3.9: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/3.9.E1 3.9.E1] || [[Item:Q1386|<math>\lim_{n\to\infty}\frac{t_{n}-\sigma}{s_{n}-\sigma} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\lim_{n\to\infty}\frac{t_{n}-\sigma}{s_{n}-\sigma} = 0</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">limit((t[n]- sigma)/(s[n]- sigma), n = infinity) = 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Limit[Divide[Subscript[t, n]- \[Sigma],Subscript[s, n]- \[Sigma]], n -> Infinity, GenerateConditions->None] == 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/3.9.E1 3.9.E1] || <math qid="Q1386">\lim_{n\to\infty}\frac{t_{n}-\sigma}{s_{n}-\sigma} = 0</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\lim_{n\to\infty}\frac{t_{n}-\sigma}{s_{n}-\sigma} = 0</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">limit((t[n]- sigma)/(s[n]- sigma), n = infinity) = 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Limit[Divide[Subscript[t, n]- \[Sigma],Subscript[s, n]- \[Sigma]], n -> Infinity, GenerateConditions->None] == 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/3.9.E7 3.9.E7] || [[Item:Q1392|<math>t_{n} = s_{n}-\frac{(\Delta s_{n})^{2}}{\Delta^{2}s_{n}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>t_{n} = s_{n}-\frac{(\Delta s_{n})^{2}}{\Delta^{2}s_{n}}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">t[n] = s[n]-((Delta*s[n])^(2))/((Delta)^(2)* s[n])</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[t, n] == Subscript[s, n]-Divide[(\[CapitalDelta]*Subscript[s, n])^(2),\[CapitalDelta]^(2)* Subscript[s, n]]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/3.9.E7 3.9.E7] || <math qid="Q1392">t_{n} = s_{n}-\frac{(\Delta s_{n})^{2}}{\Delta^{2}s_{n}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>t_{n} = s_{n}-\frac{(\Delta s_{n})^{2}}{\Delta^{2}s_{n}}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">t[n] = s[n]-((Delta*s[n])^(2))/((Delta)^(2)* s[n])</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[t, n] == Subscript[s, n]-Divide[(\[CapitalDelta]*Subscript[s, n])^(2),\[CapitalDelta]^(2)* Subscript[s, n]]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/3.9.E8 3.9.E8] || [[Item:Q1393|<math>\lim_{n\to\infty}\frac{s_{n+1}-\sigma}{s_{n}-\sigma} = \rho</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\lim_{n\to\infty}\frac{s_{n+1}-\sigma}{s_{n}-\sigma} = \rho</syntaxhighlight> || <math>\abs{\rho} < 1</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">limit((s[n + 1]- sigma)/(s[n]- sigma), n = infinity) = rho</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Limit[Divide[Subscript[s, n + 1]- \[Sigma],Subscript[s, n]- \[Sigma]], n -> Infinity, GenerateConditions->None] == \[Rho]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/3.9.E8 3.9.E8] || <math qid="Q1393">\lim_{n\to\infty}\frac{s_{n+1}-\sigma}{s_{n}-\sigma} = \rho</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\lim_{n\to\infty}\frac{s_{n+1}-\sigma}{s_{n}-\sigma} = \rho</syntaxhighlight> || <math>\abs{\rho} < 1</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">limit((s[n + 1]- sigma)/(s[n]- sigma), n = infinity) = rho</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Limit[Divide[Subscript[s, n + 1]- \[Sigma],Subscript[s, n]- \[Sigma]], n -> Infinity, GenerateConditions->None] == \[Rho]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/3.9.E9 3.9.E9] || [[Item:Q1394|<math>t_{n,2k} = \frac{H_{k+1}(s_{n})}{H_{k}(\Delta^{2}s_{n})}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>t_{n,2k} = \frac{H_{k+1}(s_{n})}{H_{k}(\Delta^{2}s_{n})}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">t[n , 2*k] = (H[k + 1](s[n]))/(H[k]((Delta)^(2)* s[n]))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[t, n , 2*k] == Divide[Subscript[H, k + 1][Subscript[s, n]],Subscript[H, k][\[CapitalDelta]^(2)* Subscript[s, n]]]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/3.9.E9 3.9.E9] || <math qid="Q1394">t_{n,2k} = \frac{H_{k+1}(s_{n})}{H_{k}(\Delta^{2}s_{n})}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>t_{n,2k} = \frac{H_{k+1}(s_{n})}{H_{k}(\Delta^{2}s_{n})}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">t[n , 2*k] = (H[k + 1](s[n]))/(H[k]((Delta)^(2)* s[n]))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[t, n , 2*k] == Divide[Subscript[H, k + 1][Subscript[s, n]],Subscript[H, k][\[CapitalDelta]^(2)* Subscript[s, n]]]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/3.9#Ex1 3.9#Ex1] || [[Item:Q1396|<math>\varepsilon_{-1}^{(n)} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\varepsilon_{-1}^{(n)} = 0</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(varepsilon[- 1])^(n) = 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(Subscript[\[CurlyEpsilon], - 1])^(n) == 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/3.9#Ex1 3.9#Ex1] || <math qid="Q1396">\varepsilon_{-1}^{(n)} = 0</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\varepsilon_{-1}^{(n)} = 0</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(varepsilon[- 1])^(n) = 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(Subscript[\[CurlyEpsilon], - 1])^(n) == 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/3.9#Ex2 3.9#Ex2] || [[Item:Q1397|<math>\varepsilon_{0}^{(n)} = s_{n}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\varepsilon_{0}^{(n)} = s_{n}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(varepsilon[0])^(n) = s[n]</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(Subscript[\[CurlyEpsilon], 