4.2: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
{{DISPLAYTITLE:Numerical Methods - 4.2 Definitions}}
<div style="width: 100%; height: 75vh; overflow: auto;">
<div style="width: 100%; height: 75vh; overflow: auto;">
{| class="wikitable sortable" style="margin: 0;"
{| class="wikitable sortable" style="margin: 0;"
Line 12: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/4.2.E1 4.2.E1] || [[Item:Q1497|<math>\Ln@@{z} = \int_{1}^{z}\frac{\diff{t}}{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Ln@@{z} = \int_{1}^{z}\frac{\diff{t}}{t}</syntaxhighlight> || <math>z \neq 0</math> || <syntaxhighlight lang=mathematica>ln(z) = int((1)/(t), t = 1..z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[z] == Integrate[Divide[1,t], {t, 1, z}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || Successful [Tested: 7] || Successful [Tested: 7]
| [https://dlmf.nist.gov/4.2.E1 4.2.E1] || <math qid="Q1497">\Ln@@{z} = \int_{1}^{z}\frac{\diff{t}}{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Ln@@{z} = \int_{1}^{z}\frac{\diff{t}}{t}</syntaxhighlight> || <math>z \neq 0</math> || <syntaxhighlight lang=mathematica>ln(z) = int((1)/(t), t = 1..z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[z] == Integrate[Divide[1,t], {t, 1, z}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || Successful [Tested: 7] || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/4.2.E2 4.2.E2] || [[Item:Q1498|<math>\ln@@{z} = \int_{1}^{z}\frac{\diff{t}}{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@@{z} = \int_{1}^{z}\frac{\diff{t}}{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln(z) = int((1)/(t), t = 1..z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[z] == Integrate[Divide[1,t], {t, 1, z}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || Successful [Tested: 7] || Successful [Tested: 7]
| [https://dlmf.nist.gov/4.2.E2 4.2.E2] || <math qid="Q1498">\ln@@{z} = \int_{1}^{z}\frac{\diff{t}}{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@@{z} = \int_{1}^{z}\frac{\diff{t}}{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln(z) = int((1)/(t), t = 1..z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[z] == Integrate[Divide[1,t], {t, 1, z}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || Successful [Tested: 7] || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/4.2.E3 4.2.E3] || [[Item:Q1499|<math>\ln@@{z} = \ln@@{\abs{z}}+\iunit\phase@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@@{z} = \ln@@{\abs{z}}+\iunit\phase@@{z}</syntaxhighlight> || <math>-\pi < \phase@@{z}, \phase@@{z} < \pi</math> || <syntaxhighlight lang=mathematica>ln(z) = ln(abs(z))+ I*argument(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[z] == Log[Abs[z]]+ I*Arg[z]</syntaxhighlight> || Failure || Successful || Successful [Tested: 7] || Successful [Tested: 7]
| [https://dlmf.nist.gov/4.2.E3 4.2.E3] || <math qid="Q1499">\ln@@{z} = \ln@@{\abs{z}}+\iunit\phase@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@@{z} = \ln@@{\abs{z}}+\iunit\phase@@{z}</syntaxhighlight> || <math>-\pi < \phase@@{z}, \phase@@{z} < \pi</math> || <syntaxhighlight lang=mathematica>ln(z) = ln(abs(z))+ I*argument(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[z] == Log[Abs[z]]+ I*Arg[z]</syntaxhighlight> || Failure || Successful || Successful [Tested: 7] || Successful [Tested: 7]
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/4.2.E4 4.2.E4] || [[Item:Q1500|<math>z = x</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>z = x</syntaxhighlight> || <math>-\infty < x, x < 0</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(x + y*I) = x</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(x + y*I) == x</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/4.2.E4 4.2.E4] || <math qid="Q1500">z = x</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>z = x</syntaxhighlight> || <math>-\infty < x, x < 0</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(x + y*I) = x</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(x + y*I) == x</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-  
|-  
| [https://dlmf.nist.gov/4.2.E5 4.2.E5] || [[Item:Q1501|<math>\ln@@{z} = \ln@@{\abs{z}}+\iunit\phase@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@@{z} = \ln@@{\abs{z}}+\iunit\phase@@{z}</syntaxhighlight> || <math>-\pi < \phase@@{z}, \phase@@{z} \leq \pi</math> || <syntaxhighlight lang=mathematica>ln(z) = ln(abs(z))+ I*argument(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[z] == Log[Abs[z]]+ I*Arg[z]</syntaxhighlight> || Failure || Successful || Successful [Tested: 7] || Successful [Tested: 7]
| [https://dlmf.nist.gov/4.2.E5 4.2.E5] || <math qid="Q1501">\ln@@{z} = \ln@@{\abs{z}}+\iunit\phase@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@@{z} = \ln@@{\abs{z}}+\iunit\phase@@{z}</syntaxhighlight> || <math>-\pi < \phase@@{z}, \phase@@{z} \leq \pi</math> || <syntaxhighlight lang=mathematica>ln(z) = ln(abs(z))+ I*argument(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[z] == Log[Abs[z]]+ I*Arg[z]</syntaxhighlight> || Failure || Successful || Successful [Tested: 7] || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/4.2.E6 4.2.E6] || [[Item:Q1502|<math>\Ln@@{z} = \ln@@{z}+2k\pi\iunit</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Ln@@{z} = \ln@@{z}+2k\pi\iunit</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln(z) = ln(z)+ 2*k*Pi*I</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[z] == Log[z]+ 2*k*Pi*I</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -6.283185308*I
| [https://dlmf.nist.gov/4.2.E6 4.2.E6] || <math qid="Q1502">\Ln@@{z} = \ln@@{z}+2k\pi\iunit</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Ln@@{z} = \ln@@{z}+2k\pi\iunit</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln(z) = ln(z)+ 2*k*Pi*I</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[z] == Log[z]+ 2*k*Pi*I</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -6.283185308*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -12.56637062*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -12.56637062*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -18.84955592*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -18.84955592*I
Line 30: Line 32:
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/4.2.E7 4.2.E7] || [[Item:Q1503|<math>\ln@{x+\iunit 0} = \ln@@{|x|}+ i\pi</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@{x+\iunit 0} = \ln@@{|x|}+ i\pi</syntaxhighlight> || <math>-\infty < x, x < 0</math> || <syntaxhighlight lang=mathematica>ln(x + I*0) = ln(abs(x))+ I*Pi</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[x + I*0] == Log[Abs[x]]+ I*Pi</syntaxhighlight> || Failure || Successful || Error || Skip - symbolical successful subtest
| [https://dlmf.nist.gov/4.2.E7 4.2.E7] || <math qid="Q1503">\ln@{x+\iunit 0} = \ln@@{|x|}+ i\pi</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@{x+\iunit 0} = \ln@@{|x|}+ i\pi</syntaxhighlight> || <math>-\infty < x, x < 0</math> || <syntaxhighlight lang=mathematica>ln(x + I*0) = ln(abs(x))+ I*Pi</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[x + I*0] == Log[Abs[x]]+ I*Pi</syntaxhighlight> || Failure || Successful || Error || Skip - symbolical successful subtest
|-  
|-  
| [https://dlmf.nist.gov/4.2.E7 4.2.E7] || [[Item:Q1503|<math>\ln@{x-\iunit 0} = \ln@@{|x|}- i\pi</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@{x-\iunit 0} = \ln@@{|x|}- i\pi</syntaxhighlight> || <math>-\infty < x, x < 0</math> || <syntaxhighlight lang=mathematica>ln(x - I*0) = ln(abs(x))- I*Pi</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[x - I*0] == Log[Abs[x]]- I*Pi</syntaxhighlight> || Failure || Failure || Error || Skip - No test values generated
| [https://dlmf.nist.gov/4.2.E7 4.2.E7] || <math qid="Q1503">\ln@{x-\iunit 0} = \ln@@{|x|}- i\pi</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@{x-\iunit 0} = \ln@@{|x|}- i\pi</syntaxhighlight> || <math>-\infty < x, x < 0</math> || <syntaxhighlight lang=mathematica>ln(x - I*0) = ln(abs(x))- I*Pi</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[x - I*0] == Log[Abs[x]]- I*Pi</syntaxhighlight> || Failure || Failure || Error || Skip - No test values generated
|-  
|-  
| [https://dlmf.nist.gov/4.2.E8 4.2.E8] || [[Item:Q1504|<math>\genlog{a}@@{z} = \ifrac{\ln@@{z}}{\ln@@{a}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\genlog{a}@@{z} = \ifrac{\ln@@{z}}{\ln@@{a}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>log[a](z) = (ln(z))/(ln(a))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[a,z] == Divide[Log[z],Log[a]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 42]
