4.2: Difference between revisions
Jump to navigation
Jump to search
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
{{DISPLAYTITLE:Numerical Methods - 4.2 Definitions}} | |||
<div style="width: 100%; height: 75vh; overflow: auto;"> | <div style="width: 100%; height: 75vh; overflow: auto;"> | ||
{| class="wikitable sortable" style="margin: 0;" | {| class="wikitable sortable" style="margin: 0;" | ||
Line 12: | Line 14: | ||
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.2.E1 4.2.E1] | | | [https://dlmf.nist.gov/4.2.E1 4.2.E1] || <math qid="Q1497">\Ln@@{z} = \int_{1}^{z}\frac{\diff{t}}{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Ln@@{z} = \int_{1}^{z}\frac{\diff{t}}{t}</syntaxhighlight> || <math>z \neq 0</math> || <syntaxhighlight lang=mathematica>ln(z) = int((1)/(t), t = 1..z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[z] == Integrate[Divide[1,t], {t, 1, z}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || Successful [Tested: 7] || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.2.E2 4.2.E2] | | | [https://dlmf.nist.gov/4.2.E2 4.2.E2] || <math qid="Q1498">\ln@@{z} = \int_{1}^{z}\frac{\diff{t}}{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@@{z} = \int_{1}^{z}\frac{\diff{t}}{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln(z) = int((1)/(t), t = 1..z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[z] == Integrate[Divide[1,t], {t, 1, z}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || Successful [Tested: 7] || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.2.E3 4.2.E3] | | | [https://dlmf.nist.gov/4.2.E3 4.2.E3] || <math qid="Q1499">\ln@@{z} = \ln@@{\abs{z}}+\iunit\phase@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@@{z} = \ln@@{\abs{z}}+\iunit\phase@@{z}</syntaxhighlight> || <math>-\pi < \phase@@{z}, \phase@@{z} < \pi</math> || <syntaxhighlight lang=mathematica>ln(z) = ln(abs(z))+ I*argument(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[z] == Log[Abs[z]]+ I*Arg[z]</syntaxhighlight> || Failure || Successful || Successful [Tested: 7] || Successful [Tested: 7] | ||
|- style="background: #dfe6e9;" | |- style="background: #dfe6e9;" | ||
| [https://dlmf.nist.gov/4.2.E4 4.2.E4] | | | [https://dlmf.nist.gov/4.2.E4 4.2.E4] || <math qid="Q1500">z = x</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>z = x</syntaxhighlight> || <math>-\infty < x, x < 0</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(x + y*I) = x</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(x + y*I) == x</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.2.E5 4.2.E5] | | | [https://dlmf.nist.gov/4.2.E5 4.2.E5] || <math qid="Q1501">\ln@@{z} = \ln@@{\abs{z}}+\iunit\phase@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@@{z} = \ln@@{\abs{z}}+\iunit\phase@@{z}</syntaxhighlight> || <math>-\pi < \phase@@{z}, \phase@@{z} \leq \pi</math> || <syntaxhighlight lang=mathematica>ln(z) = ln(abs(z))+ I*argument(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[z] == Log[Abs[z]]+ I*Arg[z]</syntaxhighlight> || Failure || Successful || Successful [Tested: 7] || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.2.E6 4.2.E6] | | | [https://dlmf.nist.gov/4.2.E6 4.2.E6] || <math qid="Q1502">\Ln@@{z} = \ln@@{z}+2k\pi\iunit</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Ln@@{z} = \ln@@{z}+2k\pi\iunit</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln(z) = ln(z)+ 2*k*Pi*I</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[z] == Log[z]+ 2*k*Pi*I</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -6.283185308*I | ||
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -12.56637062*I | Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -12.56637062*I | ||
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -18.84955592*I | Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -18.84955592*I | ||
Line 30: | Line 32: | ||