0])^(n) == Subscript[s, n]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/3.9#Ex2 3.9#Ex2] || <math qid="Q1397">\varepsilon_{0}^{(n)} = s_{n}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\varepsilon_{0}^{(n)} = s_{n}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(varepsilon[0])^(n) = s[n]</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(Subscript[\[CurlyEpsilon], 0])^(n) == Subscript[s, n]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/3.9#Ex3 3.9#Ex3] || [[Item:Q1398|<math>\varepsilon_{m+1}^{(n)} = \varepsilon_{m-1}^{(n+1)}+\frac{1}{\varepsilon_{m}^{(n+1)}-\varepsilon_{m}^{(n)}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\varepsilon_{m+1}^{(n)} = \varepsilon_{m-1}^{(n+1)}+\frac{1}{\varepsilon_{m}^{(n+1)}-\varepsilon_{m}^{(n)}}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(varepsilon[m + 1])^(n) = (varepsilon[m - 1])^(n + 1)+(1)/((varepsilon[m])^(n + 1)- (varepsilon[m])^(n))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(Subscript[\[CurlyEpsilon], m + 1])^(n) == (Subscript[\[CurlyEpsilon], m - 1])^(n + 1)+Divide[1,(Subscript[\[CurlyEpsilon], m])^(n + 1)- (Subscript[\[CurlyEpsilon], m])^(n)]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/3.9#Ex3 3.9#Ex3] || <math qid="Q1398">\varepsilon_{m+1}^{(n)} = \varepsilon_{m-1}^{(n+1)}+\frac{1}{\varepsilon_{m}^{(n+1)}-\varepsilon_{m}^{(n)}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\varepsilon_{m+1}^{(n)} = \varepsilon_{m-1}^{(n+1)}+\frac{1}{\varepsilon_{m}^{(n+1)}-\varepsilon_{m}^{(n)}}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(varepsilon[m + 1])^(n) = (varepsilon[m - 1])^(n + 1)+(1)/((varepsilon[m])^(n + 1)- (varepsilon[m])^(n))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(Subscript[\[CurlyEpsilon], m + 1])^(n) == (Subscript[\[CurlyEpsilon], m - 1])^(n + 1)+Divide[1,(Subscript[\[CurlyEpsilon], m])^(n + 1)- (Subscript[\[CurlyEpsilon], m])^(n)]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/3.9.E12 3.9.E12] || [[Item:Q1399|<math>s_{n} = \sum_{j=1}^{n}\frac{(-1)^{j+1}}{j^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>s_{n} = \sum_{j=1}^{n}\frac{(-1)^{j+1}}{j^{2}}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">s[n] = sum(((- 1)^(j + 1))/((j)^(2)), j = 1..n)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[s, n] == Sum[Divide[(- 1)^(j + 1),(j)^(2)], {j, 1, n}, GenerateConditions->None]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/3.9.E12 3.9.E12] || <math qid="Q1399">s_{n} = \sum_{j=1}^{n}\frac{(-1)^{j+1}}{j^{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>s_{n} = \sum_{j=1}^{n}\frac{(-1)^{j+1}}{j^{2}}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">s[n] = sum(((- 1)^(j + 1))/((j)^(2)), j = 1..n)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[s, n] == Sum[Divide[(- 1)^(j + 1),(j)^(2)], {j, 1, n}, GenerateConditions->None]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-  
|-  
| [https://dlmf.nist.gov/3.9.E13 3.9.E13] || [[Item:Q1400|<math>{\cal L}_{k}^{(n)}(s) = \frac{\sum_{j=0}^{k}(-1)^{j}\binom{k}{j}c_{j,k,n}\ifrac{s_{n+j}}{a_{n+j+1}}}{\sum_{j=0}^{k}(-1)^{j}\binom{k}{j}c_{j,k,n}/a_{n+j+1}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>{\cal L}_{k}^{(n)}(s) = \frac{\sum_{j=0}^{k}(-1)^{j}\binom{k}{j}c_{j,k,n}\ifrac{s_{n+j}}{a_{n+j+1}}}{\sum_{j=0}^{k}(-1)^{j}\binom{k}{j}c_{j,k,n}/a_{n+j+1}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(L[k])^(n)(s) = (sum((- 1)^(j)*binomial(k,j)*(((n + j + 1)^(k - 1))/((n + k + 1)^(k - 1)))*(s[n + j])/(a[n + j + 1]), j = 0..k))/(sum((- 1)^(j)*binomial(k,j)*(((n + j + 1)^(k - 1))/((n + k + 1)^(k - 1)))/a[n + j + 1], j = 0..k))</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Subscript[L, k])^(n)[s] == Divide[Sum[(- 1)^(j)*Binomial[k,j]*(Divide[(n + j + 1)^(k - 1),(n + k + 1)^(k - 1)])*Divide[Subscript[s, n + j],Subscript[a, n + j + 1]], {j, 0, k}, GenerateConditions->None],Sum[(- 1)^(j)*Binomial[k,j]*(Divide[(n + j + 1)^(k - 1),(n + k + 1)^(k - 1)])/Subscript[a, n + j + 1], {j, 0, k}, GenerateConditions->None]]</syntaxhighlight> || Failure || Failure || Error || Skipped - Because timed out
| [https://dlmf.nist.gov/3.9.E13 3.9.E13] || <math qid="Q1400">{\cal L}_{k}^{(n)}(s) = \frac{\sum_{j=0}^{k}(-1)^{j}\binom{k}{j}c_{j,k,n}\ifrac{s_{n+j}}{a_{n+j+1}}}{\sum_{j=0}^{k}(-1)^{j}\binom{k}{j}c_{j,k,n}/a_{n+j+1}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>{\cal L}_{k}^{(n)}(s) = \frac{\sum_{j=0}^{k}(-1)^{j}\binom{k}{j}c_{j,k,n}\ifrac{s_{n+j}}{a_{n+j+1}}}{\sum_{j=0}^{k}(-1)^{j}\binom{k}{j}c_{j,k,n}/a_{n+j+1}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(L[k])^(n)(s) = (sum((- 1)^(j)*binomial(k,j)*(((n + j + 1)^(k - 1))/((n + k + 1)^(k - 1)))*(s[n + j])/(a[n + j + 1]), j = 0..k))/(sum((- 1)^(j)*binomial(k,j)*(((n + j + 1)^(k - 1))/((n + k + 1)^(k - 1)))/a[n + j + 1], j = 0..k))</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Subscript[L, k])^(n)[s] == Divide[Sum[(- 1)^(j)*Binomial[k,j]*(Divide[(n + j + 1)^(k - 1),(n + k + 1)^(k - 1)])*Divide[Subscript[s, n + j],Subscript[a, n + j + 1]], {j, 0, k}, GenerateConditions->None],Sum[(- 1)^(j)*Binomial[k,j]*(Divide[(n + j + 1)^(k - 1),(n + k + 1)^(k - 1)])/Subscript[a, n + j + 1], {j, 0, k}, GenerateConditions->None]]</syntaxhighlight> || Failure || Failure || Error || Skipped - Because timed out