| [https://dlmf.nist.gov/4.2.E8 4.2.E8] || <math qid="Q1504">\genlog{a}@@{z} = \ifrac{\ln@@{z}}{\ln@@{a}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\genlog{a}@@{z} = \ifrac{\ln@@{z}}{\ln@@{a}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>log[a](z) = (ln(z))/(ln(a))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[a,z] == Divide[Log[z],Log[a]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 42]
|-  
|-  
| [https://dlmf.nist.gov/4.2.E9 4.2.E9] || [[Item:Q1505|<math>\genlog{a}@@{z} = \frac{\genlog{b}@@{z}}{\genlog{b}@@{a}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\genlog{a}@@{z} = \frac{\genlog{b}@@{z}}{\genlog{b}@@{a}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>log[a](z) = (log[b](z))/(log[b](a))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[a,z] == Divide[Log[b,z],Log[b,a]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 252]
| [https://dlmf.nist.gov/4.2.E9 4.2.E9] || <math qid="Q1505">\genlog{a}@@{z} = \frac{\genlog{b}@@{z}}{\genlog{b}@@{a}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\genlog{a}@@{z} = \frac{\genlog{b}@@{z}}{\genlog{b}@@{a}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>log[a](z) = (log[b](z))/(log[b](a))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[a,z] == Divide[Log[b,z],Log[b,a]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 252]
|-  
|-  
| [https://dlmf.nist.gov/4.2.E10 4.2.E10] || [[Item:Q1506|<math>\genlog{a}@@{b} = \frac{1}{\genlog{b}@@{a}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\genlog{a}@@{b} = \frac{1}{\genlog{b}@@{a}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>log[a](b) = (1)/(log[b](a))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[a,b] == Divide[1,Log[b,a]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 36]
| [https://dlmf.nist.gov/4.2.E10 4.2.E10] || <math qid="Q1506">\genlog{a}@@{b} = \frac{1}{\genlog{b}@@{a}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\genlog{a}@@{b} = \frac{1}{\genlog{b}@@{a}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>log[a](b) = (1)/(log[b](a))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[a,b] == Divide[1,Log[b,a]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 36]
|-  
|-  
| [https://dlmf.nist.gov/4.2.E11 4.2.E11] || [[Item:Q1507|<math>e = 2.71828\ 18284\ 59045\ 23536\dots</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e = 2.71828\ 18284\ 59045\ 23536\dots</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(1) = 2.71828182845904523536</syntaxhighlight> || <syntaxhighlight lang=mathematica>E == 2.71828182845904523536</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
| [https://dlmf.nist.gov/4.2.E11 4.2.E11] || <math qid="Q1507">e = 2.71828\ 18284\ 59045\ 23536\dots</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e = 2.71828\ 18284\ 59045\ 23536\dots</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(1) = 2.71828182845904523536</syntaxhighlight> || <syntaxhighlight lang=mathematica>E == 2.71828182845904523536</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-  
|-  
| [https://dlmf.nist.gov/4.2.E12 4.2.E12] || [[Item:Q1508|<math>\ln@@{e} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@@{e} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln(exp(1)) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[E] == 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
| [https://dlmf.nist.gov/4.2.E12 4.2.E12] || <math qid="Q1508">\ln@@{e} = 1</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@@{e} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln(exp(1)) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[E] == 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-  
|-  
| [https://dlmf.nist.gov/4.2.E13 4.2.E13] || [[Item:Q1509|<math>\int_{1}^{e}\frac{\diff{t}}{t} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{1}^{e}\frac{\diff{t}}{t} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int((1)/(t), t = 1..exp(1)) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[1,t], {t, 1, E}, GenerateConditions->None] == 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
| [https://dlmf.nist.gov/4.2.E13 4.2.E13] || <math qid="Q1509">\int_{1}^{e}\frac{\diff{t}}{t} = 1</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{1}^{e}\frac{\diff{t}}{t} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int((1)/(t), t = 1..exp(1)) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[1,t], {t, 1, E}, GenerateConditions->None] == 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-  
|-  
| [https://dlmf.nist.gov/4.2.E14 4.2.E14] || [[Item:Q1510|<math>\genlog{e}@@{z} = \ln@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\genlog{e}@@{z} = \ln@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>log[exp(1)](z) = ln(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[E,z] == Log[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
| [https://dlmf.nist.gov/4.2.E14 4.2.E14] || <math qid="Q1510">\genlog{e}@@{z} = \ln@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\genlog{e}@@{z} = \ln@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>log[exp(1)](z) = ln(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[E,z] == Log[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/4.2.E15 4.2.E15] || [[Item:Q1511|<math>\genlog{10}@@{z} = \ifrac{(\ln@@{z})}{(\ln@@{10})}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\genlog{10}@@{z} = \ifrac{(\ln@@{z})}{(\ln@@{10})}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>log[10](z) = (ln(z))/(ln(10))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[10,z] == Divide[Log[z],Log[10]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
| [https://dlmf.nist.gov/4.2.E15 4.2.E15] || <math qid="Q1511">\genlog{10}@@{z} = \ifrac{(\ln@@{z})}{(\ln@@{10})}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\genlog{10}@@{z} = \ifrac{(\ln@@{z})}{(\ln@@{10})}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>log[10](z) = (ln(z))/(ln(10))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[10,z] == Divide[Log[z],Log[10]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/4.2.E15 4.2.E15] || [[Item:Q1511|<math>\ifrac{(\ln@@{z})}{(\ln@@{10})} = (\genlog{10}@@{e})\ln@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ifrac{(\ln@@{z})}{(\ln@@{10})} = (\genlog{10}@@{e})\ln@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(ln(z))/(ln(10)) = (log[10](exp(1)))*ln(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[Log[z],Log[10]] == (Log[10,E])*Log[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
| [https://dlmf.nist.gov/4.2.E15 4.2.E15] || <math qid="Q1511">\ifrac{(\ln@@{z})}{(\ln@@{10})} = (\genlog{10}@@{e})\ln@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ifrac{(\ln@@{z})}{(\ln@@{10})} = (\genlog{10}@@{e})\ln@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(ln(z))/(ln(10)) = (log[10](exp(1)))*ln(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[Log[z],Log[10]] == (Log[10,E])*Log[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/4.2.E16 4.2.E16] || [[Item:Q1512|<math>\ln@@{z} = (\ln@@{10})\genlog{10}@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@@{z} = (\ln@@{10})\genlog{10}@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln(z) = (ln(10))*log[10](z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[z] == (Log[10])*Log[10,z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
| [https://dlmf.nist.gov/4.2.E16 4.2.E16] || <math qid="Q1512">\ln@@{z} = (\ln@@{10})\genlog{10}@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@@{z} = (\ln@@{10})\genlog{10}@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln(z) = (ln(10))*log[10](z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[z] == (Log[10])*Log[10,z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/4.2.E17 4.2.E17] || [[Item:Q1513|<math>\genlog{10}@@{e} = 0.43429\ 44819\ 03251\ 82765\dots</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\genlog{10}@@{e} = 0.43429\ 44819\ 03251\ 82765\dots</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>log[10](exp(1)) = 0.43429448190325182765</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[10,E] == 0.43429448190325182765</syntaxhighlight> || Failure || Successful || Successful [Tested: 0] || Successful [Tested: 1]
| [https://dlmf.nist.gov/4.2.E17 4.2.E17] || <math qid="Q1513">\genlog{10}@@{e} = 0.43429\ 44819\ 03251\ 82765\dots</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\genlog{10}@@{e} = 0.43429\ 44819\ 03251\ 82765\dots</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>log[10](exp(1)) = 0.43429448190325182765</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[10,E] == 0.43429448190325182765</syntaxhighlight> || Failure || Successful || Successful [Tested: 0] || Successful [Tested: 1]
