->None] == 0
|
Successful | Successful | - | Successful [Tested: 3] | |
4.4.E14 | \lim_{x\to 0}x^{a}\ln@@{x} = 0 |
limit((x)^(a)* ln(x), x = 0) = 0
|
Limit[(x)^(a)* Log[x], x -> 0, GenerateConditions->None] == 0
|
Failure | Successful | Successful [Tested: 3] | Successful [Tested: 3] | |
4.4.E15 | \lim_{x\to\infty}x^{a}e^{-x} = 0 |
|
limit((x)^(a)* exp(- x), x = infinity) = 0 |
Limit[(x)^(a)* Exp[- x], x -> Infinity, GenerateConditions->None] == 0 |
Skipped - no semantic math | Skipped - no semantic math | - | - |
4.4.E16 | \lim_{z\to\infty}z^{a}e^{-z} = 0 |
limit((z)^(a)* exp(- z), z = infinity) = 0 |
Limit[(z)^(a)* Exp[- z], z -> Infinity, GenerateConditions->None] == 0 |
Skipped - no semantic math | Skipped - no semantic math | - | - | |
4.4.E17 | \lim_{n\to\infty}\left(1+\frac{z}{n}\right)^{n} = e^{z} |
limit((1 +(z)/(n))^(n), n = infinity) = exp(z) |
Limit[(1 +Divide[z,n])^(n), n -> Infinity, GenerateConditions->None] == Exp[z] |
Skipped - no semantic math | Skipped - no semantic math | - | - | |
4.4.E18 | \lim_{n\to\infty}\left(1+\frac{1}{n}\right)^{n} = e |
|
limit((1 +(1)/(n))^(n), n = infinity) = exp(1) |
Limit[(1 +Divide[1,n])^(n), n -> Infinity, GenerateConditions->None] == E |
Skipped - no semantic math | Skipped - no semantic math | - | - |
4.4.E19 | \lim_{n\to\infty}\left(\left(\sum^{n}_{k=1}\frac{1}{k}\right)-\ln@@{n}\right) = \EulerConstant |
|
limit((sum((1)/(k), k = 1..n))- ln(n), n = infinity) = gamma
|
Limit[(Sum[Divide[1,k], {k, 1, n}, GenerateConditions->None])- Log[n], n -> Infinity, GenerateConditions->None] == EulerGamma
|
Successful | Successful | - | Successful [Tested: 1] |
4.4.E19 | \EulerConstant = 0.57721\ 56649\ 01532\ 86060\dots |
|
gamma = 0.57721566490153286060
|
EulerGamma == 0.57721566490153286060
|
Successful | Successful | - | Successful [Tested: 1] |