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.2.E7 4.2.E7] | | | [https://dlmf.nist.gov/4.2.E7 4.2.E7] || <math qid="Q1503">\ln@{x+\iunit 0} = \ln@@{|x|}+ i\pi</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@{x+\iunit 0} = \ln@@{|x|}+ i\pi</syntaxhighlight> || <math>-\infty < x, x < 0</math> || <syntaxhighlight lang=mathematica>ln(x + I*0) = ln(abs(x))+ I*Pi</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[x + I*0] == Log[Abs[x]]+ I*Pi</syntaxhighlight> || Failure || Successful || Error || Skip - symbolical successful subtest | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.2.E7 4.2.E7] | | | [https://dlmf.nist.gov/4.2.E7 4.2.E7] || <math qid="Q1503">\ln@{x-\iunit 0} = \ln@@{|x|}- i\pi</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@{x-\iunit 0} = \ln@@{|x|}- i\pi</syntaxhighlight> || <math>-\infty < x, x < 0</math> || <syntaxhighlight lang=mathematica>ln(x - I*0) = ln(abs(x))- I*Pi</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[x - I*0] == Log[Abs[x]]- I*Pi</syntaxhighlight> || Failure || Failure || Error || Skip - No test values generated | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.2.E8 4.2.E8] | | | [https://dlmf.nist.gov/4.2.E8 4.2.E8] || <math qid="Q1504">\genlog{a}@@{z} = \ifrac{\ln@@{z}}{\ln@@{a}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\genlog{a}@@{z} = \ifrac{\ln@@{z}}{\ln@@{a}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>log[a](z) = (ln(z))/(ln(a))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[a,z] == Divide[Log[z],Log[a]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 42] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.2.E9 4.2.E9] | | | [https://dlmf.nist.gov/4.2.E9 4.2.E9] || <math qid="Q1505">\genlog{a}@@{z} = \frac{\genlog{b}@@{z}}{\genlog{b}@@{a}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\genlog{a}@@{z} = \frac{\genlog{b}@@{z}}{\genlog{b}@@{a}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>log[a](z) = (log[b](z))/(log[b](a))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[a,z] == Divide[Log[b,z],Log[b,a]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 252] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.2.E10 4.2.E10] | | | [https://dlmf.nist.gov/4.2.E10 4.2.E10] || <math qid="Q1506">\genlog{a}@@{b} = \frac{1}{\genlog{b}@@{a}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\genlog{a}@@{b} = \frac{1}{\genlog{b}@@{a}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>log[a](b) = (1)/(log[b](a))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[a,b] == Divide[1,Log[b,a]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 36] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.2.E11 4.2.E11] | | | [https://dlmf.nist.gov/4.2.E11 4.2.E11] || <math qid="Q1507">e = 2.71828\ 18284\ 59045\ 23536\dots</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e = 2.71828\ 18284\ 59045\ 23536\dots</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(1) = 2.71828182845904523536</syntaxhighlight> || <syntaxhighlight lang=mathematica>E == 2.71828182845904523536</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.2.E12 4.2.E12] | | | [https://dlmf.nist.gov/4.2.E12 4.2.E12] || <math qid="Q1508">\ln@@{e} = 1</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@@{e} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln(exp(1)) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[E] == 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.2.E13 4.2.E13] | | | [https://dlmf.nist.gov/4.2.E13 4.2.E13] || <math qid="Q1509">\int_{1}^{e}\frac{\diff{t}}{t} = 1</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{1}^{e}\frac{\diff{t}}{t} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int((1)/(t), t = 1..exp(1)) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[1,t], {t, 1, E}, GenerateConditions->None] == 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.2.E14 4.2.E14] | | | [https://dlmf.nist.gov/4.2.E14 4.2.E14] || <math