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/3.9.E15 3.9.E15] || [[Item:Q1402|<math>\lim_{n\to\infty}\frac{s_{n+1}-\sigma}{s_{n}-\sigma} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\lim_{n\to\infty}\frac{s_{n+1}-\sigma}{s_{n}-\sigma} = 1</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">limit((s[n + 1]- sigma)/(s[n]- sigma), n = infinity) = 1</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Limit[Divide[Subscript[s, n + 1]- \[Sigma],Subscript[s, n]- \[Sigma]], n -> Infinity, GenerateConditions->None] == 1</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/3.9.E15 3.9.E15] || <math qid="Q1402">\lim_{n\to\infty}\frac{s_{n+1}-\sigma}{s_{n}-\sigma} = 1</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\lim_{n\to\infty}\frac{s_{n+1}-\sigma}{s_{n}-\sigma} = 1</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">limit((s[n + 1]- sigma)/(s[n]- sigma), n = infinity) = 1</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Limit[Divide[Subscript[s, n + 1]- \[Sigma],Subscript[s, n]- \[Sigma]], n -> Infinity, GenerateConditions->None] == 1</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-  
|-  
| [https://dlmf.nist.gov/3.9.E16 3.9.E16] || [[Item:Q1403|<math>c_{j,k,n} = \frac{\Pochhammersym{\beta+n+j}{k-1}}{\Pochhammersym{\beta+n+k}{k-1}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>c_{j,k,n} = \frac{\Pochhammersym{\beta+n+j}{k-1}}{\Pochhammersym{\beta+n+k}{k-1}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(((n + j + 1)^(k - 1))/((n + k + 1)^(k - 1))) = (pochhammer(beta + n + j, k - 1))/(pochhammer(beta + n + k, k - 1))</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Divide[(n + j + 1)^(k - 1),(n + k + 1)^(k - 1)]) == Divide[Pochhammer[\[Beta]+ n + j, k - 1],Pochhammer[\[Beta]+ n + k, k - 1]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [36 / 81]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.277777778e-1
| [https://dlmf.nist.gov/3.9.E16 3.9.E16] || <math qid="Q1403">c_{j,k,n} = \frac{\Pochhammersym{\beta+n+j}{k-1}}{\Pochhammersym{\beta+n+k}{k-1}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>c_{j,k,n} = \frac{\Pochhammersym{\beta+n+j}{k-1}}{\Pochhammersym{\beta+n+k}{k-1}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(((n + j + 1)^(k - 1))/((n + k + 1)^(k - 1))) = (pochhammer(beta + n + j, k - 1))/(pochhammer(beta + n + k, k - 1))</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Divide[(n + j + 1)^(k - 1),(n + k + 1)^(k - 1)]) == Divide[Pochhammer[\[Beta]+ n + j, k - 1],Pochhammer[\[Beta]+ n + k, k - 1]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [36 / 81]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.277777778e-1
Test Values: {beta = 1.5, j = 1, k = 2, n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.181818182e-1
Test Values: {beta = 1.5, j = 1, k = 2, n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.181818182e-1
Test Values: {beta = 1.5, j = 1, k = 2, n = 2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.128205129e-1
Test Values: {beta = 1.5, j = 1, k = 2, n = 2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.128205129e-1
Line 42: Line 42:
Test Values: {Rule[j, 1], Rule[k, 2], Rule[n, 2], Rule[β, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[j, 1], Rule[k, 2], Rule[n, 2], Rule[β, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/3.9.E17 3.9.E17] || [[Item:Q1404|<math>c_{j,k,n} = \frac{\Pochhammersym{-\gamma-n-j}{k-1}}{\Pochhammersym{-\gamma-n-k}{k-1}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>c_{j,k,n} = \frac{\Pochhammersym{-\gamma-n-j}{k-1}}{\Pochhammersym{-\gamma-n-k}{k-1}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(((n + j + 1)^(k - 1))/((n + k + 1)^(k - 1))) = (pochhammer(- gamma - n - j, k - 1))/(pochhammer(- gamma - n - k, k - 1))</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Divide[(n + j + 1)^(k - 1),(n + k + 1)^(k - 1)]) == Divide[Pochhammer[- \[Gamma]- n - j, k - 1],Pochhammer[- \[Gamma]- n - k, k - 1]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [120 / 270]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .295470259e-1
| [https://dlmf.nist.gov/3.9.E17 3.9.E17] || <math qid="Q1404">c_{j,k,n} = \frac{\Pochhammersym{-\gamma-n-j}{k-1}}{\Pochhammersym{-\gamma-n-k}{k-1}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>c_{j,k,n} = \frac{\Pochhammersym{-\gamma-n-j}{k-1}}{\Pochhammersym{-\gamma-n-k}{k-1}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(((n + j + 1)^(k - 1))/((n + k + 1)^(k - 1))) = (pochhammer(- gamma - n - j, k - 1))/(pochhammer(- gamma - n - k, k - 1))</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Divide[(n + j + 1)^(k - 1),(n + k + 1)^(k - 1)]) == Divide[Pochhammer[- \[Gamma]- n - j, k - 1],Pochhammer[- \[Gamma]- n - k, k - 1]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [120 / 270]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .295470259e-1
Test Values: {gamma = 1/2*3^(1/2)+1/2*I, j = 1, k = 2, n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .184734286e-1
Test Values: {gamma = 1/2*3^(1/2)+1/2*I, j = 1, k = 2, n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .184734286e-1
Test Values: {gamma = 1/2*3^(1/2)+1/2*I, j = 1, k = 2, n = 2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .126342713e-1
Test Values: {gamma = 1/2*3^(1/2)+1/2*I, j = 1, k = 2, n = 2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .126342713e-1

