3.8: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
{{DISPLAYTITLE:Numerical Methods - 3.8 Nonlinear Equations}}
<div style="width: 100%; height: 75vh; overflow: auto;">
<div style="width: 100%; height: 75vh; overflow: auto;">
{| class="wikitable sortable" style="margin: 0;"
{| class="wikitable sortable" style="margin: 0;"
Line 12: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/3.8.E2 3.8.E2] || [[Item:Q1365|<math>z = \phi(z)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>z = \phi(z)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">z = phi(z)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">z == \[Phi][z]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/3.8.E2 3.8.E2] || <math qid="Q1365">z = \phi(z)</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>z = \phi(z)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">z = phi(z)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">z == \[Phi][z]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-  
|-  
| [https://dlmf.nist.gov/3.8.E3 3.8.E3] || [[Item:Q1366|<math>\abs{z_{n+1}-\zeta} < A\abs{z_{n}-\zeta}^{p}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\abs{z_{n+1}-\zeta} < A\abs{z_{n}-\zeta}^{p}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs(z[n + 1]- zeta) < A*(abs(z[n]- zeta))^(p)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Subscript[z, n + 1]- \[Zeta]] < A*(Abs[Subscript[z, n]- \[Zeta]])^(p)</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [30 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 0. < 0.
| [https://dlmf.nist.gov/3.8.E3 3.8.E3] || <math qid="Q1366">\abs{z_{n+1}-\zeta} < A\abs{z_{n}-\zeta}^{p}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\abs{z_{n+1}-\zeta} < A\abs{z_{n}-\zeta}^{p}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs(z[n + 1]- zeta) < A*(abs(z[n]- zeta))^(p)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Subscript[z, n + 1]- \[Zeta]] < A*(Abs[Subscript[z, n]- \[Zeta]])^(p)</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [30 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 0. < 0.
Test Values: {A = 1/2*3^(1/2)+1/2*I, p = 1/2*3^(1/2)+1/2*I, zeta = 1/2*3^(1/2)+1/2*I, z[n] = 1/2*3^(1/2)+1/2*I, z[n+1] = 1/2*3^(1/2)+1/2*I, n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0. < 0.
Test Values: {A = 1/2*3^(1/2)+1/2*I, p = 1/2*3^(1/2)+1/2*I, zeta = 1/2*3^(1/2)+1/2*I, z[n] = 1/2*3^(1/2)+1/2*I, z[n+1] = 1/2*3^(1/2)+1/2*I, n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0. < 0.
Test Values: {A = 1/2*3^(1/2)+1/2*I, p = 1/2*3^(1/2)+1/2*I, zeta = 1/2*3^(1/2)+1/2*I, z[n] = 1/2*3^(1/2)+1/2*I, z[n+1] = 1/2*3^(1/2)+1/2*I, n = 2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0. < 0.
Test Values: {A = 1/2*3^(1/2)+1/2*I, p = 1/2*3^(1/2)+1/2*I, zeta = 1/2*3^(1/2)+1/2*I, z[n] = 1/2*3^(1/2)+1/2*I, z[n+1] = 1/2*3^(1/2)+1/2*I, n = 2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0. < 0.
Line 22: Line 24:
Test Values: {Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[n, 2], Rule[p, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ζ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[z, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[z, Plus[1, n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[n, 2], Rule[p, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ζ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[z, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[z, Plus[1, n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/3.8#Ex1 3.8#Ex1] || [[Item:Q1368|<math>x_{n+1} = \phi(x_{n})</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>x_{n+1} = \phi(x_{n})</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">x[n + 1] = phi(x[n])</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[x, n + 1] == \[Phi][Subscript[x, n]]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/3.8#Ex1 3.8#Ex1] || <math qid="Q1368">x_{n+1} = \phi(x_{n})</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>x_{n+1} = \phi(x_{n})</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">x[n + 1] = phi(x[n])</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[x, n + 1] == \[Phi][Subscript[x, n]]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-  
|-  
| [https://dlmf.nist.gov/3.8#Ex2 3.8#Ex2] || [[Item:Q1369|<math>\phi(x) = x+x\cot^{2}@@{x}-\cot@@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\phi(x) = x+x\cot^{2}@@{x}-\cot@@{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>phi(x) = x + x*(cot(x))^(2)- cot(x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>\[Phi][x] == x + x*(Cot[x])^(2)- Cot[x]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [30 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.137590423+.7500000000*I
| [https://dlmf.nist.gov/3.8#Ex2 3.8#Ex2] || <math qid="Q1369">\phi(x) = x+x\cot^{2}@@{x}-\cot@@{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\phi(x) = x+x\cot^{2}@@{x}-\cot@@{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>phi(x) = x + x*(cot(x))^(2)- cot(x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>\[Phi][x] == x + x*(Cot[x])^(2)- Cot[x]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [30 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.137590423+.7500000000*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .881577740e-1+.2500000000*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .881577740e-1+.2500000000*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = .5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.144507621+1.*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = .5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.144507621+1.*I
Line 32: Line 34:
Test Values: {Rule[x, 1.5], Rule[ϕ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[x, 1.5], Rule[ϕ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/3.8.E6 3.8.E6] || [[Item:Q1370|<math>x_{2} = x_{1}-\frac{x_{1}-x_{0}}{f_{1}-f_{0}}f_{1}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>x_{2} = x_{1}-\frac{x_{1}-x_{0}}{f_{1}-f_{0}}f_{1}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">x[2] = x[1]-(x[1]- x[0])/(f[1]- f[0])*f[1]</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[x, 2] == Subscript[x, 1]-Divide[Subscript[x, 1]- Subscript[x, 0],Subscript[f, 1]- Subscript[f, 0]]*Subscript[f, 1]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/3.8.E6 3.8.E6] || <math qid="Q1370">x_{2} = x_{1}-\frac{x_{1}-x_{0}}{f_{1}-f_{0}}f_{1}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>x_{2} = x_{1}-\frac{x_{1}-x_{0}}{f_{1}-f_{0}}f_{1}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">x[2] = x[1]-(x[1]- x[0])/(f[1]- f[0])*f[1]</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[x, 2] == Subscript[x, 1]-Divide[Subscript[x, 1]- Subscript[x, 0],Subscript[f, 1]- Subscript[f, 0]]*Subscript[f, 1]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/3.8.E7 3.8.E7] || [[Item:Q1371|<math>z_{n+1} = z_{n}-\frac{(\phi(z_{n})-z_{n})^{2}}{\phi(\phi(z_{n}))-2\phi(z_{n})+z_{n}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>z_{n+1} = z_{n}-\frac{(\phi(z_{n})-z_{n})^{2}}{\phi(\phi(z_{n}))-2\phi(z_{n})+z_{n}}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">z[n + 1] = z[n]-((phi(z[n])- z[n])^(2))/(phi(phi(z[n]))- 2*phi(z[n])+ z[n])</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[z, n + 1] == Subscript[z, n]-Divide[(\[Phi][Subscript[z, n]]- Subscript[z, n])^(2),\[Phi][\[Phi][Subscript[z, n]]]- 2*\[Phi][Subscript[z, n]]+ Subscript[z, n]]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/3.8.E7 3.8.E7] || <math qid="Q1371">z_{n+1} = z_{n}-\frac{(\phi(z_{n})-z_{n})^{2}}{\phi(\phi(z_{n}))-2\phi(z_{n})+z_{n}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>z_{n+1} = z_{n}-\frac{(\phi(z_{n})-z_{n})^{2}}{\phi(\phi(z_{n}))-2\phi(z_{n})+z_{n}}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">z[n + 1] = z[n]-((phi(z[n])- z[n])^(2))/(phi(phi(z[n]))- 2*phi(z[n])+ z[n])</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[z, n + 1] == Subscript[z, n]-Divide[(\[Phi][Subscript[z, n]]- Subscript[z, n])^(2),\[Phi][\[Phi][Subscript[z, n]]]- 2*\[Phi][Subscript[z, n]]+ Subscript[z, n]]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/3.8#Ex3 3.8#Ex3] || [[Item:Q1373|<math>z_{n+1} = \phi(z_{n})</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>z_{n+1} = \phi(z_{n})</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">z[n + 1] = phi(z[n])</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[z, n + 1] == \[Phi][Subscript[z, n]]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/3.8#Ex3 3.8#Ex3] || <math qid="Q1373">z_{n+1} = \phi(z_{n})</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>z_{n+1} = \phi(z_{n})</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">z[n + 1] = phi(z[n])</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[z, n + 1] == \[Phi][Subscript[z, n]]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/3.8#Ex4 3.8#Ex4] || [[Item:Q1374|<math>\phi(z) = \frac{3z^{4}+1}{4z^{3}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\phi(z) = \frac{3z^{4}+1}{4z^{3}}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">phi(z) = (3*(z)^(4)+ 1)/(4*(z)^(3))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">\[Phi][z] == Divide[3*(z)^(4)+ 1,4*(z)^(3)]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/3.8#Ex4 3.8#Ex4] || <math qid="Q1374">\phi(z) = \frac{3z^{4}+1}{4z^{3}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\phi(z) = \frac{3z^{4}+1}{4z^{3}}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">phi(z) = (3*(z)^(4)+ 1)/(4*(z)^(3))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">\[Phi][z] == Divide[3*(z)^(4)+ 1,4*(z)^(3)]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/3.8#Ex7 3.8#Ex7] || [[Item:Q1377|<math>\Delta s = \frac{r_{3}q_{0}-r_{2}q_{1}}{r_{2}^{2}-\ell r_{3}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\Delta s = \frac{r_{3}q_{0}-r_{2}q_{1}}{r_{2}^{2}-\ell r_{3}}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Delta*s = (r[3]*q[0]- r[2]*q[1])/((r[2])^(2)- ell*r[3])</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">\[CapitalDelta]*s == Divide[Subscript[r, 3]*Subscript[q, 0]- Subscript[r, 2]*Subscript[q, 1],(Subscript[r, 2])^(2)- \[ScriptL]*Subscript[r, 3]]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/3.8#Ex7 3.8#Ex7] || <math qid="Q1377">\Delta s = \frac{r_{3}q_{0}-r_{2}q_{1}}{r_{2}^{2}-\ell r_{3}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\Delta s = \frac{r_{3}q_{0}-r_{2}q_{1}}{r_{2}^{2}-\ell r_{3}}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Delta*s = (r[3]*q[0]- r[2]*q[1])/((r[2])^(2)- ell*r[3])</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">\[CapitalDelta]*s == Divide[Subscript[r, 3]*Subscript[q, 0]- Subscript[r, 2]*Subscript[q, 1],(Subscript[r, 2])^(2)- \[ScriptL]*Subscript[r, 3]]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/3.8#Ex8 3.8#Ex8] || [[Item:Q1378|<math>\Delta t = \frac{\ell q_{1}-r_{2}q_{0}}{r_{2}^{2}-\ell r_{3}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\Delta t = \frac{\ell q_{1}-r_{2}q_{0}}{r_{2}^{2}-\ell r_{3}}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Delta*t = (ell*q[1]- r[2]*q[0])/((r[2])^(2)- ell*r[3])</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">\[CapitalDelta]*t == Divide[\[ScriptL]*Subscript[q, 1]- Subscript[r, 2]*Subscript[q, 0],(Subscript[r, 2])^(2)- \[ScriptL]*Subscript[r, 3]]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/3.8#Ex8 3.8#Ex8] || <math qid="Q1378">\Delta t = \frac{\ell q_{1}-r_{2}q_{0}}{r_{2}^{2}-\ell r_{3}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\Delta t = \frac{\ell q_{1}-r_{2}q_{0}}{r_{2}^{2}-\ell r_{3}}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Delta*t = (ell*q[1]- r[2]*q[0])/((r[2])^(2)- ell*r[3])</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">\[CapitalDelta]*t == Divide[\[ScriptL]*Subscript[q, 1]- Subscript[r, 2]*Subscript[q, 0],(Subscript[r, 2])^(2)- \[ScriptL]*Subscript[r, 3]]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/3.8#Ex9 3.8#Ex9] || [[Item:Q1379|<math>\ell = sr_{2}+tr_{3}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\ell = sr_{2}+tr_{3}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">ell = s*r[2]+ t*r[3]</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">\[ScriptL] == s*Subscript[r, 2]+ t*Subscript[r, 3]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/3.8#Ex9 3.8#Ex9] || <math qid="Q1379">\ell = sr_{2}+tr_{3}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\ell = sr_{2}+tr_{3}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">ell = s*r[2]+ t*r[3]</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">\[ScriptL] == s*Subscript[r, 2]+ t*Subscript[r, 3]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-  
|-  
| [https://dlmf.nist.gov/3.8.E13 3.8.E13] || [[Item:Q1381|<math>\deriv{z}{\alpha} = -\ifrac{\pderiv{f}{\alpha}}{\pderiv{f}{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{z}{\alpha} = -\ifrac{\pderiv{f}{\alpha}}{\pderiv{f}{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(z, alpha) = -(diff(f, alpha))/(diff(f, z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[z, \[Alpha]] == -Divide[D[f, \[Alpha]],D[f, z]]</syntaxhighlight> || Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [210 / 210]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
| [https://dlmf.nist.gov/3.8.E13 3.8.E13] || <math qid="Q1381">\deriv{z}{\alpha} = -\ifrac{\pderiv{f}{\alpha}}{\pderiv{f}{z}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{z}{\alpha} = -\ifrac{\pderiv{f}{\alpha}}{\pderiv{f}{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(z, alpha) = -(diff(f, alpha))/(diff(f, z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[z, \[Alpha]] == -Divide[D[f, \[Alpha]],D[f, z]]</syntaxhighlight> || Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [210 / 210]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[f, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[f, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[f, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[f, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/3.8.E16 3.8.E16] || [[Item:Q1384|<math>\deriv{x}{a_{19}} = -\frac{20^{19}}{19!}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{x}{a_{19}} = -\frac{20^{19}}{19!}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>subs( temp=a[19], diff( x, temp$(1) ) ) = -((20)^(19))/(factorial(19))</syntaxhighlight> || <syntaxhighlight lang=mathematica>(D[x, {temp, 1}]/.temp-> Subscript[a, 19]) == -Divide[(20)^(19),(19)!]</syntaxhighlight> || Failure || Failure || Skip - No test values generated || <div class="toccolours mw-collapsible mw-collapsed">Failed [30 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 4.309980412182177*^7
| [https://dlmf.nist.gov/3.8.E16 3.8.E16] || <math qid="Q1384">\deriv{x}{a_{19}} = -\frac{20^{19}}{19!}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{x}{a_{19}} = -\frac{20^{19}}{19!}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>subs( temp=a[19], diff( x, temp$(1) ) ) = -((20)^(19))/(factorial(19))</syntaxhighlight> || <syntaxhighlight lang=mathematica>(D[x, {temp, 1}]/.temp-> Subscript[a, 19]) == -Divide[(20)^(19),(19)!]</syntaxhighlight> || Failure || Failure || Skip - No test values generated || <div class="toccolours mw-collapsible mw-collapsed">Failed [30 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 4.309980412182177*^7
Test Values: {Rule[x, 1.5], Rule[Subscript[a, 19], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 4.309980412182177*^7
Test Values: {Rule[x, 1.5], Rule[Subscript[a, 19], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 4.309980412182177*^7
Test Values: {Rule[x, 1.5], Rule[Subscript[a, 19], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[x, 1.5], Rule[Subscript[a, 19], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/3.8.E16 3.8.E16] || [[Item:Q1384|<math>-\frac{20^{19}}{19!} = (-4.30\dots)\times 10^{7}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>-\frac{20^{19}}{19!} = (-4.30\dots)\times 10^{7}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>-((20)^(19))/(factorial(19)) = (- 4.30) * (10)^(7)</syntaxhighlight> || <syntaxhighlight lang=mathematica>-Divide[(20)^(19),(19)!] == (- 4.30) * (10)^(7)</syntaxhighlight> || Translation Error || Translation Error || Skip - symbolical successful subtest || Skip - symbolical successful subtest
| [https://dlmf.nist.gov/3.8.E16 3.8.E16] || <math qid="Q1384">-\frac{20^{19}}{19!} = (-4.30\dots)\times 10^{7}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>-\frac{20^{19}}{19!} = (-4.30\dots)\times 10^{7}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>-((20)^(19))/(factorial(19)) = (- 4.30) * (10)^(7)</syntaxhighlight> || <syntaxhighlight lang=mathematica>-Divide[(20)^(19),(19)!] == (- 4.30) * (10)^(7)</syntaxhighlight> || Translation Error || Translation Error || Skip - symbolical successful subtest || Skip - symbolical successful subtest
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/3.8.E17 3.8.E17] || [[Item:Q1385|<math>z_{n+1} = \phi(z_{n})</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>z_{n+1} = \phi(z_{n})</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">z[n + 1] = phi(z[n])</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[z, n + 1] == \[Phi][Subscript[z, n]]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/3.8.E17 3.8.E17] || <math qid="Q1385">z_{n+1} = \phi(z_{n})</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>z_{n+1} = \phi(z_{n})</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">z[n + 1] = phi(z[n])</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[z, n + 1] == \[Phi][Subscript[z, n]]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|}
|}
</div>
</div>