qid="Q1510">\genlog{e}@@{z} = \ln@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\genlog{e}@@{z} = \ln@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>log[exp(1)](z) = ln(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[E,z] == Log[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.2.E15 4.2.E15] | | | [https://dlmf.nist.gov/4.2.E15 4.2.E15] || <math qid="Q1511">\genlog{10}@@{z} = \ifrac{(\ln@@{z})}{(\ln@@{10})}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\genlog{10}@@{z} = \ifrac{(\ln@@{z})}{(\ln@@{10})}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>log[10](z) = (ln(z))/(ln(10))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[10,z] == Divide[Log[z],Log[10]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.2.E15 4.2.E15] | | | [https://dlmf.nist.gov/4.2.E15 4.2.E15] || <math qid="Q1511">\ifrac{(\ln@@{z})}{(\ln@@{10})} = (\genlog{10}@@{e})\ln@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ifrac{(\ln@@{z})}{(\ln@@{10})} = (\genlog{10}@@{e})\ln@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(ln(z))/(ln(10)) = (log[10](exp(1)))*ln(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[Log[z],Log[10]] == (Log[10,E])*Log[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.2.E16 4.2.E16] | | | [https://dlmf.nist.gov/4.2.E16 4.2.E16] || <math qid="Q1512">\ln@@{z} = (\ln@@{10})\genlog{10}@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@@{z} = (\ln@@{10})\genlog{10}@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln(z) = (ln(10))*log[10](z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[z] == (Log[10])*Log[10,z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.2.E17 4.2.E17] | | | [https://dlmf.nist.gov/4.2.E17 4.2.E17] || <math qid="Q1513">\genlog{10}@@{e} = 0.43429\ 44819\ 03251\ 82765\dots</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\genlog{10}@@{e} = 0.43429\ 44819\ 03251\ 82765\dots</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>log[10](exp(1)) = 0.43429448190325182765</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[10,E] == 0.43429448190325182765</syntaxhighlight> || Failure || Successful || Successful [Tested: 0] || Successful [Tested: 1] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.2.E18 4.2.E18] | | | [https://dlmf.nist.gov/4.2.E18 4.2.E18] || <math qid="Q1514">\ln@@{10} = 2.30258\ 50929\ 94045\ 68401\dots</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@@{10} = 2.30258\ 50929\ 94045\ 68401\dots</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln(10) = 2.30258509299404568401</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[10] == 2.30258509299404568401</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.2.E20 4.2.E20] | | | [https://dlmf.nist.gov/4.2.E20 4.2.E20] || <math qid="Q1516">\exp@{z+2\pi i} = \exp@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\exp@{z+2\pi i} = \exp@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(z + 2*Pi*I) = exp(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[z + 2*Pi*I] == Exp[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.2.E21 4.2.E21] | | | [https://dlmf.nist.gov/4.2.E21 4.2.E21] || <math qid="Q1517">\exp@{-z} = 1/\exp@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\exp@{-z} = 1/\exp@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(- z) = 1/exp(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[- z] == 1/Exp[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.2.E22 4.2.E22] | | | [https://dlmf.nist.gov/4.2.E22 4.2.E22] || <math qid="Q1518">|\exp@@{z}| = \exp@{\realpart@@{z}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\exp@@{z}| = \exp@{\realpart@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs(exp(z)) = exp(Re(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Exp[z]] == Exp[Re[z]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.2.E23 4.2.E23] | | | [https://dlmf.nist.gov/4.2.E23 4.2.E23] || <math qid="Q1519">\phase@{\exp@@{z}} = \imagpart@@{z}+2k\pi</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\phase@{\exp@@{z}} = \imagpart@@{z}+2k\pi</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>argument(exp(z)) = Im(z)+ 2*k*Pi</syntaxhighlight> || <syntaxhighlight lang=mathematica>Arg[Exp[z]] == Im[z]+ 2*k*Pi</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -6.283185308 | ||