|-  
|-  
| [https://dlmf.nist.gov/4.2.E18 4.2.E18] || [[Item:Q1514|<math>\ln@@{10} = 2.30258\ 50929\ 94045\ 68401\dots</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@@{10} = 2.30258\ 50929\ 94045\ 68401\dots</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln(10) = 2.30258509299404568401</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[10] == 2.30258509299404568401</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
| [https://dlmf.nist.gov/4.2.E18 4.2.E18] || <math qid="Q1514">\ln@@{10} = 2.30258\ 50929\ 94045\ 68401\dots</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@@{10} = 2.30258\ 50929\ 94045\ 68401\dots</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln(10) = 2.30258509299404568401</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[10] == 2.30258509299404568401</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-  
|-  
| [https://dlmf.nist.gov/4.2.E20 4.2.E20] || [[Item:Q1516|<math>\exp@{z+2\pi i} = \exp@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\exp@{z+2\pi i} = \exp@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(z + 2*Pi*I) = exp(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[z + 2*Pi*I] == Exp[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
| [https://dlmf.nist.gov/4.2.E20 4.2.E20] || <math qid="Q1516">\exp@{z+2\pi i} = \exp@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\exp@{z+2\pi i} = \exp@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(z + 2*Pi*I) = exp(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[z + 2*Pi*I] == Exp[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/4.2.E21 4.2.E21] || [[Item:Q1517|<math>\exp@{-z} = 1/\exp@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\exp@{-z} = 1/\exp@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(- z) = 1/exp(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[- z] == 1/Exp[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
| [https://dlmf.nist.gov/4.2.E21 4.2.E21] || <math qid="Q1517">\exp@{-z} = 1/\exp@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\exp@{-z} = 1/\exp@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(- z) = 1/exp(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[- z] == 1/Exp[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/4.2.E22 4.2.E22] || [[Item:Q1518|<math>|\exp@@{z}| = \exp@{\realpart@@{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\exp@@{z}| = \exp@{\realpart@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs(exp(z)) = exp(Re(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Exp[z]] == Exp[Re[z]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
| [https://dlmf.nist.gov/4.2.E22 4.2.E22] || <math qid="Q1518">|\exp@@{z}| = \exp@{\realpart@@{z}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\exp@@{z}| = \exp@{\realpart@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs(exp(z)) = exp(Re(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Exp[z]] == Exp[Re[z]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/4.2.E23 4.2.E23] || [[Item:Q1519|<math>\phase@{\exp@@{z}} = \imagpart@@{z}+2k\pi</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\phase@{\exp@@{z}} = \imagpart@@{z}+2k\pi</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>argument(exp(z)) = Im(z)+ 2*k*Pi</syntaxhighlight> || <syntaxhighlight lang=mathematica>Arg[Exp[z]] == Im[z]+ 2*k*Pi</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -6.283185308
| [https://dlmf.nist.gov/4.2.E23 4.2.E23] || <math qid="Q1519">\phase@{\exp@@{z}} = \imagpart@@{z}+2k\pi</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\phase@{\exp@@{z}} = \imagpart@@{z}+2k\pi</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>argument(exp(z)) = Im(z)+ 2*k*Pi</syntaxhighlight> || <syntaxhighlight lang=mathematica>Arg[Exp[z]] == Im[z]+ 2*k*Pi</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -6.283185308
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1, k = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -12.56637062
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1, k = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -12.56637062
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2, k = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -18.84955592
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2, k = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -18.84955592
Line 72: Line 74:
Test Values: {Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/4.2.E24 4.2.E24] || [[Item:Q1520|<math>\exp@@{z} = e^{x}\cos@@{y}+ie^{x}\sin@@{y}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\exp@@{z} = e^{x}\cos@@{y}+ie^{x}\sin@@{y}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(x + y*I) = exp(x)*cos(y)+ I*exp(x)*sin(y)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[x + y*I] == Exp[x]*Cos[y]+ I*Exp[x]*Sin[y]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 18]
| [https://dlmf.nist.gov/4.2.E24 4.2.E24] || <math qid="Q1520">\exp@@{z} = e^{x}\cos@@{y}+ie^{x}\sin@@{y}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\exp@@{z} = e^{x}\cos@@{y}+ie^{x}\sin@@{y}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(x + y*I) = exp(x)*cos(y)+ I*exp(x)*sin(y)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[x + y*I] == Exp[x]*Cos[y]+ I*Exp[x]*Sin[y]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 18]
|-  
|-  
| [https://dlmf.nist.gov/4.2.E26 4.2.E26] || [[Item:Q1522|<math>z^{a} = \exp@{a\Ln@@{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>z^{a} = \exp@{a\Ln@@{z}}</syntaxhighlight> || <math>z \neq 0</math> || <syntaxhighlight lang=mathematica>(z)^(a) = exp(a*ln(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>(z)^(a) == Exp[a*Log[z]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 42]
| [https://dlmf.nist.gov/4.2.E26 4.2.E26] || <math qid="Q1522">z^{a} = \exp@{a\Ln@@{z}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>z^{a} = \exp@{a\Ln@@{z}}</syntaxhighlight> || <math>z \neq 0</math> || <syntaxhighlight lang=mathematica>(z)^(a) = exp(a*ln(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>(z)^(a) == Exp[a*Log[z]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 42]
|-  
|-  
| [https://dlmf.nist.gov/4.2.E28 4.2.E28] || [[Item:Q1524|<math>z^{a} = \exp@{a\ln@@{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>z^{a} = \exp@{a\ln@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(z)^(a) = exp(a*ln(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>(z)^(a) == Exp[a*Log[z]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 42]
| [https://dlmf.nist.gov/4.2.E28 4.2.E28] || <math qid="Q1524">z^{a} = \exp@{a\ln@@{z}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>z^{a} = \exp@{a\ln@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(z)^(a) = exp(a*ln(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>(z)^(a) == Exp[a*Log[z]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 42]
|-  
|-  
| [https://dlmf.nist.gov/4.2.E29 4.2.E29] || [[Item:Q1525|<math>|z^{a}| = |z|^{\realpart@@{a}}\exp@{-(\imagpart@@{a})\phase@@{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|z^{a}| = |z|^{\realpart@@{a}}\exp@{-(\imagpart@@{a})\phase@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs((z)^(a)) = (abs(z))^(Re(a))* exp(-(Im(a))*argument(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[(z)^(a)] == (Abs[z])^(Re[a])* Exp[-(Im[a])*Arg[z]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 42] || Successful [Tested: 42]
| [https://dlmf.nist.gov/4.2.E29 4.2.E29] || <math qid="Q1525">|z^{a}| = |z|^{\realpart@@{a}}\exp@{-(\imagpart@@{a})\phase@@{z}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|z^{a}| = |z|^{\realpart@@{a}}\exp@{-(\imagpart@@{a})\phase@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs((z)^(a)) = (abs(z))^(Re(a))* exp(-(Im(a))*argument(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[(z)^(a)] == (Abs[z])^(Re[a])* Exp[-(Im[a])*Arg[z]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 42] || Successful [Tested: 42]
|-  
|-  
| [https://dlmf.nist.gov/4.2.E30 4.2.E30] || [[Item:Q1526|<math>\phase@{z^{a}} = (\realpart@@{a})\phase@@{z}+(\imagpart@@{a})\ln@@{|z|}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\phase@{z^{a}} = (\realpart@@{a})\phase@@{z}+(\imagpart@@{a})\ln@@{|z|}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>argument((z)^(a)) = (Re(a))*argument(z)+(Im(a))*ln(abs(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Arg[(z)^(a)] == (Re[a])*Arg[z]+(Im[a])*Log[Abs[z]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -6.283185308