Latest revision as of 11:03, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
3.8.E2 z = ϕ ( z ) 𝑧 italic-ϕ 𝑧 {\displaystyle{\displaystyle z=\phi(z)}}
z = \phi(z)

z = phi(z)
z == \[Phi][z]
Skipped - no semantic math Skipped - no semantic math - -
3.8.E3 | z n + 1 - ζ | < A | z n - ζ | p subscript 𝑧 𝑛 1 𝜁 𝐴 subscript 𝑧 𝑛 𝜁 𝑝 {\displaystyle{\displaystyle\left|z_{n+1}-\zeta\right|<A{\left|z_{n}-\zeta% \right|^{p}}}}
\abs{z_{n+1}-\zeta} < A\abs{z_{n}-\zeta}^{p}

abs(z[n + 1]- zeta) < A*(abs(z[n]- zeta))^(p)
Abs[Subscript[z, n + 1]- \[Zeta]] < A*(Abs[Subscript[z, n]- \[Zeta]])^(p)
Failure Failure
Failed [30 / 300]
Result: 0. < 0.
Test Values: {A = 1/2*3^(1/2)+1/2*I, p = 1/2*3^(1/2)+1/2*I, zeta = 1/2*3^(1/2)+1/2*I, z[n] = 1/2*3^(1/2)+1/2*I, z[n+1] = 1/2*3^(1/2)+1/2*I, n = 1}