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1, k = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -12.56637062 | Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1, k = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -12.56637062 | ||
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2, k = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -18.84955592 | Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2, k = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -18.84955592 | ||
Line 72: | Line 74: | ||
Test Values: {Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.2.E24 4.2.E24] | | | [https://dlmf.nist.gov/4.2.E24 4.2.E24] || <math qid="Q1520">\exp@@{z} = e^{x}\cos@@{y}+ie^{x}\sin@@{y}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\exp@@{z} = e^{x}\cos@@{y}+ie^{x}\sin@@{y}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(x + y*I) = exp(x)*cos(y)+ I*exp(x)*sin(y)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[x + y*I] == Exp[x]*Cos[y]+ I*Exp[x]*Sin[y]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 18] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.2.E26 4.2.E26] | | | [https://dlmf.nist.gov/4.2.E26 4.2.E26] || <math qid="Q1522">z^{a} = \exp@{a\Ln@@{z}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>z^{a} = \exp@{a\Ln@@{z}}</syntaxhighlight> || <math>z \neq 0</math> || <syntaxhighlight lang=mathematica>(z)^(a) = exp(a*ln(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>(z)^(a) == Exp[a*Log[z]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 42] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.2.E28 4.2.E28] | | | [https://dlmf.nist.gov/4.2.E28 4.2.E28] || <math qid="Q1524">z^{a} = \exp@{a\ln@@{z}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>z^{a} = \exp@{a\ln@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(z)^(a) = exp(a*ln(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>(z)^(a) == Exp[a*Log[z]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 42] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.2.E29 4.2.E29] | | | [https://dlmf.nist.gov/4.2.E29 4.2.E29] || <math qid="Q1525">|z^{a}| = |z|^{\realpart@@{a}}\exp@{-(\imagpart@@{a})\phase@@{z}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|z^{a}| = |z|^{\realpart@@{a}}\exp@{-(\imagpart@@{a})\phase@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs((z)^(a)) = (abs(z))^(Re(a))* exp(-(Im(a))*argument(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[(z)^(a)] == (Abs[z])^(Re[a])* Exp[-(Im[a])*Arg[z]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 42] || Successful [Tested: 42] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.2.E30 4.2.E30] | | | [https://dlmf.nist.gov/4.2.E30 4.2.E30] || <math qid="Q1526">\phase@{z^{a}} = (\realpart@@{a})\phase@@{z}+(\imagpart@@{a})\ln@@{|z|}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\phase@{z^{a}} = (\realpart@@{a})\phase@@{z}+(\imagpart@@{a})\ln@@{|z|}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>argument((z)^(a)) = (Re(a))*argument(z)+(Im(a))*ln(abs(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Arg[(z)^(a)] == (Re[a])*Arg[z]+(Im[a])*Log[Abs[z]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -6.283185308 | ||
Test Values: {a = -1.5, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 6.283185308 | Test Values: {a = -1.5, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 6.283185308 | ||
Test Values: {a = 1.5, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 6.283185307 | Test Values: {a = 1.5, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 6.283185307 | ||