| [https://dlmf.nist.gov/4.2.E30 4.2.E30] || <math qid="Q1526">\phase@{z^{a}} = (\realpart@@{a})\phase@@{z}+(\imagpart@@{a})\ln@@{|z|}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\phase@{z^{a}} = (\realpart@@{a})\phase@@{z}+(\imagpart@@{a})\ln@@{|z|}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>argument((z)^(a)) = (Re(a))*argument(z)+(Im(a))*ln(abs(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Arg[(z)^(a)] == (Re[a])*Arg[z]+(Im[a])*Log[Abs[z]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -6.283185308
Test Values: {a = -1.5, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 6.283185308
Test Values: {a = -1.5, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 6.283185308
Test Values: {a = 1.5, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 6.283185307
Test Values: {a = 1.5, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 6.283185307
Line 88: Line 90:
Test Values: {Rule[a, 1.5], Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[a, 1.5], Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/4.2#Ex1 4.2#Ex1] || [[Item:Q1527|<math>|z^{a}| = |z|^{a}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>|z^{a}| = |z|^{a}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">abs((z)^(a)) = (abs(z))^(a)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Abs[(z)^(a)] == (Abs[z])^(a)</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/4.2#Ex1 4.2#Ex1] || <math qid="Q1527">|z^{a}| = |z|^{a}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>|z^{a}| = |z|^{a}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">abs((z)^(a)) = (abs(z))^(a)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Abs[(z)^(a)] == (Abs[z])^(a)</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-  
|-  
| [https://dlmf.nist.gov/4.2#Ex2 4.2#Ex2] || [[Item:Q1528|<math>\phase@{z^{a}} = a\phase@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\phase@{z^{a}} = a\phase@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>argument((z)^(a)) = a*argument(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Arg[(z)^(a)] == a*Arg[z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -6.283185308
| [https://dlmf.nist.gov/4.2#Ex2 4.2#Ex2] || <math qid="Q1528">\phase@{z^{a}} = a\phase@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\phase@{z^{a}} = a\phase@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>argument((z)^(a)) = a*argument(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Arg[(z)^(a)] == a*Arg[z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -6.283185308
Test Values: {a = -1.5, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 6.283185308
Test Values: {a = -1.5, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 6.283185308
Test Values: {a = 1.5, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 6.283185307
Test Values: {a = 1.5, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 6.283185307
Line 98: Line 100:
Test Values: {Rule[a, 1.5], Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[a, 1.5], Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/4.2.E32 4.2.E32] || [[Item:Q1529|<math>e^{z} = \exp@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{z} = \exp@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(z) = exp(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[z] == Exp[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
| [https://dlmf.nist.gov/4.2.E32 4.2.E32] || <math qid="Q1529">e^{z} = \exp@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{z} = \exp@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(z) = exp(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[z] == Exp[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/4.2.E33 4.2.E33] || [[Item:Q1530|<math>e^{z} = (\exp@@{z})\exp@{2kz\pi\iunit}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{z} = (\exp@@{z})\exp@{2kz\pi\iunit}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(z) = (exp(z))*exp(2*k*z*Pi*I)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[z] == (Exp[z])*Exp[2*k*z*Pi*I]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [16 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.989606315+1.174241786*I
| [https://dlmf.nist.gov/4.2.E33 4.2.E33] || <math qid="Q1530">e^{z} = (\exp@@{z})\exp@{2kz\pi\iunit}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{z} = (\exp@@{z})\exp@{2kz\pi\iunit}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(z) = (exp(z))*exp(2*k*z*Pi*I)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[z] == (Exp[z])*Exp[2*k*z*Pi*I]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [16 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.989606315+1.174241786*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1, k = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.084725711+1.143917762*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1, k = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.084725711+1.143917762*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2, k = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.086486474+1.139979111*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2, k = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.086486474+1.139979111*I
Line 108: Line 110:
Test Values: {Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/4.2.E36 4.2.E36] || [[Item:Q1533|<math>-\pi \leq \imagpart@@{\left(\frac{1}{a}\Ln@@{w}\right)}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>-\pi \leq \imagpart@@{\left(\frac{1}{a}\Ln@@{w}\right)}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>- Pi <= Im((1)/(a)*ln(w))</syntaxhighlight> || <syntaxhighlight lang=mathematica>- Pi <= Im[Divide[1,a]*Log[w]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [5 / 60]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -3.141592654 <= -4.188790204
| [https://dlmf.nist.gov/4.2.E36 4.2.E36] || <math qid="Q1533">-\pi \leq \imagpart@@{\left(\frac{1}{a}\Ln@@{w}\right)}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>-\pi \leq \imagpart@@{\left(\frac{1}{a}\Ln@@{w}\right)}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>- Pi <= Im((1)/(a)*ln(w))</syntaxhighlight> || <syntaxhighlight lang=mathematica>- Pi <= Im[Divide[1,a]*Log[w]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [5 / 60]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -3.141592654 <= -4.188790204
Test Values: {a = -.5, w = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -3.141592654 <= -6.283185308
Test Values: {a = -.5, w = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -3.141592654 <= -6.283185308
Test Values: {a = -.5, w = -1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -3.141592654 <= -6.283185308
Test Values: {a = -.5, w = -1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -3.141592654 <= -6.283185308
Line 116: Line 118:
Test Values: {Rule[a, -0.5], Rule[w, -1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[a, -0.5], Rule[w, -1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/4.2.E36 4.2.E36] || [[Item:Q1533|<math>\imagpart@@{\left(\frac{1}{a}\Ln@@{w}\right)} \leq \pi</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\imagpart@@{\left(\frac{1}{a}\Ln@@{w}\right)} \leq \pi</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Im((1)/(a)*ln(w)) <= Pi</syntaxhighlight> || <syntaxhighlight lang=mathematica>Im[Divide[1,a]*Log[w]] <= Pi</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [5 / 60]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 5.235987758 <= 3.141592654
| [https://dlmf.nist.gov/4.2.E36 4.2.E36] || <math qid="Q1533">\imagpart@@{\left(\frac{1}{a}\Ln@@{w}\right)} \leq \pi</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\imagpart@@{\left(\frac{1}{a}\Ln@@{w}\right)} \leq \pi</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Im((1)/(a)*ln(w)) <= Pi</syntaxhighlight> || <syntaxhighlight lang=mathematica>Im[Divide[1,a]*Log[w]] <= Pi</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [5 / 60]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 5.235987758 <= 3.141592654
Test Values: {a = -.5, w = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 4.188790204 <= 3.141592654
Test Values: {a = -.5, w = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 4.188790204 <= 3.141592654
Test Values: {a = .5, w = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 6.283185308 <= 3.141592654
Test Values: {a = .5, w = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 6.283185308 <= 3.141592654