Latest revision as of 11:04, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
3.9.E1 lim n t n - σ s n - σ = 0 subscript 𝑛 subscript 𝑡 𝑛 𝜎 subscript 𝑠 𝑛 𝜎 0 {\displaystyle{\displaystyle\lim_{n\to\infty}\frac{t_{n}-\sigma}{s_{n}-\sigma}% =0}}
\lim_{n\to\infty}\frac{t_{n}-\sigma}{s_{n}-\sigma} = 0

limit((t[n]- sigma)/(s[n]- sigma), n = infinity) = 0
Limit[Divide[Subscript[t, n]- \[Sigma],Subscript[s, n]- \[Sigma]], n -> Infinity, GenerateConditions->None] == 0
Skipped - no semantic math Skipped - no semantic math - -
3.9.E7 t n = s n - ( Δ s n ) 2 Δ 2 s n subscript 𝑡 𝑛 subscript 𝑠 𝑛 superscript Δ subscript 𝑠 𝑛 2 superscript Δ 2 subscript 𝑠 𝑛 {\displaystyle{\displaystyle t_{n}=s_{n}-\frac{(\Delta s_{n})^{2}}{\Delta^{2}s% _{n}}}}
t_{n} = s_{n}-\frac{(\Delta s_{n})^{2}}{\Delta^{2}s_{n}}