Line 88: | Line 90: | ||
Test Values: {Rule[a, 1.5], Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[a, 1.5], Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- style="background: #dfe6e9;" | |- style="background: #dfe6e9;" | ||
| [https://dlmf.nist.gov/4.2#Ex1 4.2#Ex1] | | | [https://dlmf.nist.gov/4.2#Ex1 4.2#Ex1] || <math qid="Q1527">|z^{a}| = |z|^{a}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>|z^{a}| = |z|^{a}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">abs((z)^(a)) = (abs(z))^(a)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Abs[(z)^(a)] == (Abs[z])^(a)</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.2#Ex2 4.2#Ex2] | | | [https://dlmf.nist.gov/4.2#Ex2 4.2#Ex2] || <math qid="Q1528">\phase@{z^{a}} = a\phase@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\phase@{z^{a}} = a\phase@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>argument((z)^(a)) = a*argument(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Arg[(z)^(a)] == a*Arg[z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -6.283185308 | ||
Test Values: {a = -1.5, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 6.283185308 | Test Values: {a = -1.5, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 6.283185308 | ||
Test Values: {a = 1.5, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 6.283185307 | Test Values: {a = 1.5, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 6.283185307 | ||
Line 98: | Line 100: | ||
Test Values: {Rule[a, 1.5], Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[a, 1.5], Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.2.E32 4.2.E32] | | | [https://dlmf.nist.gov/4.2.E32 4.2.E32] || <math qid="Q1529">e^{z} = \exp@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{z} = \exp@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(z) = exp(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[z] == Exp[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.2.E33 4.2.E33] | | | [https://dlmf.nist.gov/4.2.E33 4.2.E33] || <math qid="Q1530">e^{z} = (\exp@@{z})\exp@{2kz\pi\iunit}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{z} = (\exp@@{z})\exp@{2kz\pi\iunit}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(z) = (exp(z))*exp(2*k*z*Pi*I)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[z] == (Exp[z])*Exp[2*k*z*Pi*I]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [16 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.989606315+1.174241786*I | ||
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1, k = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.084725711+1.143917762*I | Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1, k = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.084725711+1.143917762*I | ||
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2, k = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.086486474+1.139979111*I | Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2, k = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.086486474+1.139979111*I | ||
Line 108: | Line 110: | ||
Test Values: {Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.2.E36 4.2.E36] | | | [https://dlmf.nist.gov/4.2.E36 4.2.E36] || <math qid="Q1533">-\pi \leq \imagpart@@{\left(\frac{1}{a}\Ln@@{w}\right)}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>-\pi \leq \imagpart@@{\left(\frac{1}{a}\Ln@@{w}\right)}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>- Pi <= Im((1)/(a)*ln(w))</syntaxhighlight> || <syntaxhighlight lang=mathematica>- Pi <= Im[Divide[1,a]*Log[w]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [5 / 60]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -3.141592654 <= -4.188790204 | ||
Test Values: {a = -.5, w = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -3.141592654 <= -6.283185308 | Test Values: {a = -.5, w = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -3.141592654 <= -6.283185308 | ||