Result: 0. < 0.
Test Values: {A = 1/2*3^(1/2)+1/2*I, p = 1/2*3^(1/2)+1/2*I, zeta = 1/2*3^(1/2)+1/2*I, z[n] = 1/2*3^(1/2)+1/2*I, z[n+1] = 1/2*3^(1/2)+1/2*I, n = 2}

Result: 0. < 0.
Test Values: {A = 1/2*3^(1/2)+1/2*I, p = 1/2*3^(1/2)+1/2*I, zeta = 1/2*3^(1/2)+1/2*I, z[n] = 1/2*3^(1/2)+1/2*I, z[n+1] = 1/2*3^(1/2)+1/2*I, n = 3}

Result: 1.414213562 < 0.
Test Values: {A = 1/2*3^(1/2)+1/2*I, p = 1/2*3^(1/2)+1/2*I, zeta = 1/2*3^(1/2)+1/2*I, z[n] = 1/2*3^(1/2)+1/2*I, z[n+1] = -1/2+1/2*I*3^(1/2), n = 1}

... skip entries to safe data
Failed [300 / 300]
Result: False
Test Values: {Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[n, 1], Rule[p, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ζ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[z, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[z, Plus[1, n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: False
Test Values: {Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[n, 2], Rule[p, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ζ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[z, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[z, Plus[1, n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
3.8#Ex1 x n + 1 = ϕ ( x n ) subscript 𝑥 𝑛 1 italic-ϕ subscript 𝑥 𝑛 {\displaystyle{\displaystyle x_{n+1}=\phi(x_{n})}}
x_{n+1} = \phi(x_{n})

x[n + 1] = phi(x[n])
Subscript[x, n + 1] == \[Phi][Subscript[x, n]]
Skipped - no semantic math Skipped - no semantic math - -
3.8#Ex2 ϕ ( x ) = x + x cot 2 x - cot x italic-ϕ 𝑥 𝑥 𝑥 2 𝑥 𝑥 {\displaystyle{\displaystyle\phi(x)=x+x{\cot^{2}}x-\cot x}}
\phi(x) = x+x\cot^{2}@@{x}-\cot@@{x}

phi(x) = x + x*(cot(x))^(2)- cot(x)
\[Phi][x] == x + x*(Cot[x])^(2)- Cot[x]
Failure Failure
Failed [30 / 30]
Result: -.137590423+.7500000000*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 1.5}

Result: .881577740e-1+.2500000000*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = .5}

Result: -1.144507621+1.*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 2}

Result: -2.186628529+1.299038106*I
Test Values: {phi = -1/2+1/2*I*3^(1/2), x = 1.5}