t[n] = s[n]-((Delta*s[n])^(2))/((Delta)^(2)* s[n])
Subscript[t, n] == Subscript[s, n]-Divide[(\[CapitalDelta]*Subscript[s, n])^(2),\[CapitalDelta]^(2)* Subscript[s, n]]
Skipped - no semantic math Skipped - no semantic math - -
3.9.E8 lim n s n + 1 - σ s n - σ = ρ subscript 𝑛 subscript 𝑠 𝑛 1 𝜎 subscript 𝑠 𝑛 𝜎 𝜌 {\displaystyle{\displaystyle\lim_{n\to\infty}\frac{s_{n+1}-\sigma}{s_{n}-% \sigma}=\rho}}
\lim_{n\to\infty}\frac{s_{n+1}-\sigma}{s_{n}-\sigma} = \rho
| ρ | < 1 𝜌 1 {\displaystyle{\displaystyle\left|\rho\right|<1}}
limit((s[n + 1]- sigma)/(s[n]- sigma), n = infinity) = rho
Limit[Divide[Subscript[s, n + 1]- \[Sigma],Subscript[s, n]- \[Sigma]], n -> Infinity, GenerateConditions->None] == \[Rho]
Skipped - no semantic math Skipped - no semantic math - -
3.9.E9 t n , 2 k = H k + 1 ( s n ) H k ( Δ 2 s n ) subscript 𝑡 𝑛 2 𝑘 subscript 𝐻 𝑘 1 subscript 𝑠 𝑛 subscript 𝐻 𝑘 superscript Δ 2 subscript 𝑠 𝑛 {\displaystyle{\displaystyle t_{n,2k}=\frac{H_{k+1}(s_{n})}{H_{k}(\Delta^{2}s_% {n})}}}
t_{n,2k} = \frac{H_{k+1}(s_{n})}{H_{k}(\Delta^{2}s_{n})}

t[n , 2*k] = (H[k + 1](s[n]))/(H[k]((Delta)^(2)* s[n]))
Subscript[t, n , 2*k] == Divide[Subscript[H, k + 1][Subscript[s, n]],Subscript[H, k][\[CapitalDelta]^(2)* Subscript[s, n]]]
Skipped - no semantic math Skipped - no semantic math - -
3.9#Ex1 ε - 1 ( n ) = 0 superscript subscript 𝜀 1 𝑛 0 {\displaystyle{\displaystyle\varepsilon_{-1}^{(n)}=0}}
\varepsilon_{-1}^{(n)} = 0

(varepsilon[- 1])^(n) = 0
(Subscript[\[CurlyEpsilon], - 1])^(n) == 0
Skipped - no semantic math Skipped - no semantic math - -
3.9#Ex2 ε 0 ( n ) = s n superscript subscript 𝜀 0 𝑛 subscript 𝑠 𝑛 {\displaystyle{\displaystyle\varepsilon_{0}^{(n)}=s_{n}}}
\varepsilon_{0}^{(n)} = s_{n}

(varepsilon[0])^(n) = s[n]
(Subscript[\[CurlyEpsilon], 0])^(n) == Subscript[s, n]
Skipped - no semantic math Skipped - no semantic math - -
3.9#Ex3 ε m + 1 ( n ) = ε m - 1 ( n + 1 ) + 1 ε m ( n + 1 ) - ε m ( n ) superscript subscript 𝜀 𝑚 1 𝑛 superscript subscript 𝜀 𝑚 1 𝑛 1 1 superscript subscript 𝜀 𝑚 𝑛 1 superscript subscript 𝜀 𝑚 𝑛 {\displaystyle{\displaystyle\varepsilon_{m+1}^{(n)}=\varepsilon_{m-1}^{(n+1)}+% \frac{1}{\varepsilon_{m}^{(n+1)}-\varepsilon_{m}^{(n)}}}}
\varepsilon_{m+1}^{(n)} = \varepsilon_{m-1}^{(n+1)}+\frac{1}{\varepsilon_{m}^{(n+1)}-\varepsilon_{m}^{(n)}}

(varepsilon[m + 1])^(n) = (varepsilon[m - 1])^(n + 1)+(1)/((varepsilon[m])^(n + 1)- (varepsilon[m])^(n))
(Subscript[\[CurlyEpsilon], m + 1])^(n) == (Subscript[\[CurlyEpsilon], m - 1])^(n + 1)+Divide[1,(Subscript[\[CurlyEpsilon], m])^(n + 1)- (Subscript[\[CurlyEpsilon], m])^(n)]
Skipped - no semantic math Skipped - no semantic math - -
3.9.E12 s n = j = 1 n ( - 1 ) j + 1 j 2 subscript 𝑠 𝑛 superscript subscript 𝑗 1 𝑛 superscript 1 𝑗 1 superscript 𝑗 2 {\displaystyle{\displaystyle s_{n}=\sum_{j=1}^{n}\frac{(-1)^{j+1}}{j^{2}}}}
s_{n} = \sum_{j=1}^{n}\frac{(-1)^{j+1}}{j^{2}}

s[n] = sum(((- 1)^(j + 1))/((j)^(2)), j = 1..n)
Subscript[s, n] == Sum[Divide[(- 1)^(j + 1),(j)^(2)], {j, 1, n}, GenerateConditions->None]
Skipped - no semantic math Skipped - no semantic math - -
3.9.E13 k ( n ) ( s ) = j = 0 k ( - 1 ) j ( k j ) c j , k , n s n + j / a n + j + 1 j = 0 k ( - 1 ) j ( k j ) c j , k , n / a n + j + 1 superscript subscript 𝑘 𝑛 𝑠 superscript subscript 𝑗 0 𝑘 superscript 1 𝑗 binomial 𝑘 𝑗 subscript 𝑐 𝑗 𝑘 𝑛 subscript 𝑠 𝑛 𝑗 subscript 𝑎 𝑛 𝑗 1 superscript subscript 𝑗 0 𝑘 superscript 1 𝑗 binomial 𝑘 𝑗 subscript 𝑐 𝑗 𝑘 𝑛 subscript 𝑎 𝑛 𝑗 1 {\displaystyle{\displaystyle{\cal L}_{k}^{(n)}(s)=\frac{\sum_{j=0}^{k}(-1)^{j}% \genfrac{(}{)}{0.0pt}{}{k}{j}c_{j,k,n}\ifrac{s_{n+j}}{a_{n+j+1}}}{\sum_{j=0}^{% k}(-1)^{j}\genfrac{(}{)}{0.0pt}{}{k}{j}c_{j,k,n}/a_{n+j+1}}}}
{\cal L}_{k}^{(n)}(s) = \frac{\sum_{j=0}^{k}(-1)^{j}\binom{k}{j}c_{j,k,n}\ifrac{s_{n+j}}{a_{n+j+1}}}{\sum_{j=0}^{k}(-1)^{j}\binom{k}{j}c_{j,k,n}/a_{n+j+1}}

(L[k])^(n)(s) = (sum((- 1)^(j)*binomial(k,j)*(((n + j + 1)^(k - 1))/((n + k + 1)^(k - 1)))*(s[n + j])/(a[n + j + 1]), j = 0..k))/(sum((- 1)^(j)*binomial(k,j)*(((n + j + 1)^(k - 1))/((n + k + 1)^(k - 1)))/a[n + j + 1], j = 0..k))
(Subscript[L, k])^(n)[s] == Divide[Sum[(- 1)^(j)*Binomial[k,j]*(Divide[(n + j + 1)^(k - 1),(n + k + 1)^(k - 1)])*Divide[Subscript[s, n + j],Subscript[a, n + j + 1]], {j, 0, k}, GenerateConditions->None],Sum[(- 1)^(j)*Binomial[k,j]*(Divide[(n + j + 1)^(k - 1),(n + k + 1)^(k - 1)])/Subscript[a, n + j + 1], {j, 0, k}, GenerateConditions->None]]
Failure Failure Error Skipped - Because timed out
3.9.E15 lim n s n + 1 - σ s n - σ = 1 subscript 𝑛 subscript 𝑠 𝑛 1 𝜎 subscript 𝑠 𝑛 𝜎 1 {\displaystyle{\displaystyle\lim_{n\to\infty}\frac{s_{n+1}-\sigma}{s_{n}-% \sigma}=1}}
\lim_{n\to\infty}\frac{s_{n+1}-\sigma}{s_{n}-\sigma} = 1

limit((s[n + 1]- sigma)/(s[n]- sigma), n = infinity) = 1
Limit[Divide[Subscript[s, n + 1]- \[Sigma],Subscript[s, n]- \[Sigma]], n -> Infinity, GenerateConditions->None] == 1
Skipped - no semantic math Skipped - no semantic math - -
3.9.E16 c j , k , n = ( β + n + j ) k - 1 ( β + n + k ) k - 1 subscript 𝑐 𝑗 𝑘 𝑛 Pochhammer 𝛽 𝑛 𝑗 𝑘 1 Pochhammer 𝛽 𝑛 𝑘 𝑘 1 {\displaystyle{\displaystyle c_{j,k,n}=\frac{{\left(\beta+n+j\right)_{k-1}}}{{% \left(\beta+n+k\right)_{k-1}}}}}
c_{j,k,n} = \frac{\Pochhammersym{\beta+n+j}{k-1}}{\Pochhammersym{\beta+n+k}{k-1}}

(((n + j + 1)^(k - 1))/((n + k + 1)^(k - 1))) = (pochhammer(beta + n + j, k - 1))/(pochhammer(beta + n + k, k - 1))
(Divide[(n + j + 1)^(k - 1),(n + k + 1)^(k - 1)]) == Divide[Pochhammer[\[Beta]+ n + j, k - 1],Pochhammer[\[Beta]+ n + k, k - 1]]
Failure Failure
Failed [36 / 81]
Result: -.277777778e-1
Test Values: {beta = 1.5, j = 1, k = 2, n = 1}

Result: -.181818182e-1
Test Values: {beta = 1.5, j = 1, k = 2, n = 2}

Result: -.128205129e-1
Test Values: {beta = 1.5, j = 1, k = 2, n = 3}

Result: -.805594406e-1
Test Values: {beta = 1.5, j = 1, k = 3, n = 1}

... skip entries to safe data
Failed [36 / 81]
Result: -0.02777777777777768
Test Values: {Rule[j, 1], Rule[k, 2], Rule[n, 1], Rule[β, 1.5]}

Result: -0.018181818181818188
Test Values: {Rule[j, 1], Rule[k, 2], Rule[n, 2], Rule[β, 1.5]}

... skip entries to safe data
3.9.E17 c j , k , n = ( - γ - n - j ) k - 1 ( - γ - n - k ) k - 1 subscript 𝑐 𝑗 𝑘 𝑛 Pochhammer 𝛾 𝑛 𝑗 𝑘 1 Pochhammer 𝛾 𝑛 𝑘 𝑘 1 {\displaystyle{\displaystyle c_{j,k,n}=\frac{{\left(-\gamma-n-j\right)_{k-1}}}% {{\left(-\gamma-n-k\right)_{k-1}}}}}
c_{j,k,n} = \frac{\Pochhammersym{-\gamma-n-j}{k-1}}{\Pochhammersym{-\gamma-n-k}{k-1}}

(((n + j + 1)^(k - 1))/((n + k + 1)^(k - 1))) = (pochhammer(- gamma - n - j, k - 1))/(pochhammer(- gamma - n - k, k - 1))
(Divide[(n + j + 1)^(k - 1),(n + k + 1)^(k - 1)]) == Divide[Pochhammer[- \[Gamma]- n - j, k - 1],Pochhammer[- \[Gamma]- n - k, k - 1]]
Failure Failure
Failed [120 / 270]
Result: .295470259e-1
Test Values: {gamma = 1/2*3^(1/2)+1/2*I, j = 1, k = 2, n = 1}

Result: .184734286e-1
Test Values: {gamma = 1/2*3^(1/2)+1/2*I, j = 1, k = 2, n = 2}

Result: .126342713e-1
Test Values: {gamma = 1/2*3^(1/2)+1/2*I, j = 1, k = 2, n = 3}

Result: .1117465202
Test Values: {gamma = 1/2*3^(1/2)+1/2*I, j = 1, k = 3, n = 1}

... skip entries to safe data
Failed [120 / 270]
Result: Complex[0.004408174927732822, -0.03290306559789975]
Test Values: {Rule[j, 1], Rule[k, 2], Rule[n, 1], Rule[γ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.003359414702213348, -0.020895843920590226]
Test Values: {Rule[j, 1], Rule[k, 2], Rule[n, 2], Rule[γ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data