Test Values: {a = -.5, w = -1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -3.141592654 <= -6.283185308 | Test Values: {a = -.5, w = -1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -3.141592654 <= -6.283185308 | ||
Line 116: | Line 118: | ||
Test Values: {Rule[a, -0.5], Rule[w, -1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[a, -0.5], Rule[w, -1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.2.E36 4.2.E36] | | | [https://dlmf.nist.gov/4.2.E36 4.2.E36] || <math qid="Q1533">\imagpart@@{\left(\frac{1}{a}\Ln@@{w}\right)} \leq \pi</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\imagpart@@{\left(\frac{1}{a}\Ln@@{w}\right)} \leq \pi</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Im((1)/(a)*ln(w)) <= Pi</syntaxhighlight> || <syntaxhighlight lang=mathematica>Im[Divide[1,a]*Log[w]] <= Pi</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [5 / 60]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 5.235987758 <= 3.141592654 | ||
Test Values: {a = -.5, w = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 4.188790204 <= 3.141592654 | Test Values: {a = -.5, w = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 4.188790204 <= 3.141592654 | ||
Test Values: {a = .5, w = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 6.283185308 <= 3.141592654 | Test Values: {a = .5, w = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 6.283185308 <= 3.141592654 |
Latest revision as of 11:04, 28 June 2021
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
4.2.E1 | \Ln@@{z} = \int_{1}^{z}\frac{\diff{t}}{t} |
ln(z) = int((1)/(t), t = 1..z)
|
Log[z] == Integrate[Divide[1,t], {t, 1, z}, GenerateConditions->None]
|
Failure | Successful | Successful [Tested: 7] | Successful [Tested: 7] | |
4.2.E2 | \ln@@{z} = \int_{1}^{z}\frac{\diff{t}}{t} |
|
ln(z) = int((1)/(t), t = 1..z)
|
Log[z] == Integrate[Divide[1,t], {t, 1, z}, GenerateConditions->None]
|
Failure | Successful | Successful [Tested: 7] | Successful [Tested: 7] |
4.2.E3 | \ln@@{z} = \ln@@{\abs{z}}+\iunit\phase@@{z} |
ln(z) = ln(abs(z))+ I*argument(z)
|
Log[z] == Log[Abs[z]]+ I*Arg[z]
|
Failure | Successful | Successful [Tested: 7] | Successful [Tested: 7] | |
4.2.E4 | z = x |
(x + y*I) = x |
(x + y*I) == x |
Skipped - no semantic math | Skipped - no semantic math | - | - | |
4.2.E5 | \ln@@{z} = \ln@@{\abs{z}}+\iunit\phase@@{z} |
ln(z) = ln(abs(z))+ I*argument(z)
|
Log[z] == Log[Abs[z]]+ I*Arg[z]
|
Failure | Successful | Successful [Tested: 7] | Successful [Tested: 7] | |
4.2.E6 | \Ln@@{z} = \ln@@{z}+2k\pi\iunit |
|
ln(z) = ln(z)+ 2*k*Pi*I
|
Log[z] == Log[z]+ 2*k*Pi*I
|
Failure | Failure | Failed [21 / 21] Result: -6.283185308*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1}
Result: -12.56637062*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2}
Result: -18.84955592*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 3}
Result: -6.283185308*I
Test Values: {z = -1/2+1/2*I*3^(1/2), k = 1}
... skip entries to safe data |
Failed [21 / 21]
Result: Complex[0.0, -6.283185307179586]
Test Values: {Rule[k, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[0.0, -12.566370614359172]
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |
4.2.E7 | \ln@{x+\iunit 0} = \ln@@{|x|}+ i\pi |
ln(x + I*0) = ln(abs(x))+ I*Pi
|
Log[x + I*0] == Log[Abs[x]]+ I*Pi
|
Failure | Successful | Error | Skip - symbolical successful subtest | |
4.2.E7 | \ln@{x-\iunit 0} = \ln@@{|x|}- i\pi |
ln(x - I*0) = ln(abs(x))- I*Pi
|
Log[x - I*0] == Log[Abs[x]]- I*Pi
|
Failure | Failure | Error | Skip - No test values generated | |
4.2.E8 | \genlog{a}@@{z} = \ifrac{\ln@@{z}}{\ln@@{a}} |
|
log[a](z) = (ln(z))/(ln(a))
|
Log[a,z] == Divide[Log[z],Log[a]]
|
Successful | Successful | - | Successful [Tested: 42] |
4.2.E9 | \genlog{a}@@{z} = \frac{\genlog{b}@@{z}}{\genlog{b}@@{a}} |
|
log[a](z) = (log[b](z))/(log[b](a))
|