... skip entries to safe data
Failed [30 / 30]
Result: Complex[-0.1375904227343937, 0.7499999999999999]
Test Values: {Rule[x, 1.5], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-2.186628528411051, 1.299038105676658]
Test Values: {Rule[x, 1.5], Rule[ϕ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
3.8.E6 x 2 = x 1 - x 1 - x 0 f 1 - f 0 f 1 subscript 𝑥 2 subscript 𝑥 1 subscript 𝑥 1 subscript 𝑥 0 subscript 𝑓 1 subscript 𝑓 0 subscript 𝑓 1 {\displaystyle{\displaystyle x_{2}=x_{1}-\frac{x_{1}-x_{0}}{f_{1}-f_{0}}f_{1}}}
x_{2} = x_{1}-\frac{x_{1}-x_{0}}{f_{1}-f_{0}}f_{1}

x[2] = x[1]-(x[1]- x[0])/(f[1]- f[0])*f[1]
Subscript[x, 2] == Subscript[x, 1]-Divide[Subscript[x, 1]- Subscript[x, 0],Subscript[f, 1]- Subscript[f, 0]]*Subscript[f, 1]
Skipped - no semantic math Skipped - no semantic math - -
3.8.E7 z n + 1 = z n - ( ϕ ( z n ) - z n ) 2 ϕ ( ϕ ( z n ) ) - 2 ϕ ( z n ) + z n subscript 𝑧 𝑛 1 subscript 𝑧 𝑛 superscript italic-ϕ subscript 𝑧 𝑛 subscript 𝑧 𝑛 2 italic-ϕ italic-ϕ subscript 𝑧 𝑛 2 italic-ϕ subscript 𝑧 𝑛 subscript 𝑧 𝑛 {\displaystyle{\displaystyle z_{n+1}=z_{n}-\frac{(\phi(z_{n})-z_{n})^{2}}{\phi% (\phi(z_{n}))-2\phi(z_{n})+z_{n}}}}
z_{n+1} = z_{n}-\frac{(\phi(z_{n})-z_{n})^{2}}{\phi(\phi(z_{n}))-2\phi(z_{n})+z_{n}}

z[n + 1] = z[n]-((phi(z[n])- z[n])^(2))/(phi(phi(z[n]))- 2*phi(z[n])+ z[n])
Subscript[z, n + 1] == Subscript[z, n]-Divide[(\[Phi][Subscript[z, n]]- Subscript[z, n])^(2),\[Phi][\[Phi][Subscript[z, n]]]- 2*\[Phi][Subscript[z, n]]+ Subscript[z, n]]
Skipped - no semantic math Skipped - no semantic math - -
3.8#Ex3 z n + 1 = ϕ ( z n ) subscript 𝑧 𝑛 1 italic-ϕ subscript 𝑧 𝑛 {\displaystyle{\displaystyle z_{n+1}=\phi(z_{n})}}
z_{n+1} = \phi(z_{n})

z[n + 1] = phi(z[n])
Subscript[z, n + 1] == \[Phi][Subscript[z, n]]
Skipped - no semantic math Skipped - no semantic math - -
3.8#Ex4 ϕ ( z ) = 3 z 4 + 1 4 z 3 italic-ϕ 𝑧 3 superscript 𝑧 4 1 4 superscript 𝑧 3 {\displaystyle{\displaystyle\phi(z)=\frac{3z^{4}+1}{4z^{3}}}}
\phi(z) = \frac{3z^{4}+1}{4z^{3}}

phi(z) = (3*(z)^(4)+ 1)/(4*(z)^(3))
\[Phi][z] == Divide[3*(z)^(4)+ 1,4*(z)^(3)]
Skipped - no semantic math Skipped - no semantic math - -
3.8#Ex7 Δ s = r 3 q 0 - r 2 q 1 r 2 2 - r 3 Δ 𝑠 subscript 𝑟 3 subscript 𝑞 0 subscript 𝑟 2 subscript 𝑞 1 superscript subscript 𝑟 2 2 subscript 𝑟 3 {\displaystyle{\displaystyle\Delta s=\frac{r_{3}q_{0}-r_{2}q_{1}}{r_{2}^{2}-% \ell r_{3}}}}
\Delta s = \frac{r_{3}q_{0}-r_{2}q_{1}}{r_{2}^{2}-\ell r_{3}}

Delta*s = (r[3]*q[0]- r[2]*q[1])/((r[2])^(2)- ell*r[3])
\[CapitalDelta]*s == Divide[Subscript[r, 3]*Subscript[q, 0]- Subscript[r, 2]*Subscript[q, 1],(Subscript[r, 2])^(2)- \[ScriptL]*Subscript[r, 3]]
Skipped - no semantic math Skipped - no semantic math - -
3.8#Ex8 Δ t = q 1 - r 2 q 0 r 2 2 - r 3 Δ 𝑡 subscript 𝑞 1 subscript 𝑟 2 subscript 𝑞 0 superscript subscript 𝑟 2 2 subscript 𝑟 3 {\displaystyle{\displaystyle\Delta t=\frac{\ell q_{1}-r_{2}q_{0}}{r_{2}^{2}-% \ell r_{3}}}}
\Delta t = \frac{\ell q_{1}-r_{2}q_{0}}{r_{2}^{2}-\ell r_{3}}

Delta*t = (ell*q[1]- r[2]*q[0])/((r[2])^(2)- ell*r[3])
\[CapitalDelta]*t == Divide[\[ScriptL]*Subscript[q, 1]- Subscript[r, 2]*Subscript[q, 0],(Subscript[r, 2])^(2)- \[ScriptL]*Subscript[r, 3]]
Skipped - no semantic math Skipped - no semantic math - -
3.8#Ex9 = s r 2 + t r 3 𝑠 subscript 𝑟 2 𝑡 subscript 𝑟 3 {\displaystyle{\displaystyle\ell=sr_{2}+tr_{3}}}
\ell = sr_{2}+tr_{3}

ell = s*r[2]+ t*r[3]
\[ScriptL] == s*Subscript[r, 2]+ t*Subscript[r, 3]
Skipped - no semantic math Skipped - no semantic math - -
3.8.E13 d z d α = - f α / f z derivative 𝑧 𝛼 partial-derivative 𝑓 𝛼 partial-derivative 𝑓 𝑧 {\displaystyle{\displaystyle\frac{\mathrm{d}z}{\mathrm{d}\alpha}=-\ifrac{\frac% {\partial f}{\partial\alpha}}{\frac{\partial f}{\partial z}}}}
\deriv{z}{\alpha} = -\ifrac{\pderiv{f}{\alpha}}{\pderiv{f}{z}}

diff(z, alpha) = -(diff(f, alpha))/(diff(f, z))
D[z, \[Alpha]] == -Divide[D[f, \[Alpha]],D[f, z]]
Error Failure -
Failed [210 / 210]
Result: Indeterminate
Test Values: {Rule[f, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5]}

Result: Indeterminate
Test Values: {Rule[f, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 0.5]}

... skip entries to safe data
3.8.E16 d x d a 19 = - 20 19 19 ! derivative 𝑥 subscript 𝑎 19 superscript 20 19 19 {\displaystyle{\displaystyle\frac{\mathrm{d}x}{\mathrm{d}a_{19}}=-\frac{20^{19% }}{19!}}}
\deriv{x}{a_{19}} = -\frac{20^{19}}{19!}

subs( temp=a[19], diff( x, temp$(1) ) ) = -((20)^(19))/(factorial(19))
(D[x, {temp, 1}]/.temp-> Subscript[a, 19]) == -Divide[(20)^(19),(19)!]
Failure Failure Skip - No test values generated
Failed [30 / 30]
Result: 4.309980412182177*^7
Test Values: {Rule[x, 1.5], Rule[Subscript[a, 19], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: 4.309980412182177*^7
Test Values: {Rule[x, 1.5], Rule[Subscript[a, 19], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
3.8.E16 - 20 19 19 ! = ( - 4.30 ) × 10 7 superscript 20 19 19 4.30 superscript 10 7 {\displaystyle{\displaystyle-\frac{20^{19}}{19!}=(-4.30\dots)\times 10^{7}}}
-\frac{20^{19}}{19!} = (-4.30\dots)\times 10^{7}

-((20)^(19))/(factorial(19)) = (- 4.30) * (10)^(7)
-Divide[(20)^(19),(19)!] == (- 4.30) * (10)^(7)
Translation Error Translation Error Skip - symbolical successful subtest Skip - symbolical successful subtest
3.8.E17 z n + 1 = ϕ ( z n ) subscript 𝑧 𝑛 1 italic-ϕ subscript 𝑧 𝑛 {\displaystyle{\displaystyle z_{n+1}=\phi(z_{n})}}
z_{n+1} = \phi(z_{n})

z[n + 1] = phi(z[n])
Subscript[z, n + 1] == \[Phi][Subscript[z, n]]
Skipped - no semantic math Skipped - no semantic math - -