Latest revision as of 11:04, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
4.2.E1 Ln z = 1 z d t t multivalued-natural-logarithm 𝑧 superscript subscript 1 𝑧 𝑡 𝑡 {\displaystyle{\displaystyle\operatorname{Ln}z=\int_{1}^{z}\frac{\mathrm{d}t}{% t}}}
\Ln@@{z} = \int_{1}^{z}\frac{\diff{t}}{t}
z 0 𝑧 0 {\displaystyle{\displaystyle z\neq 0}}
ln(z) = int((1)/(t), t = 1..z)
Log[z] == Integrate[Divide[1,t], {t, 1, z}, GenerateConditions->None]
Failure Successful Successful [Tested: 7] Successful [Tested: 7]
4.2.E2 ln z = 1 z d t t 𝑧 superscript subscript 1 𝑧 𝑡 𝑡 {\displaystyle{\displaystyle\ln z=\int_{1}^{z}\frac{\mathrm{d}t}{t}}}
\ln@@{z} = \int_{1}^{z}\frac{\diff{t}}{t}

ln(z) = int((1)/(t), t = 1..z)
Log[z] == Integrate[Divide[1,t], {t, 1, z}, GenerateConditions->None]
Failure Successful Successful [Tested: 7] Successful [Tested: 7]
4.2.E3 ln z = ln | z | + i ph z 𝑧 𝑧 imaginary-unit phase 𝑧 {\displaystyle{\displaystyle\ln z=\ln\left|z\right|+\mathrm{i}\operatorname{ph% }z}}
\ln@@{z} = \ln@@{\abs{z}}+\iunit\phase@@{z}
- π < ph z , ph z < π formulae-sequence 𝜋 phase 𝑧 phase 𝑧 𝜋 {\displaystyle{\displaystyle-\pi<\operatorname{ph}z,\operatorname{ph}z<\pi}}
ln(z) = ln(abs(z))+ I*argument(z)
Log[z] == Log[Abs[z]]+ I*Arg[z]
Failure Successful Successful [Tested: 7] Successful [Tested: 7]
4.2.E4 z = x 𝑧 𝑥 {\displaystyle{\displaystyle z=x}}
z = x
- < x , x < 0 formulae-sequence 𝑥 𝑥 0 {\displaystyle{\displaystyle-\infty<x,x<0}}
(x + y*I) = x
(x + y*I) == x
Skipped - no semantic math Skipped - no semantic math - -
4.2.E5 ln z = ln | z | + i ph z 𝑧 𝑧 imaginary-unit phase 𝑧 {\displaystyle{\displaystyle\ln z=\ln\left|z\right|+\mathrm{i}\operatorname{ph% }z}}
\ln@@{z} = \ln@@{\abs{z}}+\iunit\phase@@{z}
- π < ph z , ph z π formulae-sequence 𝜋 phase 𝑧 phase 𝑧 𝜋 {\displaystyle{\displaystyle-\pi<\operatorname{ph}z,\operatorname{ph}z\leq\pi}}
ln(z) = ln(abs(z))+ I*argument(z)
Log[z] == Log[Abs[z]]+ I*Arg[z]
Failure Successful Successful [Tested: 7] Successful [Tested: 7]
4.2.E6 Ln z = ln z + 2 k π i multivalued-natural-logarithm 𝑧 𝑧 2 𝑘 𝜋 imaginary-unit {\displaystyle{\displaystyle\operatorname{Ln}z=\ln z+2k\pi\mathrm{i}}}
\Ln@@{z} = \ln@@{z}+2k\pi\iunit

ln(z) = ln(z)+ 2*k*Pi*I
Log[z] == Log[z]+ 2*k*Pi*I
Failure Failure
Failed [21 / 21]
Result: -6.283185308*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1}

Result: -12.56637062*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2}

Result: -18.84955592*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 3}

Result: -6.283185308*I
Test Values: {z = -1/2+1/2*I*3^(1/2), k = 1}

... skip entries to safe data
Failed [21 / 21]
Result: Complex[0.0, -6.283185307179586]
Test Values: {Rule[k, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.0, -12.566370614359172]
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
4.2.E7 ln ( x + i 0 ) = ln | x | + i π 𝑥 imaginary-unit 0 𝑥 𝑖 𝜋 {\displaystyle{\displaystyle\ln\left(x+\mathrm{i}0\right)=\ln|x|+i\pi}}
\ln@{x+\iunit 0} = \ln@@{|x|}+ i\pi
- < x , x < 0 formulae-sequence 𝑥 𝑥 0 {\displaystyle{\displaystyle-\infty<x,x<0}}
ln(x + I*0) = ln(abs(x))+ I*Pi
Log[x + I*0] == Log[Abs[x]]+ I*Pi
Failure Successful Error Skip - symbolical successful subtest
4.2.E7 ln ( x - i 0 ) = ln | x | - i π 𝑥 imaginary-unit 0 𝑥 𝑖 𝜋 {\displaystyle{\displaystyle\ln\left(x-\mathrm{i}0\right)=\ln|x|-i\pi}}
\ln@{x-\iunit 0} = \ln@@{|x|}- i\pi
- < x , x < 0 formulae-sequence 𝑥 𝑥 0 {\displaystyle{\displaystyle-\infty<x,x<0}}
ln(x - I*0) = ln(abs(x))- I*Pi
Log[x - I*0] == Log[Abs[x]]- I*Pi
Failure Failure Error Skip - No test values generated
4.2.E8 log a z = ln z / ln a 𝑎 𝑧 𝑧 𝑎 {\displaystyle{\displaystyle\operatorname{log}_{a}z=\ifrac{\ln z}{\ln a}}}
\genlog{a}@@{z} = \ifrac{\ln@@{z}}{\ln@@{a}}

log[a](z) = (ln(z))/(ln(a))
Log[a,z] == Divide[Log[z],Log[a]]
Successful Successful - Successful [Tested: 42]
4.2.E9 log a z = log b z log b a 𝑎 𝑧 𝑏 𝑧 𝑏 𝑎 {\displaystyle{\displaystyle\operatorname{log}_{a}z=\frac{\operatorname{log}_{% b}z}{\operatorname{log}_{b}a}}}
\genlog{a}@@{z} = \frac{\genlog{b}@@{z}}{\genlog{b}@@{a}}

log[a](z) = (log[b](z))/(log[b](a))
Log[a,z] == Divide[Log[b,z],Log[b,a]]
Successful Successful - Successful [Tested: 252]
4.2.E10 log a b = 1 log b a 𝑎 𝑏 1 𝑏 𝑎 {\displaystyle{\displaystyle\operatorname{log}_{a}b=\frac{1}{\operatorname{log% }_{b}a}}}
\genlog{a}@@{b} = \frac{1}{\genlog{b}@@{a}}

log[a](b) = (1)/(log[b](a))
Log[a,b] == Divide[1,Log[b,a]]
Successful Successful - Successful [Tested: 36]
4.2.E11 e = 2.71828 18284 59045 23536 𝑒 2.71828 18284 59045 23536 {\displaystyle{\displaystyle e=2.71828\ 18284\ 59045\ 23536\dots}}
e = 2.71828\ 18284\ 59045\ 23536\dots

exp(1) = 2.71828182845904523536
E == 2.71828182845904523536
Successful Successful - Successful [Tested: 1]
4.2.E12 ln e = 1 𝑒 1 {\displaystyle{\displaystyle\ln e=1}}
\ln@@{e} = 1

ln(exp(1)) = 1
Log[E] == 1
Successful Successful - Successful [Tested: 1]
4.2.E13 1 e d t t = 1 superscript subscript 1 𝑒 𝑡 𝑡 1 {\displaystyle{\displaystyle\int_{1}^{e}\frac{\mathrm{d}t}{t}=1}}
\int_{1}^{e}\frac{\diff{t}}{t} = 1

int((1)/(t), t = 1..exp(1)) = 1
Integrate[Divide[1,t], {t, 1, E}, GenerateConditions->None] == 1
Successful Successful - Successful [Tested: 1]
4.2.E14 log e z = ln z 𝑒 𝑧 𝑧 {\displaystyle{\displaystyle\operatorname{log}_{e}z=\ln z}}
\genlog{e}@@{z} = \ln@@{z}

log[exp(1)](z) = ln(z)
Log[E,z] == Log[z]
Successful Successful - Successful [Tested: 7]
4.2.E15 log 10 z = ( ln z ) / ( ln 10 ) 10 𝑧 𝑧 10 {\displaystyle{\displaystyle\operatorname{log}_{10}z=\ifrac{(\ln z)}{(\ln 10)}}}
\genlog{10}@@{z} = \ifrac{(\ln@@{z})}{(\ln@@{10})}

log[10](z) = (ln(z))/(ln(10))
Log[10,z] == Divide[Log[z],Log[10]]
Successful Successful - Successful [Tested: 7]
4.2.E15 ( ln z ) / ( ln 10 ) = ( log 10 e ) ln z 𝑧 10 10 𝑒 𝑧 {\displaystyle{\displaystyle\ifrac{(\ln z)}{(\ln 10)}=(\operatorname{log}_{10}% e)\ln z}}
\ifrac{(\ln@@{z})}{(\ln@@{10})} = (\genlog{10}@@{e})\ln@@{z}

(ln(z))/(ln(10)) = (log[10](exp(1)))*ln(z)
Divide[Log[z],Log[10]] == (Log[10,E])*Log[z]
Successful Successful - Successful [Tested: 7]
4.2.E16 ln z = ( ln 10 ) log 10 z 𝑧 10 10 𝑧 {\displaystyle{\displaystyle\ln z=(\ln 10)\operatorname{log}_{10}z}}
\ln@@{z} = (\ln@@{10})\genlog{10}@@{z}

ln(z) = (ln(10))*log[10](z)
Log[z] == (Log[10])*Log[10,z]
Successful Successful - Successful [Tested: 7]
4.2.E17 log 10 e = 0.43429 44819 03251 82765 10 𝑒 0.43429 44819 03251 82765 {\displaystyle{\displaystyle\operatorname{log}_{10}e=0.43429\ 44819\ 03251\ 82% 765\dots}}
\genlog{10}@@{e} = 0.43429\ 44819\ 03251\ 82765\dots

log[10](exp(1)) = 0.43429448190325182765
Log[10,E] == 0.43429448190325182765
Failure Successful Successful [Tested: 0] Successful [Tested: 1]
4.2.E18 ln 10 = 2.30258 50929 94045 68401 10 2.30258 50929 94045 68401 {\displaystyle{\displaystyle\ln 10=2.30258\ 50929\ 94045\ 68401\dots}}
\ln@@{10} = 2.30258\ 50929\ 94045\ 68401\dots

ln(10) = 2.30258509299404568401
Log[10] == 2.30258509299404568401
Successful Successful - Successful [Tested: 1]
4.2.E20 exp ( z + 2 π i ) = exp z 𝑧 2 𝜋 𝑖 𝑧 {\displaystyle{\displaystyle\exp\left(z+2\pi i\right)=\exp z}}
\exp@{z+2\pi i} = \exp@@{z}

exp(z + 2*Pi*I) = exp(z)
Exp[z + 2*Pi*I] == Exp[z]
Successful Successful - Successful [Tested: 7]
4.2.E21 exp ( - z ) = 1 / exp ( z ) 𝑧 1 𝑧 {\displaystyle{\displaystyle\exp\left(-z\right)=1/\exp\left(z\right)}}
\exp@{-z} = 1/\exp@{z}

exp(- z) = 1/exp(z)
Exp[- z] == 1/Exp[z]
Successful Successful - Successful [Tested: 7]
4.2.E22 | exp z | = exp ( z ) 𝑧 𝑧 {\displaystyle{\displaystyle|\exp z|=\exp\left(\Re z\right)}}
|\exp@@{z}| = \exp@{\realpart@@{z}}

abs(exp(z)) = exp(Re(z))
Abs[Exp[z]] == Exp[Re[z]]
Successful Successful - Successful [Tested: 7]
4.2.E23 ph ( exp z ) = z + 2 k π phase 𝑧 𝑧 2 𝑘 𝜋 {\displaystyle{\displaystyle\operatorname{ph}\left(\exp z\right)=\Im z+2k\pi}}
\phase@{\exp@@{z}} = \imagpart@@{z}+2k\pi

argument(exp(z)) = Im(z)+ 2*k*Pi
Arg[Exp[z]] == Im[z]+ 2*k*Pi
Failure Failure
Failed [21 / 21]
Result: -6.283185308
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1, k = 3}

Result: -12.56637062
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2, k = 3}

Result: -18.84955592
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 3, k = 3}

Result: -6.283185308
Test Values: {z = -1/2+1/2*I*3^(1/2), k = 1, k = 3}

... skip entries to safe data
Failed [7 / 7]
Result: -18.84955592153876
Test Values: {Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: -18.84955592153876
Test Values: {Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.2.E24 exp z = e x cos y + i e x sin y 𝑧 superscript 𝑒 𝑥 𝑦 𝑖 superscript 𝑒 𝑥 𝑦 {\displaystyle{\displaystyle\exp z=e^{x}\cos y+ie^{x}\sin y}}
\exp@@{z} = e^{x}\cos@@{y}+ie^{x}\sin@@{y}

exp(x + y*I) = exp(x)*cos(y)+ I*exp(x)*sin(y)
Exp[x + y*I] == Exp[x]*Cos[y]+ I*Exp[x]*Sin[y]
Successful Successful - Successful [Tested: 18]
4.2.E26 z a = exp ( a Ln z ) superscript 𝑧 𝑎 𝑎 multivalued-natural-logarithm 𝑧 {\displaystyle{\displaystyle z^{a}=\exp\left(a\operatorname{Ln}z\right)}}
z^{a} = \exp@{a\Ln@@{z}}
z 0 𝑧 0 {\displaystyle{\displaystyle z\neq 0}}
(z)^(a) = exp(a*ln(z))
(z)^(a) == Exp[a*Log[z]]
Successful Successful - Successful [Tested: 42]
4.2.E28 z a = exp ( a ln z ) superscript 𝑧 𝑎 𝑎 𝑧 {\displaystyle{\displaystyle z^{a}=\exp\left(a\ln z\right)}}
z^{a} = \exp@{a\ln@@{z}}

(z)^(a) = exp(a*ln(z))
(z)^(a) == Exp[a*Log[z]]
Successful Successful - Successful [Tested: 42]
4.2.E29 | z a | = | z | a exp ( - ( a ) ph z ) superscript 𝑧 𝑎 superscript 𝑧 𝑎 𝑎 phase 𝑧 {\displaystyle{\displaystyle|z^{a}|=|z|^{\Re a}\exp\left(-(\Im a)\operatorname% {ph}z\right)}}
|z^{a}| = |z|^{\realpart@@{a}}\exp@{-(\imagpart@@{a})\phase@@{z}}

abs((z)^(a)) = (abs(z))^(Re(a))* exp(-(Im(a))*argument(z))
Abs[(z)^(a)] == (Abs[z])^(Re[a])* Exp[-(Im[a])*Arg[z]]
Failure Failure Successful [Tested: 42] Successful [Tested: 42]
4.2.E30 ph ( z a ) = ( a ) ph z + ( a ) ln | z | phase superscript 𝑧 𝑎 𝑎 phase 𝑧 𝑎 𝑧 {\displaystyle{\displaystyle\operatorname{ph}\left(z^{a}\right)=(\Re a)% \operatorname{ph}z+(\Im a)\ln|z|}}
\phase@{z^{a}} = (\realpart@@{a})\phase@@{z}+(\imagpart@@{a})\ln@@{|z|}

argument((z)^(a)) = (Re(a))*argument(z)+(Im(a))*ln(abs(z))
Arg[(z)^(a)] == (Re[a])*Arg[z]+(Im[a])*Log[Abs[z]]
Failure Failure
Failed [6 / 42]
Result: -6.283185308
Test Values: {a = -1.5, z = -1/2*3^(1/2)-1/2*I}

Result: 6.283185308
Test Values: {a = 1.5, z = -1/2*3^(1/2)-1/2*I}

Result: 6.283185307
Test Values: {a = -2, z = -1/2+1/2*I*3^(1/2)}

Result: -6.283185309
Test Values: {a = -2, z = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [6 / 42]
Result: -6.283185307179586
Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

Result: 6.283185307179586
Test Values: {Rule[a, 1.5], Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

... skip entries to safe data
4.2#Ex1 | z a | = | z | a superscript 𝑧 𝑎 superscript 𝑧 𝑎 {\displaystyle{\displaystyle|z^{a}|=|z|^{a}}}
|z^{a}| = |z|^{a}

abs((z)^(a)) = (abs(z))^(a)
Abs[(z)^(a)] == (Abs[z])^(a)
Skipped - no semantic math Skipped - no semantic math - -
4.2#Ex2 ph ( z a ) = a ph z phase superscript 𝑧 𝑎 𝑎 phase 𝑧 {\displaystyle{\displaystyle\operatorname{ph}\left(z^{a}\right)=a\operatorname% {ph}z}}
\phase@{z^{a}} = a\phase@@{z}

argument((z)^(a)) = a*argument(z)
Arg[(z)^(a)] == a*Arg[z]
Failure Failure
Failed [6 / 42]
Result: -6.283185308
Test Values: {a = -1.5, z = -1/2*3^(1/2)-1/2*I}

Result: 6.283185308
Test Values: {a = 1.5, z = -1/2*3^(1/2)-1/2*I}

Result: 6.283185307
Test Values: {a = -2, z = -1/2+1/2*I*3^(1/2)}

Result: -6.283185309
Test Values: {a = -2, z = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [6 / 42]
Result: -6.283185307179586
Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

Result: 6.283185307179586
Test Values: {Rule[a, 1.5], Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

... skip entries to safe data
4.2.E32 e z = exp z superscript 𝑒 𝑧 𝑧 {\displaystyle{\displaystyle e^{z}=\exp z}}
e^{z} = \exp@@{z}

exp(z) = exp(z)
Exp[z] == Exp[z]
Successful Successful - Successful [Tested: 7]
4.2.E33 e z = ( exp z ) exp ( 2 k z π i ) superscript 𝑒 𝑧 𝑧 2 𝑘 𝑧 𝜋 imaginary-unit {\displaystyle{\displaystyle e^{z}=(\exp z)\exp\left(2kz\pi\mathrm{i}\right)}}
e^{z} = (\exp@@{z})\exp@{2kz\pi\iunit}

exp(z) = (exp(z))*exp(2*k*z*Pi*I)
Exp[z] == (Exp[z])*Exp[2*k*z*Pi*I]
Failure Failure
Failed [16 / 21]
Result: 1.989606315+1.174241786*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1, k = 3}

Result: 2.084725711+1.143917762*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2, k = 3}

Result: 2.086486474+1.139979111*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 3, k = 3}

Result: .3946493584+.4640329579*I
Test Values: {z = -1/2+1/2*I*3^(1/2), k = 1, k = 3}

... skip entries to safe data
Failed [6 / 7]
Result: Complex[2.0864864733305994, 1.139979110702337]
Test Values: {Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.3929465878104918, 0.4620308216689905]
Test Values: {Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.2.E36 - π ( 1 a Ln w ) 𝜋 1 𝑎 multivalued-natural-logarithm 𝑤 {\displaystyle{\displaystyle-\pi\leq\Im\left(\frac{1}{a}\operatorname{Ln}w% \right)}}
-\pi \leq \imagpart@@{\left(\frac{1}{a}\Ln@@{w}\right)}

- Pi <= Im((1)/(a)*ln(w))
- Pi <= Im[Divide[1,a]*Log[w]]
Failure Failure
Failed [5 / 60]
Result: -3.141592654 <= -4.188790204
Test Values: {a = -.5, w = -1/2+1/2*I*3^(1/2)}

Result: -3.141592654 <= -6.283185308
Test Values: {a = -.5, w = -1.5}

Result: -3.141592654 <= -6.283185308
Test Values: {a = -.5, w = -.5}

Result: -3.141592654 <= -6.283185308
Test Values: {a = -.5, w = -2}

... skip entries to safe data
Failed [5 / 60]
Result: False
Test Values: {Rule[a, -0.5], Rule[w, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

Result: False
Test Values: {Rule[a, -0.5], Rule[w, -1.5]}

... skip entries to safe data
4.2.E36 ( 1 a Ln w ) π 1 𝑎 multivalued-natural-logarithm 𝑤 𝜋 {\displaystyle{\displaystyle\Im\left(\frac{1}{a}\operatorname{Ln}w\right)\leq% \pi}}
\imagpart@@{\left(\frac{1}{a}\Ln@@{w}\right)} \leq \pi

Im((1)/(a)*ln(w)) <= Pi
Im[Divide[1,a]*Log[w]] <= Pi
Failure Failure
Failed [5 / 60]
Result: 5.235987758 <= 3.141592654
Test Values: {a = -.5, w = -1/2*3^(1/2)-1/2*I}

Result: 4.188790204 <= 3.141592654
Test Values: {a = .5, w = -1/2+1/2*I*3^(1/2)}

Result: 6.283185308 <= 3.141592654
Test Values: {a = .5, w = -1.5}

Result: 6.283185308 <= 3.141592654
Test Values: {a = .5, w = -.5}

... skip entries to safe data
Failed [5 / 60]
Result: False
Test Values: {Rule[a, -0.5], Rule[w, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

Result: False
Test Values: {Rule[a, 0.5], Rule[w, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data