Log[a,z] == Divide[Log[b,z],Log[b,a]]
|
Successful | Successful | - | Successful [Tested: 252] |
4.2.E10 | \genlog{a}@@{b} = \frac{1}{\genlog{b}@@{a}} |
|
log[a](b) = (1)/(log[b](a))
|
Log[a,b] == Divide[1,Log[b,a]]
|
Successful | Successful | - | Successful [Tested: 36] |
4.2.E11 | e = 2.71828\ 18284\ 59045\ 23536\dots |
|
exp(1) = 2.71828182845904523536
|
E == 2.71828182845904523536
|
Successful | Successful | - | Successful [Tested: 1] |
4.2.E12 | \ln@@{e} = 1 |
|
ln(exp(1)) = 1
|
Log[E] == 1
|
Successful | Successful | - | Successful [Tested: 1] |
4.2.E13 | \int_{1}^{e}\frac{\diff{t}}{t} = 1 |
|
int((1)/(t), t = 1..exp(1)) = 1
|
Integrate[Divide[1,t], {t, 1, E}, GenerateConditions->None] == 1
|
Successful | Successful | - | Successful [Tested: 1] |
4.2.E14 | \genlog{e}@@{z} = \ln@@{z} |
|
log[exp(1)](z) = ln(z)
|
Log[E,z] == Log[z]
|
Successful | Successful | - | Successful [Tested: 7] |
4.2.E15 | \genlog{10}@@{z} = \ifrac{(\ln@@{z})}{(\ln@@{10})} |
|
log[10](z) = (ln(z))/(ln(10))
|
Log[10,z] == Divide[Log[z],Log[10]]
|
Successful | Successful | - | Successful [Tested: 7] |
4.2.E15 | \ifrac{(\ln@@{z})}{(\ln@@{10})} = (\genlog{10}@@{e})\ln@@{z} |
|
(ln(z))/(ln(10)) = (log[10](exp(1)))*ln(z)
|
Divide[Log[z],Log[10]] == (Log[10,E])*Log[z]
|
Successful | Successful | - | Successful [Tested: 7] |
4.2.E16 | \ln@@{z} = (\ln@@{10})\genlog{10}@@{z} |
|
ln(z) = (ln(10))*log[10](z)
|
Log[z] == (Log[10])*Log[10,z]
|
Successful | Successful | - | Successful [Tested: 7] |
4.2.E17 | \genlog{10}@@{e} = 0.43429\ 44819\ 03251\ 82765\dots |
|
log[10](exp(1)) = 0.43429448190325182765
|
Log[10,E] == 0.43429448190325182765
|
Failure | Successful | Successful [Tested: 0] | Successful [Tested: 1] |
4.2.E18 | \ln@@{10} = 2.30258\ 50929\ 94045\ 68401\dots |
|
ln(10) = 2.30258509299404568401
|
Log[10] == 2.30258509299404568401
|
Successful | Successful | - | Successful [Tested: 1] |
4.2.E20 | \exp@{z+2\pi i} = \exp@@{z} |
|
exp(z + 2*Pi*I) = exp(z)
|
Exp[z + 2*Pi*I] == Exp[z]
|
Successful | Successful | - | Successful [Tested: 7] |
4.2.E21 | \exp@{-z} = 1/\exp@{z} |
|
exp(- z) = 1/exp(z)
|
Exp[- z] == 1/Exp[z]
|
Successful | Successful | - | Successful [Tested: 7] |
4.2.E22 | |\exp@@{z}| = \exp@{\realpart@@{z}} |
|
abs(exp(z)) = exp(Re(z))
|
Abs[Exp[z]] == Exp[Re[z]]
|
Successful | Successful | - | Successful [Tested: 7] |
4.2.E23 | \phase@{\exp@@{z}} = \imagpart@@{z}+2k\pi |
|
argument(exp(z)) = Im(z)+ 2*k*Pi
|
Arg[Exp[z]] == Im[z]+ 2*k*Pi
|
Failure | Failure | Failed [21 / 21] Result: -6.283185308
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1, k = 3}
Result: -12.56637062
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2, k = 3}
Result: -18.84955592
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 3, k = 3}
Result: -6.283185308
Test Values: {z = -1/2+1/2*I*3^(1/2), k = 1, k = 3}
... skip entries to safe data |
Failed [7 / 7]
Result: -18.84955592153876
Test Values: {Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: -18.84955592153876
Test Values: {Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
4.2.E24 | \exp@@{z} = e^{x}\cos@@{y}+ie^{x}\sin@@{y} |
|
exp(x + y*I) = exp(x)*cos(y)+ I*exp(x)*sin(y)
|
Exp[x + y*I] == Exp[x]*Cos[y]+ I*Exp[x]*Sin[y]
|
Successful | Successful | - | Successful [Tested: 18] |
4.2.E26 | z^{a} = \exp@{a\Ln@@{z}} |
(z)^(a) = exp(a*ln(z))
|
(z)^(a) == Exp[a*Log[z]]
|
Successful | Successful | - | Successful [Tested: 42] | |
4.2.E28 | z^{a} = \exp@{a\ln@@{z}} |
|
(z)^(a) = exp(a*ln(z))
|
(z)^(a) == Exp[a*Log[z]]
|
Successful | Successful | - | Successful [Tested: 42] |
4.2.E29 | |z^{a}| = |z|^{\realpart@@{a}}\exp@{-(\imagpart@@{a})\phase@@{z}} |
|
abs((z)^(a)) = (abs(z))^(Re(a))* exp(-(Im(a))*argument(z))
|
Abs[(z)^(a)] == (Abs[z])^(Re[a])* Exp[-(Im[a])*Arg[z]]
|
Failure | Failure | Successful [Tested: 42] | Successful [Tested: 42] |
4.2.E30 | \phase@{z^{a}} = (\realpart@@{a})\phase@@{z}+(\imagpart@@{a})\ln@@{|z|} |
|
argument((z)^(a)) = (Re(a))*argument(z)+(Im(a))*ln(abs(z))
|
Arg[(z)^(a)] == (Re[a])*Arg[z]+(Im[a])*Log[Abs[z]]
|
Failure | Failure | Failed [6 / 42] Result: -6.283185308
Test Values: {a = -1.5, z = -1/2*3^(1/2)-1/2*I}
Result: 6.283185308
Test Values: {a = 1.5, z = -1/2*3^(1/2)-1/2*I}
Result: 6.283185307
Test Values: {a = -2, z = -1/2+1/2*I*3^(1/2)}
Result: -6.283185309
Test Values: {a = -2, z = -1/2*3^(1/2)-1/2*I} ... skip entries to safe data |
Failed [6 / 42]
Result: -6.283185307179586
Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]} Result: 6.283185307179586
Test Values: {Rule[a, 1.5], Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]} ... skip entries to safe data |
4.2#Ex1 | |z^{a}| = |z|^{a} |
|
abs((z)^(a)) = (abs(z))^(a) |
Abs[(z)^(a)] == (Abs[z])^(a) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
4.2#Ex2 | \phase@{z^{a}} = a\phase@@{z} |
|
argument((z)^(a)) = a*argument(z) |
Arg[(z)^(a)] == a*Arg[z] |
Failure | Failure | Failed [6 / 42] Result: -6.283185308
Test Values: {a = -1.5, z = -1/2*3^(1/2)-1/2*I} Result: 6.283185308
Test Values: {a = 1.5, z = -1/2*3^(1/2)-1/2*I} Result: 6.283185307
Test Values: {a = -2, z = -1/2+1/2*I*3^(1/2)} Result: -6.283185309
Test Values: {a = -2, z = -1/2*3^(1/2)-1/2*I} ... skip entries to safe data |
Failed [6 / 42]
Result: -6.283185307179586
Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]} Result: 6.283185307179586
Test Values: {Rule[a, 1.5], Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]} ... skip entries to safe data |
4.2.E32 | e^{z} = \exp@@{z} |
|
exp(z) = exp(z) |
Exp[z] == Exp[z] |
Successful | Successful | - | Successful [Tested: 7] |
4.2.E33 | e^{z} = (\exp@@{z})\exp@{2kz\pi\iunit} |
|
exp(z) = (exp(z))*exp(2*k*z*Pi*I) |
Exp[z] == (Exp[z])*Exp[2*k*z*Pi*I] |
Failure | Failure | Failed [16 / 21] Result: 1.989606315+1.174241786*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1, k = 3} Result: 2.084725711+1.143917762*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2, k = 3} Result: 2.086486474+1.139979111*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 3, k = 3} Result: .3946493584+.4640329579*I
Test Values: {z = -1/2+1/2*I*3^(1/2), k = 1, k = 3} ... skip entries to safe data |
Failed [6 / 7]
Result: Complex[2.0864864733305994, 1.139979110702337]
Test Values: {Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[0.3929465878104918, 0.4620308216689905]
Test Values: {Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |
4.2.E36 | -\pi \leq \imagpart@@{\left(\frac{1}{a}\Ln@@{w}\right)} |
|
- Pi <= Im((1)/(a)*ln(w)) |
- Pi <= Im[Divide[1,a]*Log[w]] |
Failure | Failure | Failed [5 / 60] Result: -3.141592654 <= -4.188790204
Test Values: {a = -.5, w = -1/2+1/2*I*3^(1/2)} Result: -3.141592654 <= -6.283185308
Test Values: {a = -.5, w = -1.5} Result: -3.141592654 <= -6.283185308
Test Values: {a = -.5, w = -.5} Result: -3.141592654 <= -6.283185308
Test Values: {a = -.5, w = -2} ... skip entries to safe data |
Failed [5 / 60]
Result: False
Test Values: {Rule[a, -0.5], Rule[w, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} Result: False
Test Values: {Rule[a, -0.5], Rule[w, -1.5]} ... skip entries to safe data |
4.2.E36 | \imagpart@@{\left(\frac{1}{a}\Ln@@{w}\right)} \leq \pi |
|
Im((1)/(a)*ln(w)) <= Pi |
Im[Divide[1,a]*Log[w]] <= Pi |
Failure | Failure | Failed [5 / 60] Result: 5.235987758 <= 3.141592654
Test Values: {a = -.5, w = -1/2*3^(1/2)-1/2*I} Result: 4.188790204 <= 3.141592654
Test Values: {a = .5, w = -1/2+1/2*I*3^(1/2)} Result: 6.283185308 <= 3.141592654
Test Values: {a = .5, w = -1.5} Result: 6.283185308 <= 3.141592654
Test Values: {a = .5, w = -.5} ... skip entries to safe data |
Failed [5 / 60]
Result: False
Test Values: {Rule[a, -0.5], Rule[w, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]} Result: False
Test Values: {Rule[a, 0.5], Rule[w, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |